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A graph G is called perfect if ω(H) = χ(H) for every induced 
subgraph H of G, where ω(H) is the clique number of H and 
χ(H) its chromatic number. The Weak Perfect Graph Theo-
rem of Lovász states that a graph G is perfect if and only 
if its complement G is perfect. This does not hold for box-
perfect graphs, which are the perfect graphs whose stable set 
polytope is box-totally dual integral.
We prove that both G and G are box-perfect if and only if G+

is box-perfect, where G+ is obtained by adding a universal 
vertex to G. Consequently, G+ is box-perfect if and only if 
G

+ is box-perfect. As a corollary, we characterize when the 
complete join of two graphs is box-perfect.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

In a graph, a clique is a set of pairwise adjacent vertices, and a stable set is a set 
of pairwise nonadjacent vertices. The stable set polytope S(G) of a graph G is the 
convex hull of the incidence vectors of its stable sets. A graph G is called perfect if 
ω(H) = χ(H) for every induced subgraph H of G, where ω(H) is the clique number 
and χ(H) the chromatic number of H. Lovász [9] proved the Weak Perfect Graph The-
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orem, which states that a graph G is perfect if and only if its complement G is perfect. 
It is also known [4,8] that perfect graphs are the graphs whose stable set polytope is 
described by the system composed of the clique inequalities and the nonnegativity con-
straints:

⎧⎨
⎩

∑
v∈C

xv ≤ 1 for each maximal clique C of G,

x ≥ 0.
(1)

In fact, system (1) is totally dual integral if and only if G is perfect. A rational system 
of linear inequalities Ax ≤ b is totally dual integral (TDI ) if the minimization problem 
in the linear programming duality:

max{c�x : Ax ≤ b} = min{b�y : A�y = c, y ≥ 0}

admits an integer optimal solution for each integer vector c such that the maximum 
is finite. A system Ax ≤ b is box-totally dual integral [7] (box-TDI ) if Ax ≤ b, 
� ≤ x ≤ u is TDI for all rational vectors � and u (with possible infinite compo-
nents), and box-TDI polyhedra [5] are those that can be described by a box-TDI 
system. TDI and box-TDI systems were introduced in the late 1970’s and serve as a 
general framework for establishing various min-max relations in combinatorial optimiza-
tion [10].

A box-perfect graph is a graph for which system (1) is box-TDI. Equivalently, a graph 
is box-perfect if and only if it is perfect and its stable set polytope is box-TDI. The cha-
racterization of box-perfect graphs is a longstanding open question raised by Cameron 
and Edmonds in 1982 [1]. Mix-max relations about box-perfect graphs are discussed 
in [2]. Recent progress has been made on this topic by Ding, Zang, and Zhao [6]. They 
exhibit several new subclasses of perfect graphs and in particular prove the conjecture 
of Cameron and Edmonds [1] that parity graphs are box-perfect.

The Weak Perfect Graph Theorem does not hold for box-perfect graphs, as shown 
by S3 below, which is not box-perfect (see e.g. [3, Section 6.2]) but whose complement 
S3 is. Adding a universal vertex u+ to this complement destroys its box-perfection, 
that is, S3

+ is not box-perfect. Here, G+ denotes the graph obtained from a graph 
G by adding a universal vertex, which is a new vertex connected to all the vertices 
of G.

S3 S3 S3
+

u+
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We prove here that this holds in general. More precisely, we prove the following.

Theorem 1. Given a graph G = (V, E), the following statements are equivalent.

1. Both G and G are box-perfect,
2. G

+ is box-perfect,
3. G+ is box-perfect.

Our starting point builds upon recent characterizations of box-TDI polyhedra [3]. In 
the context of box-perfect graphs, the combination of [3, Theorem 2] and [3, Observa-
tion 4] yields Theorem 2 below, for which a few definitions are required.

A subset U of V is also viewed as the row vector (χU )�, where χU ∈ {0, 1}V denotes 
the incidence vector of U . A set of subsets of V is then viewed as a matrix whose rows 
correspond to those subsets. For a set C of columns and a set R of rows of a matrix M , 
we denote by MC the submatrix of M formed by the columns in C, and by MR and the 
submatrix of M formed by the rows in R.

