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Jérémy Marty1, Julien Réthoré1, Alain Combescure1, Philippe Chaudet1

Abstract In this study, we present a method to analyse

experimentally the deformation kinematics of a heteroge-

neous material using digital image correlation. The period-

icity of the microscopic deformation patterns is assessed

from the displacement measured along the edges of unit

cells. The first order macroscopic transformation gradient

is shown to enable capturing the deformation of the unit

cell even for large plastic strains. It is also shown that cells

along the boundary of the heterogeneous media have a non

periodic higher order kinematics.

Keywords Large strain · Multi-scale material · Digital

image correlation · Homogenization

Introduction

Materials, even more natural materials, are heterogeneous

at a certain observation scale. Homogenization techniques

which consist in the prediction of the properties at the

macroscopic scale directly from the properties of the

microstructure (geometries, phases and behaviours) are effi-

cient to predict the effective elastic properties of heteroge-

neous materials [1]. In presence of geometrically and physi-

cally nonlinear phenomena, it is clearly more difficult [2, 3].
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For many methods large deformation cannot easily be taken

into account because of the non linearities, for instance

evolution of the microstructure or strain localization which

often appear.

As an alternative, multi-scale methods, as for exam-

ple the FE2 technique, brings new perspectives to obtain

detailed information for structures with two scales [4,

5]. Contrary to homogenization techniques, the material

behaviour is enforced at the microscopic scale and the

macroscopic scale enforces the balance of the homoge-

nized stresses. The FE2 method consists in two nested

finite element problems with one Representative Volume

Element (RVE) at each integration point of the macroscopic

problem. This method is efficient for small strain but in

presence of large strain and failure, issues about the choice

and the existence of the RVE appear as presented by Git-

man [6]. This definition may not be reached when strongly

non-linear process or failure occurs at the macroscopic

scale. This is why some authors like Kouznetsova, Feyel,

Forest or Kaczmarczyk [7–10] use the theory of second gra-

dient or Cosserat continuum to model the macroscopic scale

whereas the microscopic continuum remains classical. The-

oretically, this improvement allows for taking into account

large strain and rotations of both scales with better accuracy.

Moreover the absolute scale separation is no more required

when the macroscopic deformation gradient and its gradient

are used to determine the boundary conditions applied to the

microscopic scale.

For now, the multiscale methods are in general vali-

dated by comparison with full field simulations. Multiscale

experimental methodologies based on digital image cor-

relation have recently appeared. The ductile failure of an

aluminium is studied by Ghahremaninezhad [11] with dis-

placement field measurements at the macroscopic scale

while microscopy are realised post-mortem to get the real

Finite Strain Kinematics of Multi-scale Material
by Digital Image Correlation
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strain to failure of the heterogeneity. Passieux in [12]

use two cameras to locally improve the resolution of the

measured macroscopic strain when it is needed by the

microstructure. The evolution of an architectured mate-

rial has been studied and analysed by Weck in [13] on

thin metallic sheets containing a significant number of

laser drilled holes. Tension tests have been carried out

in a scanning electron microscope but displacement field

measurements are not performed.

However, these techniques do not provide experimen-

tal data that could be exploited for the analysis of scale

transition schemes. In the papers listed above, the analy-

sis at the two scales are partially or even fully uncoupled.

The relationships between the kinematic fields at the two

scales cannot be investigated. There is thus a need for

dedicated experiments and post-processing techniques to

analyze quantitatively the deformation of multiscale materi-

als at two separate scales, the main difficulty being to obtain

the displacement fields at the two scales over the same

region of the sample. These data should allow for investigat-

ing the relationships between the measurements at these two

scales in the linear as well as in the non-linear regime. While

there are strong theoretical bases concerning these relations

in the elastic regime, the non-linear regime with large plas-

tic strains is much more difficult to study theoretically and

numerically. The usefulness of experimental data obtained

in this context is even more important.

