
HAL Id: hal-04710398
https://hal.science/hal-04710398v1

Submitted on 2 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards New Links between HSS and Computer
Science: The CoolDev Project
Grégory Bourguin, Arnaud Lewandowski

To cite this version:
Grégory Bourguin, Arnaud Lewandowski. Towards New Links between HSS and Computer Sci-
ence: The CoolDev Project. Reber, Bernard; Brossaud, Claire. Digital cognitive technolo-
gies : epistemology and the knowledge economy, 1, Wiley, pp.283 - 297, 2013, 9781118599761.
�10.1002/9781118599761.ch18�. �hal-04710398�

https://hal.science/hal-04710398v1
https://hal.archives-ouvertes.fr


Towards new links between HSS and
Computer Science: the CoolDev project 

18.1. Introduction 

In 1991, K. Kuutti [KUT 91] started a mini revolution in the field of research related
to computer-supported cooperative work (CSCW) by publishing The concept of
activity as a basic unit of analysis for CSCW research. Wanting to address the
problem of the definition itself of CSCW, Kuutti proposed to use a theory from the
works of human and social sciences (HSS) and, more specifically, the concept of
activity from Activity Theory (AT). However, although today there are more than
fifteen years that this theory is involved in CSCW, the question remains as how to
best use it to develop groupware [HAL 02]. Many researchers have shown how AT
provides a framework to analyse and improve CSCW situations. Although these
works are very interesting, the results obtained are strongly related to the case
studies and, from the point of view of the computer scientist, hardly reusable in
another context. Starting from this observation, we have chosen to tackle the
problem in reverse. The conceptual framework of AT describes generic
mechanisms, that is elements common to all human activities. Our idea is to use
this genericity to identify computer techniques that a priori support them. This
article will be based on our own experiment in the context of the creation of the
CoolDev environment, a tool to support the cooperative development of software. 

. 

Grégory Bourguin and Arnaud Lewandowski
Université du Littoral Côte d’Opale, LIL

50, rue Ferdinand Buisson BP 719 62228 Calais Cedex
France 



18.1.1. A new support to cooperative activities of software development 

 
1

Software development is an inherently cooperative activity. However, many
studies have shown that this dimension is always poorly supported in IDEs
(integrated development environments) such as Visual Studio Team System [SRI 04]
or Eclipse [IBM 06], which aim to integrate various tools (editor, debugger, code
sharing and other) involved in development activities. Trying to fill this gap, we
initiated the CoolDev project, a new IDE built as an extension of the Eclipse
platform. 

18.1.1.1. The CoolDev project 

CoolDev (Cooperative Layer for software Development) (Figure 18.1), proposes to 
orchestrate a set of tools involved in development activities. The basic function of 
CoolDev is, for each player of the process, to recreate his work environment based 
on his role. In a very simplified way, when he starts CoolDev, a user is prompted to 
identify himself, allowing the distributed environment1 to find what his role is 
(developer, project manager, or any other role having been defined) in the activity 
in progress. This has the effect of shaping his client workstation by loading (starting-
up, positioning in the interface) and configuring (connections to dedicated servers, 
rights management, communication channels with the other players, etc.) the tools 
(editors, sharing documents, instant messaging) that he needs to fulfill his role. 

In our example, the user arno was identified as developer, which had the effect 
of loading the tool (CooLDAView) that allows him for example to see who are the 
other actors involved, to verify whether they are connected or not and in what role, 
to start code editor connected to the CVS (Concurrent Version System) server of this 
activity, in the right project with the proper rights, to start the Chat tool that allows 
him to discuss with the other actors, etc. 

However, CoolDev does not simply configure the environment at start-up. Indeed, 
the actions of each actor can have repercussions in the global environment. For example, 
updating a portion of code in the CVS server by a developer can lead to the display of a 
message in the Chat of all the actors and modify the status of the role of testers in order 
to enable them to comment on the concerned portion of the software. 

