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Abstract

Background: The study of fine-grain genetic kinship ties (parents, siblings,
cousins, etc.) from ancient remains is now gaining significant interest within the
field of paleogenetics, as a means of deciphering the social organization of past
societies. However, kinship analyses are in practice often quite difficult to apply
within paleogenetic studies, and may carry a high degree of uncertainty in the
results they provide, especially when applied on low coverage and/or highly
degraded samples, or when studying poorly characterized populations. To
overcome these challenges, most of the available kinship estimation methods
either refrain from inferring ties beyond the second degree (e.g., half-siblings),
and/or rely on the use of a cohort of individuals to obtain a satisfactory
statistical significance. Thus, the current state of the art remains intrinsically
limited when attempting to estimate kinship on a small number of individuals,
or when trying to detect more distant relationships (e.g., cousins).
Methods: Here, we present GRUPS-rs: an update and complete
reimplementation of GRUPS (Get Relatedness Using Pedigree Simulations),
an ancient DNA kinship estimation software based on the methods
originally developed in (Martin et al. 2017). GRUPS-rs both computes
an estimate of relatedness from randomly sampled pseudo-haploidized
variant calls, and leverages high-definition pedigree simulations to bypass
the use of a cohort of individuals.
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Results: We highlight that GRUPS and GRUPS-rs are especially suitable to
perform kinship analysis on a restricted number of ancient samples, and can
provide a sufficient statistical significance to estimate genetic relatedness
past the second degree, while taking into account user-defined contamination
and sequencing error estimates. Importantly, GRUPS-rs offers an estimated
14000-fold speed-up in runtime performance compared to its predecessor
— allowing the joint estimation of kinship between dozens of individuals in a
matter of minutes — and is now bundled with a user-friendly Shiny interface,
in which users can interactively visualize their results.
Conclusions: The GRUPS kinship estimation method is now fully operational
in its "GRUPS-rs" implementation, whose use is particularly recommended
when analyzing a restricted number of low coverage DNA samples.

Keywords: kinship estimation; genetic relatedness; ancient DNA;
paleogenomics; pedigree simulations

1. Introduction

1.1 On the importance of studying genetic kinship

Attempts to unravel close genetic ties using ancient DNA have often proved an
invaluable tool to capture vivid snapshots of the social customs, burial practices
and rules of residence from past societies [1, 2]. As such, the study of genetic
kinship within archaeological contexts, and the joint development of dedicated
methods to estimate genetic relatedness from ancient DNA have been the
subject of increasing interest [3]. In addition, the ability to accurately infer close
genetic ties from ancient DNA samples can be used to quickly identify, match
and differentiate disparate bone remains, but also has evident applications in
the field of forensics [4, 5, 6]. Such inference remains in any case a compulsory
quality control step in population studies, as the presence of genetically related
samples may lead to biased estimates of genetic associations and/or diversity.

1.2 State of the art and current challenges of ancient DNA kinship
estimation

While the detection of genetic relatedness is often considered a trivial analysis
when applied to modern samples, classical methods typically require diploid
genotypes, along with precise estimates of the population allele frequencies,
to compute the probability of two alleles being identical by descent P(IBD). In
practice, this information is seldom retrievable from archeological contexts,
due to the significant degradation of the available genetic material, and the lack
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of a well characterized reference population. Dedicated methods, specifically
adapted to decayed and/or low-coverage DNA must therefore be applied. In
particular, many ancient DNA kinship estimation methods currently address
the challenge of inferring kinship from low coverage samples either (i) by
computing P(IBD) from genotype likelihoods, to account for the inherent
uncertainty of the available genotype calls [7, 8], or (ii) by estimating the
average pairwise mismatch rate (PMR), usually from randomly sampled pseudo-
haploid genotypes, and subsequently normalizing these results across all
available pairwise comparisons [9, 10, 11, 12].

Despite promising advances in recent years [12, 13, 14], the current state-of-
the-art regarding the assessment of genetic relatedness from ancient DNA
still faces multiple challenges, which most of the currently available methods
fail to fully address. On the one hand, maximum likelihood methods such
as lcMLkin [7] and NgsRelate-v2 [8] are able to provide precise estimates of
kinship well beyond the second degree. However, these methods may quickly
lose their statistical power to infer relatedness when applied against poorly
covered samples (e.g., 0.01X-0.5X) [15]. On the other hand, methods based
in whole or in part on normalized PMR estimates between two individuals,
such as READ [11], KIN [12], or the eponymously named "Kennett method"
[10], while generally able to work with extremely low coverage data [15], are
explicitly required to be applied on a collection of individuals. This constraint
may prove difficult to address in the case of archaeological contexts comprised
of merely a handful of human samples [16, 17, 18, 19, 20].

Finally, most ancient DNA kinship estimation methods fail to explicitly account
for the presence of modern contamination, sequencing errors, and/or the
presence of recent inbreeding amongst studied individuals (KIN and NgsRelate-
v2 being notable exceptions). Thus, accurately estimating more distant genetic
ties between low-coverage samples, while accounting for the inherent biases
of ancient DNA, often remains in practice — despite the promising recent
proposals of the KIN [12] and correctKIN [14] methods — an arduous prospect,
as evidenced by the fact that several methods explicitly refrain from venturing
beyond the second degree of relatedness [11, 13].

1.3 GRUPS and GRUPS-rs

GRUPS (Get Relatedness Using Pedigree Simulations) [9] was precisely
developed to address some of the previously mentioned challenges of ancient
DNA kinship estimation:
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• Like several other ancient DNA kinship estimation methods, GRUPS is based
on the direct estimation of pairwise mismatch rates between individuals,
allowing its application on low coverage samples.

• However, a specific strength of GRUPS lies in the fact that it does not
require to be applied on a collection of ancient individuals to normalize its
results, but rather leverages pedigree simulations from a reference panel
of present-day human phased genotypes.

• Through these simulations, GRUPS is also able to account for modern
human contamination and sequencing errors, as well as to perform ad-hoc
tests of recent inbreeding.

However, GRUPS remained a computationally demanding method, both in
terms of runtime and memory requirements, making its application reserved to
massively parallel computing cluster environments. Here, we present GRUPS-
rs, a major update and pure Rust [21] implementation of GRUPS, which both
addresses this drawback by providing with a 14000:1 increase in runtime
performance, and improves upon several methodological aspects of the initial
algorithm.