This paper presents a multiscale structure which is loaded

in uniaxial tension to measure experimentally the kinemat-

ics of the RVE’s deformation. The structure is a stainless

steel sheet which has been perforated to construct a het-

erogeneous material. One unit cell is composed of a square

with a hole at the center. The number of unit cells is about

1900. As it will be shown, an efficient scale separation is

obtained. A high resolution camera (with a captor of 29 mil-

lion pixels) is used to take pictures along the deformation

process. The displacement fields are measured and strain

fields are deducted with Digital Image Correlation (DIC)

techniques [14, 15]. This high resolution allows to per-

form full field measurements at both scales of the structure

(the macroscopic as well as the microscopic one). Differ-

ent orientations of the unit cell keeping a fixed macroscopic

loading direction produce different solicitations into the

microstructure : uniaxial tension as well as mixed tension

and shear loadings. The aim of the paper is to produce exper-

imental data which allows to ensure or to invalidate the

usual hypothesis of two scale models and also to evaluate

the regions of the multiscale structure for which the use of a

second gradient approach is required. The linear regime as

well as the non-linear regime with large plastic strain will

be investigated.

The paper is organized as follows, in section

“Digital Image Correlation” the principle of DIC and

the proposed improvement for analysing the large strain

ultra-high resolution images are presented. Section

“Experiments” describes the experimental setup and the

results of DIC at macroscopic and microscopic scales.

These results, in terms of displacement fields, are then

analysed in section “Unit Cell Kinematics”.

Digital Image Correlation

General Settings and Notations

DIC is a full field measurement method which enables to

capture the displacement field at the surface of a struc-

ture. This method is based on the grey level conservation

between two images. Let us call the reference image f and

the deformed image g. The grey level of the two images is

supposed to be passively advected to find the displacement

field v at each pixel x:

f (x) = g(x + v(x)) − b(x), (1)

where b is the noise appearing between the images. The best

approximation of the displacement v is obtained by assum-

ing there is no noise, this approximation is called u. To

determine u one can solve this ill-posed inverse non-linear

problem over the region of interest (ROI) by minimizing the

least-squares functional φ2:

φ2(u) =

∫

ROI

[f (x) − g(x + u(x))]2dx. (2)

Following Besnard [15], we adopt a Finite Element dis-

cretization for the displacement field. The discretized dis-

placement field reads:

u(x) =
∑

i∈N

uiN
i
(x) = NU, (3)

where ui is the set of finite element degrees of freedom

(DOFs), and N
i

the finite element shape functions associ-

ated with the finite element mesh. A matrix form of this

equation is used: N is a matrix that collects the values of

the N vector shape functions at a given location x and U the

vector that collects the values of the displacement DOFs.

Note that N has N columns and as many lines as points

where the shape functions are evaluated. For clarity, the

positions of these evaluation points are omitted in the matrix

format.
Using a first order Taylor expansion, the functional φ2

becomes a quadratic form of solution increments du. The
minimization thus leads to a sequence of linear systems
written:
[∫

ROI

[(∇g(x + u).N
j
(x))]T (∇g(x + u).N

i
(x))dx

]

dui

=

∫

ROI

[f (x) − g(x + u)(∇g(x + u).N
j
(x))]dx, (4)
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where ∇ denotes spatial derivation. This minimization is

equivalent in a matrix form as:

Mji .dui = Fj . (5)

In this equation, Mji , respectively Fj and dui , denotes

the component of the matrix, respectively right hand side

vector and displacement increment vector, of the resulting

linear system to solve. Other authors propose specific basis

function like Hild [16] for cantiliver beam kinematics or

Réthoré [17] with NURBS functions. Once the convergence

is reached, the calculated displacement field u is recon-

structed over the ROI. The correlation error is obtained by

comparing the reference image f to the deformed image g

advected with the displacement u:

η = |g(x + u(x)) − f (x)|. (6)

