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Charge Collective Modes in Correlated Electron Systems: Plasmons Beyond the
Random Phase Approximation

Löıc Philoxene, Vu Hung Dao, and Raymond Frésard∗

Normandie Université, ENSICAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France
(Dated: September 6, 2024)

Elucidating the impact of strong electronic interactions on the collective excitations of metallic
systems has been of longstanding interest, mainly due to the inadequacy of the random phase
approximation (RPA) in the strongly correlated regime. Here, we adopt our newly developed radial
Kotliar and Ruckenstein slave boson representation to analyze the charge excitation spectrum of a
Hubbard model, extended with long range interactions. Working on the face centered cubic lattice,
at half filling, and in different coupling regimes ranging from uncorrelated to the metal-to-insulator
transition, we compare our results to conventional RPA as a benchmark. We focus on the influence
of the local and long range couplings on the particle-hole excitation continuum and the plasmon
and upper Hubbard band collective modes. Beyond the weak coupling regime, we find numerous
quantitative and even qualitative discrepancies between our method and standard RPA. Our work
thus deepens the understanding of charge collective modes in correlated systems, and lays the
foundations for future studies of a broad series of materials.

Introduction.— In their seminal series of papers,
Pines and Bohm pioneered the study of collective modes
arising in dynamical autocorrelation functions of the elec-
tron gas by introducing the random phase approximation
(RPA) [1–3]. Focusing on density fluctuations, they ar-
gued that their spectra may be split into two components:
i) an incoherent one associated with the random thermal
motion of the individual electrons, and ii) a plasma os-
cillation mode. Having a classical analogue, the latter
may be explained in simple terms, and is broadly docu-
mented [4–6]. Nevertheless, quantum corrections to this
classical picture were recently addressed [7]. Further-
more, a series of applications backing on its existence
have been put forward, ranging from nanophotonics [8–
21], to energy conversion [22–26], and even cancer treat-
ment [27–31].

Since its introduction, it has been established that the
RPA remains sensible in the weak coupling regime only,
and that it becomes unreliable as soon as the coupling
strength becomes intermediate. Nevertheless, it may still
be applied as a flexible tool in the thermodynamic limit,
and it indeed remains broadly used, especially within
quantum chemistry codes [32–34]. Besides, a series of
calculations on model systems demonstrated qualitative
failures of the approximation, especially in the context
of the celebrated one band Hubbard model. In fact, key
quantum collective phenomena entailed by the model,
for example signatures of the upper Hubbard band, are
missing in the charge excitation spectra when computed
within the RPA. Multiple frameworks that try to over-
come some of these shortcomings, and recover some of
the missing features, have thus been proposed [35–40].

A broadly used approach to tackle correlated electrons
is provided by Kotliar and Ruckenstein’s slave boson
(KRSB) representation. This versatile tool may be ap-
plied to a series of microscopic models, such as the Hub-
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bard model [41] and its extensions [42–44]. It consists
in introducing a doublet of pseudofermions, along with
four bosons, that generate the Fock space on each lattice
site. In the functional integral formulation, this results
in a Lagrangian that is bi-linear in the fermionic fields,
although no Hubbard-Stratonovich decoupling is per-
formed, thereby allowing for a description of electronic
interactions at arbitrary coupling strengths. The relia-
bility of the KRSB representation to the Hubbard model
and its extensions has already been extensively discussed
(see, e.g., Paragraph II.C.1 in Ref. [45] and references
therein). A recent study also put forward quantitative
agreement between the charge and spin structure factors
computed in KRSB and resonant inelastic x-ray scatter-
ing data in electron-doped cuprates [44]. Within this rep-
resentation, calculations are amenable to the thermody-
namic limit as well, especially regarding the Mott metal-
to-insulator transition [46] (MIT), and does not suffer
from a weak coupling limitation. The resulting low en-
ergy spectra qualitatively differ from the RPA results,
however [47]. They generically comprise a continuum, a
zero-sound collective mode lying slightly above this con-
tinuum, and a signature of the upper Hubbard band in
the form of a mode that disperses about ω ∼ U in the
strong coupling regime. Below, we refer to the latter as
the upper Hubbard band mode. This mode may, in the
intermediate coupling regime, hybridize with the zero-
sound one [47].

In the past twenty years, the extended Hubbard model,
entailing non-local density-density interactions, has seen
an upsurge of interest [45, 48–57] (see also [58] and ref-
erences therein for a better overview). It has also been
studied early on within the KRSB representation, and
phase diagrams have been computed [42]. Below, we ap-
ply the radial gauge of the KRSB representation [59],
in which the non-local interaction arises in a bi-linear
form in terms of the boson fields. It allows for a system-
atic evaluation of long range correlations between density
fluctuations. This formalism has recently been revisited
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and validated through exact calculations [60, 61].
The purpose of the present Letter is to compute the

experimentally accessible energy loss spectrum of the ex-
tended Hubbard model, via the calculation of the dynam-
ical dielectric function, which itself depends on the charge
autocorrelation function. Special focus is made on the
interplay of the plasmon mode (driven by the non-local
Coulomb interaction), the upper Hubbard band (driven
by the local interaction), and the low energy particle-hole
excitation continuum.

Model and methods.— The Hamiltonian for the Hub-
bard model, extended by a long range Coulomb interac-
tion, may be written as

H =
∑
i ̸=j,σ

tij

(
c†σ,icσ,j + h.c.

)
+ U

∑
i

n↑,in↓,i

+
1

2

∑
i ̸=j

Vij

(
2−

∑
σ

nσ,i

)(
2−

∑
σ

nσ,j

)
, (1)

where ci,σ (σ =↑, ↓) is the canonical electron annihilation
operator, ni,σ is the associated electron number operator,
tij = −t if i and j are nearest neighbors, and tij = 0 oth-
erwise, and we set ℏ = 1 here and throughout. Here,
t is the hopping amplitude, U is the Hubbard coupling,
and Vij = V a/|ri− rj | is the non-local Coulomb interac-
tion, where a is the lattice spacing, and V is an effective
coupling parameter. In the last term, the long range in-
teraction has been chosen to couple to the hole densities
2 − n for later convenience. It is, however, equivalent
to the representation in terms of electron densities n, as
they differ by an overall shift in energy, only.