 The environment is both distributed in space (the actors are connected on remote machines) 
and in time (the actors are not necessarily all connected at the same time). 



We must note that the basic properties of CoolDev that are described above are
elements that can be found in most environments for software development
interested in collaboration. The first interest of CoolDev is to introduce this
“ classical ” but missing collaborative dimension within the Eclipse IDE. However,
our final objective is primarily to create an IDE that brings new properties offering a
“ better ” support to collaboration. In order to define these new properties as well as
the means to implement them, we got interested to the results obtained in other
projects attempting to create better groupware, especially those dedicated to
software development activities. 

18.1.1.2. The role of HSS in groupware design 

Several proposals [BAR 02, KOR 02, SOU 03] have recently emerged in order 
to better support cooperation among software development tools. If we study the 

approaches underlying their creation, it is interesting to note that most of them 
implement theories developed in HSS (AT in the examples mentioned) in order to 

better understand the human cooperative activities in which the development is 
achieved. This type of approach is very characteristic of research in the CSCW field. 

Figure 18.1. An example of perspective for the role of developer in CoolDev 



It is such also from the point of view of existing problems in the necessary
relationship between HSS and computer science to create better support. 

What holds our attention in these very characteristic examples is that the studies 
carried out highlight shortcomings related to our problem, but offer results that are 
very difficult to reuse in our own approach. This problem is illustrated in Figure 
18.2. It is established that the creation of a “ good ” groupware happens in the 
multidisciplinary encounter between HSS and computer science in the case 
interesting us. The meeting points between these disciplines are generally made 
through one-off projects. Just like numerous publications on groupware these studies 
are more directed towards HSS than towards computer science itself and the 
elements that come out of them are usually strongly linked to the analysed situation. 

Thus, a question remains: what can the computer scientist gain in his way of 
designing a priori, of using and developing his own techniques? It is true that these 
work in situations. However, it is clear that the development of disciplines involved 
in a multidisciplinary approach is made, from this point of view, through indirect 
links, through specific works based on particular projects involved. The idea that we 
advocate is to imagine that we can today forge more generic links by proceeding 
directly to an analysis of elements that constitute the successive developments of 
various disciplines, often through one-off confrontations. 

Figure 18.2. The problem of the reuse of results
provided by ad-hoc meetings between HSS and computer science 



18.2. Towards new links between HSS and computer science: application to AT 

From our point of view, described in Figure 18.3, the generic link between HSS and
computer science are revealed in their respective goals. HSS try to create theories,
methods and tools (such as the structure of activity proposed by Engeström [ENG 87]
or the checklist of Kaptelinin [KAP 99]) helping to understand human activities.
Computer science tries, on its part, to develop theories, methods and tools for
creating software that support them. 

It appears that the interface between these disciplines is the human activity in its 
generic form, that is the description of points common to all human activities. The 
questions that then arise are: what are the elements linked to the generic properties 
of human activity that were identified in each discipline, and what links can be built 
up between these elements? The goal of any system being to support human 
activities, we are convinced that these generic links identified can easily be reused in 
the creation of particular systems. To our knowledge, only one team of researchers 
close to our area of interest has attempted to forge such type of links. It is the works 
initiated by Dourish and Button in what they call technomethodology [DOU 98]. 
However, after a leading article discussing the principle of this approach, we did not 
find any more advanced developments. It should also be noted that this proposition 
has its roots in the ethnomethodology while our own works focus on AT. 

Figure 18.3. A generic approach to multidisciplinarity 



18. 2. 1

18.2.2. 

. Activity Theory 

In search of generic tools for human activities 

The AT has often been criticised [HAL 02], in particular by HSS researchers,
because of its approach sometimes considered too general not allowing to reach a
certain level of details in the description and understanding of analysed activities. 