Large Strain Resolution

During the experiments, strongly heterogeneous strain

fields have to be captured. They are due to the strain concen-

tration resulting from the geometry of the model microstruc-

ture. Moreover the material has a ductile behaviour and very

large strain are obtained in the vicinity of the microstruc-

tural holes. When the deformation of one element becomes

large and/or when erratic deformation due to noise measure-

ment occurs, the element is distorted and convergence of the

DIC is lost around this element. To avoid this phenomena,

the gradient of the deformation of the elements is artificially

limited by adding locally (at the element level) a Tikhonov

regularization [18]. It consists in adding to the element cor-

relation matrix Mel
ij a contribution of the following form:

Rel
j i =

∫

el

(∇N
j
(x)) : (∇N

i
(x))dx (7)

This regularization term is then appropriately weighted

(compared to Mel
ij ) so that the wave length of the dis-

placement fluctuation is locally limited to a given length lc
(see [19] for a description of this formalism). In practice,

this cut-off wave length lc is set to the unit cell size. Con-

sequently, the amount of regularization is very limited and

as it is introduced locally, it does not introduce an arti-

ficial global smoothing of the strain field. It just allows

for maintaining convergence of the DIC alogorithm while

large element distortion are measured. Indeed, the criterion

for introducing the local regularization is that the determi-

nant of the Jacobian matrix of the element in the deformed

configuration becomes negative at one Gauss point. The

regularization enforces that the deformed elements keep a

geometrically admissible shape thus avoiding local conver-

gence problem. Note that if an element is regularized at a

given step of the analysis then the regularization is main-

tained up to the end of the analysis. This strategy allows to

avoid local convergence problem when strongly heteroge-

neous strain fields are searched for without artificial global

smoothing of the local variation of the displacement and

strain fields.

Experiments

Model Material

The tested structure is a plate, 1 mm thick, with holes dis-

tributed on a square grid delimited by a circle of 49 holes

in diameter at the specimen center : the total number of

holes is about 1950. The holes diameter is 0.5 mm whereas

the distance between their center, the grid step, is 1 mm.

The structure of the architectured material is presented in

Fig. 1(a) and is loaded in a tensile machine. The dimensions

of the entire specimen are given in Fig. 1(c), the width and

the length of the specimen being equal to 89 mm and 98 mm

respectively. The plate thickness being small compared to

the in plane dimensions, a plane stress assumption holds at

the macroscopic scale. However this hypothesis can be dis-

cussed locally as the holes diameter is half of the plate thick-

ness. The bulk material is a 304L stainless steel which has a

known elastic-plastic constitutive behaviour. The behaviour

of the material has been identified by Réthoré [20] with

DIC experiments. For the elastic regime, the parameters are

Young’s modulus E and Poisson’s ratio ν which values are

set to 198 GPa and 0.25, respectively. For the plastic regime,

a non-linear isotropic hardening is considered. The evolu-

tion of the yield stress σY as a function of the accumulated

plastic strain εp is parametrized as follows:

σY (εp) = Hεp + SY

(

1 +
εp

ε0

)δ

, (8)

H being a linear hardening coefficient, SY the initial yield

stress, ε0 a scaling factor for the accumulated plastic strain

and δ the hardening exponent. These parameters are set to

1480 MPa, 284 MPa, 10−5 and 0.042 respectively.

Three different samples have been studied in this work

to load the heterogeneous zone in mixed loadings of tension

and shear. In addition to the sample described by Fig. 1(a),

two samples with a 30o and 45o hole network inclination

have been tested. The reference image of the non inclined

plate is also shown in the Fig. 1(b). To understand the rota-

tion of the network, zooms of reference images of the three

samples are shown in the Fig. 2.

In these two cases, a typical unit cell (a square with a

hole) is loaded with both tension and shear. The experimen-

tal equipment to obtain the digital images is a high resolu-

tion camera of 6576 × 4384 pixels -29 millions of pixels-

(Camera Vieworks : VN-29MC-M5A0-FM) mounted with

a 200 mm lens (Schneider Xenon Emerald). Thanks to this
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Fig. 1 (a) Geometry and

boundary conditions. (b)

Reference image and (c)

technical drawing of the sample

microstructure oriented at 0o
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Fig. 2 Close view of the hole lattice for the three different orienta-

tions: 0, 30 and 45o

high resolution device, we can perform DIC analysis at

the macroscopic scale as well as at the microscopic scale

over the whole sample surface. For the macroscopic scale,

a structured mesh of quadrangular square elements is used.