We work in the grand canonical ensemble, and employ
the radial gauge of the KRSB representation. In this
paragraph, we give an outline of the formalism behind
this radial KRSB representation, and refer to the Ap-
pendix A for a detailed derivation and technical discus-
sions. In the original KRSB framework, one introduces
a set of four auxiliary bosons e, pσ, and d (associated
to unoccupied, singly occupied with spin projection σ,
and doubly occupied atomic states, respectively), as well
as a doublet of pseudofermions fσ at each lattice site.
Within the functional integral formalism, the canonical
electron fields are mapped to a product of slave boson
and pseudofermion fields as

cσ,i(τ) → zσ,i(τ)fσ,i(τ), (2)

where the fields zσ,i(τ) are functions of the boson fields
(omitting the imaginary-time variable τ),

zσ,i = e∗i Yσ,ipσ,i + p∗−σ,iYσ,idi, (3)

where

Yσ,i =
[
(e∗i ei + p∗−σ,ip−σ,i)(1− p∗−σ,ip−σ,i − e∗i ei)

]−1/2
.

(4)

This representation is invariant under local
U(1)×U(1)×U(1) gauge transformations, allowing

for the phase of three of the boson fields to be gauged
away [62–64]. The boson fields deprived of their phase
degree of freedom are coined radial slave bosons. Be-
ing real-valued, the radial slave boson fields are free
from Bose condensation. Their expectation values
are generically finite and can be well approximated in
the thermodynamic limit via the saddle-point approx-
imation. Corrections to the latter may be obtained
when evaluating the Gaussian fluctuations [47], and
the correspondence between this more precise evalua-
tion and the time-dependent Gutzwiller approach [65]
could recently be achieved—though by means of an
extension in the formulation of the latter [66]. In the
Cartesian gauge, the non-local interaction term reads
1
2

∑
i ̸=j Vij(2−p2↑,i−p2↓,i−2d∗i di)(2−p2↑,j−p2↓,j−2d∗jdj).

It is quartic in the bosonic fields, and can there-
fore not be integrated exactly. In contrast,
in the radial gauge, one may re-write it as
1
2

∑
i ̸=j Vij(2Re,i + R↑,i + R↓,i)(2Re,j + R↑,j + R↓,j),

after having made use of the constraints to eliminate
the d-boson (see Appendix A and Ref. [61]). By doing
so, both local and non-local interaction terms enter the
action as quadratic terms in the radial slave bosons.
Further details on the radial gauge are provided in
Appendix A.
The charge excitation spectrum of the model can be

analyzed through the evaluation of the loss function
−Im[ε−1(q, ω)], which is experimentally accessible by
electron energy loss spectroscopy or resonant inelastic x-
ray scattering measurements.
To that end, we compute the inverse dielectric function

as

ε−1(q) = 1−
(
U

2
+ Vq

)
χc(q), (5)

where Vq = 4πaV/|q|2, q ≡ (q, iωn), ωn ≡ 2πnkBT , kB
is the Boltzmann constant, and T is the temperature.
The density-density correlation function

χc(q) = ⟨δn(−q)δn(q)⟩
= 4d2⟨δd′(−q)δd′(q)⟩ − 2d⟨δd′(−q)δRe(q)⟩
+ ⟨δRe(−q)δRe(q)⟩, (6)

is calculated by taking into account Gaussian fluctuations
of the boson fields around the paramagnetic saddle-point
solution [47]. As detailed in the Appendix A, we ob-
tain analytical expressions for χc(q) and ε−1(q). The
associated dynamical response functions are then eval-
uated on the real frequency axis with the substitution
iωn → ω+i0+. The advantage of our procedure over nu-
merical methods, lies in the obtained analytical expres-
sions, which allow for an unambiguous analytical contin-
uation, and can be physically interpreted in some limiting
regimes.
The paramagnetic saddle-point of the KRSB represen-

tation has already been extensively studied in the liter-
ature [41–43, 47, 67]. In radial gauge, the study of the
saddle-point remains identical.
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FIG. 1. Zero temperature RPA (top row) and radial KRSB (bottom row) energy loss spectra −Im[ε−1(q, ω)], in dependence
on q along L− Γ−K. Parameters: v = 0.1 and u = 0.1, 0.5, and 0.8, from left to right. The dashed lines in the bottom row
denote the dispersion of the plasmon mode obtained by inserting the renormalized Lindhard function Π0 in the expression of
the RPA dielectric function Eq. (7)

In this Letter, we focus on the face-centered-cubic
(fcc) lattice as a representative example of three di-
mensional systems, since the simple cubic structure is
scarcely realized. In this case, the bare dispersion is

tk = −4t
(
cos kx2 cos

ky
2 + cos

ky
2 cos kz2 + cos kz2 cos kx2

)
,

where we set a = 1. As a proof of principle, we consider
the half band-filling (n = 1) case, which hosts the MIT,
thereby allowing us to unravel the impact of strong elec-
tron correlations on the loss function. In this context,
the critical coupling of the Mott transition is Uc = −8ξ0,
where ξ0 denotes the average bare kinetic energy. We
find ξ0 ≃ −0.16W , where W = 16t is the bare band-
width. This yields Uc = 1.31W , which, due to the large
coordination number of the fcc lattice, also compares fa-
vorably with the large coordination limit of dynamical
mean-field theory (DMFT): Uc = 1.47W [68].

Results.— In the standard Hartree-Fock RPA
(HF+RPA) framework, the density-density correla-
tion function is computed as a series of particle-hole
bubble diagrams for non-interacting electrons, linked
with bare interaction vertices U/2 + Vq. Under such
approximations, the dynamical dielectric function
reads [6]

εRPA(q, ω) = 1 +

(
U

2
+ Vq

)
Π

(0)
0 (q, ω), (7)

where Π
(0)
0 (q, ω) is the Lindhard function for the non-

interacting system. Due to its perturbative essence, we
cannot expect standard HF+RPA procedure to yield rea-
sonable results in the strong coupling regime (see [47]
and Appendix D for an assessment of some of the key
features missing in the RPA treatment that are incorpo-
rated in the Cartesian and radial KRSB formalisms, re-
spectively). However, we use it as a benchmark to high-
light strong correlation effects when comparing it with
the radial KRSB representation for values of U and/or

V approaching Uc. In the following, we use the dimen-
sionless coupling parameters u = U/Uc and v = V/Uc.
Let us now address representative examples of the en-

ergy loss spectra computed with Eq. (7) and with Eq. (5).
We fix the value of v = 0.1 and investigate values of
u = 0.1, 0.5, and 0.8 at half filling and zero temperature.
We also focus on values of q along the representative sym-
metry lines L− Γ−K, with L = (π, π, π), Γ = (0, 0, 0),
and K = ( 3π2 ,