2. Materials and Methods

2.1 Main algorithm

The algorithm applied in GRUPS and GRUPS-rs when investigating kinship on
a given pair of individuals i, j can be subdivided into four main steps:

1. Calculate the observed average pairwise mismatch rate (P̂WD
obs
i,j ) for the

given pair i, j, through direct observation of allele counts within a pileup
file (Figure 1A).

2. Using the exact same overlapping positions used in (1), and within
a user-defined template family-tree, perform pedigree simulations in
hundreds of replicates, using randomly sampled individuals from a
modern genotype reference panel, as founder individuals (Figure 1B).

3. From these pedigree simulations, compute the expected theoretical
distributions of pairwise mismatch rates for a set of K user-defined
relationships within the template family tree (e.g., Parent-Offspring, Half-
siblings, Cousins, Unrelated, etc.) (P̂WD

sim
i,j,k) (Figure 1C).

4. Assign the most likely relationship for each pair of samples i, j, given

P̂WD
obs
i,j and the set of P̂WD

sim
i,j,k (Figure 1D).
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Figure 1 Illustration of the main steps performed in GRUPS-rs. A: Direct estimation of
the observed pairwise mismatch rate (P̂WD

obs
i,j ) from an input pileup file, between two

samples i and j B: Pedigree simulations, using the same overlapping positions as in
step A. C: Estimation of K theoretical distributions of user-defined kinship ties
(P̂WD

sim
i,j,k). D: Assignment of the most likely relationship, given P̂WD

obs
i,j . ω is the

user-defined number of pedigree replicates. E(PWD)g is the long-term average of
pairwise differences at position g and G is the number of overlapping positions
between sample i and j (see Equation 1).

2.1.1 Calculating the observed average pairwise mismatch rate between two
individuals

The first step of GRUPS involves estimating the average genetic distance
between the observed sequences of two ancient individuals (P̂WD

obs
i,j ). While

this procedure previously involved randomly sampling a single observation
from the observed nucleotides of each library [9], the updated implementation
in GRUPS-rs instead computes the expected long-term average by summing
across all possible pairwise pseudo-haploid samplings (Equation 1):

̂PWDobs
i,j =

∑G
g=1
(
qi,g
(
1− qj,g

)
+
(
1− qi,g

)
qj,g
)

G
(1)
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where G is the set of all the overlapping positions of individuals i and j, qi,g and
qj,g respectively represent the proportion of non-reference alleles of individuals
i and j, at position g.

In the special case of self-comparisons, however, we adjust this measure
to ensure comparison is performed against distinct nucleotides, to avoid
biases potentially arising from comparing a nucleotide to itself. (Note that this
correction naturally implies that performing self-comparison is restricted to
sites where the number of observations γi,g ≥ 2). In other words, the long-term
average PMR when performing self-comparison becomes the probability of
sampling two mismatching alleles at a given position, without replacement
(Equation 2):

̂PWDobs
i,i =

∑G
g=1 2qi,g(1− qi,g)

γi,g
γi,g−1

G
(2)

where qi,g represents the proportion of non-reference alleles at position g for
individual i, and γi,g represents the number of observations at position g for
individual i.

2.1.2 Pedigree simulations using modern reference genotypes

In GRUPS, the process of simulating pedigrees was performed sequentially,
across both pedigree replicates, and chromosomes. This general strategy
carried a toll on the size and memory complexity of the algorithm, as it implied
that (i) each input file was read through ω times, (ii) whole chromosome
genotypes had to be loaded in memory to simulate founder individuals,
and (iii), whole chromosome crossover simulations had to be performed
within descendants. Thus, to both minimize the required number of memory
allocations, and to alleviate the strain imposed by I/O operations, our strategy
in GRUPS-rs instead relies on initializing ω pedigree replicates from the start,
and simulating founder alleles and descendants on a per-genotype basis.
Recombination events within the genome of descendants are thus constructed
dynamically by keeping track of the contributing chromosome strand of each
ancestor.

2.1.2.1 Initialization of pedigrees

For each pair of individuals, pedigree simulations are performed in hundreds
of replicates, by targeting the exact same overlapping positions for that given
pair. This step requires the following inputs and parameters:
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• a user-defined template family tree, along with a set of kinship ties to
investigate (provided in the form of a simple configuration file).

• a reference dataset, containing phased genotypes of modern individuals
(e.g., the 1000g-phase3 dataset [22]).

• a fine-scale genetic map (e.g., Phase II HapMap [23]).
• a target source population, or super-population label (e.g., ASW, AFR, CEU,

etc.) for all pedigree founder individuals.
• a target source population, or super-population label for all contaminating

individuals.
• library-specific estimates of the rate of modern human contamination

and sequencing errors. (These parameters can be provided as ranged
estimates.)

• library-specific assignments for the number of contaminating individuals.
• a number of desired pedigree simulation replicates ω.

For each considered pairwise comparison, ω pedigrees are first initialized
by randomly assigning individuals from the source population as founders
within the template family tree. Likewise, each pedigree is given a randomly
assigned set of contaminating individuals of size

(
ci, cj

)
, where ci and cj are

the user-defined numbers of contaminating individuals for library i and j,
respectively. (Among others, methods such as AuthentiCT [24], ContamLD
[25], or DICE [26], may provide with genome-wide estimates of modern human
contamination.) Likewise, each pedigree is assigned with the corresponding
set of library-specific contamination rates (ξi, ξ j) and sequencing error rates
(εi, εj). (Here again, the software DICE [26] may equally provide with genome-
wide estimates of the sequencing error rate for every library.) In the case where
these user-defined values were specified as ranges, pedigree-specific values
for these parameters are randomly sampled from a uniform distribution within
the provided range.

Note that the initialized number of contaminating individuals, rate of
contamination, and sequencing error rates are tied to the libraries being
compared, and not to the individuals composing the family tree.

2.1.2.2 Simulating descendants within each pedigree

For each pedigree replicate, GRUPS first retrieves the genotype of each
founder individual from the input reference dataset. The genotype of each
descendant is then iteratively constructed by simulating recombination events
in each ancestor. Following [27], we model events of crossing-over through a



Human Population Genetics and Genomics, 2024; 4(1), 0001 Page 8 of 34

simple Poisson process and simulate effective recombination events within
each ancestor as the probability that an odd number of crossing-over events
ever occurs between the current coordinate g and the previously observed
coordinate g− 1 (Equation 3).