The mesh is constructed so that each element corresponds

to a unit cell of the hole network. Two unit cells of homoge-

neous material are added around the architectured material

to form the entire macroscopic mesh. For the microscopic

scale, an unstructured mesh of the unit cell is built (see

Fig. 3(b)). This unit cell mesh is then replicated over the

grid so that the microstructure region is entirely described

(plus two cells of the homogeneous material with a compat-

ible mesh). With the optical setup used in the experiments,

the unit cell size is 50 pixels. The pixel spatial resolu-

tion is then equal to 0.02 mm per pixel. The unit cell

mesh being constructed with 8 nodes per side the approxi-

mate element size is 7 pixels. These meshes are presented

in Fig. 3.

Macroscopic Responses

The load versus displacement curves are displayed in Fig. 4

for the three experiments. The displacement rate is set

to 0.1 mm per minute within an elongation range equal to

twice linear regime and then 1 mm per minute. To avoid

image bluring, the mechanical loading is stopped each time

an image is acquired. The displacement is maintained and

the force decreases due to relaxation. This produces ver-

tical lines in the load displacement curves represented in

Fig. 4. For the 0 degree case, a tensile mode is promoted

whereas 30o and 45o cases enable shear modes to develop.

This results, for the latter cases, in higher displacement (in

the macroscopic loading direction) to failure.

Strain Fields Measured by DIC

Strain fields measured at the macroscopic scale are plotted

in Fig. 5 for the three experiments. The same average strain

(corresponding to the vertical elongation) of the architec-

tured material is considered for the three cases and is equal

to 20 %. The value of the Von Mises strain field is plot-

ted. The architectured material has a higher strain than the

homogeneous material, it is due to the hole inside the unit

cell which concentrates the strain. The macroscopic kine-

matic is not able to capture the microscopic effects inside

the unit cells, the strain field is almost homogeneous over

the whole architectured material.

A close view of measured microscopic strain fields are

plotted in Fig. 6 for the zone represented inside the dashed

rectangle of the macroscopic field (Fig. 5). The value of

the Von Mises strain field is again plotted. The kinematic at

the microscopic scale is captured. For the three experiments

the strain concentration occur around the hole, it is due to

5
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Fig. 3 Meshes for the

macroscopic (left) and the

microscopic (right) correlation

analysis

the repetition of the unit cell geometry. For each experi-

ment, the strain distribution patterns seem to have very small

variations between the cells that are not on the boundary of

the architectured material.

For the 0 degree case (Fig. 6(a)), a shielding effect is

obtained: the strain is lower in the region between the holes

located over vertical lines (the holes shield the global load-

ing). On the contrary, higher strain level are obtained over

ligaments where shielding by the holes does not occur. One

observes that the most deformed unit cells are located on

both ends of the horizontal middle line of the architectured

zone. This will lead to crack initiation at this position. The

crack will then propagate towards the center of the plate and

finally through the homogeneous zone toward the sample

edges. In these two extreme cells, strain up to 100 % are

obtained before failure.

For the orientation of 45 degrees (Fig. 6(c)), the load-

ing is aligned with one diagonal of the unit cell square.

The strain field is then symmetric at the microscopic scale.

The shear component of the strain (which is not shown)

is negative for the couple of homologous edges of the

unit cell (left and right) whereas it is exactly the oppo-

site for the other couple of homologous edges (top and

bottom). A shielding effect is also observed in the verti-

cal zones between the holes which are protected from the

loading.

For the orientation of 30 degrees (Fig. 6(b)), the loading

has no symmetry for the cell square thus the strain field has

no symmetry. The shear strain component for the top and

bottom edges is higher than for the left and right edges.