3π
2 , 0), for the wavevector dependence. On

the face centered cubic lattice, the nearest neighbor dis-
tance is smallest (largest) along the Γ−K (Γ− L) di-
rection. The computed spectra are presented in Fig. 1.
They generically comprise a low energy particle-hole ex-
citation continuum. In RPA, this continuum is insensi-
tive to the value of u, and it disperses from ω(Γ) = 0,
up to ω(K) ≃ 16t. In our radial KRSB calculations,
however, the continuum strongly depends on the value
of u. Indeed, it is gradually narrowed by increasing the
Hubbard coupling, with a maximum of its dispersion at
ω(K) ≃ 16t for u = 0.1, in contrast to ω(K) ≃ 6t,
only, for u = 0.8. This owes to the fact that the Lind-
hard function for the quasiparticles Π0(q, ω) and the non-

interacting Lindhard function Π
(0)
0 (q, ω) are related via

renormalization. For the considered paramagnetic phase,
this reads (see Appendix B for a discussion)

Π
(0)
0 (q, ω) = z20Π0(q, z

2
0ω), (8)

where, z20 = ⟨z†σ,izσ,i⟩ is the inverse mass renormaliza-

tion factor, appearing as z20tk in the dispersion relation
of the quasiparticles. One may thus explicitly see the de-
crease of the continuum’s bandwidth, as the quasiparticle
residue z20 = 1 − u2 approaches zero when u approaches
unity [47].

The RPA response features a single collective mode:
the plasmon, which establishes at large wavelengths,
above the continuum. When increasing q, it enters the
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FIG. 2. Square of the plasma frequency ω2
p in dependence on

the strength of the effective Coulomb coupling v. Parameters:
u = 0.1, 0.5, and 0.8. The plasma frequency obtained in
standard RPA is also shown.

particle-hole continuum, and thus quickly becomes sup-
pressed by Landau damping. For larger values of u, the
mode gets overdamped at larger energy and wavevector,
especially in the L direction, along which it disperses
more. Its gap at q = Γ, the plasma frequency ωp, re-
mains unchanged and in fact depends on v, only. This
can be understood from the expression

ωp ≃
√
−V ξ0

6
, (9)

obtained by a large wavelength expansion of the RPA di-
electric function (derived in Appendix A). For v = 0.1
(i.e. V = 2.1t), this yields ωp ≃ t, which coincides with
the gap shown in the top row of Fig. 1. Furthermore,
we note that the plasma frequency computed with this
expression does not depend on the value of u. In fact,
u first enters the dispersion of the plasmon mode as a
contribution of order |q|2. This additionally corrobo-
rates the observation that the plasmon mode disperses
more for larger values of the Hubbard coupling. In the
bottom row of Fig. 1, we see that the radial KRSB spec-
tra possess two well-defined collective modes. Firstly,
we observe the plasmon mode, similarly to the RPA. At
weak coupling u = 0.1, the plasmon collective mode is
also present at large wavelengths, only, as it enters the
particle-hole continuum at approximately the same val-
ues of q and ω as in RPA. At larger couplings u = 0.5 and
0.8, though, the renormalization of the particle-hole con-
tinuum, along with the greater dispersion of the plasmon
mode induced by u, allows for the latter to remain well-
defined in a broader range of wavelengths. One also sees
that the plasmon mode obtained by inserting the renor-
malized polarizability Eq. (8) in the RPA formula for the
dielectric function correctly accounts for the value of the
plasma frequency at arbitrary coupling. At finite wave-
lengths, however, this naive attempt to account for strong
correlations within the RPA response noticeably deviates
from the KRSB plasmon. Secondly, an additional collec-
tive mode establishes in the radial KRSB spectra. This
mode, with a much larger gap at Γ of about ωUHB ≃ 10t
for every values of u, corresponds to the aforementioned
upper Hubbard band mode. Similarly to the plasmon

𝑣 = 0.1: RPA
𝑣 = 0.5: RPA

4𝜋𝑛𝑣𝑧20
4𝜋𝑛𝑣𝑧20

KRSB
KRSB

0

2

4

6

8

0 0.5 1

(𝜔
𝑝
∕𝑡
)2

𝑢

𝑧20
0

1

0 0.5 1
𝑢

FIG. 3. Square of the radial KRSB plasma frequency ω2
p in

dependence on the local coupling u. The RPA results, and the
plasma frequency obtained by using the classical expression
(see text) with m∗ = 1/z20 , are also shown. Inset: Quasipar-
ticle residue z20 in dependence on u. Parameters: v = 0.1 and
0.5.

mode, at weak coupling, it enters the particle-hole con-
tinuum at finite q, inside which it quickly decays via
Landau damping. It, however, disperses much less than
the plasmon mode, with a bandwidth of at most one for
u = 0.8.

In this two-modes picture, one might expect a level-
crossing at finite q between the two branches, at a given
point of the parameter space. Yet, no point of exact
degeneracy could be found, but either no-crossing or an-
ticrossings between both modes, as depicted in the center
and right panels of the bottom row in Fig. 1. Nonetheless,
we observe multiple anticrossings with near-degeneracy,
as can be seen for example close to K/2 and energies
around ω ≃ 10t for u = 0.8. Close to these anticross-
ings, the upper Hubbard band mode and the plasmon
mode strongly hybridize, and the excitations share both
characters.

Fig. 2 presents the v dependence of the radial KRSB
plasma frequency squared ω2

p, for values of u = 0.1, 0.5,
and 0.8. The RPA result is also shown for comparison,
and one can see that in the weak coupling regime, the
radial KRSB formalism correctly reproduces the RPA
plasma frequency, as expected. Another expected prop-
erty of the square of the plasma frequency is that it
should scale with v, as we have ω2

p ≃ 9.2v at weak cou-
pling, which is also realized. However, the deviation of
the plasma frequency from this analytical expression is
seen to increase with u. This indicates that strong cor-
relation effects, arising when the local coupling becomes
sufficiently large, cause a softening of the plasmon mode,
by opposition to the RPA picture in which the plasmon
mode is barely affected.

The u dependence of the radial KRSB plasma fre-
quency squared is shown in Fig. 3, for representative val-
ues of v = 0.1 and 0.5. The (constant) RPA result, for the
same values of v, is also presented for comparison. We see
that the plasma frequency decreases as the Hubbard cou-
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pling increases, ranging from the RPA value for u = 0,
to zero at the onset of the Mott transition. This can
be qualitatively understood by considering the classical
expression for the plasma frequency, ωp =

√
4πne2/m∗,

with n the electron density, e the electron charge, and
m∗ its effective mass. Recalling that, for an unscreened
Coulomb interaction V = e2, and that the band mass
is given by the renormalization factor via z20t ∼ 1/m∗,
we see that the plasma frequency should decrease along
with z20 when the Hubbard coupling is increased. This
is better depicted in the inset of Fig. 3, in which ω2

p is

shown as a function of the quasiparticle residue z20 . We
clearly see that at the onset of the MIT, at which the ef-
fective mass diverges, ωp drops to zero. This vanishing of
the plasma frequency at the onset of the Mott transition
re-emphasizes the connection between the coherent and
collective nature of the plasmon mode.