A rational r × n matrix is equimodular if it has full row rank and its nonzero r × r

determinants all have the same absolute value. A face-defining pair of a graph G is 
a pair (K, S), where K is a set of linearly independent cliques, S is a set of affinely 
independent stable sets, each clique of K intersects each stable set of S, and1 |K| + |S| =
|V | + 1. Such a pair is equimodular when the matrix whose rows are the cliques of 
K is equimodular. Equivalently, as explained below, the matrix whose rows are (χT −
χS)�, T ∈ S \ {S} is equimodular for each2 S ∈ S.

Theorem 2. A perfect graph is box-perfect if and only if all its face-defining pairs are 
equimodular.

A face-defining matrix3 of a polyhedron P = {x : Ax ≤ b} is a linearly independent 
set AR of rows of A such that the affine hull of some face F of P can be written 
{x : ARx = bR}. [3, Theorem 2] asserts that a polyhedron is box-TDI if and only if all 
its face-defining matrices are equimodular. By [3, Observation 4], the cardinality and 
independence conditions on a face-defining pair (K, S) ensure that K is face-defining for 
the stable set polytope. When the graph is perfect, the face-defining pairs encode all 
the face-defining matrices of system (1) without nonnegativity constraints. The fact that 
nonnegativity constraints need not be considered in Theorem 2 relies on the following: 
if F ∩ {x ≥ 0} is not box-TDI for some face F of P , then neither is F .

We will use that a face-defining pair (K, S) is equimodular if and only if the matrix 
whose rows are (χT − χS)�, T ∈ S \ {S} is equimodular for each S ∈ S. Indeed, 

1 At this point, |K| + |S| ≤ |V | + 1 always holds by geometric arguments.
2 Here, each can be replaced by some, see [3, Corollary 6].
3 Compared to [3], face-defining matrices here are “from the system”. It is implicit therein that [3, Theo-

rem 2] also holds under these settings.
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when (K, S) is a face-defining pair, K is a face-defining matrix of the affine hull of S. By 
[3, Theorem 2], since the latter has only itself as a face, it is box-TDI if and only if K
is equimodular. Statements 2 and 3 of [3, Corollary 6] imply the announced equivalence 
as the vectors (χT − χS) for T ∈ S \ {S} form a basis of the associated linear space, for 
each S ∈ S.

Note that box-perfection is preserved under taking induced subgraphs [2]. Besides, 
each clique in a face-defining pair can be assumed maximal, because it can be assumed 
maximal in system (1). We can now prove Theorem 1.

Proof of Theorem 1. Replacing G by G shows that it is enough to prove (2 ⇒ 1) and 
(1 ⇒ 3). Moreover, G, G, G+, and G

+ are all perfect as long as one of them is, hence 
we just have to deal with the box-TDIness of their stable set polytopes. Let u+ denote 
the universal vertex of G+ and u+ that of G+.

(2 ⇒ 1) Suppose that G+ is box-perfect. Then, so is G = G
+ \ {u+}. To prove that 

G is box-perfect, by Theorem 2, we show that every face-defining pair (K, S) of G is 
equimodular.

Each element of K = {S ∪ {u+} : S ∈ S} is a clique of G
+ and each element 

of S = K ∪ {{u+}} is a stable set of G+. Let us prove that (K, S) forms a face-defining 
pair of G+. Firstly, K is linearly independent because S is affinely independent and K is 
obtained from S by adding a 1 column. Secondly, S is affinely independent because it 
is linearly independent. Thirdly, each stable set of S intersects each clique of K. Finally, 
|K| + |S| = |V ∪ {u+}| + 1, thus (K, S) forms a face-defining pair of G+.

By Theorem 2, (K, S) is equimodular, and so is the matrix whose rows are (χK −
χ{u+})�, for all K ∈ S\{{u+}}. Removing u+’s column from this matrix yields K, hence 
(K, S) is equimodular.