Error Fields Obtained by DIC

The correlation error fields (measured at both scales) are

plotted in Fig. 7 for the non inclined experiment and for the

same load level than Figs. 5 and 6. The grey levels of the

images have a dynamic equal to 8 bits ([0 255]) and the

error field is plotted in the interval [0 10] grey level. Same

levels of errors are obtained for the two others experiments

which are not shown. The maximum of the error is concen-

trated in the vicinity of the holes. The error is higher for the

macroscopic DIC than for the microscopic DIC. This is due

to the fact that the macroscopic kinematic is not able to cap-

ture the heterogeneous strain field in the unit cell. Inside the

architectured material, the mean value of the error is similar

for both analysis although slightly higher for the macro-

scopic one : 7 % for the microscopic DIC and 8 % for the

macroscopic DIC.

Unit Cell Kinematics

From the analysis presented above, the displacement

measured along the boundary of each unit cell is extracted

in order to study the unit cell kinematics. The normal

displacement field along the edges of this unit cell is fit-

ted (in a least-squares sense) onto a third order polynomial

basis:

un = a + bs + cs2 + ds3. (9)

Fig. 4 Load versus displacement curve of the three experiments
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Fig. 5 Magnitude of measured Green-Lagrange strain fields at the

macroscopic scale for the three experiments

Fig. 6 Magnitude of measured Green-Lagrange strain fields at the

microscopic scale for the three experiments

In this equation, s is the curvilinear abscissa along the

edge, varying between −1 and 1, and un is the displace-

ment normal to the edge. This normal is defined in the

frame attached to the unit cell which orientation can be 0,
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Fig. 7 Magnitude of the error field at the macroscopic (top) and the

microscopic (bottom) scale for the non inclined experiment

30 or 45o as mentioned earlier. Rigid body translations are

first extracted then removed from the measured displace-

ment. The resulting displacement field is then projected

onto the third order polynomial basis. This choice of third

order polynomial basis is due to the different observed

deformation patterns and in particular to those resulting

from the shear deformation. As illustrated by Fig. 8 varying

the orientation of the unit cell network produces differ-

ent loading of the unit cell with different tension and

shear ratios.

The periodicity of the displacement field from one unit

cell to the next one will be analyzed from the projected dis-

placements. The transition zone between the homogeneous

zone and the central architectured part is studied in a second

step. It contains the cells close to the boundary of the archi-

tectured material. In the framework of a classical first order

periodic homogenization scheme, the displacement on the

boundary of the unit cell is written as:

u = F
M

.x + w, (10)

where F
M

is the transformation gradient at the macroscopic

scale, x is the vector defining the position of the current

point along the unit cell boundary and w is a periodic

displacement defined at the microscopic scale. Periodicity

conditions for the microscopic displacement w are defined

as:

wL(s) = wR(s) and wT (s) = wB(s). (11)

where, as defined in Fig. 9, L, B, R, T indices refer to

respectively, the left, bottom, right and top edge of the unit

cell. Accounting for these periodicity conditions, instead of

prescribing the displacement along each edge of the unit

cell, the difference between the displacement of opposite

edges, for example uT −uB is defined from the macroscopic

transformation gradient:

uT − uB = F
M

.(xT − xB) + wT − wB

= F
M

.(xT − xB)

= L.F
M

.NT

(12)

In the last equation, L is the size of the square unit cell

and NT is the unit normal of the top edge (combined

with the y axis). The same relation holds between right

and left edges. From the displacement measurements by

DIC, it is possible to extract the constant parameters in

equation (9). To check for the periodicity of the defor-

mation pattern of the unit cells the following quantity is

computed:

(uT − uB).NT = (aT − aB) + (bT − bB) s

+ (cT − cB) s2 + (dT − dB) s3

(uR − uL).NR = (aR − aL) + (bR − bL) s

+ (cR − cL) s2 + (dR − dL) s3 (13)

In the case of a first order scheme, a unit cell kinematic is

periodic if the contribution of the terms in order one (s),

two (s2) and three (s3) vanish : this means that bR − bL,

cR − cL and dR − dL as well as the same quantities for top

and bottom sides are all close to zero.