AT [BED 97, KUT 91, NAR 96] is originated from the Soviet historical and cultural
school of psychology founded by Vygotski. Over the years, it has focused on mediation
through the tool or instrument and has proved to be a body of concepts whose aim is
to unify the understanding of human activity by providing bridges towards other
approaches coming from human sciences, in particular approaches in social sciences
and those of behaviour. The fundamental analysis unit of AT is human activity which is
defined as a coherent system of internal mental processes, of an external behaviour
and motivational processes that are combined and directed to achieve conscious
goals. 

Engeström [ENG 87] defined the “ basic structure of an activity “, which is the most
classical reference to AT. This model expresses the relation between the subject
and the object of the activity. This relationship is reciprocal: the subject realizes the
object of the activity, but at the same time, the properties of the object transform
the subject by increasing its experience. It is furthermore mediated by the concept
of tool representing everything that is used in the realization process of the object. 

The tool both allows and limits: it allows the subject to realize the object of its
activity, but limits by masking some of the potential of transformation. On one hand,
the tool assists in the realization of the object by subjects that use it because it
carries with it implicit goals that were set by its developers. On the other hand, it is
itself transformed and (re)constructed during the activity. It is often modified or
adapted by subjects in a reflexive process and in response to contradictions that
may emerge between elements participating in the activity, depending on their
emerging needs, their goals, and experience. Thus, this subjects’ experience
crystallizes in the tool that thus carries in it the cultural heritage of the situation.
Mediation by the tool corresponds then to a means of transmitting a certain culture
and experience. Moreover, the individual is not isolated but forms part of a
community that share the same object of activity. Community-subject and
community-object relations are mediated by concepts of rules and division of labour
also containing the cultural heritage of the situation. As with the tool, these
mediators are open to new developments. More detailed descriptions on our
understanding of AT can be found in [BOU 05]. 



A typical example of this search for generic solution in HSS by creators of
groupware is their extensive use of the basic structure of activity. Many works claim

being inspired from AT because they propose a conceptual model inspired by the
structure of Engeström, very useful for the conceptualisation of a generic support for

cooperative activities, as this corresponds to what it describes. We ourselves have used
this structure to conceptualise CoolDev [LEW 05]. The concepts of role, tools, etc.

described in Section 1.1 are to be directly related to the entities described in AT (see
Figure 18.4). However, although this example shows that the structure of Engeström

allows the information to use AT directly in the design, we do not think that it is a
real generic link between foundations of activity and computer science. On the

contrary we are convinced that these links can be identified, not by considering this 

Paradoxically, it also seems to be the most approved theory by computer
technologists, hence its success in CSCW. Indeed, beyond the creation of computer
supports for particular activities, one of the major motivations that guides computer
scientists is genericity. The creator of software tries in most cases to create a tool
aimed to support a more or less generic task that can be instantiated for various users
involved in similar activities. For example, in the case of CoolDev, our goal is to support
various activities of software development so that the tool we create is potentially
useful to a maximum of users. In the same way, computer science itself tries to
address the generic problems of support of human activities. Thus, part of what the
computer scientist seeks in the answers of HSS is a generic description of properties of
the activity he tries to support. From our point of view, this corresponds to what
provides AT by proposing a model that describes the components and mechanisms
common to all activities. 

Figure 18.4. Elements of an ontological model based on AT 



structure, but by examining the properties and mechanisms that are associated to it
in AT. 

We have identified certain connections between the properties of the human activity
described in AT and computer techniques that allow supporting them. These
techniques have been implemented in CoolDev following its theoretical analysis (as
opposed to an empirical analysis) as part of AT. The outlines of this analysis are the
following: CoolDev, as a tool to support development activities, may be changed by its
users (the subjects) according to their emerging needs and their experience in
development. This experience should be able to crystallise within CoolDev so that it
can then be transmitted to other users. 

Finally, CoolDev, as a groupware, contains a representation of other elements of 
the activity as the roles of actors who reflect certain rules and division of labour. 
These elements being also subject to development and to the crystallisation of the 
experience, their computerized representation should reflect these properties. The 
techniques implemented to support these generic properties are listed in Table 18.1. 