P(odd number o f crossover events) =
1− e2θ

2
(3)

where θ represents the known genetic distance (in cM) found within the range
[g− 1; g[. (This value is parsed from the user-provided genetic recombination
map.)

2.1.2.3 Simulating contamination and sequencing error rates

When comparing two individuals within a given pedigree, GRUPS-rs emulates
the process of pseudo-haploid random sampling by simply selecting one out
of the two alleles of each individual at random. A pairwise mismatch rate is
then reported by comparing the two selected alleles.

Following in the footsteps of its predecessor, GRUPS-rs additionally provides
with a simple probabilistic model of contamination by allowing, right before
evaluating pairwise differences, the random replacement of the previously
selected allele for each individual, using the user-defined contamination rate ξi

for a given library i. Once a specific allele is selected for replacement, GRUPS-rs
dynamically retrieves the genotypes of each contaminating individual and
replaces the initial observation by randomly sampling a single observation
within this collection. Thus, the overall probability of replacing the initially
sampled observation by an alternative allele through contamination can be
defined as (Equation 4).

P(replacement by a di f f erent allele) = ξi(1−
∑Ci

c=1 rc

2Ci
) (4)

where ξi is the user-defined estimate of contamination assigned to library i, rc

is the number of alleles from contaminating individual c that are identical to
the allele initially sampled in the pedigree individual, and Ci is the user-defined
number of contaminating individual(s) to simulate for library i.

Likewise, GRUPS and GRUPS-rs provide a rudimentary model to simulate
sequencing error rates, by randomly replacing the previously sampled
allele with an "erroneous" allele, sampled from one of the three remaining
possibilities with a uniform probability of 1/3. Hence, the rate at which a
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previously sampled allele is replaced by an erroneous one merely equals the
user-defined library specific sequencing error rate εi. In cases where such
estimates were not provided by the user, we instead approximate this rate by
using the average of the Phred quality scores found at the given nucleotide
position g of the library i. While this latter approximation can be expected
to represent a source of bias in high-coverage samples, we here rely on the
assumption that the input data of GRUPS is of relatively low-coverage and
the fact that we are effectively mimicking a random pseudo-haploid sampling
process during pedigree simulations.

As the manner in which the contamination and sequencing error simulation
model of GRUPS-rs were implemented mirrors that of its predecessor, we
expect that their respective impact on the resulting distribution of theoretical
P̂WD

sim
i,j,k for every hypothesized genetic tie k equally mirrors the behaviour

highlighted in [9]. Briefly,

• Increasing rates of contamination are expected to �atten all distributions

of P̂WD
sim
i,j,k towards P̂WD

sim
i,j,Sel f ; Increasing the number of contaminating

individuals should on the other hand increase the expected value of
P̂WD

sim
i,j,Sel f .

• Increasing rates of sequencing error are expected to shift all P̂WD
sim
i,j,k

distributions towards higher average values.

2.1.2.4 Obtaining a distribution of simulated P̂WD for each investigated
kinship tie

Within each pedigree replicate, and once all genotypes have been simulated,
GRUPS-rs performs random sampling of alleles, and updates a record of
any occurring pairwise difference for each considered kinship tie within the
template family tree. This process, once averaged over all positions, allows
GRUPS-rs to obtain a set of expected P̂WD

sim
i,j,k for each hypothesized genetic

tie k, given the overlap of libraries i and j. These P̂WD
sim
i,j,k are furthermore

aggregated across all pedigree replicates to obtain theoretical distributions
for each investigated relationship.

2.1.3 Relationship assignment

Assigning the most likely relationship between a given pair i, j, given the
previously obtained P̂WD

obs
i,j , is a K-class ordinal classification problem, where

K is the number of investigated kinship ties within the template family tree. A
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simple approach to this problem — the one devised in the previous version of
GRUPS [9] — is to compute an absolute z-score between the P̂WD

obs
i,j and every

distribution of P̂WD
sim
i,j,k. However, this strategy heavily relies on the assumption

that all the obtained P̂WD
sim
i,j,k are normally distributed and homoscedastic,

which may not be the case in practice. Here, we devise an alternative strategy
in GRUPS-rs, which instead relies on fitting a set of K− 1 binary SVM classifiers
(Support Vector Machine), and applying the methods found in [28].

Briefly, for any given pair of samples, we first transform the pedigree
simulations results from a K − class ordinal classification problem to a set
of K − 1 binary classification problems (Figure 2). We then fit a linear SVM
classifier for every binary problem, in which the classifier’s objective is to
deduce whether the given pair’s relationship is greater than k, given P̂WD

obs
i,j .

Probability estimates are then obtained from the classifier through Platt scaling
[29, 30].

rep Label PWD

1 Self 0.126

1 First 0.189

1 Second 0.225

1 Third 0.243

1 Unrelated 0.254

… … … 

ω Unrelated 0.257

rep PWD >Unrelated >Third >Second >First

1 0.126 1 1 1 1

1 0.189 1 1 1 0

1 0.225 1 1 0 0

1 0.243 1 0 0 0

1 0.254 0 0 0 0

… … … … … … 

ω 0.257 0 0 0 0

↓ ↓ ↓ ↓
P(>Unrelated|PWD) P(>Third|PWD) P(>Second|PWD) P(>First|PWD)

P(Unrelated) = 1 – P(>Unrelated|PWD)

P(Third) = P(>Third)  – P(>Unrelated)

P(Second) = P(>Second) – P(>Third)

P(First) = P(>First)  – P(>Second)

P(Self) = P(>First)

Figure 2 Illustrative example of the relationship assignment procedure of GRUPS-rs
on a single pair of individuals, with K = 5 investigated relationships, and ω pedigree
simulation replicates. Raw pedigree simulation results are first converted from a
K− class ordinal problem to a set of K− 1 binary problems, which are then used to fit
K− 1 binary SVM classifiers.