Summary and conclusion.— In summary, we have
proposed a theoretical framework for the computation
of charge excitation spectra in the presence of long range
Coulomb interactions, and in the full range of correla-
tion regimes. We evidenced quantitative and qualitative
discrepancies between our results and standard RPA. In
particular, we emphasized the influence of strong local
correlations on the plasmon collective mode, showing the
possibility for the plasmon to propagate undamped in

broader ranges of wavelengths at strong coupling, and
recovering the expected dependence of the plasma fre-
quency on the renormalized mass of the electrons. At
the onset of the Mott transition, we found the plasma
frequency to vanish along with the quasiparticle residue.
Regions of strong hybridization between the plasmon and
upper Hubbard band collective modes have also been un-
raveled. The benefits of the obtained analytical formula
for the loss function are twofold. First, it allows for a
straightforward analytical continuation, thereby yielding
sharply defined collective modes. Second, simple approx-
imations may be recovered in some limiting cases, pro-
viding easy access to physical quantities. As the com-
putational cost is similar to that of standard RPA, our
method, and possible future generalizations, may be em-
ployed to refine the incorporation of strong interactions
in studies of correlated systems.
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Appendix A: Derivation of the radial KRSB density autocorrelation function

1. Expression of the radial KRSB action functional

To circumvent the notorious failures of standard perturbation theory in interaction regimes where the coupling
scale approaches the characteristic electrons hopping energy scale t, slave boson techniques introduce auxiliary fields
in terms of which the interaction terms may be written as bilinear terms. In the context of the extended Hubbard
model, a particular choice of such representation is that of Kotliar and Ruckenstein [41]. According to the exhaustive
presentation provided in Ref. [61], the KRSB representation involves a doublet of fermionic fields {f↑,i, f↓,i}, together
with four bosonic fields {ei, p↑,i, p↓,i, di} (omitting the time variables), which are tied to empty, singly occupied (with
spin projection σ ∈ {↑, ↓}), and doubly occupied lattice sites. In the radial gauge, the first three boson fields possess
an amplitude degree of freedom, only, labeled Re,i and Rσ,i. The grand canonical partition function then reads

Z = lim
ν→0

lim
N→∞

lim
η→0+

[
N∏
n=1

L∏
i=1

(∫ ∞

−η
dRe,i,ndR↑,i,ndR↓,i,n

∫ ∞

−∞

ϵdαi,n
2π

ϵdβ↑,i,n
2π

ϵdβ↓,i,n
2π

dd′i,ndd
′′
i,n

π

∫ ∏
σ

dfσ,i,ndf
∗
σ,i,n

)

× e−(Sf [f
∗,f,ψ]+Sb[ψ])

]
, (A1)

where ϵ = β/N , and the vector ψ = (Re, d
∗, d, R↑, R↓, β↑, β↓, α) gathers the boson fields, as well as the time-dependent

fields α and βσ. The latter are enforcing the constraints

Re,i +R↑,i +R↓,i + d′2i + d′′2i = 1, (A2)

Rσ,i + d′2i + d′′2i = f∗σ,ifσ,i, (A3)
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respectively. The action functional entails a purely bosonic contribution

Sb[ψ] = ϵ

N∑
n=1

L∑
i=1

ϵ−1d∗i,n

(
di,n − e−ϵ(U+iα̃i,n−iβ↑,i,n−iβ↓,i,n)di,n−1

)
+

1

2

∑
j ̸=i

∑
σ,σ′

Vij(Rσ,i,n +Re,i,n)(Rσ′,j,n +Re,j,n)

+iα̃i,n (Re,i,n +R↑,i,n +R↓,i,n − 1)− i
∑
σ

βσ,i,nRσ,i,n

}
, (A4)

and a mixed fermionic-bosonic contribution

Sf [f∗, f, ψ] =
N∑
n=1

L∑
i=1

∑
σ

f∗σ,i,n

fσ,i,n − e−ϵ(iβσ,i,n−µ0)fσ,i,n−1 + ϵ
∑
j ̸=i

žσ,i,nzσ,j,n−1tijfσ,j,n−1

 . (A5)

Here, α̃i,n = αi,n − iλ0, with some regulator λ0 > 0 ensuring convergence of the integrals, and where the notation
žσ,i,n has been introduced to stress that this field is not the complex conjugate of zσ,i,n, but rather

zσ,i,n =

√
Re,i,n+1Rσ,i,n +

√
R−σ,i,n+1di,n√

Re,i,n+1 +R−σ,i,n+1 − iν
√

1−Re,i,n −R−σ,i,n + iν
, (A6)

žσ,i,n =

√
Rσ,i,n+1Re,i,n + d∗i,n

√
R−σ,i,n√

1−Re,i,n+1 −R−σ,i,n+1 − iν
√
Re,i,n +R−σ,i,n + iν

. (A7)

Expanding the exponentials appearing in the action functional to leading order in ϵ, and using the continuous
imaginary-time notation, these expressions may conveniently be rewritten as

Z =

∫
D[f∗, f, ψ]e−(Sf [f

∗,f,ψ]+Sb[ψ]), (A8)

with

Sb[ψ] =
∫ 1/T

0

dτ
∑
i

[
U(d′2i + d′′2i ) +

1

2

∑
j ̸=i

∑
σ,σ′

Vij(Rσ,i +Re,i)(Rσ′,j +Re,j)

+ iαi(Re,i + d′2i + d′′2i +R↑,i +R↓,i − 1)− i
∑
σ

βσ,i(Rσ,i + d′2i + d′′2i ) + i(d′i∂τd
′′
i − d′′i ∂τd

′
i)
]
, (A9)

and

Sf [f∗, f, ψ] =
∫ 1/T

0

dτ
∑
i,j

∑
σ

f∗σ,i
[
(∂τ − µ0 + iβσ,i)δi,j + z∗σ,izσ,jtij

]
fσ,j , (A10)

where the time labels τ = limN→∞ ϵ have been omitted for clarity, and d′i and d
′′
i denote the real and imaginary parts

of the di boson, respectively.
One could then demand proofs of the correctness of such a representation. In the presence of non-local interactions,

this has been, most recently, provided by an explicit calculation of the partition function and correlation functions
of the two-site cluster. Even though it acts as a toy integrable model, this limit of the extended Hubbard model has
been shown to harbor all the technical hurdles of larger system sizes [61].

