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A B S T R A C T

Spiral strands exhibit dissipative bending behavior when subjected to external axial force. To the best of
the authors’ knowledge, only the uniaxial bending behavior of spiral strands subjected to constant axial
force has been studied in the literature so far. Thanks to a recently developed mixed stress–strain driven
computational homogenization for spiral strands, this paper is the first to study the biaxial bending behavior
of spiral strands subjected to variable tensile force. Based on the observed anisotropic behavior, a rheological
constitutive model equivalent to multilayer spiral strands is proposed to predict their behavior under such
loading. For an 𝑁𝑙-layer strand, the proposed model consists of several angularly distributed uniaxial spring
systems, referred to as a multiaxial spring system, where each uniaxial spring system consists of a spring
and 𝑁𝑙 slider-springs. In a uniaxial spring system, the spring represents the slip contribution of all wires to
the bending stiffness of the strand, while each slider-spring represents the stick contribution of each layer. A
major advantage of the proposed scheme is its straightforward parameter identification, requiring only several
monotonic uniaxial bendings under constant axial force. The proposed rheological model has been verified
against the responses obtained from the mixed stress–strain driven computational homogenization through
several numerical examples. These examples consist of complex uniaxial and biaxial load cases with variable
tensile force. It has been shown that the proposed scheme not only predicts the response of the strand, but
also provides helpful insight into the complex underlying mechanism of spiral strands. Furthermore, the low
computational cost of the proposed models makes them perfect candidates for implementation as a constitutive
law in a beam model. Using a single beam with the proposed constitutive law, spiral strand simulations can
be performed in a few seconds on a laptop instead of a few hours or days on a supercomputer.
1. Introduction

A spiral strand is a multilayer composite of helically twisted wires,
whose mechanical behavior has been extensively covered in the lit-
erature. Fig. 1 shows the cross-section and side view of a typical
three-layer spiral strand. The 𝑖th layer of a spiral strand is characterized
by the number of wires in the layer, 𝑛𝑖, the wire radius, 𝑅𝑖, and the
lay angle, 𝛼𝑖. Spiral strands exhibit axial–torsional and axial-bending
coupling due to the helical geometry of their constituent wires. In the
case where the wires remain in the linear elastic regime, the axial–
torsional behavior is linear, whereas, the bending behavior is nonlinear,
only due to the frictional contact interaction between different layers.
The methods developed to model the bending behavior of spiral strands
can be divided into three general categories, namely, macroscopic,
microscopic, and microscopic–macroscopic (multiscale) approaches.

In the macroscopic approach, the behavior of a strand cross-section,
namely the moment–curvature response, is characterized, which can
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then be used in a beam element to model the macroscopic behavior of a
strand in different configurations. The main advantage of this approach
is its low computational cost since a single beam represents the spiral
strand. However, this approach faces difficulties and limitations, as
thus far, only analytical formulations have been used to define the
cross-section behavior, and due to the complex geometry of spiral
strands and their underlying mechanisms, only simple strands could be
modeled. The analytical approaches can be broadly divided into two
categories, namely, discrete and semi-continuous formulations. In the
discrete formulation, each wire is considered individually, while in the
semi-continuous formulation, each layer of the strand is considered as
a homogeneous hollow cylinder.

Early attempts using the discrete formulation, such as Costello
(1997), Costello and Butson (1982) and LeClair and Costello (1988),
neglected interlayer friction and calculated the bending stiffness as the
sum of the individual wire stiffnesses, making them valid only in the
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Fig. 1. The side view, internal configuration and cross section of a typical three-layer spiral strand.
absence of axial force. Initial models including friction assumed binary
states: no friction (minimum stiffness) or infinite friction (maximum
stiffness) (Ramsey, 1988). For infinite friction, bending moments result
from individual wire bending and axial force variation due to friction.
In Lanteigne (1985), interlayer friction is considered due to the external
tensile force, causing bending stiffness to vary stepwise. As curvature
increases in a taut spiral strand, slip progresses from the outermost
to the innermost layer, identified by a stick–slip criterion. Papailiou
(1995, 1997) used similar equations but allowed partial slip, resulting
in a smooth transition in bending stiffness. This formulation provides
a nonlinear bending response with good agreement with experimental
results. Subsequent modifications include Dastous (2005), Inagaki et al.
(2007), Hong et al. (2012), Paradis and Légeron (2011), Khan et al.
(2018), Hong et al. (2005), Foti and Martinelli (2016a) and Zheng
et al. (2021). In Hong et al. (2005), minimum stiffness depends on
friction coefficient, while Dastous (2005) extended Papailiou’s work to
include nonlinearities and dynamic implementation. Khan et al. (2018)
incorporated intralayer line contacts, and Foti and Martinelli (2016b)
used Euler–Bernoulli beam theory to model each wire as a curved thin
rod (Love, 1927). Vemula et al. (2020) developed a model for the
elasto-plastic bending response of wires under large deflections.

For a complete review of available analytical models for spiral
strands, refer to Utting and Jones (1984), Triantafyllou (1984),
Starossek (1994), Cardou and Jolicoeur (1997) and Rega (2004a,b).
Although these analytical approaches provide helpful insight into the
behavior of these cables, they cannot address all the internal nonlinear
mechanisms of complex strands.

A purely microscopic approach can overcome the deficiencies of
the macroscopic approach by explicitly modeling all cable constituents,
including wires and frictional contact interactions, using the finite
element (FE) method. Despite its high accuracy and ability to model
complex geometries, this approach’s high computational cost limits its
application to short samples of small strands. Various elements, from
3D solid to 1D beam elements, can be used. These FE simulations,
referred to as direct numerical simulations (DNS), include full 3D FE
simulations for modeling spiral strands (Kmet et al., 2013; Zhang and
Ostoja-Starzewski, 2016; Yu et al., 2014). To reduce computational
costs, concise FE models (Jiang, 2012) and simplified models with
beams and springs (Yu et al., 2016) have been proposed.

Taking advantage of the slenderness of the wires, they can be
modeled using 1D beam elements, which has the advantage of reducing
the computational cost. However, this choice introduces two difficulties
in modeling the spiral strands. The first is selecting the appropriate
beam element to use, and the second is dealing with beam-to-beam
contact, which is more difficult to address than contact between 3D
deformable bodies.
2 
To model highly flexible structures, various beam elements have
been used. Kirchhoff-type models are suitable for very slender beams
with insignificant axial deformation and transverse shear (Love, 1927;
Meier et al., 2015). General cases consider shear deformation, leading
to coupled equations for position and rotation (Reissner, 1973; Simo,
1985), requiring methods like rotation parameterization (Cardona and
Geradin, 1988; Crisfield and Jelenić, 1999; Ghosh and Roy, 2009), the
director vector method (Simo, 1985), and Lie group methods (Betsch
and Steinmann, 2002; Brüls et al., 2012). Challenges include objectivity
issues and singularities. A beam formulation on the 𝑆𝐸(3) manifold
couples rotational and translational degrees of freedom (Sonneville
et al., 2014). Assuming variable section directors capture beam defor-
mation without rotation variables (Durville, 1998), and higher-order
beam elements can represent complex deformations (Moustacas et al.,
2021).

Two types of interwire contact can occur in a spiral strand: line
contact between the core and the wires of the first layer and between
the wires of the same layer, and point contact between the wires of
different layers. Contact mechanics between 3D bodies has been the
subject of extensive research (see for example Wriggers and Laursen,
2006). However, due to the particular geometric properties of beams,
the contact treatment can be more challenging and scarce. The contact
constraint in the case of beam-to-beam contact is generally defined by
the closest point projection and enforced using the Lagrange multi-
plier method or the penalty approach (Wriggers and Zavarise, 1997;
Zavarise and Wriggers, 2000). These papers considered point-to-point
contact. More recently, the mortar method has been implemented in
the case of frictionless quasi-static beam-to-beam contact (Bosten et al.,
2022; Tomec and Jelenić, 2022) for the case of line contact. In Meier
et al. (2018) both cases of point-to-point and line contact have been
considered and a switch between the two models has been presented.
In Durville (2012), the contact has been considered as a phenomenon
involving the two structures in contact symmetrically with respect to
an intermediate geometry, and even though the contact is considered
point by point, the use of a large number of contact points allows the
modeling of line contact.

Although beam elements have been successfully used in several
applications (Durville, 2012, 2010, 2005), they have rarely been used
to model spiral strands (Zhou and Tian, 2013; Lalonde et al., 2017b,a;
Ménard and Cartraud, 2021; Kim et al., 2021; Kim and Lee, 2017; Yu
et al., 2018; Baumann and Novak, 2017; Beleznai and Páczelt, 2013;
Zhou et al., 2022). In Zhou and Tian (2013), a single-layer strand
has been modeled using beam elements, however, since wire slippage
has not been considered in this work, it cannot be used for bending
simulation. In Kim and Lee (2017), the performance of beam elements
in modeling spiral strands has been compared to 3D elements, for
torque balance design of several spiral strands. It has been shown that
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the use of beam elements in numerical simulation of these cables pro-
vides high accuracy, while the computational cost is lower. The work
of Lalonde et al. (2017b), can be considered as the first attempt to fully
utilize the beam elements to model the mechanical behavior of spiral
strands, as this is the first paper that deals with the complex situation
of nonlinear bending behavior of spiral strands when subjected to axial
force using beam elements. In this work, the bending responses of
two cables previously used experimentally in Papailiou (1995) have
been studied, and good agreement has been found. Using the same
modeling strategy, the authors have investigated the fatigue analysis
for an overhead conductor in Lalonde et al. (2017a). Due to the high
accuracy of the stresses, strains and the contact forces obtained from
numerical simulation compared to analytical approaches, the results
are more accurate and reliable. In Beleznai and Páczelt (2013), the axial
bending response of an Aluminum Conductor Steel Reinforced (ACSR)
cable has been verified against experimental results. Although using
beam elements would reduce the computational cost compared to full
3D simulations, modeling large samples of large cables is still out of
reach. In this case, multiscale simulation becomes an option.