Finally, the one vs. all probability of belonging to relationship k can be extracted
using the following general scheme:

P(pair = k) = 1− P(pair > k|PWD) when k=1

= P(pair > k|PWD)− P(pair > k− 1|PWD) when 1 < k < K

= P(pair > k− 1|PWD) when k=K
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It should be noted that this classification procedure could be easily reduced
by fitting a simple decision tree, since our classification problem is one-
dimensional in nature. However, the use of SVMs offers the advantage of
being easily scalable to multiple input features, and easily tunable to minimize
false positives [31].

2.2 Indexing phased reference genotypes as a set of finite state
acceptors

The previous version of GRUPS [9] relies on querying random genotypes from
sequence variation datasets such as the 1000g-phase3 dataset. These data
types are most often found in the form of VCF and/or BCF files [32]. While
this file format remains an undisputed gold standard in most applications,
the repeated act of decompressing and querying these files can however
take a toll on general performance. Indeed, the expected time complexity of
retrieving alleles for an individual within a tabix-indexed compressed VCF
file can approximate O(l · log(b)) (where b is the number of BGZF blocks
found within the bgzip-compressed VCF, and l is the number of individuals
in the dataset [33]), especially when considering that most of the retrieved
coordinates are expected to be found in nonadjacent blocks, given the low
sequencing coverages typically retrieved from ancient DNA samples.

Here, we devise a simple scheme within GRUPS-rs to re-encode the input
dataset as a set of deterministic acyclic finite state acceptors (FSA) [34].
This strategy has repeatedly proven its effectiveness for indexing biological
sequences and databases [35, 36, 37]. Briefly, our procedure involves reading
through the entire input dataset once, and constructing a set of two binary
encoded FSAs for each chromosome, where:

• The first FSA indexes the genotype of each reference individual found
within the database. Each key is encoded in the form
<CHR><POSITION><SAMPLE-ID><ALLELE>

• The second FSA indexes population allele frequencies at each position.
Each key is encoded in the form
<CHR><POSITION><POP-ID><ALLELE-FREQUENCY>

Using such a scheme, we effectively reduce the complexity of fetching a random
genotype from O(l · log(b)) to O(κ), where κ is the length of the key used to
construct the FSA, while preserving an acceptable compression rate (Figure 3).
To minimize the memory footprint, construction of this FSA index is performed
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through an incremental procedure described in [38], and is pre-implemented
in Rust, through the "fst" library [39].

CHR POS . HG0096 NA20708

4 11532 . 00 01

4 11768 . 01 10 chr
u8

position
u32 (bitpacked)

sample
u16

allele
u16

4 0 0 45
12
248

0

0

1

0

0
1

0

1
0

END

0
1

Figure 3 Illustrative example of the encoding of a VCF file containing two samples
and two coordinates, and the process of conversion to an FSA-encoded data structure.
Each edge of the resulting FSA corresponds to a single character from the
constructed key. To alleviate disk usage, information about chromosome, position,
sample and allele is re-encoded into unsigned integers. u8, u16, and u32 respectively
represent a 1-, 2- or 4-byte unsigned integer.

This procedure is an optional, multithreadable, one-time operation within
GRUPS-rs, which can furthermore be used to (i) filter out multiallelic and/or
non discrete genetic variations from the dataset, (ii) filter out unnecessary
populations, and (iii) recompute population allele frequencies. The use of FSA-
encoded genotypes also carries the added benefit of greatly alleviating the
memory consumption of GRUPS-rs during runtime, as FSA are characterized by
their ability to be directly queried without decompression. This characteristic
further implies that our data can be queried through the use of memory-
mapped files, instead of loading them into memory.

2.3 Runtime and memory performance benchmark

2.3.1 Simulation of raw genomic sequences

To benchmark GRUPS-rs with a controlled input dataset, we first simulated the
genotypes of eleven related individuals within a predefined pedigree with the
software ped-sim v1.3 [40], using individuals from the EUR population of the
1000g-phase3 dataset as founder individuals. We then generated raw, ancient
DNA sequence data for those eleven simulated individuals using Gargammel
v1.1.2 [41] with the following parameters: an average coverage of 1X, a set
fragment length of 70bp, and ignoring contamination (-c 1 -l 70 –comp 1,0,0).

Raw sequences were then aligned on the GRCh37 reference genome using bwa
aln v0.7.17 [42] (-l 1024 -o2 -k2 -n0.01), and subsequently quality-filtered using
samtools view v1.15 [43] (-q20 -e ’length(seq)>30’ -F4). Duplicate reads were
then removed using Picard MarkDuplicates v2.27.4 with default parameters
[44]. Finally, we generated a single pileup file with samtools mpileup v1.15.0
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(-RB -q20 -Q20), while targeting autosomal positions from the Allen Ancient
DNA Resource (AADR) "1240K" SNP dataset, version 52.2 [45].

The resulting pileup file contained the sequence aligment of our 11 simulated
individuals, at 1,150,354 genomic coordinates, and with an average local
sequencing depth of 2.13X. To test the average runtime of GRUPS-rs at different
coverages, we generated nine subsets by recursively splitting odd and even
numbered lines of our input pileup file into two separate files, until acquiring
a set of 512 pileup files of 2246 lines each. This procedure thus allowed us to
generate a total of 1023 distinct input pileup files, set at ten different values of
average pairwise SNP overlap (ranging from 686,530 to 1340).

2.3.2 Runtime benchmark parameter space

We further expanded the parameter space of our runtime benchmark by
applying GRUPS-rs on each condition of average pileup size, while varying
the number of studied individuals from 2 to 11, for a total of 100 different
conditions.

For each condition, we applied GRUPS-rs using the following set parameters:

• 500 simulation replicates;
• input dataset: 1000g-phase3 dataset (FSA-encoded);
• 5 investigated kinship ties, within a template family tree of 8 individuals (4

founders, 4 simulated descendants);
• A filtration excluding variants with minor allele frequency < 5%.

This benchmark was replicated 10 times to obtain estimates of the average
runtime and maximum resident set size of GRUPS-rs for each condition. The
benchmarking was performed on a single desktop computer equipped with
an Intel® Xeon® Gold 5218R-2.10GHz CPU, and an SSD Micron 1300 SATA with
an approximate read/write transfer rate of 525 MB/s.

All scripts and input data used to perform this benchmark are available on
Github (See Availability of Data and Material).