Analysis of cell Edges Kinematics

The evolution of the four (a, b, c and d) parameters are

plotted as functions of the average mean vertical elongation

of the zone of interest and for each of the three exper-

iments (using three different orientations of the unit cell

network with respect to the loading axis). Blue curves cor-

respond to the mean value parameters over all the cells and

the red curve to the standard deviation of the correspond-

ing parameter. Figures 10 and 11 show the results of the
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Fig. 8 (a), (c) and (e) :

deformation of the centred unit

cell boundary for the three

orientations. (b), (d) and (f) :

deformation of the unit cell

boundary placed at the extreme

right of the middle horizontal

line for the three orientations.

The initial unit cell contour in

red is compared to its deformed

shape by the macro DIC

analysis in blue and the micro

DIC analysis in black

top and right edge of the cell, respectively. When the cell

network is aligned with the loading direction (0o), cells are

mainly loaded in tension along the loading axis. The order

0 parameter is, as expected, predominant for the top edge

(aT ). For the right edge, aR has a negative mean value

corresponding to the Poisson effect due to uniaxial ten-

sion. An illustration of the unit cell kinematics is shown in

Fig. 8(a).

Fig. 9 Schematic picture of the

undeformed reference unit cell

for each orientation
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Fig. 10 Evolution of the four kinematic parameters aT , bT , cT and dT

for the three orientations. The mean value (blue curves) and the stan-

dard deviation (red curves) are plotted as functions of the vertical

elongation of the ZOI

Fig. 11 Evolution of the four kinematic parameters aR , bR , cR and dR

for the three orientations. The mean value (blue curves) and the stan-

dard deviation (red curves) are plotted as functions of the vertical

elongation of the ZOI

10
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For the orientation of 30o and 45o, the unit cells are

loaded in a mixed tensile/shearing mode as observed in

Figs. 10(b) and (c). In the case of 45o, the loading direction

is aligned with the diagonal of the initial square unit cell.

During the loading, the symmetry is maintained. Indeed, the

kinematic parameters of the edge deformation are similar

in amplitude for the top edge (Fig. 10(c)) and for the right

edge (Fig. 11(c)). It has to be noticed that the dominant term

corresponds to the first order. These terms correspond to a

rotation of the edges. Order 3 parameter is also predominant

compared to the second order. These terms are linked to a

shear deformation of the unit cell edges.

In the case of the 30o orientation, the unit cell has

no symmetry with respect to the loading axis. Then, the

behaviour obtained in Figs. 10(b) and 11(b) is different.

However, it is observed that for both cases, the domi-

nant terms are order 1 and 3. The first term is related

to a rotation of the edges whereas order 3 corresponds

to shear deformations. One can remark that the mean

value of order 3 is larger for the right side than for

the top side which is illustrated in the Fig. 8(c) The

top edge kinematic has also a significant order 0 con-

tribution. This contribution is smaller for the right edge

because their normals are nearly orthogonal to the loading

direction.

Periodicity

The fitting parameters are now extracted for the four edges

of each unit cell. The difference between the parameters

extracted for the right and left edges, respectively top and

bottom, are then computed. As illustrated by equation (13),

this allows for studying the periodicity and the contribu-

tion of the macroscopic deformation gradient to the unit cell

kinematics. The evolution of the four parameters are plotted

in Fig. 12 for the three orientations of the hole network and

for the top/bottom difference. For the top/bottom case dom-

inant terms are order 0. The mean values of the three other

parameters are of the same order of magnitude as their stan-

dard deviation, meaning that no relevant information can be

extracted. Fig. 13 shows the results for the left/right period-

icity analysis. As for top/bottom couple, the term of order 0

is dominant. Only for the 30o case (Fig. 13(b)) the four

terms are negligible. This analysis confirms that the unit cell

edges deformation is due to a constant macroscopic strain

gradient and a periodic displacement field accommodating

locally the effect of unit cell heterogeneity. This property

is well established for a linear behaviour of the material

within the cell. This experimental result confirms that for

this type of microstructure and this type of material first

order periodic homogenization can be also used for large

plastic strains.