Even though the above models provide accurate results, their com-
putational cost is too high for modeling samples of reasonable lengths
for bending. Therefore, an alternative approach, such as the multiscale
approach, should be used. Multiscale modeling predicts a structure’s
behavior involving multiple scales, using homogenization methods for
clearly separated scales and concurrent methods for coupled scales.
Homogenization replaces a heterogeneous medium with an equivalent
homogeneous one derived from a micro-sample. For spiral strands,
the heterogeneous medium is the strand of many wires, and the ho-
mogeneous medium is a single beam. A representative volume ele-
ment (RVE) must be large enough to represent the heterogeneity’s
randomness and have homogenized properties insensitive to its size.
Homogenization methods include analytical homogenization, such as
the semi-continuous formulation for spiral strands, and computational
homogenization.

In the computational homogenization framework, the macroscopic
constitutive behavior is characterized numerically, from solving a
boundary value problem (BVP) on the RVE scale. Therefore, no ex-
plicit a priori assumption on the macroscopic constitutive behavior is
required, which makes the method extremely flexible and suitable for
predicting very complex nonlinear behaviors. In conventional strain-
driven computational homogenization at finite strain, after discretizing
the macroscopic domain, the macroscopic deformation gradient is
computed for each integration point. This deformation gradient is then
imposed on the RVE using appropriate boundary conditions. After
solving the BVP on the RVE, the resulting macroscopic stresses and the
macroscopic consistent tangent modulus are retrieved and assigned to
the integration point for the next iteration of the macroscopic BVP. For
a complete review of the multiscale modeling, refer to Matouš et al.
(2017).

Due to the quasi-invariance of phenomena along the axis of spiral
strands, homogenization can be applied to these structures. Various
attempts at homogenizing beam-like structures have been made in
the literature (Treyssede and Cartraud, 2022; Staszak et al., 2022;
Xing et al., 2022; Boso et al., 2005; Buannic and Cartraud, 2001;
Bussolati, 2019; Ménard and Cartraud, 2021; Cartraud and Messager,
2006; Karathanasopoulos and Kress, 2016; Frikha et al., 2013; Smith
et al., 2023; Saadat and Durville, 2023). In Karathanasopoulos and
Kress (2016) and Frikha et al. (2013), a two-dimensional homoge-
nization scheme is proposed by reducing the 3D microscopic problem
to a 2D finite element simulation on the cross-section, with axial
and torsional loading considered but not bending. In Treyssede and
Cartraud (2022), this is addressed by accounting for the dependence
on the axial coordinate, enabling the modeling of bending behavior.
In Ménard and Cartraud (2021), asymptotic homogenization previously
developed in Cartraud and Messager (2006) is extended to consider

contact nonlinearities, capturing the nonlinear bending response of
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strands accurately and at low computational cost, with detailed wire
stress and contact force information provided. In Saadat and Durville
(2023), a mixed stress–strain driven computational homogenization
for spiral strands is developed using a geometrically exact beam ele-
ment (Cardona and Geradin, 1988) for the macroscale and a kinemat-
ically enriched beam element (Durville, 1998) for the microscale. The
mixed stress–strain driven approach developed allows either force or
deformation to be used to drive the problem. Recently, in Smith et al.
(2023), a repeated unit cell finite element approach for spiral strands is
developed using 3D solid elements for individual wires and a constant
curvature constraint for bending curvature.

In all of the above studies, the focus has been on identifying the
nonlinear uniaxial bending response of a spiral strand subjected to
a constant tensile force, and except in Saadat and Durville (2023),
no integration of the responses in a full homogenization scheme has
been performed. In this study, it has been shown that since the axial–
torsional response of spiral strands can be assumed to be linear, if the
nonlinear evolution of the uniaxial bending response as a function of
curvature history can be predicted, there is be no need to perform
FE2 (Feyel and Chaboche, 2000) homogenization, which is computa-
tionally intensive. As an alternative, an interpolation technique has
been introduced to obtain the uniaxial cyclic response of spiral strands
subjected to a constant axial force for any curvature history from only
a monotonic response in order to evaluate the bending stiffness at any
point, thus allowing a full homogenization to be performed without
having to solve an RVE BVP at each macroscopic interpolation point. By
comparing the results obtained by performing full homogenization with
DNS, good agreement has been observed along with a significant reduc-
tion in computational time. The main conclusions that can be drawn
from this study are, firstly, that a spiral strand can be replaced by a
single beam with equivalent material properties, and secondly, that by
considering the axial–torsional coupling as linear, the bending response
for the beam is the only nonlinear term which needs to be predicted.

To the best of the author’s knowledge, spiral strand models in the
literature consider only uniaxial bending of spiral strands subjected
to constant tensile force, whereas in reality these strands are usually
subjected to biaxial bending and variable tensile force. Therefore, using
the conclusions that can be drawn from Saadat and Durville (2023), the
objective of this paper is to present a rheological constitutive model for
spiral strands that is able to describe the biaxial bending behavior of
spiral strands subjected to variable axial force. The proposed rheolog-
ical constitutive model consists of a combination of basic rheological
elements, i.e. springs and slider elements. A notable advantage of
this model is that it involves only a few parameters, all of which
have direct physical interpretations and can be easily obtained from
several monotonic uniaxial bending tests under constant tensile force.
In addition, the model has a very low computational cost, which allows
it to be used as a constitutive law for a beam model. Although no
experiments have apparently yet been performed on spiral strands sub-
jected to biaxial bending or variable tensile force, the homogenization
framework developed in Saadat and Durville (2023) enables performing
virtual experiments with low computational cost to characterize the
response of a spiral strand subjected to these conditions. For this reason,
in the absence of available experimental results, the rheological model
will be verified only against results obtained by solving the BVP on the
RVE. This is due to the fact that in Saadat and Durville (2023), the
mixed stress–strain driven homogenization has already been validated
against DNS, which itself has been verified against experimental data
in the literature.

This paper is organized as follows. First, an introduction to mixed
stress–strain homogenization of spiral strands is presented, which is
used to extract their moment curvature responses. Next, using the ho-
mogenization method, the bending behavior of spiral strands subjected
to different loadings is extracted and presented. Then, the rheological
model capable of predicting the uniaxial bending of spiral strands sub-

jected to variable axial force is presented, followed by the rheological
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model for predicting the biaxial bending response under variable tensile
force. Then, the accuracy and robustness of the proposed framework is
illustrated through some numerical examples. Finally, some concluding
remarks are given.

2. The mixed stress–strain driven computational homogenization
for spiral strands

To extract the moment curvature response of spiral strands, the
mixed stress–strain driven computational homogenization developed
in Saadat and Durville (2023) is implemented in an in-house finite
element code. In Saadat and Durville (2023), beam kinematics at
the macroscale have been assumed, allowing homogenization to be
performed only in the longitudinal direction. Additionally, a quasi-
periodic boundary condition has been introduced by modifying the
Hill–Mandel macrohomogeneity condition, which enables homogeniza-
tion on non-periodic RVEs. The final system of equations to be solved
is:
⎛
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here, 𝐿RVE denotes the length of the RVE, and 𝑊 𝑚 represents the
work within the RVE. The term 𝒖𝑚 indicates the total microscopic
displacement field, while 𝒖𝑚𝑀 is the microscopic displacement field
induced by macroscopic strains 𝑬̂

𝑀
=

[

𝜖, 𝜅𝑥, 𝜅𝑦, 𝜅𝑧
]

, where 𝜖 is the
axial strain, 𝜅𝑥 and 𝜅𝑦 are two bending curvatures and 𝜅𝑧 is the twist.
The matrix 𝐀𝑝 relates the degrees of freedom of the opposite faces of
the RVE. The vector 𝝀̂ contains the Lagrange multipliers that enforce
the quasi-periodic boundary conditions. Lastly, 𝑺̂

𝑀
=

[

𝑇 ,𝑀𝑥,𝑀𝑦,𝑀𝑧
]

represents the vector of macroscopic resultant forces and moments
which includes an axial force, 𝑇 , torque, 𝑀𝑧, and two bending moments
𝑀𝑥 and 𝑀𝑦. It should be mentioned that geometric nonlinearities have
been completely taken into account in the microscale.