Every software is a tool whose purpose is to equip a human activity. Thus, in AT,
the description of the mechanisms surrounding the tool, mediator of activity, and
the properties it is supposed to present can help the computer scientist on the
fundamental properties of software tools he attempts to create. If we consider
that certain properties of software come from the very foundations that were used
in their creation, that is techniques that constitute computer science, we then
therefore create generic links between computer science and HSS, and hope that
techniques supporting generic properties of tools in human activity would allow
producing better software. We will now exemplify this subject by highlighting a
few particular points from the application of this approach in CoolDev. 

18.3.1. 

18.3. Generic links between AT and computer science: application in CoolDev 

Link between generic properties of AT and techniques of computer science 



Reflective attitude 

Transmission of experience 

Understanding by the subject 

Evolution, 
crystallisation of the experience 

Development of experience 

Framework, meta-modelling 

Intercession, customization, 
integration, extension 

Prototyping 

Model-driven engineering, 
components 

Introspection, causal relation 

Table 18.1.

Activity Theory Computer techniques 

 A connection between properties from AT 
and computer techniques 

To enable subjects to understand the functioning of their tool in the event of
contradictions, CoolDev uses introspection [MAE 87] that allows the system to provide
a representation of its own functioning, during the execution. CoolDev proposes for
example a point of view on the scenarios, the actions available for the roles, etc. 

However, these elements correspond to computer objects that are hard to 
understand for non-computer scientists. This is why techniques of framework and 
meta-modelling are very useful. A framework provides a set of computer elements 
that guide the application towards a particular area. 

In our case, the framework of CoolDev is a set of objects (in terms of object 
oriented languages) that participates in the support of development activities. Meta-
modelling allows defining one or more languages oriented towards subjects that will 
allow them to manipulate elements defined in the framework. In CoolDev, the meta-
model defines for example what a role is, what a tool is, and how these entities can 
be composed to create a particular activity support. At runtime, CoolDev performs 
the translation between the computer entities of the framework and entities of the 
language defined by the meta-model. 

This translation is made in both directions: from the framework to the meta-
model to provide a representation of the functioning of a specific activity support 
understandable by the subjects; from the meta-model to the framework to make 
effective within the system the transformation of specifications of an element by the 
subjects (see Figure 18.5). The maintenance of this link between the representation 



provided to subjects and the computer representation that allows the application to
run corresponds to a causal relation, as defined in computer reflective systems [MAE
87]. 

With these techniques, subjects have the opportunity to reflect on their activity 
support and to identify elements causing problems. The intercession technique 
[MAE 87] makes it possible for this support to evolve, that is the mediators of the 
activity, by transforming elements that constitute it, under the framework, through a 
meta-model and during the execution of the system. This intercession can take 
different forms whose complexity is inversely proportional to the power of 
transformation. These are the techniques of customization, integration and extension 
described by A. Morch [MOR 97]. 

An example of customization in CoolDev is the possibility offered to subjects,
according to their role, to choose a perspective (as the arrangement shown in Figure
18.1) on their activity. CoolDev being built as an extension of the Eclipse platform,
the concept of perspective corresponds to that of the same name in Eclipse: it is an
arrangement of tools such as an editor, a chat or other. The integration technique
allows subjects to introduce in the activity support new tools in the environment. 

Figure 18.5. An example of access to (re)definition: the sub-activity of Chat. 
(explanation of actions (as tasks) available for the roles) 



2 Integral component extending the functionalities of the platform. 

All these transformations of the environment that reflect the reflexive attitude of
subjects are carried out according to their experience. However, every transformation
is not necessarily the reflection of an experience suited to crystallise within the tool.
Indeed, subjects may need to carry out tests before wanting to share their experience. 

For example, in CoolDev, each actor has a role, instance of a shared model. We 
have implemented prototyping mechanisms allowing instances of roles to detach 

In CoolDev, these tools correspond to any Eclipse plugin2 [IBM 06] available on the
Internet. Finally, the extension mechanism of CoolDev allows for example
(re)specifying the rights of roles of actors on tools involved in this activity, this through
the metamodel and within the framework. 