2. Expansion of the action functional around the paramagnetic saddle-point

a. Paramagnetic saddle-point

At the paramagnetic saddle-point, the slave boson amplitudes take the expectation values

ψSP = (E, d, 0, P, P, β0, β0, α), (A11)
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the values of which are determined in dependence on the model parameters by solving the saddle-point equation [41–
43, 47, 63, 69]

(1− x2)x4

x4 − δ2
=

U

U0
, (A12)

where δ = 1 − n is the hole doping in a half-filled band, and U0 is a coupling scale which, at half filling (δ = 0),
corresponds to the critical coupling of the interaction-driven Mott transition. At arbitrary doping, U0 reads

U0 = − 8 ξ0
1− δ2

, (A13)

with the semi-renormalized kinetic energy

ξ0 =
2

L

∑
k

nF (Ek)tk, (A14)

where

tk = −4t

(
cos

kx
2

cos
ky
2

+ cos
ky
2

cos
kz
2

+ cos
kz
2

cos
kx
2

)
, (A15)

is the bare dispersion of the fcc lattice, and

Ek = z20tk − (µ− β0), (A16)

is the quasiparticle dispersion, where z0 = ⟨zσ,i⟩. Note that the value of V does not enter Eq. (A12), hence the
saddle-point values of the e, pσ, and d slave boson amplitudes do not depend on V . It turns out that the effect of V
is simply to induce a shift in the values of the saddle-point amplitudes of α and β0

α|V = α|V=0 − 2(2− n)V0, (A17)

β0|V = β0|V=0 − (2− n)V0, (A18)

that nevertheless leaves Eq. (A12) unaffected. Here, V0 = Vq=Γ.

b. Gaussian fluctuations around the saddle-point

In order to investigate the excitations of the paramagnetic ground state of the system, we begin by expanding the
action functional to second order in the field fluctuations

δψµ,i(τ) = ψµ,i(τ)− ψSP
µ , (A19)

about the paramagnetic saddle-point. This procedure yields contributions of increasing order in the field fluctuations,
from which we only retain the zero-th to second orders,

S[f∗, f, ψ] ≃ S(0)[f∗, f ] + S(1)[f∗, f, δψ] + S(2)[f∗, f, δψ]. (A20)

Once again, we split the different orders of the contributions in bosonic Sb and mixed Sf sectors. The bosonic sector
then contains the contributions

S(0)
b =

L

T

[
Ud2 +

1

2
V0(2− n)2 − 2β0(P + d2) + α(E + 2P + d2 − 1)

]
, (A21)

S(1)
b [δψ] =

√
L

T

{
[α+ 2V0(2− n)]δRe(0) + 2d[α− 2β0 + U ]δd′(0) + [α− β0 + V0(2− n)]

∑
σ

δRσ(0)

− (P + d2)
∑
σ

δβσ(0) +(E + 2P + d2 − 1)δα(0)

}
, (A22)
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S(2)
b [δψ] =

∑
q

∑
µ,ν

δψµ(−q)D−1
b,µν(q)δψν(q), (A23)

where L is the number of lattice sites, q = (q, iωn), with ωn a bosonic (i.e. even) Matsubara frequency. We also
introduced the 8× 8 matrix

D−1
b (q) =



2Vq 0 0 Vq Vq 0 0 1
2

0 α− 2β0 + U ωn 0 0 −d −d d

0 −ωn α− 2β0 + U 0 0 0 0 0

Vq 0 0 1
2Vq

1
2Vq − 1

2 0 1
2

Vq 0 0 1
2Vq

1
2Vq 0 − 1

2
1
2

0 −d 0 − 1
2 0 0 0 0

0 −d 0 0 − 1
2 0 0 0

1
2 d 0 1

2
1
2 0 0 0



. (A24)

In the fermionic sector, we have to expand the z-factors in powers of the slave boson fluctuations,

zσ,i(τ) ≃ z0 +
∑
µ

∂zσ,i(τ)

∂ψµ,i(τ)

∣∣∣∣
ψ=ψSP

δψµ,i(τ) +
1

2

∑
µ,ν

∂2zσ,i(τ)

∂ψµ,i(τ)ψν,i(τ)

∣∣∣∣
ψ=ψSP

δψµ,i(τ)δψν,i(τ)

= z0 +
∑
µ

Z(1)
σ,µδψµ,i(τ) +

1

2

∑
µ,ν

Z(2)
σ,µνδψµ,i(τ)δψν,i(τ), (A25)

where the derivatives of zσ are denoted

Z(1)
σ,µ =

∂zσ,i(τ)

∂ψµ,i(τ)

∣∣∣∣
ψ=ψSP

, (A26)

Z(2)
σ,µν =

∂2zσ,i(τ)

∂ψµ,i(τ)ψν,i(τ)

∣∣∣∣
ψ=ψSP

. (A27)

Doing so, we find that the contributions, up to second order in the slave boson fields fluctuations, sum up to

Sf [f∗, f, δψ] ≃
∑
σ

∑
k,k′

f∗σ(k)[−G−1
0 (k, k′) +Hσ(k, k

′)]fσ(k
′), (A28)

where k = (k, iωℓ), with ωℓ a fermionic Matsubara frequency, and

G−1
0 (k, k′) = [iωℓ + (µ− β0)− z20tk]δk,k′ , (A29)

Hσ(k, k
′) =

√
T

L

{
δβσ(k − k′) + z0

∑
µ

[Z̄(1)
σ,µtk′ + Z(1)

σ,µtk]δψµ(k − k′)
}

+
T

L

∑
q

∑
µ,ν

δψµ(k − k′ − q)
{z0
2
[Z̄(2)
σ,µνtk′ + Z(2)

σ,µνtk] + Z̄(1)
σ,µZ

(1)
σ,νtk′+q

}
δψν(q), (A30)

where Z̄
(1)
σ,µ = (Z

(1)
σ,µ)∗. Using the integration rules for Gaussian integrals over Grassmann fields, we explicitly integrate

the partition function over the pseudofermions

Zf = exp

{∑
σ

tr
[
ln(−G−1

0 +Hσ)
]}

= det(G−1
0 )2 exp

{∑
σ

tr [ln(1−G0Hσ)]

}

≃ det(G−1
0 )2 exp

{
−
∑
σ

tr

[
G0Hσ +

1

2
G0HσG0Hσ

]}

= det(G−1
0 )2 exp

{
−
∑
q

∑
µ,ν

δψµ(−q)D−1
f,µν(q)δψν(q)

}
, (A31)
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where the trace is taken over the wavevectors and Matsubara frequencies. For the first term, this yields

tr(G0Hσ) =
∑
k1,k2

G0(k1, k2)Hσ(k2, k1)

=
∑
k

G0(k)Hσ(k, k)