Due to the mixed stress–strain formulation, the macroscopic strains
𝑬̂

𝑀
enter the RVE BVP as displacement degrees of freedom, while 𝑺̂

𝑀

are their corresponding forces, as can be seen in Eq. (1). Therefore,
the degrees of freedom corresponding to macroscopic strains and their
associated resultant forces and moments are treated as conventional
displacement and forces in the finite element setting.

The computational homogenization developed in Saadat and Durville
(2023) serves us in two ways. First, it provides the mathematical proof
that a spiral strand can be replaced by a single beam with effective
material properties. Second, it provides a virtual experimental platform
for spiral strands to determine their response to any arbitrary loading
history for any strand geometry with minimal computational effort.

3. The bending behavior of spiral strands

To develop a rheological model capable of predicting the bending
behavior of spiral strands, an in-depth analysis of this behavior is
essential. To this end, we investigate the behavior of three spiral
strands (Fig. 2), with geometric properties in Table 1, under different
loadings by solving Eq. (1). These loadings consist of both uniaxial
cyclic bending under constant and variable tensile forces, and biaxial
bending under constant tensile force. The findings from this section will
be used in the development of the rheological model that can predict
biaxial bending under variable tensile force.
4 
Fig. 2. The representative volume elements of a single-, two-, and four-layer strand.

Table 1
Geometric properties of the spiral strands.

No. of wires Radius [mm] Pitch length [mm]

Single-layer

Core 1 2.675 –
Layer 1 6 2.590 230.1

i-layer

Core 1 2.675 –
Layer 𝑖 6 × 𝑖 2.590 228.44 × 𝑖

In all cases, the friction coefficient of 0.3 and the Young’s modulus
of 210 GPa have been assumed in the numerical simulation. Moreover,
the contact regularization parameters (Saadat and Durville, 2023) of
10−4 mm for the single-layer strand, and 10−3 mm for the two- and
four-layer strands have been considered in the numerical simulations.

3.1. Uniaxial bending under constant tensile force

The first loading considered is the most basic one: uniaxial bending
under constant tensile force. The moment–curvature responses of the
strands subjected to a cyclic bending with a curvature amplitude of
10−4mm−1 and different tensile stresses are shown in Fig. 3.

The observed strands show nonlinear dissipative behavior. To un-
derstand the reason of this nonlinear behavior, we consider the two-
layer strand at different stages of loading. Initially, a tensile force is
applied to the spiral strand, creating normal interlayer contact forces
due to the strand’s helical geometry, as shown in Fig. 4. Line contacts
form between wires of the first layer and the core wire due to their
continuous contact. However, point contacts occur between wires of
the first and of the second layers due to their opposing lay directions.

Once the axial force is applied to the strand and these contacts
have been made, the bending curvature is applied to the strand. When
a bending curvature is applied to the strand, interlayer shear forces
are induced and two extreme cases of relative interlayer displacement
can be considered, namely, full-slip and full-stick. In the full-slip case,
it is assumed that there are no induced interlayer shear forces and
therefore each wire acts individually and bends around its own neutral
axis, so the strand’s bending stiffness is at its minimum value. The
distribution of the axial strain induced by applying a bending curvature
of 𝜅 under this assumption is shown schematically in Fig. 5(a) for
a five-wire assembly. On the contrary, in the full-stick case, all the
bending induced shear forces are transferred between the layers due
to the presence of interlayer friction, and therefore, the cross section is
considered to be rigid and the bending stiffness is at its maximum value.
As a result, a linear variation of the bending induced axial strain in
the cross section is considered. The distribution of the bending induced
axial strain under the full-stick assumption is shown schematically in
Fig. 5(b). Under the assumption of a linear variation of the induced
axial strain, the axial strain across the cross section of each wire can
be split into two components. One reflects a linear variation in the wire
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Fig. 3. The uniaxial cyclic bending responses of spiral strands subjected to different constant tensile stresses of 0, 100, 200 and 300 N/mm2. a, the single-layer strand; b, the
two-layer strand; c, the four-layer strand.
Fig. 4. The normal contact forces developed between different layers of a two-layer
spiral strands when subjected to an external tensile force.

cross section independent of the wire’s position within the cable cross
section, while the other component is constant over each wire cross
section but varies linearly with the distance from the centerline of the
wire to the strand axis. Integrating the axial stresses associated with
these two components to calculate the assembly bending moment gives
rise to different bending stiffness terms, referred to in the following as
the slip contribution and the stick contribution to the bending stiffness,
respectively.

Using the above explanations, it is possible to calculate the min-
imum and maximum bending stiffnesses of the 𝑙th layer of a strand.
Considering the full-slip case, the minimum bending stiffness is:

𝐾min,𝑙 = 𝐾slip,𝑙 = 𝑛𝑙𝐸𝑙
𝜋𝑅4

𝑙
4

𝑐𝑜𝑠𝛼𝑙 , (2)

where 𝑛𝑙 is the number of wires, 𝐸𝑙 is the Young’s modulus of wires,
𝑅𝑙 is the radius of wires, and 𝛼𝑙 is the lay angle of the 𝑙th layer. To
determine the stick contribution to the maximum bending stiffness, the
5 
axial forces of the wires are calculated under the full-stick assumption,
as described previously. The maximum bending stiffness of the layer
can then be expressed as Papailiou (1997) and Foti and Martinelli
(2016b):

𝐾max,𝑙 = 𝐾min,𝑙 + 𝛽
𝑛𝑙
2
𝐸𝑙𝐴𝑙𝜌

2
𝑙 𝑐𝑜𝑠𝛼

3
𝑙 = 𝐾slip,𝑙 +𝐾stick,𝑙 , (3)

where 𝜌𝑙 is the helix radius of the layer. The coefficient 𝛽 has been con-
sidered here to account for the possibility of incomplete load transfer,
especially for the wires with pointwise interlayer contacts and those
that are not fully supported by the underlying layer. Note that this
factor has not been taken into account in the previous studies, for
example in Papailiou (1997) and Foti and Martinelli (2016b).

In the above expressions, the slip contribution to the bending stiff-
ness 𝐾slip,𝑙 corresponds to the sum of the bending stiffnesses of all
wires of the layer, and is always present, whereas the stick contribution
𝐾stick,𝑙 vanishes once the slip has occurred. In the same way, the
bending moment of a layer is split into a slip contribution, varying
linearly with the curvature, and a stick contribution, which is limited
by the value reached at slipping.

In order to explain the nearly multilinear behavior observed in
Fig. 3, the bending stiffness of the two-layer strand is examined at
different stages of loading. At low curvatures, the interlayer friction
is high enough to transfer the bending induced interlayer shear forces
between different layers, and therefore both the first and second layers
contribute to the overall bending stiffness of the strand with both slip
and stick contributions. However, as the curvature increases, slip occurs
between the first and second layers, resulting in the loss of the second
layer’s stick contribution to the bending stiffness, which is reflected
by the change in the slope of the moment–curvature diagram. At this
point, the second layer’s stick contribution to the bending moment no
longer increases, and reaches a maximum value which is referred to as
the layer’s slip moment threshold. As the curvature increases further, a
second slip occurs between the first layer and the core wire, resulting
in the loss of the first layer’s stick contribution to the bending stiffness.
At this point, the total bending stiffness of the strand is reduced to
the sum of the slip contributions of the first and second layers, and
Fig. 5. Axial strain distribution for a five-wire assembly under different bending assumptions when subjected to a bending curvature 𝜅. a, the full-slip assumption; b, the full-stick
assumption.



M.A. Saadat and D. Durville

l
s
p
a

3

c
a
e
o
d
(
s
l

s
a
l
o
w
w
t
a
f
t
g
a
l

International Journal of Solids and Structures 305 (2024) 113082 
Fig. 6. The uniaxial bending responses of spiral strands obtained from homogenization under increasing curvature and tensile force. a, the single-layer strand; b, the two-layer
strand; c, the four-layer strand; d, the loading history.
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the core wire. The same pattern exists for different values of the axial
force for the two-layer strand, only the slip between different layers
occurs at different curvatures. Therefore, it can be concluded that the
slip threshold of the layers is a function of the applied axial force. The
uniaxial bending behavior of the single- and four-layer strands can be
explained in the same way, as shown in Fig. 3. In general, for an 𝑁𝑙-
ayer strand under uniaxial bending and constant axial force, the slip
tarts from the outermost layer, i.e., between layers 𝑁𝑙 and 𝑁𝑙−1, and
ropagates inwards, with the final slip occurring between the first layer
nd the core wire.

.2. Uniaxial bending under variable tensile force

The purpose of this section is to illustrate, using two special load
ases, very different behaviors that can be observed in the presence of
variable tensile load. Uniaxial bending is considered to isolate the

ffect of axial force variation. The two load cases examined here show
pposite variations of the axial force with respect to the curvature,
epending on whether the axial force increases (first case) or decreases
second case) linearly with the curvature. The moment–curvature re-
ponses obtained from homogenization, as well as their corresponding
oading histories, are depicted in Figs. 6 and 7.