2.3.3 Estimation of classi�cation performance

In order to evaluate its classification performance, we also applied GRUPS-rs
on our entire simulated dataset of 1023 pileup files and evaluated its ability to
estimate kinship at different values of average pairwise SNP overlap — using
the same parameters as our runtime benchmark. As our template pedigree
contained a total of 55 comparisons and five distinct degrees of relationship
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(1 Twin, 12 First-degree, 8 Second-degree, 3 Third degree, 31 Unrelated), a
total of 56265 predictions were assessed during this benchmark. From these
predictions, we assessed the per-class estimates of sensitivity, specificity and
accuracy for these five distinct degrees of relatedness (Self, First, Second, Third,
and Unrelated), using the "caret" R package, version 6.0-94 [46]. Likewise, we
obtained general accuracy estimates of GRUPS-rs at these ten different values
of pairwise overlapping SNPs.

2.4 Applying GRUPS-rs on the Hazleton North dataset

To assess its ability to detect fine-grain levels of kinship beyond the second
degree, we applied GRUPS-rs on a set of 36 Early-Neolithic samples from
the Hazleton-North (Gloucestershire, UK) Cotswold-Severn long cairn. This
archaeological site was initially described in [47] ; its construction and
occupation were estimated to fall within the range 3695-3620 BC [48].

These samples were later reevaluated using paleogenomic analyses in [1], and
are now known to form an intricate family tree encompassing five generations,
and involving kinship ties up to the 8th degree (Figure 4). This dataset also
carries the benefit of containing individual sequencing depths spanning three
orders of magnitude ([0.018X–9.75X] ; median: 2.9X), allowing us to investigate
a wide range in the number of pairwise SNP overlaps and to assess our
method’s ability to work at lower coverages.

NC1mNC2f
NC3f

U1m

SE1m U4f

SP2m

U2mU2m

NE1m NE2mNC4m U5f

SC5mNC6m NC7f SP3m NC8m

U6f U7f SC2m

U11m

NC9m

SP1m U8fU9m

SC6m SC7m
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U3fU3f
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U16mU15f

SP4m
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SC10f

HN1f

Non lineage
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Coverage

Figure 4 Curated pedigree reconstruction of the Hazleton North samples (adapted
from [1]). Squares and circles respectively correspond to male and female individuals.
White dashed shapes correspond to unsampled, inferred individuals. The fill color of
every box is in proportion to the individual’s coverage on the autosomal positions of
the AADR "1240K" SNP dataset. Purple, blue and orange dashed lines represent
indirect observations of probable second, third, and fourth-degree relationships,
respectively.

We therefore chose to investigate kinship ties up to the fifth degree of
relatedness on this dataset using GRUPS-rs, in an attempt to compare our
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results to both the curated pedigree and the main method applied in the
original publication — also known as the "Kennett" method [10]. Briefly, this
method belongs to a class of approaches commonly used in paleogenomics, as
it relies on computing normalized PMR estimates from a collection of samples,
using random pseudo-haploidized genotype calls. Thus, the method is highly
similar to the widely used READ method [11], both in terms of methodology
and general performance [15].

All results, scripts and jupyter notebooks generated during this analysis are
available online on Github (See Availability of Data and Material).

2.4.1 Hazleton North data processing

Binary alignment files from the Hazleton-North cairn samples were first
downloaded from the European Nucleotide Archive (accession number:
PRJEB46958). All alignment files were then summarized within a single pileup
file using samtools mpileup v1.15.1, with GRCh37 as a reference genome, and
targeting autosomal positions from the Allen Ancient DNA Resource (AADR)
"1240K" dataset, version 52.2 [45] (-RB -q25 -Q25).

We then applied GRUPS-rs on all samples using the following parameters:

• 1000 pedigree replicates;
• using a template family tree of 9 individuals (4 founders, 5 descendants),

and investigating 7 different kinship ties (Self, First degree, Second degree,
Third degree, Fourth degree, Fifth degree, Unrelated);

• setting the simulated contamination and sequencing error rate to 0;
• using individuals from the 1000g-phase3 EUR super-population as a source

population for the founders (FSA-encoded).

2.4.2 Curating the raw kinship estimates of GRUPS-rs

Following an approach similar to [1], we annotated degrees of relatedness while
considering all SVM probabilities that were greater or equal to 5%. For example,
a pair whose PSVM(pair = 2nddegree) and PSVM(pair = 3rddegree) probabilities
were above 5% would be annotated as "Second or Third degree"). Furthermore,
we annotated any pair of individuals whose PSVM(pair = Unrelated) was found
greater than 5% as "Unrelated" (Table S1).

From there on, we define any of these "lenient" predictions as a discrepant
result whenever its range does not contain the degree of relatedness identified
within the family tree reconstructed in [1]. For example, a prediction such as

https://www.ebi.ac.uk/ena/browser/view/PRJEB46958
https://www.ebi.ac.uk/ena/browser/view/PRJEB46958
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"Third degree or more" would be considered discrepant if the actual kinship tie
is "Second degree", but would be considered consistent if the actual relationship
is "Fourth degree". Here, we consider the reconstructed pedigree of [1]
as a benchmark value in view of the fact that it has been cross-verified
through multiple methods and data sources, including — but not limited
to — mitochondrial/Y-chromosome haplogroup information, X-chromosome
sharing patterns, and the use of NgsRelate-v2 [8]. Furthermore, the dense and
intricate nature of this family tree also made it possible to discard most of the
possible topologies, through a process of triangulation.

An estimate of the relatedness coefficient r was obtained for each pair i, j

through a simple normalization step, in which we divide P̂WD
obs
i,j by the

average of the simulated distribution of Unrelated individuals P̂WD
sim
i,j,Unrelated

(Equation 5).

ri,j = 2

1−
P̂WD

obs
i,j

Avg(P̂WD
sim
i,j,Unrelated)

 (5)

2.4.3 Comparing the performance of GRUPS-rs against the Kennett method

Finally, we compared our annotated results with those originally obtained
through the Kennett method, which are available in the Table S4 and
Table S5 of [1].

To compare and evaluate their respective classification performances, we first
generated confusion matrices for both methods, and obtained estimates of
the by-class sensitivity and specificity, using the "caret" R package, version 6.0-
94 [46]. A general estimation of the similarity of each method’s classification
performance was obtained by applying a Newcombe-Wilson two-sample test
for equality on the proportion of true positives found within the matrix [49, 50].