=
∑
k

G0(k)
{√T

L

[
δβσ(0) + 2z0

∑
µ

Re(Z(1)
σ,µ)tkδψµ(0)

]
+
T

L

∑
q

∑
µ,ν

δψµ(−q)
[
z0Re(Z

(2)
σ,µν)tk + Z̄(1)

σ,µZ
(1)
σ,νtk+q

]
δψν(q)

}
,

=− 1

2

∑
q

∑
µ,ν

δψµ(−q)
[
z0Re(Z

(2)
σ,µν)ξ0 + Z̄(1)

σ,µZ
(1)
σ,νξq

]
δψν(q). (A32)

In the last line, we used the fact that the terms of first order in the fields fluctuations are compensated by the bosonic
part at the saddle-point, and we defined

ξq = −2T

L

∑
k

G0(k) tk+q =
2

L

∑
k

nF (Ek)tk+q. (A33)

For the second term, we have, to second order in the boson fields fluctuations,

tr(
1

2
G0HσG0Hσ) =

1

2

∑
k1,··· ,k4

G0(k1, k2)Hσ(k2, k3)G0(k3, k4)Hσ(k4, k1)

=
T

2L

∑
k1,k2

G0(k1)G0(k2)
{
δβσ(k1 − k2)δβσ(k2 − k1)

+ δβσ(k1 − k2)z0
∑
µ

[Z̄(1)
σ,µtk1 + Z(1)

σ,µtk2 ]δψµ(k2 − k1) + h.c.

+
∑
µ,ν

δψµ(k1 − k2)z
2
0 [Z̄

(1)
σ,µtk2+Z

(1)
σ,µtk1 ][Z̄

(1)
σ,νtk1+Z

(1)
σ,νtk2 ]δψν(k2 − k1)

}
=
T

2L

∑
q

∑
µ,ν

δψµ(−q)
∑
k

G0(k)G0(k + q)
{
(δµν,66δσ,↑ + δµν,77δσ,↓)

+ 2z0[Z̄
(1)
σ,νtk + Z(1)

σ,νtk+q](δµ,6δσ,↑ + δµ,7δσ,↓) + h.c.

+ z20 [2Re(Z
(1)
σ,µZ

(1)
σ,ν)tktk+q + Z̄(1)

σ,µZ
(1)
σ,νt

2
k+q + Z(1)

σ,µZ̄
(1)
σ,νt

2
k]
}
δψν(q)

=− 1

2

∑
q

∑
µ,ν

δψµ(−q)
{1
2
X00(q)(δµν,66δσ,↑ + δµν,77δσ,↓)

+ z0[Z̄
(1)
σ,µX01(q) + Z(1)

σ,µX10(q)](δµ,6δσ,↑ + δµ,7δσ,↓) + h.c.

+
z20
2
[2Re(Z(1)

σ,µZ
(1)
σ,ν)X11(q) + Z̄(1)

σ,µZ
(1)
σ,νX20(q) + Z(1)

σ,µZ̄
(1)
σ,νX02(q)]

}
δψν(q), (A34)

where we introduced

Xmn(q) = −2T

L

∑
k

G0(k)G0(k + q)tmk t
n
k+q. (A35)

Using the fact that, at the paramagnetic saddle-point,

Z(1)
σ,µ = Z̄(1)

σ,µ = Z(1)
µ , for µ ∈ {1, 2, 4, 5}, (A36)

Z
(1)
↑,µ = Z

(1)
↓,µ, for µ ∈ {1, 2, 3}, (A37)

Z̄
(1)
σ,3 = −Z(1)

σ,3, (A38)

Re(Z
(2)
σ,µ3) = 0, for µ ̸= 3, (A39)
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for all σ ∈ ↑, ↓, we finally obtain the matrix elements of the fermionic sector of the inverse propagator

D−1
f,µν(q) = D−1

f,νµ(q) =
1

2
z0ξ0

∑
σ

Z(2)
σ,µν +

1

2

∑
σ

Z(1)
σ,µZ

(1)
σ,ν

[
ξq − 1

2
z20Π2(q)

]
, for µ, ν = 1, 2, 4, 5, (A40)

D−1
f,µ3(q) = −D−1

f,3µ(q) = − iωn
4

∑
σ

Z(1)
σ,µZ

(1)
σ,3Π1(q), for µ = 1, 2, 4, 5, (A41)

D−1
f,33(q) = z0ξ0

∂2Re[zσ,i(τ)]

∂d′′i (τ)∂d
′′
i (τ)

∣∣∣∣
ψ=ψSP

+

∣∣∣∣∂zσ,i(τ)∂d′′i (τ)

∣∣∣∣2
ψ=ψSP

[
ξ0 +

ω2
n

2z20
Π0(q)

]
, (A42)

D−1
f,µ6(q) = D−1

f,6µ(q) = −1

4
z0Z↑,µΠ1(q), for µ = 1, 2, 4, 5, (A43)

D−1
f,µ7(q) = D−1

f,7µ(q) = −1

4
z0Z↓,µΠ1(q), for µ = 1, 2, 4, 5, (A44)

D−1
f,66(q) = D−1

f,77(q) = −1

4
Π0(q), (A45)

D−1
f,µ8(q) = D−1

f,8µ(q) = 0, for all µ, (A46)

where

Πm(q) = −2T

L

∑
k

G0(k)G0(k + q)(tk + tk+q)
m. (A47)

c. Effective Gaussian theory for the slave boson fluctuations

With the above two contributions, we arrive at the effective action functional for the fluctuations of the slave boson
fields

Seff [δψ] =
∑
q

∑
µ,ν

δψµ(−q)D−1
µν (q)δψν(q), (A48)

where the inverse propagator for the boson field fluctuations D−1(q) = D−1
b (q) + D−1

f (q), is a 8 × 8 matrix in the

δψ(q) basis. However, if we perform a unitary change of basis

δψ′(q) = {δRe(q), δd′(q), δd′′(q), δR0(q), δβ0(q), δα(q), δRz(q), δβz(q)}, (A49)

where

δR0(q) =
1√
2
[δR↑(q) + δR↓(q)], (A50)

δRz(q) =
1√
2
[δR↑(q)− δR↓(q)], (A51)

δβ0(q) =
1√
2
[δβ↑(q) + δβ↓(q)], (A52)

δβz(q) =
1√
2
[δβ↑(q)− δβ↓(q)], (A53)

we can decouple the inverse propagator into a pure charge fluctuations sector, with basis

δψc(q) = {δRe(q), δd′(q), δd′′(q), δR0(q), δβ0(q), δα(q)}, (A54)

and a pure spin fluctuations sector, with basis

δψs(q) = {δRz(q), δβz(q)}. (A55)