The axial force significantly affects the bending response of spiral
trands, as demonstrated by these loads. Depending on whether the
xial load is increasing or decreasing with the curvature, an almost
inear response with varying slopes or even a softening response can be
bserved (Figs. 6 and 7), instead of the multilinear response obtained
ith constant axial force (Fig. 3). The observed almost linear response
ith increasing axial force can be explained by the nearly linear rela-

ionship between the interlayer normal contact forces and the applied
xial force. Therefore, as the axial force increases, the normal contact
orce and thus the interlayer slip threshold increase almost linearly. In
his load case, the bending induced interlayer shear appears to remain
reater than the resisting interlayer frictional forces at all load steps,
nd therefore the layers are always in the slip state. However, due to the

inear increase of axial force, the slip moment thresholds of all layers b

6 
lso increase almost linearly. Therefore, at each step, the moment of the
trand is equal to the sum of the slip moment thresholds of all layers
lus the slip contributions of all layers, all of which are almost linear,
xplaining the observed almost linear behavior of the strand. The fact
hat the bending moment in the last step of loading is equal to the
ase with constant tensile force (Fig. 3), supports the validity of the
xplanation provided for the observed behavior.

For the decreasing axial force case, the mechanism is similar to the
onstant axial force case, except that the slip thresholds of the layers
re not constant but decrease linearly with the curvature. Therefore,
he interlayer friction is initially high enough to prevent slipping and
igh bending stiffness can be observed for all samples. However, unlike
he case with constant axial force, once a layer has slipped and its
ontribution to the bending stiffness has been lost, its slip moment
hreshold does not remain constant but decreases linearly. Since two
ifferent competing mechanisms contribute to the resulting bending
oment of the strand after all layers have slipped, different behaviors

an be observed. The first mechanism is reflected in the increase in the
lip contribution of all wires to the bending moment, while the second
echanism is related to the decrease in the slip moment threshold of

ll layers. In some cases, such as the single-layer strand with 𝑇0 =
00 N/mm2, the increasing mechanism is stronger and therefore no
oftening is observed, whereas for all cases with the four-layer strand,
strong softening behavior can be observed. The fact that the bending
oment in the last step of loading is the same in all cases, and is

qual to the case where no tensile force has been applied to the strand
Fig. 3), confirms the validity of the explanation provided for the
bserved behavior.

.3. Biaxial bending under constant tensile force

The effect of biaxial bending on the behavior of spiral strands is
nvestigated in the last load case considered here. To isolate the effect
f biaxial bending, a constant axial force is assumed. As long as uniaxial
ending has been considered, the bending loading has been defined

y a single value, i.e. the applied curvature 𝜅, assuming a constant
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Fig. 7. The uniaxial bending response of spiral strands obtained from homogenization under increasing curvature and decreasing tensile force. a, the single-layer strand; b, the
two-layer strand; c, the four-layer strand; d, the loading history.
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bending direction. However, in the case of biaxial bending, the bending
axis can be variable, and therefore two variables, namely the current
increment of curvature and the current direction of the bending axis,
are needed to define the bending load. Therefore, the applied curvature
and consequently the bending moment should be treated as vectorial
variables. Having the applied curvature and the bending moment as
vectors, two different representations can be used to illustrate the
results of biaxial bending of spiral strands; the 𝑥 and 𝑦 components of
the vectors, or the amplitude of the vectors and their angle with respect
to the 𝑥-axis.

Since the first representation is more convenient for defining the
load history, it is used first. In this biaxial loading case, after performing
a bending about the 𝑥-axis, the curvature in this direction is kept
constant and a bending about the 𝑦-axis is performed. In the last stage,
the curvature in 𝑦-axis is kept constant and the curvature in 𝑥-axis is
urther increased. This load history and the responses of the strands
btained by solving the BVP on the RVE are shown in Fig. 8.

Of great interest in this loading case is the anisotropic behavior
nduced in all strands. Spiral strands are radially symmetric in their
nitial state, but interlayer slip significantly affects their response in
ifferent directions. This effect has not yet been reported in the liter-
ture. To better understand this phenomenon, it is important to note
hat, contrary to the previous simplified presentation of the occurrence
f interlayer slipping as an abrupt event when discussing the uniaxial
esponse of strands, this interlayer slipping actually occurs gradually, as
llustrated by the smooth transitions at changes in slope observed in the
oment–curvature responses (see Fig. 3). The homogenization results

an be used to follow the progression of the loss of stick contribution
o the bending stiffness of each layer. For illustration, let us consider
single-layer strand subjected to a uniaxial bending about the 𝑥-axis

nd a tensile stress of 200 N/mm2. In this case, the polar angles 0◦

nd 180◦ define the bending neutral axis. As depicted in Fig. 9, which
llustrates the occurrence of slipping for wires as function of their polar
ngle in the cross section and different loading steps, the points closest
o the neutral axis start to slip and lose their stick contribution first.

◦
he slipping then propagates towards the two extreme angles, 90

7 
nd 270◦, causing a loss of stick contribution to the bending stiffness,
ntil the entire layer has lost its stick contribution to the bending
tiffness. It should be noted that a wire located at the polar angle
0◦ experiences bending induced tension, and due to consideration of
eometric nonlinearities in the numerical simulation, it loses its stick
ontribution later than a wire located at the angle 270◦.

The curvature (or bending moment) at which the stick contribution
o bending stiffness is lost in each direction can be considered as the
istory variable for that direction, since after this loss, the response
n that direction is no longer linear due to the occurrence of slipping.
he anisotropic response observed in Fig. 8 arises from the presence
f distinct history variables in various directions, as illustrated in
ig. 9. When the bending axis changes, some directions continue to be
oaded, while others are unloaded. The evolution of slipping in each
irection, i.e. whether it starts, stops or continues, depends not only
n the increment of curvature, but also on the slipping history in this
irection. To capture the anisotropic response of the spiral strands,
t is therefore necessary to capture and store the history variables
n different directions. It is also interesting to note that the bending
oment about the 𝑥-axis drops significantly in the response observed

in Fig. 8 when the curvature is increased about the 𝑦-axis, which can
be explained by a stress relaxation due to the triggering of slipping in
some directions.

The responses of the strands using the second representation are
depicted in Fig. 10. Comparing the total bending moment response
to each of its components, no large jumps can be observed, and it
appears that there is no difference between the biaxial and uniaxial
responses except for a few small drops. However, the main difference
between the two responses is revealed by looking at the axes of the
applied curvature and the bending moment response. It can be observed
that the two axes are aligned in the first loading stage, but as soon
as the axis of applied curvature starts to vary, the two axes become
misaligned, which means that the direction of applied curvature and
bending moment are not the same, a result that has not been mentioned

in the literature before.
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Fig. 8. The bending responses in the 𝑥- and 𝑦-axes of spiral strands obtained from homogenization under constant tensile force (the end of each load stage is marked on each
urve). a, the single-layer strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.
Fig. 9. Different contributions of a wire to the bending stiffness of a single-layer spiral strand subjected to uniaxial bending and constant axial force, at different polar angles in
the cross section.
4. The uniaxial rheological model

The previous section demonstrated that simulations on short sam-
ples of spiral strands using computational homogenization can extract
the bending response to different loadings. It has been observed that
the variation of axial force has a significant impact on the bending
response. The objective of this section is to present a rheological model
that describes all the behaviors observed in the previous section.

Based on the uniaxial bending response of the strands subjected
to a constant tensile force (Fig. 3), it is observed that this behavior
resembles plasticity-like behavior with kinematic hardening. With this
analogy, a rheological model based on springs and slider elements is
proposed to reproduce this response. Fig. 11 illustrates these rheologi-
cal elements and their constitutive behavior. In the context of bending
8 
of spiral strands, an analogy will be effectively drawn between the key
parameters used and the traditional rheological elements. The moment
experienced by a spiral strand during bending is analogous to stress
in an elasto-plastic constitutive model. Similarly, curvature serves as
an analogy to strain, bending stiffness can be compared to Young’s
modulus, and finally, the slip moment threshold corresponds to the
yield stress. By adopting these analogous terms, for the spring, the
moment curvature response is linear and depends on the spring stiffness
parameter 𝐾. In the case of the slider element (hereafter referred
to as slider), it remains rigid until the applied moment reaches the
slip moment threshold 𝐵, beyond which slip occurs and the moment
becomes constant while the curvature is indeterminate.

In the following, a model capable of predicting the uniaxial bending
behavior under constant tensile force of a single-layer strand is first
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Fig. 10. A comparison of the bending response and the bending axis of spiral strands obtained from homogenization and from the rheological model for the biaxial test case 1.
a,d, the single-layer strand; b,e, the two-layer strand; c,f, the four-layer strand.
Fig. 11. The rheological elements and their constitutive behavior.

presented, which is then extended to the case of multilayer strands
subjected to variable tensile force.

