
HAL Id: hal-04710428
https://hal.science/hal-04710428v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Collaboration in Software Development
Activities

Arnaud Lewandowski, Grégory Bourguin

To cite this version:
Arnaud Lewandowski, Grégory Bourguin. Supporting Collaboration in Software Development Activ-
ities. 10th International Conference on Computer Supported Cooperative Work in Design, May 2006,
Nanjing, France. pp.1-7, �10.1109/CSCWD.2006.253203�. �hal-04710428�

https://hal.science/hal-04710428v1
https://hal.archives-ouvertes.fr

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

1-4244-0165-8/06/$20.00 ©2006 IEEE.

Supporting Collaboration in Software Development Activities

Arnaud Lewandowski, Grégory Bourguin
Laboratoire d’Informatique du Littoral (LIL), France

lewandowski@lil.univ-littoral.fr; bourguin@lil.univ-littoral.fr

Abstract

Today, software development is intrinsically a col-
laborative activity and there is still a crucial need to pro-
vide adequate computer tools well supporting collabora-
tion in such activity. Empirical studies have already iden-
tified some requirements to provide better collaboration-
aware software development environments, and theories
coming from human and social sciences still help re-
searchers to better understand these activities. Founding
our work on the Activity Theory, we present here some
important issues that have been identified for creating
better software development environments. Adding our
experience, we particularly emphasize an aspect of hu-
man activity that has still not really been taken into ac-
count in creating these computer supports: the user’s ex-
perience crystallization and sharing. Finally, we propose
an implementation supporting the identified properties in
an existing and widely used software development envi-
ronment.

Keywords: Software Development Environments, Col-
laboration Support, Activity Theory, Experience Crystal-
lization.

1. Introduction

Software Development (SD) is intrinsically a collabo-
rative activity. Over the past years, many studies have
shown that this dimension is still bad supported in Soft-
ware Development Environments (SDEs). Recently,
many propositions have been made to enhance the sup-
port for this particular dimension in existing or new tools.
These new propositions take benefit from an approach
largely developed in the frame of the CSCW (Computer
Supported Cooperative Work) research field: using theo-
ries developed in Social and Human Sciences (SHSs) to
better understand the cooperative human activities in
which SD is realized. One of these theories that has a
wide audience in CSCW is the Activity Theory (AT). AT
has recently been used to propose better computer support
for design activities in domains like architecture [28],
education [9], and others. It also has provided very inter-
esting results for studying SDEs [3]. However, we believe
that this theory still has not delivered all its secrets as for

helping us to better understand how to support design ac-
tivities like SD.

Starting from this assumption, we will first try to sum-
marize the main issues that have already been identified
for creating collaboration-aware SDEs. After a brief pres-
entation of the AT, we will particularly focus on the is-
sues highlighted by using this particular theory. This
study will lead us to propose a new focus that still has not
really been taken into account in the design of SDEs. Fi-
nally, we will show our proposition trying to support the
identified properties in a widely used SDE.

2. Supporting Collaboration in SDEs

It would be impossible to summarize here all the issues

identified to better support the collaborative dimension in
SDEs. However, we will underline the main results that
are driving our own approach of the problem.

2.1. General issues

Adding collaboration support in SDEs means more

than providing additional communication tools [8]. Even
if efforts have been done to improve collaboration sup-
port, some collaborative aspects are still missing. For ex-
ample, most Integrated Development Environments
(IDEs), such as the widely used Eclipse, focus on code-
producing activities, considering them as “individual” ac-
tivities in the development process. The collaborative
support is then generally limited to the use of a common
repository – such as CVS – that supports documents shar-
ing, but not the collaboration between developers [11]. In
other cases, some collaboration support is provided, but is
still disconnected from the development process: collabo-
ration is supported by adding communication functional-
ities, without really connecting this dimension to the main
activity. This is for example the case when a synchronous
discussion tool is simply plugged into the environment. A
real support for collaboration in SD supposes that the en-
vironment should be able to support this activity as a
whole. Collaboration is a constituting part of the global
activity, not an aside one. Thus, the tool we want to build
can be called an integrated collaboration environment, as
proposed by Sarma [27] that has defined a framework in
which collaborative tools for software development have
been classified according to their degree of supported col-

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

laboration. In this classification, integrated collaboration
environments appear in the highest layer by supporting
continuous coordination and cooperation through the
whole development process. However, it clearly seems
that such environments are currently very rare and re-
search in this area is still in progress [5][29].