To simplify notation, in the following, we refer to the fields fluctuations using the base Eq. (A49), and drop the prime
exponent. This means that the basis of the charge sector corresponds to {δψµ(q)}, for µ = 1, · · · , 6, while the basis
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of the spin sector corresponds to µ = 7 and 8. The matrix elements for the charge sector of the fluctuation matrix
then read

D−1
11 (q) = 2Vq +D−1

f,11(q), (A56)

D−1
12 (q) = D−1

21 (q) = D−1
f,12(q), (A57)

D−1
13 (q) = −D−1

13 (q) = − iωn
2

Π1(q)Z
(1)
1 Z

(1)
3 , (A58)

D−1
14 (q) = D−1

41 (q) =
√
2Vq +D−1

f,14(q), (A59)

D−1
15 (q) = D−1

51 (q) = − 1

2
√
2
z0Z

(1)
1 Π1(q), (A60)

D−1
16 (q) = D−1

61 (q) =
1

2
, (A61)

D−1
22 (q) = α− 2β0 + U +D−1

f,22(q), (A62)

D−1
23 (q) = −D−1

32 (q) = ωn

[
1− i

2
Z

(1)
2 Z

(1)
3 Π1(q)

]
, (A63)

D−1
24 (q) = D−1

42 (q) = D−1
f,24(q), (A64)

D−1
25 (q) = D−1

52 (q) = −
√
2d− 1

2
√
2
z0Z

(1)
2 Π1(q), (A65)

D−1
26 (q) = D−1

62 (q) = d, (A66)

D−1
33 (q) = α− 2β0 + U + z0Z

(2)
33 ξ0 +

∣∣∣∣ ∂z∂d′′
∣∣∣∣2 [ξ0 +

ω2
n

2z20
Π0(q)

]
, (A67)

D−1
34 (q) = −D−1

43 (q) =
iωn
2
Z

(1)
4 Z

(1)
3 Π1(q), (A68)

D−1
35 (q) = −D−1

53 (q) =
iωn

2
√
2z0

Z
(1)
3 Π0(q), (A69)

D−1
36 (q) = D−1

63 (q) = 0, (A70)

D−1
44 (q) = Vq +D−1

f,4,4(q), (A71)

D−1
45 (q) = D−1

54 (q) = −1

2

[
1 +

1√
2
z0Z

(1)
4 Π1(q)

]
, (A72)

D−1
46 (q) = D−1

64 (q) =
1√
2
, (A73)

D−1
55 (q) = −1

4
Π0(q), (A74)

D−1
56 (q) = D−1

65 (q) = D−1
66 (q) = 0, (A75)

where

Z(1)
µ = Z

(1)
↑,µ = Z

(1)
↓,µ, (A76)

Z(2)
µν = Z

(2)
↑,µν = Z

(2)
↓,µν , (A77)

D−1
f,µν(q) = z0Z

(2)
µν ξ0 + Z(1)

µ Z(1)
ν

(
ξq − 1

2
z20Π2(q)

)
. (A78)

While, in the spin fluctuations sector, we find

D−1
77 (q) = z0Z

(2)
77 ξ0 +

(
∂z↑
∂Rz

)2 [
ξq − z20

2
Π2(q)

]
, (A79)

D−1
78 (q) = D−1

87 (q) = −1

2

[
1 +

1√
2
z0
∂z↑
∂Rz

Π1(q)

]
, (A80)

D−1
88 (q) = −1

4
Π0(q), (A81)
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where

∂z↑
∂Rz

=
∂z↑,i(τ)

∂Rz,i(τ)

∣∣∣∣
ψ=ψSP

. (A82)

The spin sector of the inverse propagator is identical to that computed in Ref. [47] for the Hubbard model (i.e. without
long range interactions), as can be checked by expressing the derivatives of zσ with respect to the squared radial fields
in terms of their counterpart in terms of the radial fields, and using the saddle-point equations to identify occurring
α and β0 terms in the obtained expressions. In the V → 0 limit, the charge sector of the inverse propagator can also
be shown to coincide with that of Ref. [47] by the same argument.

3. Density autocorrelation function

In this work, we are interested in the computation of the dynamical dielectric function, which itself depends on the
dynamical charge susceptibility χc(q, ω). The latter may be obtained by analytical continuation of the density-density
correlator

χc(q) = ⟨n(−q)n(q)⟩ = 4d2⟨δd′(−q)δd′(q)⟩ − 2d⟨δd′(−q)δRe(q)⟩+ ⟨δRe(−q)δRe(q)⟩. (A83)

Inverting the charge sector of D−1(q), and using the fact that the slave boson correlation functions are straightfor-
wardly obtained as matrix elements of the propagator for the slave boson fields fluctuations

⟨δψµ(−q)δψν(q)⟩ =
1

2
Dµν(q), (A84)

we obtain the explicit form of Eq. (A83) as:

χc(q) =
x2D−1

55 (q)
{
s33[∆1(q)− 4

√
2d∆2(q) + 8d2∆3(q)] +

1
4ω

2
nD

−1
55 (q)

}
4s33x2[∆2

2(q)−∆1(q)∆3(q)]− ω2
nD

−1
55 (q)[

1
2∆1(q) +

√
2(x− 2d)∆2(q) + (x− 2d)2∆3(q)]

, (A85)

where

s33 = ξ0

(∣∣∣Z(1)
3

∣∣∣2 − z0
d
Z

(1)
2

)
, (A86)

∆1(q) = −D−1
55 (q)

[1
4
D−1

22 (q)− dD−1
12 (q) + d2D−1

11 (q)
]
+
[1
2
D−1

25 (q)− dD−1
15 (q)

]2
, (A87)

∆2(q) = −D−1
55 (q)

[1
4
D−1

24 (q)−
d

2
D−1

14 (q)−
1

2
√
2
D−1

12 (q) +
d√
2
D−1

11 (q)
]

+
[1
2
D−1

25 (q)− dD−1
15 (q)

][1
2
D−1

45 (q)−
1√
2
D−1

15 (q)
]
, (A88)

∆3(q) = −D−1
55 (q)

[1
4
D−1

44 (q)−
1√
2
D−1

1,4(q) +
1

2
D−1

1,1(q)
]
+
[1
2
D−1

45 (q)−
1√
2
D−1

15 (q)
]2
. (A89)

Appendix B: Slave boson mean-field and the
Landau-Fermi liquid

Note that, in the paramagnetic mean-field, the KRSB
mapping of the physical electron field reduces to cσ,i →
z0fσ,i. Therefore, the electron’s non-interacting Green’s
function G0,σij(τ) = −⟨Tτ cσ,i(τ)c∗σ,j(0)⟩may be straight-
forwardly expressed in terms of its similarly defined
KRSB counterpart G̃0,σij(τ) as:

G0,σij(τ) = z20G̃0,σij(τ). (B1)

In terms of the polarizabilities Π0 and Π
(0)
0 , this result

translates to

Π0(q, ω) =
1

z20
Π

(0)
0

(
q,

ω

z20

)
. (B2)

This equality is merely a re-statement, in terms of the
KRSB inverse effective mass renormalization factor z20 ,
of the standard result from Landau’s theory of the
Fermi liquid that interactions renormalize the electron
gas through the quasiparticle residue [6].
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FIG. 4. Deviation of Refs(q, ω) from U
2
+ Vq. Parameters:

T = 0, and V = 0.1 U with (a) U = 0.01 Uc, (b) U = 0.10 Uc

and (c) U = 0.30 Uc.