4.1. Uniaxial bending of a single-layer strand under constant tension

The rheological model representing the uniaxial bending response
of single-layer strands under constant axial force is first presented as
the simplest case. To achieve this, the bending mechanism and various
contributions to the bending stiffness, as previously explained, are
utilized. As can be seen in Fig. 3, the uniaxial bending response of
single-layer strands is bilinear. At low curvatures, the interlayer friction
is high enough, and therefore, the first layer provides both the stick and
slip contributions to the total bending stiffness of the strand. Therefore,
the initial bending stiffness of the strand, 𝐾initial, can be calculated as
follows:

𝐾initial = 𝐾slip,0 +𝐾slip,1 +𝐾stick,1, (4)

where 𝐾slip,0 represents the slip contribution of the core wire to the
bending stiffness, and 𝐾slip,1 and 𝐾stick,1 are calculated using (2) and
3), respectively. As the curvature increases, slip occurs between the

irst layer and the core wire, resulting in the loss of the first layer’s

9 
sticking contribution to the strands’ bending stiffness. At this point, the
bending stiffness of the strand can be calculated as:

𝐾final = 𝐾slip,0 +𝐾slip,1. (5)

Since the slip contributions are never lost at any stage of loading,
they can be added together and called the slip contribution of the
strand, 𝐾slip:

𝐾final = 𝐾slip = 𝐾slip,0 +𝐾slip,1. (6)

By removing the subscript 1 from the stick contribution of the first
layer from Eq. (4), given that there is only one stick contribution, the
bending stiffness contributions can be categorized into two main types,
slip and stick contributions. By modeling each of these contributions
as a spring, they should be connected in parallel due to their additive
nature. However, as mentioned earlier, the stick contribution is lost
at some point. To model this loss, a slider element is used in series
with the spring representing the stick contribution. The system of
spring and slider element acting in series is hereafter referred to as the
slider-spring. The rheological model representing a single-layer strand
is shown in Fig. 12.

To find the stiffness parameters of the rheological model, the
Eqs. (2) and (3) could be used. However, the coefficient 𝛽, introduced
in Eq. (3) to take the incomplete interlayer load transfer into account,
in particular due to the partial contact between the layers, cannot be
determined analytically. For this reason, the parameters of the rheolog-
ical model are identified from the uniaxial bending responses obtained
through homogenization. Since in the homogenization approach each
contact is explicitly modeled, there is no need for a coefficient like
𝛽. This approach ensures that the mechanisms related to the actual
contact state between the layers and the dependence on the tensile load,
which influence the stick contribution, are accurately accounted for.
For this purpose, consider a uniaxial bending response of a single-layer
strand under constant tensile force obtained by homogenization, which
has been approximated to be bilinear, as shown in Fig. 13. Using this
response and Eqs. (4) and (6), the parameters for the rheological model
can be obtained as follows:

𝐾 = K , (7)
slip 2



M.A. Saadat and D. Durville

a
h

𝐾

B
t
i
s
t

𝑀

International Journal of Solids and Structures 305 (2024) 113082 
Fig. 12. The rheological model to represent the uniaxial bending behavior of
single-layer spiral strands.

Fig. 13. A bilinear representation of the uniaxial cyclic bending response of
single-layer strand under constant applied tensile force obtained through

omogenization.

stick = K1 − K2, (8)

𝐵 = B
(

K1 − K2
K1

)

, (9)

where 𝐵 is the slip moment threshold of the first layer, and K1, K2 and
are the successive slopes and the bending moment threshold charac-

erizing the strand response obtained from homogenization, as shown
n Fig. 13. Since, due to the parallel connection of the spring and the
lider spring, the same curvature is applied to both, the equilibrium of
he proposed rheological model is described by the following equation:

= 𝑀slip (𝜅) +𝑀stick (𝜅) , (10)

where 𝑀 , 𝑀slip, and 𝑀stick are the global bending moment, the mo-
ments of the spring and of the slider-spring, respectively. Since the
curvature of the spring and the slider-spring are the same in the
proposed rheological model, the computational cost can be reduced by
using the curvature as the known driving variable and the moment as
the unknown. Therefore, with □𝑛 representing a variable at a given
time step 𝑛, the moment can be computed as:

𝑀𝑛 = 𝑀𝑛
slip +𝑀𝑛

stick. (11)

The moment of the spring is easily calculated by multiplying the
applied curvature by the stiffness of the spring as:

𝑀𝑛 = 𝐾 𝜅𝑛. (12)
slip slip

10 
To calculate the moment of the slider-spring, its equilibrium should
be written. Note that since the spring and the slider act in series, the
moment is the same in both. To solve the equilibrium of the slider-
spring, an elastic predictor-plastic corrector scheme is implemented.
In this manner, the moment caused by the applied curvature in the
spring is calculated first. If the moment is smaller than the slider’s slip
moment threshold, no correction is needed and the calculated moment
is admissible. However, if the moment is greater than the threshold,
it should be corrected and limited to the threshold of the slider.
Therefore, the moment of the slider-spring is calculated as follows:

𝑀𝑛
stick =

⎧

⎪

⎨

⎪

⎩

𝐾stick𝜅𝑛, if |𝐾stick𝜅𝑛
| ≤ 𝐵

sign
(

𝐾stick𝜅𝑛)𝐵, otherwise
(13)

The use of a rheological model to represent the uniaxial response of
spiral strands subjected to a constant tensile force has been suggested
previously in Cardou (2013). However, in that work, the rheological
elements have been connected in series rather than in parallel. The
parallel connection proposed here has several advantages. Firstly, each
rheological element has a clear physical interpretation, and secondly,
for curvature-driven tests, no equilibrium equation needs to be solved
in a coupled manner, which is a huge computational advantage. In
addition, the use of the homogenized response to extract the rheological
parameters has been proposed for the first time in the present study,
which makes the prediction of the bending properties more accurate.

4.2. Extension to account for tension variation

The previously described procedure is valid only for a constant ten-
sile force. As shown in Fig. 3, changing the tensile force only scales the
strand’s behavior without altering its overall shape. Moreover, during
the development of the rheological model, no specific assumption was
made about the tensile force value. Therefore, varying the tensile force
should only affect the model parameters, not the rheological system
itself.

To determine the equivalent rheological model for any tensile force,
the homogenized uniaxial bending response for that force must be
obtained. Since the rheological model remains the same and only the
parameters change with tension, the springs stiffnesses and slider ele-
ment thresholds are considered tension-dependent. These dependencies
are approximated by identifying the stiffnesses and slip moment thresh-
olds using several homogenized uniaxial bending responses subjected to
different values of constant axial force and using spline interpolation to
represent them as continuous functions of the axial force. It should be
highlighted that all rheological parameters are found using homoge-
nized moment curvature responses, and no microscopic computations
are performed. Once identified, the parameters as functions of the
applied tensile force 𝑇 allow Eq. (10) to be rewritten accordingly.

𝑀 = 𝑀slip (𝑇 , 𝜅) +𝑀stick (𝑇 , 𝜅) . (14)

Since the slip contribution to the bending moment does not involve
a history parameter, a total formulation is implemented as:

𝑀𝑛
slip = 𝐾slip (𝑇 𝑛) 𝜅𝑛, (15)

For the stick contribution to the bending moment, as it involves a
history parameter determined by the slip moment threshold which is
a function of the tensile force, this contribution is expressed incremen-
tally to account for the variation of the tensile force and its effect as
follows:

𝑀𝑛
stick =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑀𝑛−1
stick +𝐾stick (𝑇 𝑛) 𝛿𝜅𝑛, if |𝑀𝑛−1

stick +𝐾stick (𝑇 𝑛) 𝛿𝜅𝑛
|

≤ 𝐵 (𝑇 𝑛)

sign
(

𝑀𝑛−1
stick +𝐾stick (𝑇 𝑛) 𝛿𝜅𝑛

)

𝐵 (𝑇 𝑛) , otherwise
(16)
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Fig. 14. a, A multilinear representation of the uniaxial cyclic bending response of a 𝑁𝑙-layer strand under constant applied tensile force obtained through homogenization.; b, The
rheological model, consisted of a spring and 𝑁𝑙 slider-springs, to represent the uniaxial bending behavior of a 𝑁𝑙-layer spiral strand.
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here 𝛿𝜅𝑛 is the increment of the applied curvature. Using Eqs. (15)
nd (16) to calculate the slip and stick contributions to the bending
oment, the effect of variable tensile force in the case of uniaxial

ending is considered in the proposed rheological model.

.3. Extension to consider multilayer strand

To represent the uniaxial bending of a single-layer strand, a rheo-
ogical model including a spring and a slider-spring acting in parallel
as been used. The spring represents the slip contribution of the core
ire and the first layer, while the slider-spring represents the stick

ontribution of the first layer. Based on the explanations provided on
he bending mechanism of the spiral strands, to extend the framework
f the rheological model to represent a 𝑁𝑙-layer spiral strand, a spring
cting in parallel with 𝑁𝑙 slider-springs should be used (Fig. 14). The
pring represents the slip contribution of all strand wires, while each
lider-spring represents the stick contribution of a layer. In addition, the
ffect of a variable tensile force is taken into account by considering the
arameters of the spring and slider elements as tension-dependent.

To find the parameters for the rheological model, the uniaxial
esponses obtained from homogenization are approximated to be mul-
ilinear, as shown in Fig. 14. The initial bending stiffness observed in
he global moment curvature response, is the sum of all the slip and
tick contributions to the bending stiffness of all layers, as follows:

1 = 𝐾slip +
𝑁𝑙
∑

𝑙=1
𝐾stick,𝑙 . (17)

As the curvature increases, first the stick contribution of the 𝑁 𝑡ℎ
𝑙

ayer is lost, and this loss then propagates towards the inner layers
ntil all stick contributions to the bending stiffness are zero. For any
ending stiffness observed in the global moment curvature response of
he strand, K𝑚, the following expression can be written:

𝑚 = 𝐾slip +
𝑁𝑙−𝑚+1
∑

𝑙=1
𝐾stick,𝑙 , 𝑚 = 1,… , 𝑁𝑙 + 1. (18)

From the above equation, the slip and stick contributions to the
ending stiffness for all layers can be calculated.