Tailorability is also a well-identified requirement for
SDEs. Many empirical studies [10][15] and theoretical
research [25] have demonstrated that human activity, and
then SD, is reflective in the sense that the users needs to-
wards their activity support emerge from and during this
activity. In SD, this continuous evolution may for exam-
ple affect the development process that has to change in
order to take care of unexpected events [18]. Considering
this issue, many workflow solutions have already been
largely criticized for their rigidity [1]. The set of tools in-
volved by the users may also evolve and we can notice
that most of the widely used solutions are faced with this
problem [20]. For example and even if they propose use-
ful tools, Web portals like SourceForge integrate several
components intended to support collaboration through the
development process, but the tailorability of such envi-
ronments is in most cases reduced since the available
tools are defined a priori. The dynamic integration of
new tools by end-users is generally not possible. One
commonly accepted generic solution for such tailorability
is to propose reflective properties in SDEs, thus allowing
for example the dynamic redefinition of the enacted proc-
ess model, or the dynamic integration of tool components.
However, if tailorable solutions like Eclipse [13] exist for
a particular dimension, none of them actually supports all
the identified issues, and research on how to improve tai-
lorability in collaborative SDEs is still an on-going work
[16][18][30].

Finally, we should keep in mind that even if SD is col-
laborative, its goal is still to develop software, not just to
collaborate. As demonstrated by the emergence of new
organizational paradigms like Extreme Programming [23]
with a process mainly organized around the coding activ-
ity, developers want to develop. Even if the support for
collaboration is missing from existing SDEs, these SDEs
have been used and developed for a long time, thus well
supporting other dimensions of SD activities like coding.
Through the years, developers have crystallized and
shared their experience in these broadly used environ-
ments. It would not be appropriate to ask them to change
their preferred code editor “just to benefit from collabora-
tive features”. Faced with this situation, we can try to im-
prove the collaboration support in existing and widely
used open environments. This approach may take benefit
from a large audience that makes this environment con-
tinuously evolve. This is the choice made by Hupfer et al.
[17] with Jazz and also by Sarma et al. with Palantír [26],
for example.

2.2. The Activity Theory

We have presented some results coming from a gen-
eral state-of-the-art in the SDEs field. These results,
mainly coming from empirical studies, highlight what
should be done to improve collaboration support in SDEs.
Moreover, we strongly believe that studying these results
about SD activity by using theories coming from the
SHSs, like the Activity Theory (AT), can help to better
understand these requirements. We will now briefly in-
troduce the basic concepts of AT, but one can refer to [4]
and [14] to get further information.

The AT takes the activity as the basic unit for analyz-
ing human activities. The basic structure of an activity
proposed by Engeström [14] presents the human activity
as an interdependent system involving a subject that real-
izes the object of the activity, and the community of sub-
jects who are concerned with this realization. Relations
between the subject, the object and the community are
mediated. In particular, the subject uses tools to realize
the object of the activity. Rules determine what means
belonging to the community, and a division of labor de-
scribes how the members of the community share the
work up. Furthermore, activity is dynamic and continu-
ally evolves during its realization. For example, subjects
may transform the mediating elements as new needs
emerge in response to contradictions that rise between
elements of the activity. Activity dynamics have been
classified by Bardram [2] in three levels: the coordination
level, where subjects concentrate on performing basic ac-
tions; the cooperation level, where subjects effectively act
cooperatively towards their object; and the co-
construction level, where subjects reconceptualize their
activity. Finally, subjects themselves evolve during the
activity by acquiring skills and developing some experi-
ence about its realization. Thus, when subjects transform
the elements participating in their activity, their experi-
ence is crystallized in these elements. This experience,
written in the transformed artifacts, becomes available for
others that reuse them in other activities.