Fig. 12 Evolution of the top/bottom periodicity for the four kinematic

parameters. For the three orientations, the mean value (in blue) and

the standard deviation (in red) are plotted as functions of the vertical

elongation of the ZOI
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Fig. 13 Evolution of the top/bottom periodicity for the four kinematic

parameters. For the three orientations, the mean value (in blue) and

the standard deviation (in red) are plotted as functions of the vertical

elongation of the ZOI

Homogenized Microscopic v.s. Macroscopic Strain

Using the observation of preceding section, one may extract

the homogenized macroscopic strain εm which is applied to

the unit cells. For the 0 degree case and for the group of 5x5

unit cells located in the center of the specimen, this measure

is obtained from:

εm
11 =

aR − aL

2
and εm

22 =
aT − aB

2
. (14)

This strain measure is compared to the macroscopic

strain εM obtained from the DIC at the macroscopic scale,

i.e. using a mesh with one quadrangular element per unit

cell. The longitudinal and the transverse components of

these strain tensors are respectively plotted in Fig. 14(a) for

the 0o case. In this case the longitudinal component of the

strain tensor is along the loading direction and the transverse

strain component is orthogonal to the loading direction.

For the two other cases, it is chosen to plot the longitudi-

nal and transverse strains in the coordinate frame associated

with the unit cell as defined in Fig. 9. In Figs. 14(b) and (c)

are respectively reported the results of the longitudinal and

transverse components for the 30o and 45o cases.

A good agreement between the two macroscopic strain

measures is obtained with a scatter of 1.5 % in average

(for the 0o case). It is thus shown that the macroscopic

strain extracted from the microscopic displacement mea-

surement is consistent with the direct measurement of the

macroscopic strain.

Non Periodic Unit Cells

Beside this mean behaviour, we will now try to investigate

the non periodic effects. A cell is considered to have a non

periodic behaviour, if one of the four periodicity parame-

ters (plotted in Figs. 12 and 13) has value outside the range

defined by the mean parameter value ±1.5 times its standard

deviation. We will now illustrate the relative importance of

these non periodic cells. The standard deviation of the peri-

odicity parameters is now computed ignoring these cells.

The results are shown for the three orientation cases and

top/bottom periodicity in Fig. 15, respectively for left/right

periodicity in Fig. 16. The evolution of only one parameter

is presented for the sake of clarity: the first order parameter

for the non inclined experiment, the second order parameter

for the 30o case and the third order parameter for the 45o

case. The standard deviation for order 1, 2 and 3 is divided

by a factor of about 3. The standard deviation of the parame-

ters are now lower than their average, the only non vanishing

term being order 0. This means that this set of unit cells

(all the cells except those having one of the four periodic-

ity parameters with a value outside the range defined by its

12
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Fig. 14 Comparison of the strain measured directly from the macro

DIC analysis (in blue) and the strain extracted from the analysis of the

deformation of the unit cell boundary in the micro DIC analysis (in

red). The longitudinal and transverse components of the strain tensor in

the unit cell’s coordinate frame are plotted as functions of the vertical

elongation of the ZOI for the three cases (0o in (a), 30o in (b) and 45o

in (c))

Fig. 15 Evolution of the top/bottom periodicity for the second order

term of the contour deformation. For the three orientations, the mean

value (in blue) and the standard deviation (in red) with or without

excluding cells with non periodic behaviour are plotted as functions of

the vertical elongation of the ZOI
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Fig. 16 Evolution of the left/right periodicity for the second order

term of the contour deformation. For the three orientations, the mean

value (in blue) and the standard deviation (in red) with or without

excluding cells with non periodic behaviour are plotted as functions of

the vertical elongation of the ZOI
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Fig. 17 For the three orientations, the cells with non periodic

behaviour (top/bottom or left/right) are filled
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average ±1.5 times its standard deviation) is submitted to

periodic boundary kinematics (see the equation (13)).