To find the slip moment thresholds, the bending moment between
wo successive thresholds B𝑚 and B𝑚+1 is considered. Between these two
hresholds, layers from 𝑁𝑙−𝑚+1 to 𝑁𝑙 have lost their stick contribution
o the bending stiffness, and consequently their contribution to the
ending moment is constant and equal to their slip moment thresholds.
he expression for the bending moment in this case is:

=
𝑁𝑙
∑

𝑙=𝑁𝑙−𝑚+1
𝐵𝑙 +

(

𝐾slip +
𝑁𝑙−𝑚
∑

𝑙=1
𝐾stick,𝑙

)

𝜅

=
𝑁𝑙
∑

𝐵𝑙 + K𝑚+1𝜅.

(19)
𝑙=𝑁𝑙−𝑚+1
a

11 
The layer 𝑁𝑙 − 𝑚 slips at the curvature 𝜅𝑚+1 such that:

𝐵𝑁𝑙−𝑚 = 𝐾stick,𝑁𝑙−𝑚𝜅𝑚+1. (20)

This curvature can be calculated from (19) as:

𝜅𝑚+1 =
B𝑚+1 −

∑𝑁𝑙
𝑙=𝑁𝑙−𝑚+1

𝐵𝑙

K𝑚+1
. (21)

Inserting (21) into (20), the slip moment threshold for any layer
𝑁𝑙 − 𝑚 is calculated as:

𝐵𝑁𝑙−𝑚 =
𝐾stick,𝑁𝑙−𝑚

K𝑚+1

(

B𝑚+1 −
𝑁𝑙
∑

𝑙=𝑁𝑙−𝑚+1
𝐵𝑙

)

. (22)

Having all the parameters for the rheological elements, the final
quation to be solved for the rheological model is:

= 𝑀slip (𝑇 , 𝜅) +
𝑁𝑙
∑

𝑙=1
𝑀stick,𝑙 (𝑇 , 𝜅) , (23)

which is solved incrementally using (15) for the spring and (16) for
ach slider-spring, individually.

. The multiaxial rheological model

Thus far, the uniaxial bending behavior of spiral strands subjected
o variable tensile force has been described. The next goal is to describe
he biaxial bending behavior of spiral strands. For this purpose, an
pproach inspired by the concept of microsphere, which is widely used
n the micromechanical modeling of hyperelastic materials (see, for
xample, Miehe et al., 2004), is employed.

As long as only uniaxial bending is considered, that is, bending
s always about the same axis, curvature and moment are implicitly
efined with respect to this fixed axis. In the following, the rheological
odel for uniaxial bending introduced in the previous section, which

an be associated with any fixed bending axis, will be referred to as
uniaxial spring system. However, when dealing with bending about

arying axes, the orientation of these axes must be explicitly consid-
red. The aim of this section is to propose a more general rheological
odel capable of modeling the bending response of a strand when the

ending axis orientation changes with the loading.
When considering bending about an axis, a single history variable

s sufficient to track the slip/stick state for an interlayer. However, as
llustrated in Fig. 9, this single history variable reflects a complex slip
attern in different directions. By applying increments of curvatures
bout varying bending axis, the slipping status for each interlayer in
ach direction will be affected differently depending not only on the
elative orientation with respect to the current bending axis, but also
n the previous status in this direction, as illustrated by the typical

nisotropic behavior depicted in Fig. 8. This observation suggests that
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Fig. 15. a, The equivalent rheological models consisted of a uniaxial spring system to represent the uniaxial response of spiral strands; b, The rheological model consisted of a
ultiaxial spring system to represent the biaxial bending behavior of spiral strands.
history variable for each interlayer should be associated with each
rientation.

The objective of the proposed model is to discretize the possible
rientations of the bending axis by assigning a uniaxial spring system
o each discrete orientation. In this way, a history variable is assigned
o each interlayer and to each discrete orientation angle. The proposed
odel capable of representing the bending response in all directions

imultaneously is thus formulated as a multiaxial spring system consist-
ng of 𝑛𝜃 equally spaced uniaxial spring systems, as shown in Fig. 15,
ith 𝐾̃slip, 𝐾̃stick and 𝐵̃ as parameters for the rheological elements.
ince individual uniaxial spring systems behave symmetrically with
espect to the sign of the curvature, they can be distributed over only
alf a circle, and therefore 0 ≤ 𝜃𝑖 < 180◦.

As illustrated in Fig. 9, when an increment of curvature in a given
irection is applied to a strand, it affects the history variable in all
irections. Therefore, a key question in formulating the multiaxial
pring system is how an applied increment of curvature influences the
istory variable in various directions. To address this, we adopt the
ssumption used in Papailiou (1995) and Foti and Martinelli (2016b).
n these works, the increment of additional interlayer friction stress,
hich drives interlayer slip and consequently the history variable, is
ssumed to follow a sinusoidal distribution across the cross-section.
rawing inspiration from these studies, we assume that the increment
f curvature, which drives the history variable in our model, also
xhibits a sinusoidal distribution in the multiaxial spring system. There-
ore, to determine the increment of curvature acting on each uniaxial
pring system, we project the applied increment of curvature onto the
irection of the uniaxial spring system. It is further assumed that the
oment of each uniaxial spring system is expressed as a vector collinear
ith the unit directional vector of that system. The resultant moment
f the multiaxial system is then expressed as the sum of the individual
ector contributions from all uniaxial spring systems.

To formulate the multiaxial system, all vectorial quantities are
xpressed in the global coordinate system, taking into account the
rientation 𝜃𝑖 of each uniaxial spring system, and the orientation 𝜃𝑏
f the current bending axis (see Fig. 15).

The curvature increment 𝛿𝜅𝑏 can be decomposed into its two com-
onents in the global coordinate system, 𝛿𝜅𝑥 and 𝛿𝜅𝑦, as follows:

𝛿𝜅𝑥
𝛿𝜅𝑦

]

=

[

cos
(

𝜃𝑏
)

sin
(

𝜃𝑏
)

]

𝛿𝜅𝑏. (24)

The increment of curvature acting on each uniaxial spring system,
𝜅𝑖, can be calculated as follows:

𝜅𝑖 =
[

cos
(

𝜃𝑖
)

sin
(

𝜃𝑖
)]

[

𝛿𝜅𝑥
]

𝛿𝜅𝑦

12 
=
[

cos
(

𝜃𝑖
)

sin
(

𝜃𝑖
)]

[

cos
(

𝜃𝑏
)

sin
(

𝜃𝑏
)

]

𝛿𝜅𝑏 = cos
(

𝜃𝑏 − 𝜃𝑖
)

𝛿𝜅𝑏. (25)

Given the number of discretizations in the angular direction and the
curvature increment (either 𝛿𝜅𝑥 and 𝛿𝜅𝑦, or 𝛿𝜅𝑏), one can compute the
curvature increment of any uniaxial spring system, and thus its mo-
ment, 𝑀̃𝑖, from (23). Note that using □̃ indicates the use of multiaxial
spring system parameters. Once the moment contribution of all uniaxial
spring systems is known, the resulting moment is calculated as the sum
of contributions of all uniaxial spring systems as:
[

𝑀̃𝑥

𝑀̃𝑦

]

=
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑖
)

sin
(

𝜃𝑖
)

]

𝑀̃𝑖, (26)

where 𝑀̃𝑥 and 𝑀̃𝑦 are the bending moments in the 𝑥- and 𝑦-directions
of the multiaxial spring system, respectively.

To find the parameters of the rheological elements for the multiaxial
spring system, the uniaxial responses of the multiaxial system and a
uniaxial spring system are required to be equal in two extreme cases.
The stiffnesses, 𝐾̃slip and 𝐾̃stick, are obtained by considering the case
where no slip has occurred in any of the uniaxial spring systems, and
the slip moment thresholds, 𝐵̃, are obtained by assuming that slip has
occurred in all of the uniaxial spring systems.

Considering the no-slip assumption and monotonic loading, and
using (12) and (13), the response of the uniaxial spring system can be
calculated as:

𝑀 =

(

𝐾slip +
𝑁𝑙
∑

𝑙=1
𝐾stick,𝑙

)

𝜅, (27)

For the multiaxial spring system, it would be more convenient for
comparison purposes to compute the moment in the 𝜃𝑏 direction. By
noting 𝑀̃𝑏,1 and 𝑀̃𝑏,2 as the moment in the 𝜃𝑏 and its normal direction,
respectively, we have:

[

𝑀̃𝑏,1

𝑀̃𝑏,2

]

=
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

]((

𝐾̃slip +
𝑁𝑙
∑

𝑙=1
𝐾̃stick,𝑙

)

cos
(

𝜃𝑏 − 𝜃𝑖
)

𝜅𝑏

)

=
𝑛𝜃
∑

𝑖=1

[

cos2
(

𝜃𝑏 − 𝜃𝑖
)

cos
(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

](

𝐾̃slip +
𝑁𝑙
∑

𝑙=1
𝐾̃stick,𝑙

)

𝜅𝑏

=

[ 𝑛𝜃
2

0

](

𝐾̃slip +
𝑁𝑙
∑

𝑙=1
𝐾̃stick,𝑙

)

𝜅𝑏.