2.3. Previous studies using AT

Many studies have already been conducted by using

AT in the field of software development. We will now
present some results coming from these studies and that
we find particularly close to our approach.

In [12], De Souza and Redmiles use the AT to study
collaboration among developers in a particular software
development activity. They focus on the many contradic-
tions rising inside such an activity and underline how
these tensions have an impact on the other elements con-
stituting the activity, or even on the other connected ac-
tivities. For example a change in the source code may
make the documentation out-of-date. This is what they
call an inconsistency. They also show how multiple in-

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

stances of an activity can increase the number of inconsis-
tencies, e.g. when several developers simultaneously
check-in the same part of code on the common repository.
It is interesting to note that contradictions inside and even
between activities hold a strong place in SD. Moreover,
this “focus on identifying tensions and conflict is useful
[…] for highlighting areas where software tools and
practices might be improved” [12]. These considerations
help to better understand the above-mentioned issue about
the need to support the SD activity as a whole: in order to
manage the tensions existing between several activities,
we should support the global activity they belong to.

Korpela and al. propose a framework to study infor-
mation systems development as “a real-life work activity
in context” [21]. They consider the development activity
as part of a network of activities, taking care of others ac-
tivities (such as the company’s organizational manage-
ment) and the way they are connected together. Activities
are linked when, for example, the outcome of an activity
is consumed by one or more other activities. This frame-
work is basically intended to describe information sys-
tems development. However, the concept of activity net-
work, originally proposed by Kuutti [22], remains very
interesting and can be useful to manage the contradictions
emerging between activities during the development
process.

Barthelmess and Anderson [3] use the AT to undertake
a full analysis and evaluation of Process-Centered Soft-
ware Development Environments (PCSDEs). The study is
conducted by analyzing how these environments support
the three activity levels defined by Bardram, i.e. coordi-
nation, cooperation, and co-construction. They underline
that PCSDEs aim at supporting collaborative activities by
providing support for division of labor through enactment
of process models. However, “this emphasis on software
process can result in ‘blindness’ with respect to other im-
portant aspects of work, in particular collaboration” [3].
Actually, even if they provide a good support at the coor-
dination level, PCSDEs suffer from their production-
oriented philosophy and present a serious lack of ade-
quate support for cooperation, and then also limit the
support for co-construction: existing PCSDEs limit the
co-construction support to the reconceptualization of
process models. Unfortunately, co-construction may also
imply the reconceptualization of the whole activity struc-
ture through cooperation between subjects: co-
construction needs then a good support for cooperation.

These studies point out some important aspects of
software development activities. Supporting these dimen-
sions in SDEs is important and remains a non-trivial work.
Moreover, we have been working for years in the CSCW
research domain by using the AT [6][7]. We have identi-
fied some other properties that have not really been taken
into account in developing such systems. We will then
now introduce these results that we want to add in the is-
sues for creating better SDEs.

2.4. Adding our experience

Some years ago, we have been working in a particular

field of CSCW: the Computer Supported Cooperative
Learning (CSCL) [6]. It is interesting to notice that this
previous work led us to identify the same properties that
we have just exposed considering SD activities, in par-
ticular, the need for better supporting co-construction
through cooperation between subjects. This is not so sur-
prising because learning and software development are
both human activities. The approach we have developed
has been synthesized under the co-evolution principle that
we have defined in [7]. Co-evolution emphasizes the fact
that human activity is reflective in the sense that any (co-
operative) activity is closely linked to a (cooperative)
meta-activity where the subjects co-construct their envi-
ronment in response to contradictions emerging during
the core activity. Then, the Activity Supports (AS) we
create aim at supporting domain-specific activities, and
also their closely related cooperative meta-activities.

Today, we apply the co-evolution principle in creating
SDEs and the techniques we have used, even if a little
different, are close to those we have just presented in
other SDEs: for example, tailorability at the process level
is realized by providing computational reflective proper-
ties and a particular process meta-model that allows the
subjects to create/transform their own process models. In
our case, the process meta-model is mainly inspired by
the AT and is called a Task: i.e. an Activity model [8]. A
task specifies the Roles of the subjects, thus defining how
they can (or have to) use the Resources involved in the
activity. Some of these Resources are meta-tools allowing
the (re)definition of the task. One difference between our
approach and the others is that we have developed a
minimal kernel introducing a recursive approach in which
the meta-tools are used in cooperative (meta-) activities
that are defined in (meta-) tasks. Then, in our approach
and according to the co-evolution principle, co-
construction is realized during cooperative (meta-) activi-
ties themselves managed by particular and tailorable
process models.