(1 ⇒ 3) Suppose that G and G are both box-perfect, and let (K+, S+) be a face-defining 
pair of G+ with r cliques in K+. We may assume that each clique of K+ is maximal, 
hence each of them contains u+. In particular, (K+){u+} = 1 and we may assume that 
{{u+}} � S+. Let K = {K \ {u+} : K ∈ K+} and S = S+ \ {{u+}}.

Let us prove that (K, S) forms a face-defining pair of G. In K+, column u+ is a 
linear combination of the columns of K, because KχS = 1 for S ∈ S. Thus, the linear 
independence of K+ implies that of K. The affine independence of S comes from that 
of S+. Since no stable set of S contains u+, each S ∈ S intersects each K ∈ K. Finally, 
|K| +|S| = |V | +1. Since G is box-perfect, (K, S) is equimodular by Theorem 2. Therefore, 
all the r×r nonzero determinants of K+ not containing column u+ have the same absolute 
value.

Recall that cliques and stable sets of G are respectively stable sets and cliques of G, 
and let us prove that (S, K) forms a face-defining pair of G. From the last paragraph, all 
that remains to show is the linear independence of S, which holds because S is affinely 
independent and SχK = 1 for K ∈ K. Since G is box-perfect, (S, K) is equimodular by 
Theorem 2. Therefore, for some K ∈ K, so is the matrix whose rows are (χL − χK)�
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for all L ∈ K \ {K}. This matrix is obtained by pivoting in K+ using L’s row in u+’s 
column, hence all the r× r nonzero determinants of K+ containing column u+ have the 
same absolute value.

To prove that (K+, S+) is equimodular, all that remains to show is that |det(B)| =
|det(C)| for some nonsingular r × r submatrices B and C of K+ with column u+ in 
exactly one of them. For S ∈ S, the columns of KS are linearly independent. Since K
has full row rank, KS can be completed into a nonsingular r× r submatrix B of K. The 
sum of the columns of B associated with S is 1, hence replacing one of them by 1 does 
not change the determinant. Reordering the columns provides the desired matrix C. �

The complete join of two graphs G and H is the graph obtained by connecting each 
vertex of G to each vertex of H. This operation preserves perfection, but not box-
perfection. Indeed, S3

+ is not box-perfect and is the complete join of two box-perfect 
graphs, namely S3 and a single vertex {u}.

Corollary 3. The complete join of G and H is box-perfect if and only if both G+ and H+

are box-perfect.

Proof. Let J be the complete join of G and H. If J is box-perfect, then G+ and H+, 
as induced subgraphs of J , are also box-perfect. Conversely, suppose that G+ and H+

are box-perfect. Equivalently, by Theorem 1, G+ and H
+ are box-perfect. Note that J+

is the graph obtained from G
+ and H

+ by identifying their universal vertex u. Let us 
prove that J

+ is box-perfect. Then so is J by Theorem 1, and the proof is done.
By contradiction, suppose that J

+ is not box-perfect, and let (K, S) be a nonequi-
modular face-defining pair of J+ given by Theorem 2. We may assume that each clique 
of K is maximal, and then u belongs to each of them. Given the structure of the graph, K
is composed of cliques KG and KH of respectively G

+ and H
+, with KG∩KH = {u} for 

all KG ∈ KG and KH ∈ KH . The latter implies that each nonzero |K| ×|K| determinant of 
K is the product of a nonzero |KG| × |KG| determinant of KG by a nonzero |KH | × |KH |
determinant of KH . Since K is not equimodular, at least one of KG and KH is not 
equimodular.

Let SG be a maximal family of affinely independent stables sets of G distinct from {u}
and intersecting each clique of KG. Define SH similarly. Take SG ∈ SG and SH ∈ SH and 
let S ′ = {{u}} ∪{S∪SH for all S ∈ SG} ∪{SG∪S for all S ∈ SH}. Given the structure of 
the graph, a dimensional analysis shows that (K, S ′), (KG, {u} ∪SG), and (KH , {u} ∪SH)
are respectively face-defining pairs of J+, G+, and H

+. This contradicts the fact that G+

and H
+ are box-perfect. �

We mention that the arguments of the last two paragraphs can be adapted to prove 
that a graph is box-perfect if and only if all its 2-connected components are box-perfect.
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