Correlation between the estimates of relatedness coefficient r for each
method was estimated by applying a Mantel test [51] on two kinship matrices,
containing the Euclidian distances between said r-coefficients, using the
R-package "vegan", version 2.6-4 [52] ("Pearson" correlation method, with
5000 permutations). Gross differences between the mean distribution of
r-coefficients were tested using two- and one-sided Wilcoxon’s signed-rank
test [53].
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2.5 Applying GRUPS-rs on the Koszyce dataset

To exemplify the proficiency of GRUPS in examining intricate genealogies,
we applied GRUPS-rs on a subset of the Koszyce dataset from [54]. Here, 7
individuals from a mass grave attributed to the Globular Amphora culture
— hereupon named K1, K2, K5, K10, K11, K14, and K15 — were previously
identified as part of a puzzling family tree. More precisely, while individuals K5,
K10, K11, and K15 displayed patent signs of being siblings — as they all shared
an apparent first-degree relationship, as well as the same mitochondrial and
Y-chromosome haplogroup — individuals K11 and K10 merely shared a second-
degree relationship with K14, the presumed mother of K5 and K15. Thus, the
authors of [54] concluded that (i) K10/K11 were half-siblings of K5/K15 and (ii)
the unsampled mother of K11 and K10 (hereafter named U0.2f) might have
been biologically related to K14. However, while these initial findings were
later confirmed in at least two independant studies [13, 15] the exact degree
of relationship separating these individuals remains elusive to this day.

To elucidate the cryptic relationship between K14 and U0.2F, we applied GRUPS-
rs using a set of four template pedigrees, each describing a different hypothesis
regarding their degree of relatedness (Figure S1). These four scenarios
respectively encapsulate the hypotheses that K14 and U0.2f either share (i)
no genetic relatedness ("outbred" scenario), (ii) a first-degree relationship
("siblings" scenario), (iii) a second-degree relationship ("half-siblings" scenario),
and (iv) a third-degree relationship ("cousins" scenario). Here, our intent is to
delineate the most likely relatedness between K14 and U0.2f, given the output
SVM probabilities of GRUPS-rs for each scenario, by leveraging the fact that the
correct genetic link of K14 and U0.2f is expected to be reflected throughout
their descents, and generate intermediate relatedness coefficients between
these individuals (Table S2). Specifically, 6 out of the 21 assessed pairwise
relationships, K[5,15]-K[10-11] and K2-K[5,15], are of particular interest, as
these relationships are both expected to shift according to that of K14-U0.2f,
and showcase intermediate relatedness coefficients (e.g., the pair K5-K11 is
expected to be classified as three-quarter siblings (2nd + 3rddegree) only if K14-
U0.2f share a first-degree relationship).

2.5.1 Processing the Koszyce dataset

Binary alignment files for the seven Koszyce individuals K[1,2,5,10,11,14,15]
were downloaded from the European Nucleotide Archive (Accession number:
PRJEB28451). As these samples had not been subjected to UDG-treatment, we

https://www.ebi.ac.uk/ena/browser/view/PRJEB28451
https://www.ebi.ac.uk/ena/browser/view/PRJEB28451
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first verified the prevalence of post-mortem damage within this dataset using
mapDamage version 2.2.1 [55]. Considering the non-negligible estimated
rates of nucleotide misincorporation [54], we chose to apply soft clipping
on each alignment file using the trimBam module of the software bamUtil,
version 1.0.15 [56]. To ensure thoroughness, we carried out an adaptive scheme,
wherein the trimming length along each end of the fragment was determined
using the previously obtained damage estimates of mapDamage, and enforced
until the misincorporation frequency reached 0.01. The resulting trimmed
alignment files were then condensed into a single pileup file using samtools
mpileup v1.15.1, the GRCh37 reference genome, and the autosomal positions
from the AADR "1240K" dataset, version 52.2 [45] to target specific positions
(-RB -q25 -Q25).

We then ran a separate analysis of GRUPS-rs on the final pileup file for every
template pedigree, using the following set parameters:

• 1000 pedigree replicates;
• setting the sequencing error rate to 0;
• using individuals from the 1000g-phase3 EUR super-population both as

a source population for the founders, and as a source of contamination
(FSA-encoded);

• while providing the contamination rate estimates found in [54] as input
parameters during simulations.

Finally, we elected a most likely scenario by comparing the overall congruence
between the predictions of GRUPS-rs, and the theoretical expectations under
these four scenarios. To further interrogate these results, we calculated for
each scenario the average maximum SVM probability across all predictions,
and used this metric as a global estimate of confidence.

3. Results and Discussion

3.1 Additional features and API design improvements

GRUPS-rs offers several improvements and additional features compared to
GRUPS, including:

• A substantial increase in runtime performance of the main algorithm (See
section 3.2).

• The ability to process and examine multiple pairwise comparisons in a
single run.
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• The ability to leverage reference datasets other than the 1000g-phase3
project variant callset as an input reference. (Any dataset containing
phased diploid genotypes may be used as a reference.)

• A "user-friendly" command line interface.
• Significant improvements within the main algorithm (as described in

sections 2.1.3 and 2.2).

Finally, the main software is bundled with the grups.plots R library: a Shiny
dashboard graphical user interface designed to facilitate the visualization,
interaction and analysis of the results generated by GRUPS-rs.

Our main software, GRUPS-rs, and its companion library grups.plots, are
available on Github (See Availability of Data and Material).

3.2 Runtime and memory-usage benchmark

Our benchmark reveals that the average runtime of GRUPS-rs scales linearly
with both the number of comparisons and the average number of pairwise
overlapping covered SNP positions (Figure 5A; Table S3), reaching an average
runtime of around 214 minutes when computing 55 comparisons with a pileup
targeting around 1.15M SNPs. This behaviour towards a linear scaling also
emerges when looking at the maximum recorded resident set size during
execution (Figure 5B), which reached a maximum of 4.9GiB at these upper
boundary conditions.