However, and as we would not have the space here to
present all the differences between our realization and the
others, we have decided to present in the rest of this paper
a particular aspect of the co-evolution that has not been
brought to the fore in other approaches. This work takes
its roots in a fundamental idea developed in the AT while
emphasizing the cultural and historical dimensions of
human activity: the crystallization of the subjects experi-
ence inside their developed artifacts. We have briefly in-
troduced how the subjects experience can crystallize at
the end of Section 2.2. We will now present how this can
happen in the SDEs we build.

This mechanism is illustrated in the Figure 1. The
community of subjects realizes an activity in the real
world. This activity is supported by the system. The Sys-
tem Task is the part of the real task that has been specified

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

inside the system to create an Activity Support (AS). The
community acquires some experience while performing
its activity. Making the System Task evolve can make this
experience explicit through the system. For example, an
evolution in the division of labor in the real activity may
result in a new set of roles specified in the system task
and that will affect the corresponding AS. This new
evolved task corresponds to a new AS model that can also
be instantiated for another community. The crystallized
experience developed during an activity can then be
transmitted through the tailorable system, thus supporting
the experience crystallization and sharing through devel-
oped artifacts.

Figure 1. Crystallizing subjects’ experience

One can notice that this property seems at least par-

tially supported by any system proposing tailorability by
such a model-driven approach. However, our work goes a
little further because we try to really merge the results
coming from the AT and the computational techniques
used to support human activities. Tailorability in a coop-
erative and shared system poses the problem of stability.
Of course, there is a stability problem from the computer
system point of view: a reflective system is not easy to
maintain, and access to reflection should be controlled, as
stated in the Open Implementation proposed by Kiczales
[19]. But we focus here on stability issues from the hu-
man point of view. Considering the AT, we believe that
the subjects have to understand their system before to
make it evolve. However, subjects will not be able to un-
derstand a continuously changing system. This is why
evolution should only happen after stable phases and in a
cooperative meta-activity where subjects may for exam-
ple negotiate this evolution. Moreover, we cannot talk
about experience crystallization if no experience has been
developed. This is why, even if we believe that the use of
shared model transformation is interesting for crystalliz-
ing and sharing experience, a model should also only
evolve after discussion about an evolved prototype. With
such a prototyping approach, subjects will be able to test
new solutions before really modifying the system model.
Following this idea, we now present how we have started
to support this co-evolution principle in CooLDev.

3. CooLDev: Collaboration under Eclipse

In the previous parts of this paper, we have identified

issues to improve collaborative support in SDEs. We have
underlined that SDEs should consider the global activity
as a whole, be tailorable in a cooperative fashion, and
take benefit from experience developed during the activi-
ties they support. We have also underlined that even if
most currently used SDEs do not well support the col-
laborative dimension of SD activities, an appropriate ap-
proach would be to enhance one of these SDEs. This is
exactly what we have done by extending the Eclipse plat-
form in the CooLDev (Cooperative Layer for software
Development) project.

3.1. The Eclipse Platform

Eclipse is an open-source generic platform based on a
powerful integration framework that supports the dy-
namic discovery, installation and activation of plug-ins.
In other words, this kernel manages and controls a set of
integrated tools working together to support specific tasks.
Thus, our choice has mainly been driven by the fact that
Eclipse has been conceived in terms of tailorability. The
subject can adapt the environment according to his emer-
gent needs by dynamically integrating tools made avail-
able on the network. In a few years, Eclipse has grown
very quickly due to the great amount of developers using
it, and making it evolve.