Figure 18.6. Experience crystallisation of by generalisation 
of perspective in the models 



Faced with the problem of the reuse of results from ad-hoc confrontations between
HSS and computer science, we have proposed a first comparison between the generic
properties of human activity described in AT and the techniques of computer science
that allow supporting them. It can be noted that these computer techniques have, at
least in some case, already been implemented in particular situations. Introspection,
intercession and approach by models have already been used to alleviate problems of
rigidity of workflows [KAM 00] and intercession techniques have been used to address
the problem of malleability [MOR 97]. This is not surprising since, as we have pointed
out, computer science and HSS fed on their respective experiences. 

3

from their model in order to allow particular experiments, such as the choice of
arrangement of tools, developed during the activity. This mechanism corresponds to a
controlled release of the causal relation between the role model and its instances.
Thus, in our example, each developer has the opportunity to integrate and arrange
new tools in his environment. Hence, all the developers do not have exactly the same
perspective, even if they share the same role. However, each instance of role functions
as a prototype that represents the preferences but also the experience of each actor in
his role. Finally, when a perspective or an instance of role represents an interesting
experience, this instance can be crystallised, that is generalised at the level of the role
model (Figure 18.6). Thus, the roles of all the actors that follow this model can be
influenced and the future actors who will be assigned this role will directly benefit
from the crystallized experience. 

Finally, we have identified several computer techniques that indeed allow 
crystallizing and sharing the experience developed by subjects. When compared to 
the techniques that we just mentioned, the components3 approaches and techniques 
related to model-driven engineering allow the sharing of experience. Indeed, the 
very purpose of a component is its reuse by others. However, any component 
contains experience that was recorded by its developers. In a similar approach, each 
model can be seen as a component intended to specialize a generic structure. Thus in 
CoolDev, a particular scenario of software development activity, transformed and 
developed during its implementation, is a model that has crystallised the experience 
developed by those who have used it and caused it to evolve. This model can then be 
reinstantiated in the platform in order to support a different (involving for example 
other actors), but similar (starting with the same definitions of roles, the same tools) 
activity. 

18.4. Discussion: towards new developments 

 Computer components are software elements defined in order to facilitate their reuse since 
they offer a particular interface hiding the complexity of their implementation. 



[BAR 02] BARTHELMESS P., ANDERSON K.M., “ A view of software development 
environments based on activity theory ”, Computer Supported Coop. Work 11(1-2), p.13-
37, 2002. 

[BED 97] BEDNY G., MEISTER D., The Russian theory of activity, Current Applications to 
Design and Learning, Lawrence Erlbaum Associates, Mahwah, 1997. 

[BOU 05] BOURGUIN G., DERYCKE A., “ Systèmes Interactifs en Co-évolution, Réflexions sur 
les apports de la Théorie de l’Activité au support des Pratiques Collectives Distribuées ”, 
Human Computer Interaction Review(HCIR), vol.6-1, AFIHM Europia, p. 1-31, June 
2005. 

However, the fact of addressing these comparisons in a generic way allows
approaching tools development in a more theoretical way by directly identifying the
generic properties of human activity that we want to support and techniques that have
emerged from computer science and that allow to do so. Moreover, this approach
could allow revealing defects in each discipline. For example, in computer science,
components approaches exist for many years. However, even if technical solutions
exist for their implementation, they are much less well defined from a semantic point
of view. 

Considering a component in terms of human activity highlights the fact that it is 
today very difficult to understand what will be its place in the activity that wants to 
integrate it. Only experienced and motivated computer scientists are able to really 
reuse most computer components. However, as we saw previously, this technique 
proves to be very beneficial for the reuse of experience in situ and by end users. This 
problem of semantics is due to the fact that with current techniques, it is necessary to 
almost completely rebuild the task model of a component to be able to contextualize 
it in a particular activity. 