Remarkably, our benchmark of GRUPS-rs provided us with an average runtime
of merely 235 seconds when comparing a single pair of individuals at the
maximum overlap of 1.15M SNPs, and using 500 replicates (Figure 5).
This result corresponds to a gross 14000:1 improvement in runtime, when
compared to the previous implementation of GRUPS, which in contrast takes an
average of 6800 seconds to compute a single pedigree replicate with the same
parameters. Evidently, this improvement of performance is mainly due to the
fact that GRUPS-rs is now written in a compiled language, but also due in part
to our implementation of FSA-encoded reference datasets, and improvement
on the pedigree simulations algorithm, which minimizes memory allocations
and I/O throughput.
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Figure 5 Runtime and memory benchmark results of GRUPS-rs against the number of
pairwise sample comparisons (range: [1− 55]) and the average number of
overlapping SNPs (range: [2246− 1, 150, 354]) (n = 10 benchmark replicates per
condition). A: 3D-surface plot of the average recorded runtime (in minutes) against
the number of comparisons and SNP overlap. B: 3D-surface plot of the maximum
recorded resident set size (in MiB) against the number of comparisons and SNP
overlap. Note that peak resident set size values may suffer from inaccuracies at lower
program runtime. Shades of colors displayed on each surface plot are redundant with
the values of the z-axis. Raw values are available in Table S3.

These results must, however, be considered in light of the fact that our
benchmark does not take into account the average local sequencing depth
of the input individuals, which may in practice differ from our set value of
2.13X, either when working with higher-coverage samples and/or SNP capture
data. Applying GRUPS-rs across multiple threads however remains a perfectly
parallelizable task that can be trivially implemented by the user, should he/she
wish to further decrease the overall runtime when analyzing a batch of samples.
In general, this benchmark enables us to confirm that the time and size
complexity of GRUPS-rs amounts to at least O(π · G), where π is the number
of comparisons and G, the average SNP overlap for each pair. Applying a
simple linear regression model on our raw benchmark results also provides a
crude estimation of the expected runtime and memory consumption, which
highlights that the number of comparisons π is by far the most impactful
factor:

runtime(seconds) ∝ 0 + π · g = 2.2 · 10−3g− 9.8π + 1.2 · 10−3g · π

memory(KiB) ∝ π · g = 4.3 · 102+7.0 · 10−4g + 13π + 4.0 · 10−4g · π
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3.3 Assessing the accuracy of GRUPS-rs using our simulated dataset

Our benchmark of GRUPS-rs using our simulated dataset showed that this
method can maintain a global accuracy well above 92%, down to an average
pairwise overlap of 2700 SNPs. Additionally, we note that the accuracy
still remains above 85% when applied to merely 1300 SNPs, while still
taking into account third-degree relationships (Figure S2). Here, predictions
involving first- and second-degree relationships remain above the 95% accuracy
threshold until around 1300 and 2700 SNPs respectively. As expected, third-
degree classifications displayed the poorest performance out of all estimated
classes, reaching accuracies below 95% once the number of overlapping SNPs
was below a threshold found in between 11000 and 5400. Though quite
rudimentary in nature, and portraying close to ideal conditions in the context
of ancient DNA, our benchmark still confirms that GRUPS-rs is a method that
is well applicable to very low coverage datasets, and retains an accuracy that
is at least equal, if not greater than its predecessor, GRUPS.

3.4 Applying GRUPS-rs on the Early Neolithic Hazleton North dataset

GRUPS-rs generally produced kinship estimates that are highly congruent
with the results showcased in the initial publication, with only 43 discrepant
predictions out of a total of 595 comparisons (7.22%) (Figure 6A), against 38
out of 595 (6.4%) for the Kennett method (Figure 6B). As expected, most of
these discrepancies involve kinship ties lying beyond the fourth degree of
relationship, with respectively 90.6% and 92.1% of these discrepant results
involving 5thdegree ties or beyond, for GRUPS-rs and the Kennett method.
It should be noted, however, that this slight increase in the amount of
misclassification can in part be explained by an overconfidence in the estimates
provided by GRUPS-rs, as evidenced by the existence of three 3rd to 4th degree,
and four 4th to 5th degree misclassifications, suggesting a potential bias towards
overestimating kinship when investigating more distant ties. Hence, while it’s
worth noting that GRUPS-rs was the sole method able to confidently assign
three pairs of individuals as 4th degree, it nevertheless displays a limited positive
predictive value when examining such distantly related pairs, despite our
implementation of an internal SVM classifier and, counter-intuitively, regardless
of the overlap rate (Figure S3). As per other methods, caution should therefore
be exercised when assessing ties beyond the third degree with GRUPS-rs. The
use and cross-analysis of several kinship estimation methods thus remain the
most appropriate approach whenever feasible, as previously stated in [15].
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Figure 6 Application of GRUPS-rs on the Hazleton North dataset, and comparison
with the results showcased within the original publication [1]. A, B: Kinship matrices
of all Hazleton North samples obtained with either GRUPS-rs (A) or the Kennett
method (B). Each cell of the matrix corresponds to a pairwise comparison. Colors
represent the estimated relationship for the given pair. Discrepancies between the
relationship estimate and the reconstructed pedigree (Figure 4) are highlighted as
colored numbers, where the numeric value corresponds to the exact degree of
relatedness (U: "Unrelated"). Red and white colors respectively correspond to
method-specific, or shared discrepancies between the two methods.
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On the contrary, GRUPS-rs displayed a lesser degree of confidence compared to
the Kennett method when investigating 1st degree relationship, as evidenced
by the presence of three 1st or 2nddegree classification, all of which involved
individual SE2m, whose coverage amounts to approximately 0.035X (Figure 4
and Figure 6). These three comparisons were on the other hand confidently
assigned as 1st degree by the Kennett method. Investigating the classification
performance metrics of both methods in more detail nonetheless revealed a
general accuracy of 0.80[0.77− 0.94] for GRUPS-rs, and 0.79[0.75− 0.82] for the
Kennett method. Per-class precision, recall, and F1-scores of both methods
equally display a high consistency, with slightly higher F1-scores in favor of
GRUPS-rs when investigating 2nd−, 3rd−, 4th − degree and Unrelated pairs
(Figure S4). In any case, Newcombe-Wilson’s two-sample test for equality
on the proportion of true-positives found within each confusion matrices failed
to suggest any significant difference, neither when applied to the lenient
confusion matrices found in Figure 6 (χ2 = 0.212, p− value = 0.6452), nor to the
"hard" confusion matrices found in Figure S4 (χ2 : 0.749, p− value = 0.3867).