However, regarding the collaborative dimension of
software development, Eclipse still presents some lacks.
Indeed, as well as in other IDEs, collaboration support is
limited to the use of a common repository such as CVS
[11]. Developers using the platform have been faced with
this limitation and, as a result, some collaborative plug-
ins have been produced [17][26]. However, and even if
needed, this kind of extensions providing collaborative
functionalities like an IRC does not tend to consider the
cooperation at a global level. Eclipse has not been de-
signed in that orientation, and for example, it does not
propose a role notion managing the status of a user in the
global cooperative activity. As a result, each subject has
to integrate the tools (plug-ins) he needs, and to configure
them himself according to his role in the real supported
activity.

3.2. Introducing global collaboration

In Section 2, we have mentioned that some researchers

already try to support this kind of global collaboration in
Eclipse. This is particularly the case in Jazz [17] where
many existing plug-ins have been enhanced. Our ap-
proach is different because we do not modify existing
plug-ins: we propose a context for their execution.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

Figure 2. CooLDev’s architecture

We consider that each plug-in supports a particular ac-
tivity like coding, merging different sources, or even
chatting. In this approach, supporting the global activity
means supporting the links existing between these (sub-)
activities, i.e. managing the inter-activities [8]. This is
mainly inspired by the above-mentioned work (c.f. 2.3) of
Kuutti [22] about relations between activities. To achieve
this, we propose a plug-in called CooLDev whose role is
to articulate the other plug-ins in the context of global co-
operative activities. CooLDev’s architecture is presented
in Figure 2. After a basic identification phase, CooLDev
retrieves on the CooLDA server the activities the subject
is involved in, and configures his environment according
to his role(s): subjects playing the same role retrieve an
instance of the same CooLDev’s perspective that will
configure properly the user’s environment. Moreover,
CooLDev uses Java introspection mechanisms to dynami-
cally retrieve public methods provided by the other plug-
ins and to pilot them in response to activity state changes
as defined in the task (activity model) that is running on
the CooLDA server. These mechanisms are further de-
scribed in [8] and we will now particularly focus on how
experience can be crystallized and shared in CooLDev.

3.3. Experience crystallization

A first look at Eclipse shows that the concept of ex-
perience crystallization, even if not clearly identified,
seems to be in tune with Eclipse perspectives. A perspec-
tive corresponds to a particular point of view on the
working environment (and the activated plug-ins) during
the realization of a task. It manages the plug-ins activa-
tion and arrangement at the user interface level. Eclipse
lets the subject create and modify his own perspectives,
thus saving his preferences for a task. From our viewpoint,
the perspectives mechanism provides a powerful mean to
crystallize some experience. However, this experience is
not intended to be shared by users. Even if some people
may work with the same perspective because it has been
packaged with a specific plug-in, nothing is provided for
sharing perspectives in the context of a particular global,
evolving and cooperative activity. As a first step in trying
to better manage some experience crystallization and

sharing through CooLDev, we have developed some ba-
sic features over the perspectives mechanisms.

CooLDev associates roles in a given activity with par-
ticular perspectives. When a subject joins an activity, he
retrieves a perspective instance that is defined according
to its role. However, all the subjects playing the same role
may not share exactly the same perspective since we let
them adapt/modify it according to their role and emerging
needs. These instances, originated from the same role
model, can then evolve and be considered as prototypes
reflecting the subject’s experience he has developed while
playing his role. We then have developed a plug-in allow-
ing subjects to share their perspectives. This feature is
presented in Figure 3. The view we developed shows the
perspectives shared with others, and allows the users to
test these shared perspectives1. Finally, CooLDev allows
generalizing a perspective at the task level, i.e. in a role
model, for example after some negotiations between the
subjects. Following the co-evolution principle, this form
of co-construction helps the subjects to develop a real ex-
perience that is written into the perspective prototype.
This experience can be crystallized in the model that can
benefit to the subjects playing this role, and can be re-
used later in similar activities. This demonstrates how a
community of developers can make their environment co-
evolve by sharing their experience. As CooLDev also
supports transformations of the whole activity (process)
model, we are currently extending this prototype-based
approach to support experience crystallization in the other
AS elements.

Figure 3. Zoom on the shared perspectives view

1 Currently, only users playing the same role can share perspec-

tives, mainly for reasons of rights on the plug-ins in a particu-
lar activity.