(28)
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Fig. 16. A comparison of the bending response of spiral strands obtained from homogenization and from the rheological model using only a uniaxial spring system, for the uniaxial
test case 1. a, the single-layer strand; b, the two-layer strand; c, the four-layer strand.
T
P

where considering 𝑛𝜃 > 3, the following identities, demonstrated using
athematica (Inc., 2023), have been used:

𝑛𝜃
∑

𝑖=1
cos2

(

𝜃𝑏 − 𝜃𝑖
)

=
𝑛𝜃
∑

𝑖=1
cos2

(

𝜃𝑏 − (𝑖 − 1) 𝜋
𝑛𝜃

)

=
𝑛𝜃
2
,

𝑛𝜃

𝑖=1
cos

(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

=
𝑛𝜃
∑

𝑖=1
cos

(

𝜃𝑏 − (𝑖 − 1) 𝜋
𝑛𝜃

)

× sin
(

𝜃𝑏 − (𝑖 − 1) 𝜋
𝑛𝜃

)

= 0.

(29)

Due to the no-slip assumption, the behavior of the strand is linear
elastic and 𝑀̃𝑏,2 = 0. By comparing the uniaxial moment of Eq. (27)
with 𝑀̃𝑏,1 of Eq. (28), and setting them to be equal, the stiffnesses of
the multiaxial system should be scaled as follows:

𝐾̃slip =
2𝐾slip

𝑛𝜃
,

̃stick,𝑙 =
2𝐾stick,𝑙

𝑛𝜃
,

(30)

here 𝐾slip and 𝐾stick,𝑙 are the stiffnesses obtained from Eq. (18).
The modified sliding thresholds are obtained by assuming that slip

as occurred in all uniaxial spring systems. By considering monotonic
oading in the 𝜃𝑏 direction, that is 𝜅𝑏 > 0, and by ignoring the slip
ontribution to the bending moment of all uniaxial spring systems,
sing (13), the moment of the multiaxial system is calculated as:

𝑀̃𝑏,1

𝑀̃𝑏,2

]

=
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

]

𝑀̃𝑖 =
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

] 𝑁𝑙
∑

𝑙=1
sign

(

𝜅𝑖
)

𝐵̃𝑙

=
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑏 − 𝜃𝑖
)

sin
(

𝜃𝑏 − 𝜃𝑖
)

] 𝑁𝑙
∑

𝑙=1
sign

(

cos
(

𝜃𝑏 − 𝜃𝑖
)

𝜅𝑏
)

𝐵̃𝑙

=
𝑛𝜃
∑

𝑖=1

[

cos
(

𝜃𝑏 − 𝜃𝑖
)

sign
(

cos
(

𝜃𝑏 − 𝜃𝑖
))

sin
(

𝜃𝑏 − 𝜃𝑖
)

sign
(

cos
(

𝜃𝑏 − 𝜃𝑖
))

] 𝑁𝑙
∑

𝑙=1
𝐵̃𝑙

=
𝑛𝜃
∑

𝑖=1

[

|cos
(

𝜃𝑏 − 𝜃𝑖
)

|

0

] 𝑁𝑙
∑

𝑙=1
𝐵̃𝑙 .

(31)

In this case, the response of a uniaxial spring system is simply
alculated as:

=
𝑁𝑙
∑

𝑙=1
𝐵𝑙 , (32)

By comparing Eqs. (31) and (32), the sliding threshold should be
caled by the factor 1∕

∑𝑛𝜃
𝑖=1|cos

(

𝜃𝑏 − 𝜃𝑖
)

|. It can be observed that,
nlike the modification parameter for the stiffness parameter, this mod-
fication depends on the direction of the applied curvature. However,
f the number of discretizations is more than 20, the variation caused
y the choice of 𝜃 is less than one percent. Therefore, assuming that
𝑏

13 
able 2
arameters for the uniaxial rheological model representing the single-layer strand.
Tension [N/mm2] 𝐾slip [N mm2] 𝐾stick [N mm2] 𝐵 [N mm]

0 52 215 318 280 543 407 0
100 54 191 783 292 874 980 1769
200 56 072 335 310 758 817 3568
300 57 921 050 317 538 126 5411

more than 20 uniaxial springs are used in the multiaxial spring system,
the sliding thresholds can be modified as follows:

𝐵̃ = 𝐵
∑𝑛𝜃

𝑖=1|cos
(

𝜃𝑖
)

|

. (33)

6. Numerical examples

The previous section discussed the framework of the rheological
model capable of describing the biaxial bending response of spiral
strands subjected to variable tensile force. In this section, the robust-
ness and accuracy of the proposed model is illustrated through some
numerical examples. The three spiral strands with geometric properties
of Table 1 are considered again (Fig. 2), and are used for all numerical
examples in this section. After finding the required parameters for
setting up the rheological model, six uniaxial and three biaxial load-
ing histories are defined. To explore the capabilities of the proposed
scheme, the results obtained from the proposed rheological model are
compared with the homogenized responses obtained from solving an
RVE BVP. Since the results of the computational homogenization for
spiral strands have already been verified against DNS in Saadat and
Durville (2023), no verification against DNS is presented here.

6.1. Parameter identification

As mentioned earlier, the results of several monotonic uniaxial
bending tests under constant tensile force are required to obtain the
parameters for different springs of the rheological model. Therefore,
the four bending responses shown in Fig. 3 are used to obtain the
parameters of the rheological model representing the strands. The
parameters of the uniaxial rheological model for the single-layer strand
are presented in Table 2. The parameters for the multiaxial rheological
model can be obtained from Eqs. (30) and (33), once the number
of angular discretizations has been determined. The variations of the
parameters as a function of the tensile stress are approximated using a
cubic spline interpolation.

6.2. Uniaxial bending

6.2.1. Uniaxial bending test case 1
A uniaxial bending test under a constant tensile force that has
not been used in the parameter identification procedure is the most
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Fig. 17. A comparison of the bending response of spiral strands obtained from homogenization and from the rheological model using the multiaxial spring system, for the uniaxial
test case 1. a, the single-layer strand; b, the two-layer strand; c, the four-layer strand.
Fig. 18. The moment distribution over the 8 discrete uniaxial spring systems in the multiaxial spring system of a two-layer strand subjected to uniaxial bending. a, 𝑥-axis; b,
𝑦-axis.
straightforward loading history that could be defined to assess the
validity of the proposed scheme. This simple case, which assesses the
validity of interpolation of the spring parameters as a function of the
tensile force, will be covered in two manners. First, after identifying the
model parameters for different strands (the parameters of the single-
layer strand are given in Table 2), only a uniaxial spring system is
considered; therefore, the spring parameters need no modification.
Second, a multiaxial spring system is considered, and modifications are
required for the spring parameters, as defined in Eqs. (30) and (33).

As tensile stresses of 0, 100, 200, and 300 N/mm2 have been used
o find the spring parameters, tensile stresses of 50 and 250 N/mm2

re considered for this example. The results using only a uniaxial spring
ystem are presented in Fig. 16 for all strands and are compared against
he results obtained from homogenization. As it can be observed, the
esults are in good agreement with the homogenized responses.

For the multiaxial spring system, the modified spring parameters are
alculated from Eqs. (30) and (33), considering 20 uniaxial spring sys-
ems are used. The responses of strands considering these assumptions
re depicted in Fig. 17.

To understand the behavior of the multiaxial spring system, the
ehavior of different uniaxial spring systems in different directions is
nalyzed for the multiaxial system representing the two-layer strand.
owever, for the sake of illustration, let us consider 8 uniaxial spring

ystems instead of 20 for the multiaxial spring system. Fig. 18 shows the
oment of each of the 8 uniaxial spring systems in 𝑥- and 𝑦-axes. It can

be observed that a uniaxial curvature in the 𝑥-axis has caused a moment
in all systems (except the one perfectly perpendicular to the loading
direction) in both 𝑥- and 𝑦-axes. Interestingly, although the behavior
f each uniaxial spring system is multilinear, the resultant moment in
he 𝑥-axis, plotted in Fig. 17 has a smooth transition at the onset of
14 
Fig. 19. Different contributions to the bending response of the two-layer spiral strand
subjected to uniaxial test case 1, based on the rheological model.

slip of each layer, since slip occurs at different curvatures in different
directions. This smooth transition, due to the slight offset between the
triggering of slip for the uniaxial spring systems in different directions,
is similar to the transition observed in the homogenization results.

To further explore the behavior of the proposed rheological model,
the different contributions to the total bending moment response of the
strand are shown in Fig. 19. Three different contributions, namely the
slip contribution of all wires, and the stick contribution of the first and
second layers, constitute the response of a two-layer spiral strand. It can
be seen that at low curvatures no interlayer slip has occurred between
the layers and all three contributions are present. As the curvature
increases, the stick contribution of the second layer is lost, followed by
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Fig. 20. A comparison of the bending response of spiral strands obtained from homogenization and from the rheological model for the uniaxial test case 2. a, the single-layer
strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.
Fig. 21. The two-layer spiral strand subjected to the uniaxial bending test case 2 with 𝑇end = 200 N/mm2. a, The different contributions to the bending moment; b, The slip
moment thresholds of the different layers.
that of the first layer, until only the slip contribution of all the wires
remains, which is the expected behavior of a two-layer spiral strand
subjected to a constant tensile force.