Indeed, its task is diluted in the code and the documentation means generally 
provided, as the Javadoc, do not really allow understanding its underlying overall 
logic. This is why, in order to facilitate the dynamic integration of components, we 
are working today on a new approach inspired by works on AT and task modelling 
from the field of HCI [LEW 06]. This example demonstrates how the fact of 
considering computer science from the point of view of HSS can lead to 
transformations in its techniques. Conversely, the study of computer science, 
crystallizing the experience developed by computer scientists, can certainly also feed 
the HSS. It is still too early for us to really measure the impact of this approach. 
However, we hope that it will lead in the future to better exchange between these 
disciplines. 

18.5. Bibliography 



[DOU 98] DOURISH P., BUTTON G., “ On “Technomethodology”: foundational relationships
between ethnomethodology and system design ”, Human-Computer Interaction, vol. 13,
Lawrence Erlbaum Associates, p. 395- 432, 1998. 

[ENG 87] ENGESTRÖM Y., Learning by expanding, Orientakonsultit, Helsinki, 1987. 

[HAL 02] HALVERSON C., “ Activity Theory and Distributed Cognition: Or What Does
CSCW Need to do with Theories? ”, Computer Supported Cooperative Work (CSCW),
vol. 11, n° 1-2, p. 243-267, 2002. 

[IBM 06] IBM Corp., Eclipse Platform Technical Overview, http://www.eclipse.org/articles/, 
2006. 

[KAM 00] KAMMER P.J., BOLCER G.A., TAYLOR R.N., HITOMI A.S., BERGMAN M., 
“ Techniques for supporting Dynamic and Adaptive Workflows ”, Computer Supported 
Cooperative Work, 9(3-4), p. 269-292, 2000. 
[KAP 99] KAPTELININ V., NARDI B., MACAULAY C., “ The Activity Checklist: a Tool for 
Representing the “Space” of Context ”, Journal of Interactions, p. 27-39, July/August 
1999. 

[KOR 02] KORPELA M., MURSU A., SORIYAN H.A., “ Information Systems Development as an 
Activity ”, Computer Supported Cooperative Work, 11(1-2), p.111-128, 2002. 

[KUT 91] KUUTTI K., “ The concept of activity as a basic unit of analysis for CSCW 
research ”, Proceeding of the second ECSCW’91 conference, Kluwers Academics 
Publishers, p. 249-264, 1991. 
[LEW 05] LEWANDOWSKI A., BOURGUIN G., “ Inter-activities management for supporting 
cooperative software development ”, Proceedings of the Fourteenth International 
Conference on Information Systems Development (ISD’2005), Karlstad, Sweden, 15-17 
August 2005. 

[LEW 06] LEWANDOWSKI A., BOURGUIN G., TARBY J-C., “ Towards Task Oriented Software 
Components ”, Proceedings of the 18th French-speaking conference on Human Computer 
Interaction (HCI'06), Montreal, Canada, 18-21 April 2006. 
[MAE 87] MAES P., Computational Reflection, Thesis, V.U.B, Brussels, 1987. 

[MOR 97] MORCH A., Method and Tools for Tailoring of Object-oriented Applications : An 
Evolving Artifacts Approach, part 1, Thesis, 241, University of Oslo, 1997. 

[NAR 96] NARDI B.A., Context and Consciousness: Activity Theory and Human-Computer 
Interaction, MIT Press, Cambridge, MA, 1996. 

[SOU 03] DE SOUZA C.R.B., REDMILES D.F., “ Opportunities for Extending Activity Theory 
for Studying Collaborative Software Development ”, Workshop on Applying Activity 
Theory to CSCW Research and Practice, in conjunction with ECSCW 2003, Helsinki, 
2003. 
[SRI 04] SRIDHARAN P., Visual Studio 2005 Team System: Overview, http:// msdn.microsoft. 

com/library/default.asp?url=/library/en-us/dnvsent/html/vsts-over.asp. 