CVS

Editor

Shared
Perspectives

IRC

CoolDev

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

4. Conclusion

In this paper, we have shown that Software Develop-
ment (SD) activities still need better computer supports.
Indeed, SD is nowadays an intrinsically collaborative ac-
tivity. The software development research field has iden-
tified some issues to improve collaboration supports in
SDEs. We have presented those that we find most impor-
tant. Furthermore, the Activity Theory highlights these
issues by explaining the basic mechanisms ruling every
human activity. In our words, these issues are synthesized
in the co-evolution principle where computer tools should
be tailorable while supporting their co-construction
through cooperative meta-activities. We have presented
how these identified issues can be taken into account and
we have particularly focused on an aspect of human activ-
ity that has still not well been identified and supported in
SDEs: the subjects experience crystallization and sharing.
We have developed this concept in the CooLDev envi-
ronment that tends to manage SD activities at a global
level, while supporting experience crystallization and
sharing in and through the system. CooLDev is imple-
mented over the existing and widely used Eclipse plat-
form. Currently, this proposition is still a prototype. Nev-
ertheless, the basic presented features helped us to verify
the feasibility of our approach and to illustrate how we
can support some co-evolution through experience crys-
tallization and sharing inside the platform.

We are pursuing our efforts in order to improve these
mechanisms. We are particularly working on extending
existing component models to provide a higher abstrac-
tion level that will ease introspection for the dynamic and
fine integration of plug-ins in supported activities. Finally,
a next step will consists in conducting evaluations of our
approach by experimentations in real situations. We plan
to test the platform in the context of a real commercial
development team we are in contact with, which already
uses an Eclipse compatible tool and which is faced with
the issues presented in this paper.

Acknowledgements

The authors want to thank the organisms supporting
this work, in particular the French Research ministry for
the ACI Jeunes Chercheurs CooLDev, and the TAC (Ad-
vanced Technologies for Communication) program fi-
nanced by the Région Nord/Pas-de-Calais and by the
French State in the framework of the NIPO/MIAOU and
the EUCUE projects.

References
[1] A. Agostini and G. DeMichelis, “A light workflow man-
agement system using simple process models”, Computer Sup-
ported Coop. Work, 9(3-4), 2000, pp. 335-363.

[2] J. Bardram, “Designing for the dynamics of cooperative
work activities”, Proceedings of CSCW98, Seattle, Washington,
United States, ACM Press, 1998, pp. 89-98.
[3] P. Barthelmess and K.M. Anderson, “A view of software
development environments based on activity theory”, Computer
Supported Coop. Work 11(1-2), 2002, pp.13-37.
[4] G. Bedny and D. Meister, The Russian Theory of Activity:
Current Applications to Design and Learning, Lawrence Erl-
baum Associates, Publishers, 1997.
[5] G. Booch and A. Brown, “Collaborative development en-
vironments”, Advances in Computers, 59, 2003.
[6] G. Bourguin and A. Derycke, “A reflective CSCL envi-
ronment with foundations based on the Activity Theory”, Proc.
of the 5th Int. Conf. on Intelligent Tutoring Systems, Montreal,
Canada, 2000, pp. 272-281.
[7] G. Bourguin, A. Derycke and J.C. Tarby, “Beyond the in-
terface: Co-evolution inside Interactive Systems – A proposal
founded on Activity Theory”, Proceedings of Human-Computer
Interaction 2001, in Blandford, Vanderdonc-kt, Gray (eds),
People and Computer vol. 15 – Interaction without Frontiers,
Springer Verlag, 2001, pp. 297-310.
[8] G. Bourguin and A. Lewandowski, “Inter-activities man-
agement for supporting cooperative software development”,
Proceedings of the Fourteenth International Conference on In-
formation Systems Development (ISD'2005), Karlstad, Sweden,
15-17 August, 2005.
[9] R.K.E. Bellamy, “Designing educational technology:
Computer-mediated change”, in B. Nardi (eds), Context and
Consciousness: Activity Theory and Human-Computer Interac-
tion, Cambridge: MIT Press, 1996
[10] D. Cubranic, G.C. Murphy, J. Singer and K.S. Booth,
“Learning from project history: a case study for software devel-
opment”, Proceedings of CSCW04, Chicago, Illinois, USA,
2004, pp. 82-91.
[11] CVS online manual, Section 1.2 “What is CVS not”.
Available from URL: http://ximbiot.com/cvs/manual/
[12] C.R.B. de Souza and D.F. Redmiles, “Opportunities for
extending Activity Theory for studying collaborative software
development”, Workshop on Applying Activity Theory to CSCW
Research and Practice (in conjunction with ECSCW 2003), Hel-
sinki, Finland, 2003.
[13] Eclipse Foundation, Eclipse.org Web Site. Available from
URL: http://www.eclipse.org/
[14] Y. Engeström, Learning by Expanding, Orienta-konsultit,
Helsinki, 1987.
[15] V. Folcher, “Appropriating artifacts as instruments: When
design-for-use meets design-in-use”, Interacting with Com-
puters, 15(5), October 2003, pp. 647-663.
[16] J. Grundy, R. Welland and H. Stoeckle, “Workshop on di-
rections in software engineering environments”, SIGSOFT Softw.
Eng. Notes 29(5), 2004, pp. 1-3.
[17] S. Hupfer, L.T. Cheng, S. Ross and J. Patterson, “Introduc-
ing collaboration into an application development environment”,
Proceedings of CSCW04, Chicago, 2004, pp. 21-24.
[18] P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi and
M. Bergman, “Techniques for supporting dynamic and adaptive
workflows”, Computer Supported Cooperative Work, 9(3-4),
2000, pp. 269-292.
[19] G. Kiczales, “Beyond the black box: Open implementa-
tion”, IEEE Software, 13(1), 1996, pp. 8-11.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