Appendix C: Deviation of the radial KRSB charge
susceptibility from RPA

In order to assess for the agreement, or disagreement,
between the radial KRSB spectra and the predictions of
standard perturbation theory, let us compute the dynam-
ical spin-symmetric density interaction function fs(q, ω),
defined as

fs(q, ω) =
1

χc(q, ω)
− 1

Π0(q, ω)
. (C1)

Note that this quantity is a wavevector and frequency
dependent generalization of the usual Landau parameter
F s0 = N(0)fs(0, 0), with N(0) the density of states at
the Fermi energy. Let us also observe that fs is essen-
tially akin to a many-body local field factor, as sometimes
introduced in early attempts to provide corrections to
the RPA charge susceptibility [6]. In the weak coupling
regime, the real part of this function should be equal
to U

2 + Vq, which would yield the standard RPA charge
susceptibility, and deviation from this value thus give a
measure of the deviation of the radial KRSB results from
perturbation theory.

As can be seen in Fig. 4(a), in which this deviation is
displayed, for V = 0.1 U , with U = 0.01 Uc, the radial
KRSB results agree with standard perturbation theory in
the weak coupling regime. Indeed, we find Refs(q, ω) ≃
U
2 + Vq, with deviations of at most 1.5%, irrespective
of the energy and wavevector, except in a narrow band
around ω = Uc/2. There, deviations of up to 115% are
observed. For reasons discussed in the main text, we as-
sign this band to a signature of the upper Hubbard band
(UHB), and note that strong deviations around this UHB
mode are to be expected, as it is not captured by stan-
dard perturbative expansions. As the Hubbard coupling
is increased, we observe in Fig. 4(b) and Fig. 4(c) that
deviations from Refs(q, ω) ≃ U

2 + Vq grow, jointly with
the deviations around the UHB mode.[70] In particular,
we find deviations of up to 15% for U = 0.10 Uc, and
60% for U = 0.30 Uc, outside of the UHB. Additionally
the dispersion of the latter is also seen to increase, due to
the larger values of U = 0.10 Uc and 0.30 Uc in Fig. 4(b)
and Fig. 4(c), respectively.

Appendix D: Plasma frequency on a lattice in the
weak coupling regime

The dispersion ωplasmon(q) of the plasmon collective
mode is obtained as a solution of

ε(q, ωplasmon(q)) = 0. (D1)

In the weak coupling regime U ≪ Uc and V ≪ Uc, an
analytical expression for the leading contributions to the
plasmon dispersion may be obtained by noting that the
radial KRSB dielectric function reduces to an RPA form

ε(q, ω) ≃ 1 +

(
U

2
+ Vq

)
Π0(q, ω). (D2)

For our purpose, we expand the Lindhard function to
lowest order in q2 about q = Γ. Re-writing it as

Π0(q, ω) =
2

L

∑
k

nF (Ek+q)− nF (Ek)

ω − (Ek+q − Ek)
=

2

L

∑
k

nF (Ek)
2Ek − Ek+q − Ek−q

ω2 + ω(Ek−q − Ek+q) + (Ek+q − Ek)(Ek − Ek−q)
, (D3)

then expanding the dispersion as Ek±q = Ek±qT∇kEk+
1
2q

TH(Ek)q + O(q3), with H(Ek) the Hessian matrix

Hab(Ek) = ∂2Ek/∂ka∂kb, and using ω ≫ |q| ≡ q (since
ωp remains finite for finite V ), we find

Π0(q, ω) ≃ − 2

L

∑
k

nF (Ek)
qTH(Ek)q

ω2
. (D4)

We can moreover make use of the fact that the off-
diagonal matrix elements of the Hessian are odd with
respect to the components of k, as well as the invariance
of the remaining integrals under permutations of the in-
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dices of H, such that we end up with the simple form

Π0(q, ω) = − 2

L

∑
k

nF (Ek)

∑
a q

2
aHaa(Ek)

ω2

= − q2

ω2

2t

L

∑
k

nF (Ek) cos
kx
2

(
cos

ky
2
+cos

kz
2

)
=
q2

ω2

ξ0
6
, (D5)

where ξ0 is the bare average kinetic energy per lattice
site. Inserting this expression into Eq. (D2), we finally
find

ω2
plasmon(q) ≃ ω2

p + κq2, (D6)

with

ω2
p = −V ξ0

6
, (D7)

and

κ = −Uξ0
12

. (D8)

V is hence pivotal to the very existence of the plasmon
altogether, while U rather governs its dispersion. More-
over, both ωp and κ are sensitive to the lattice on which
the electrons evolve through the −ξ0/6 factor. Finally,

recalling that in free space V = e2, and that the ki-
netic energy is proportional to the inverse band mass via
t ∼ 1/m∗, we may thus rewrite ξ0 ∼ −6 ϱ/m∗, with

ϱ ≡ 2

Lt

∑
k

nF (Ek)
∂2Ek

∂k2x

=
2

L

∑
k

nF (Ek) cos
kx
2

(
cos

ky
2

+ cos
kz
2

)
. (D9)

The plasma frequency is then recast as

ωp =

√
4πe2ϱ

m∗ . (D10)

This is the classical expression, apart from the fact that
the electron density n has been replaced by ϱ. The dif-
ference stems from the way we represent the density dis-
tribution on the lattice. In contrast to the Fermi gas, for
which a homogeneous electron density is given by a con-
tinuous (constant in this case) function of the position,
we here deal with a discretized and periodic function of
the position R: n(R) ∼

∑
j δ(R− rj), where rj is a lat-

tice vector. The Coulomb potential then couples to this
set of discrete and periodic lattice bonds, and taking its
Fourier transform results in contributions from the lattice
harmonics. Therefore, the lattice-dependent ϱ appears in

the plasma frequency instead of n = 2
∫

d3p
(2π)3nF (

p2

2m∗ ) for

the Fermi gas.
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