Transition Zone Between the

Heterogeneous/Homogeneous Material

One shall now investigate the position of these non periodic

cells. The cells that have a non periodic behaviour along

the top/bottom direction or along the left/right direction are

represented with dots where each unit cell is representing

by a quadrangle (Fig. 17). All the non periodic cells are

located on one row along the boundary of the architectured

zone, except for some randomly placed cells in the bulk

of the heterogeneous zone. For these cells, non periodic-

ity is due to noisy measurements, all the non periodic cells

are located along the boundary of the architectured zone.

It may be said that all the cells along the boundary of the

architectured zone have a non periodic behaviour regard-

less of their position and the load orientation. To illustrate

non periodic effects, the deformed middle right unit cell is

plotted for the three orientations in Figs. 8(b), (d) and (f).

This cell has its left edge linked to another unit cell but

its three other edges are linked to the homogeneous mate-

rial. Compared to Fig. 8(c), the deformation of the cell is

completely different. Higher order effects are obtained espe-

cially for the 0o case. For the 30o and the 45o, the cell is

mainly loaded in tension, contrary to the cells in the bulk

of the architectured zone which are loaded in both ten-

sion and shear due to the lattice orientation with respect

to the loading direction. The edges cell kinematics is thus

very different.

Conclusions

In this paper, a specimen has been designed in order to

analyse the deformation of an architectured material based

on a periodic lattice and a square unit cell with a hole.

The effect of lattice orientation with respect to the uni-

axial loading direction is investigated. The deformation of

the specimen is measured by DIC using very high res-

olution images. These high resolution images enable to

perform from a unique data set a two scales DIC analy-

sis of the strain field: one at the microscopic scale giving

fine informations within each cell and one at macroscopic

scale. From the first analysis, the edges displacement of

each cell are analyzed through periodic and non periodic

homogenization schemes. The averaged cell strain that is

subsequently extracted agrees well with the macroscopic

DIC analysis values. A statistical analysis of the cell edges

kinematics is carried out. The edges displacement is pro-

jected onto a polynomial basis, and their distribution is

analysed. It is concluded that the cells edges kinematics fall

within the scope of first order periodic homogenization the-

ory. The non periodic effect are confined to one row of

cells along the boundary of the architectured zone. All the

cells along this boundary have a non periodic edge kine-

matics irrespective of the lattice orientation. The analysis

has been conducted for a wide range of strain including

large plastic deformation. These experimental results give

interesting indications for the homogenization strategies

to be used in computations in case of large elastoplastic

strains.
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2. Ponte Castañeda P, Suquet P (1998) Nonlinear composites. Adv

Appl Mech 34:171–203

3. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computa-

tional plasticity for composite structures based on mathematical

homogenization: Theory and practice. Comput Methods Appl

Mech Eng 148:53–73

4. Feyel F, Chaboche JL (2000) Fe2 multiscale approach for mod-

elling the elastoviscoplastic behaviour of long fibre sic/ti com-

posite materials. Comput Methods Appl Mech Eng 183(3-4):309–

330

5. Kouznetsova VG (2002) Computational homogenization for the

multi-scale analysis of multi-phase materials. PhD thesis, Technis-

che Universiteit Eindhoven

6. Gitman IM, Askes H, Sluys LJ (2007) Representative volume:

Existence and size determination. Eng Fract Mech 74(16):2518–

2534

7. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-

scale second-order computational homogenization of multi-phase

materials: a nested finite element solution strategy. Comput Meth-

ods Appl Mech Eng 193:5525–5550

8. Feyel F (2003) Comput Methods Appl Mech Eng 192(28-

30):3233–3244. Multiscale Computational Mechanics for Materi-

als and Structures

9. Coenen EWC, Kouznetsova VG, Geers MGD (2012) Multi

scale continuous discontinuous framework for computa-

tional homogenization localization. J Mech Phys Solids 60

(8):1486–1507

10. Kaczmarczyk L, Pearce CJ, Bićanić N (2008) Scale transition
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