[20] T. Koch and W. Appelt, “Beyond Web technology – Les-
sons learnt from BCSCW”, Proceedings of the 7th Workshop on
Enabling Technologies: Infrastructure for Collaborative Enter-
prises, 1998, pp. 176-181.
[21] M. Korpela, A. Mursu and H.A.Soriyan, “Information sys-
tems development as an activity”. Computer Supported Coop-
erative Work, 11(1-2), 2002, pp.111-128.
[22] K. Kuutti, “Notes on systems supporting ‘Organisational
Context’ – An activity theory viewpoint”, COMIC European
project, D1.1, 1993, pp. 101-117.
[23] A. Mackenzie and S. Monk, “From cards to code: How ex-
treme programming re-embodies programming as a collective
practice”, Computer Supported Cooperative Work 13(1), 2004,
pp. 91-117.
[24] B. Nardi, Context and Consciousness: Activity Theory and
Human-Computer Interaction. Cambridge: MIT Press, 1996.
[25] P. Rabardel, “From artefact to instrument”, Interacting
with Computers, 15(5), October 2003, pp. 641-645.
[26] R.M. Ripley, R.Y. Yasui, A. Sarma and A. van der Hoek,
“Workspace awareness in application development”, Proceed-

ings of the 2004 OOPSLA Workshop on Eclipse Technology Ex-
change, Vancouver, Canada, 2004, pp. 17-21.
[27] A. Sarma, A. van der Hoek and L.T. Cheng, “A need-
based collaboration classification framework”, CSCW 2004
Workshop on Eclipse as a Vehicle for Collaboration Research,
Chicago, USA, November 2004.
[28] K. Schmidt and I. Wagner, “Ordering systems: Coordina-
tive practices and artifacts in architectural design and planning”,
Computer Supported Cooperative Work, 13(5-6), 2004, pp. 349-
408.
[29] A. van der Hoek, D. Redmiles, P. Dourish, A. Sarma, R.S.
Filho and C. de Souza, “Continuous coordination: A new para-
digm for collaborative software engineering tools”, Workshop
on Directions in Software Engineering Environments WoDISEE,
Scotland, 2004, pp. 29-36.
[30] M. Webster, “An end-user view of the collaborative soft-
ware development market”, Market Research Report, IDC
#30608, Vol. 1, 2003. Available from URL:
http://www.collab.net/