6.2.2. Uniaxial bending test case 2
As the second uniaxial load case, the validity of the proposed rheo-

logical model in capturing the effect of the variation of the axial force
is investigated. In this load case, which has already been explained
in 3.2 using computational homogenization, the bending curvature
and the axial force are increased proportionally. A comparison of the
results obtained from the homogenization and the rheological models
is depicted in Fig. 20, which shows a good level of agreement.

To investigate the validity of the proposed explanation for the
observed linear behavior of the strands in this load case, consider
the two-layer spiral strand and the case with 𝑇end = 200 N/mm2.
The different contributions to the bending moment along with the slip
moment thresholds of the two layers are illustrated in Fig. 21. It can be
15 
observed that the stick contributions of the first and second layers to the
bending moment in this case are equal to their slip moment thresholds,
each of which varies linearly with respect to the applied axial force.
This demonstrates the capabilities of the proposed rheological model
not only to predict the bending response of spiral strands, but also to
provide some insight into why they exhibit such a response.

6.2.3. Uniaxial bending test case 3
In this load case, already treated in 3.2, the axial force decreases

proportionally as the bending curvature increases. A comparison of the
results obtained from the homogenization and the rheological models
is illustrated in Fig. 22, which shows a good level of agreement.

The different contributions to the bending moment of the two-
layer spiral strands for the case with 𝑇0 = 200 N/mm2 are shown in
Fig. 23. It can be observed that initially, when no interlayer slip has
occurred, the stick contribution of both layers to the bending moment
is increasing. However, once slip occurs, the moment contribution
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Fig. 22. A comparison of the bending response of spiral strands obtained from homogenization and from the rheological model for the uniaxial test case 3. a, the single-layer
strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.
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t
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Fig. 23. Different contributions to the bending response of the two-layer spiral strand
ubjected to the uniaxial test case 3 with 𝑇0 = 200 N/mm2, based on the rheological

model.

decreases instead of remaining constant. The reason for this is that in
this load case, the tension decreases, causing the slip moment threshold,
which determines the post-slip moment contribution of the layer, to
decrease. Therefore, in accordance with the explanation given in the
previous section, there are two competing mechanisms in the strand,
the slip contribution, which is increasing, and the stick contributions,
which are decreasing, as can be observed. In this case, since the slope of
the decrease of the slip moment thresholds of the two layers is greater
than the slip contribution, the overall response is decreasing and a
softening behavior is observed.

6.2.4. Uniaxial bending test case 4
The last uniaxial bending test case considers a very complex load-

ing history. In this loading case, the cyclic response of the strands
is evaluated under extreme changes in the applied tensile force. A
comparison of the rheological model responses with the homogenized
responses is shown in Fig. 24. It can be observed that the results
16 
of the proposed rheological model are in good agreement with the
homogenized responses, and the proposed models have captured the
complex bending behavior of spiral strands.

6.3. Biaxial bending

Since the reason for using a multiaxial spring system is to capture
the biaxial response of spiral strands, the capabilities of the proposed
model in reproducing the biaxial response are illustrated through some
test cases in this section. For each numerical example, the results using
the 𝑥 and 𝑦 components of the applied curvature and bending moment
vectors are shown first, followed by the results using the amplitude of
the vectors and their angle with respect to the 𝑥-axis.

.3.1. Biaxial bending test case 1
The first biaxial test case, previously explored in 3.3, consists of

hree successive different loading stages under the assumption of a
onstant tensile force. After a uniaxial bending about the 𝑥-axis, the

curvature in this direction is kept constant and a uniaxial bending about
the 𝑦-axis is performed. In the last stage, the curvature in 𝑦-axis is
kept constant and the curvature in 𝑥-axis is further increased. This load
history and the responses of the strands are shown in Fig. 25.

The key aspect of this test case is the bending-induced anisotropy.
Spiral strands, in their intact form, are radially symmetric, leading to
uniform bending stiffness in all directions. However, loading along the
𝑥-axis alters the bending stiffness in the 𝑦-axis, as the stiffness in the 𝑦-
axis is lower than in the 𝑥-axis. To capture this induced anisotropy, it is
crucial to track different history variables in different directions. Fig. 18
illustrates that uniaxial bending results in varied moments and history
variables across directions, demonstrating how the proposed multiaxial
spring system can capture this anisotropy, as shown in Fig. 25.

A noticeable drop in bending moment about the 𝑥-axis occurs during
the second loading stage. Eight uniaxial spring systems are used to
model the single-layer strand and explain this drop. In the first stage,
as detailed previously, curvatures of all systems increase in absolute

value, even if some are negative, as seen in Fig. 26. In the second stage,
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Fig. 24. A comparison of the bending response of spiral strands obtained from homogenization and from the rheological model for the uniaxial test case 4. a, the single-layer
strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.
Fig. 25. A comparison of the bending responses in the 𝑥- and 𝑦-axes of spiral strands obtained from homogenization and from the rheological model for the biaxial test case 1
the end of each load stage is marked on each curve). a, the single-layer strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.
i
f

6

i

change in bending axis direction causes some systems to unload and
hen reload in the opposite direction, leading to the observed drop in
he response about the 𝑥-axis. Moments about the 𝑥- and 𝑦-axes, shown
n Fig. 26, highlight this loading–unloading behavior. In the final stage,
similar drop is observed, but this time about the 𝑦-axis.

A comparison of the results using the amplitude of the bending
oment vector and its angle with respect to the 𝑥-axis is illustrated
 i

17 
n Fig. 27, which shows good agreement between the results obtained
rom homogenization and the rheological model.

.3.2. Biaxial bending test case 2
As the second biaxial test case, a very complex cyclic loading history

s considered under variable tensile force, including simultaneous load-
ng about the 𝑥- and 𝑦-axes. The loading history and the responses of
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Fig. 26. Distribution of moment and curvature in the multiaxial spring system representing the single layer strand, subjected to the biaxial test case 1 loading. a, curvature; b,
moment about the 𝑥-axis; c, moment about the 𝑦-axis.
Fig. 27. A comparison of the bending response and the bending moment axis of spiral strands obtained from homogenization and from the rheological model for the biaxial test
case 1. a,d, the single-layer strand; b,e, the two-layer strand; c,f, the four-layer strand.
the strands are shown in Figs. 28 and 29. A good agreement is observed
when comparing the results of the proposed rheological model with the
homogenized responses, which indicates the robustness and accuracy of
the proposed model.

7. Conclusions

A rheological constitutive model equivalent to multilayer spiral
strands, capable of predicting their anisotropic biaxial bending behav-
ior under variable tensile force, has been presented in this paper. For
this purpose, for the first time, the effect of variation of axial force
and bending axis on the bending behavior of these strands has been
investigated using the mixed stress–strain driven computational ho-
mogenization. It has been shown that the uniaxial bending response of
spiral strands is strongly influenced by the variation of the axial force,
and the nearly multilinear response expected from these strands when
they are subjected to a constant axial force can take many different
forms, e.g., nearly linear, or they can even exhibit softening behav-
ior. Furthermore, by studying the biaxial behavior of these strands,
an induced anisotropy has been observed, due to different onset of
18 
interlayer slip in different orientations. To capture these effects in
the constitutive model, for a 𝑁𝑙-layer strand, the proposed rheological
model consists of a multiaxial spring system made of uniaxial spring
systems assigned to a discrete set of directions, where each uniaxial
spring system consists of a spring and 𝑁𝑙 slider-springs. In a uniaxial
spring system, the spring represents the slip contribution of all wires to
the bending stiffness of the strand, while each slider-spring represents
the stick contribution of each layer. A major advantage of the proposed
scheme is its straightforward parameter identification, requiring only
several monotonic uniaxial bendings under constant axial force. The
proposed rheological model has been verified against the responses
obtained from a mixed stress–strain driven computational homogeniza-
tion through several numerical examples. These examples consist of
complex uniaxial and biaxial load cases with variable tensile force. It
has been shown that the proposed scheme not only predicts the re-
sponse of the strand, but also provides helpful insight into the complex
underlying mechanisms reflecting the occurrence of interlayer slip. By
implementing the proposed rheological model as the constitutive law
in a beam model, spiral strand simulations can be performed in a few
seconds on a laptop, instead of a few hours or days on a supercomputer.
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Fig. 28. A comparison of the bending responses in the 𝑥- and 𝑦-axes of spiral strands obtained from homogenization and from the rheological model for the biaxial test case 2
(the end of each load stage is marked on each curve). a, the single-layer strand; b, the two-layer strand; c, the four-layer strand; d, the loading history.

Fig. 29. A comparison of the bending response and the bending moment axis of spiral strands obtained from homogenization and from the rheological model for the biaxial test
case 2. a,d, the single-layer strand; b,e, the two-layer strand; c,f, the four-layer strand.
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