Likewise, applying a Mantel test between both methods’ r-coefficient
dissimilarity matrices revealed that GRUPS-rs and the Kennett method display
a highly consistent estimation of the r-coefficient (r − statistic : 0.9966,
significance: 1.99 · 10−4). Applying a two-sided Wilcoxon signed ranked test
however reveals a significant difference in the mean r-coefficient distribution
of each method (p− value < 2.2e− 16), with a tendency for higher r-coefficient
estimates stemming from GRUPS-rs (mean bias error: 0.022) (Figure S5).

Taken together, these results suggest an approximately equal consistency
between GRUPS-rs and the Kennett method. This should further be regarded
in light of the fact that GRUPS-rs does not require the use of a cohort of
individuals to normalize its results, and remains relevant even when applied to
a single pair of individuals, as opposed to Kennett’s and several other currently
available methods [11, 12]. Moreover, GRUPS-rs is largely capable of detecting
kinship ties beyond the second degree, unlike several alternative methods
leveraging random pseudo-haploid genotype calls [11, 13].

3.5 Unraveling unsolved kinship ties within the Koszyce dataset

Our reassessment of the Koszyce dataset using GRUPS-rs, once applied with a
template pedigree assuming a first-degree relationship between K14 and U0.2F,
provided excellent congruence with theoretical expectations (Figure 7). Of
particular note, our method fittingly classified pairs (i) K[5,15]-K[10,11] as three-
quarter siblings (r=0.375), (ii) K2-K[5,15] as three-quarter avuncular (r=0.1825),
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and (iii) K2-K14 as half-avuncular (r=0.125 ; Figure 7C, Figure S6). Furthermore,
we emphasize that the "siblings" template pedigree is the only scenario — out
of the four tested — that did not display any discrepant relationships (Table
S4). These results confirm the hypothesis that K14 and U0.2F were genetically
related, and strongly suggest that they were in fact tied to the first degree.
While GRUPS-rs is unable to distinguish between ties with a same degree of
relatedness, these findings do enable us to narrow down the relationship
of K14-U0.2f to merely three possible solutions, where U0.2f was either the
mother, sibling or daughter of K14.

Finally, we emphasize, through this final example, that GRUPS-rs’ ability to
leverage user-defined template family trees makes this method a powerful and
flexible instrument to test and/or confront complex scenarios of kinship ties or
unions involving inbreeding (e.g., double first-cousins, three-quarter siblings,
sesqui-cousins, levirate unions, etc.). To our knowledge, this feature is unique
amongst all currently available ancient DNA kinship estimation softwares.

3.6 Current limitations, mitigations and future developments

3.6.1 Impact of ascertainment bias

It must be pointed out that the benchmark and case-study results presented
here make extensive use of the EUR population and the 1240K SNP panel, a
dataset which is still widely used during paleogenomic analyses to this day,
but is now known to be a potential source of ascertainment bias, particularly
when applied against ancient non-Eurasian populations [57, 58, 59]. Hence,
we caution that the raw accuracy values showcased in section 3.3 are expected
to vary according to the source population at hand, and the targeted panel
of SNPs, as previously noted in [9]. In practice, we advise that users either
pay thoughtful consideration when selecting a publicly available target SNP
panel or, whenever possible, make use of a custom panel, specifically tailored
for their sample libraries when using GRUPS-rs. The --maf parameter may
moreover prove useful to exclude fixed allele positions within the reference
population during pedigree simulations.
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Figure 7 GRUPS-rs kinship analysis results of the Koszyce dataset, under the
hypothesis that K14 and U0.2f share a first-degree relationship. A: Kinship matrix of
all Koszyce individuals. Relationship labels such as "2nd+3rd-degree" indicate
intermediate relationships (e.g., "2nd+3rd-degree" indicates that the pair shares both
a second-degree and a third-degree relationship). B: Theoretical expectations, under
the hypothesis that K14 and U0.2f share a first-degree relationship. Grey and white
colored boxes represent sampled and unsampled individuals, respectively. Colored
arrows indicate the expected relatedness coefficient for a given pair of individuals. C:
Selected sample of GRUPs-rs’ simulation results (results for the complete dataset can
be found in Figure S6). Colored violin plots represent the distributions of P̂WD

sim
i,j,k for

the corresponding pair i, j. Solid and dashed black lines represent the average
P̂WD

obs
i,j and 95% confidence interval, respectively.
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3.6.2 Impact of reference bias

While GRUPS and GRUPS-rs do not explicitly rely on the use of input population
allele frequencies, these methods still require phased reference genomes to
estimate kinship. Although the field of paleogenomics has achieved significant
methodological advancements in the imputation and phasing of ancient
genomes in recent years [60, 61], the current quantity of readily phaseable
ancient genomes remains restricted, and the practicalities of applying GRUPS-
rs using ancient genomic data remains to be evaluated. Thus, while the use of
ancient reference datasets may become a feasible prospect in a near future,
applying GRUPS-rs in the immediate term will most likely require using modern
reference genomes such as the 1000-genomes dataset [22], which may in turn
become a source of bias when investigating individuals originating from a
distant past, where the average heterozygosity can be expected to be lower
than that of modern populations.

This bias can however be mitigated within GRUPS-rs, through the use of
the --af-downsampling-rate parameter, which provides with a simple way
to randomly simulate allele fixation within the reference panel at a fixed
probability. In this same regard, our companion library, grups.plots, provides
with utilities to obtain crude estimates of the divergence in heterozygosity
between the reference panel and the samples being studied. Finding a
reasonable value for this parameter may for example be obtained by calculating
the average normalized ratios between either

1. the P̂WD
obs
i,j of putatively unrelated pairs of individuals and their

corresponding P̂WD
sim
i,j,Unrelated — as described in [9]

2. the P̂WD
obs
i,j of all available comparisons, and their closest corresponding

P̂WD
sim
i,j,k

3. the P̂WD
obs
i,j of all self-comparisons, and their corresponding P̂WD

sim
i,j,Sel f

(as the expected P̂WD
sim
i,j,Sel f is expected to equate to 1

2 P̂WD
sim
i,j,Unrelated, in

the case of an outbred population).

3.6.3 Impact of recent inbreeding

As with many other kinship estimation methods, GRUPS-rs may be sensitive
to the presence of long runs of Homozygosity (ROH) resulting from recent
inbreeding. Thus, we hereby alert to the fact that the presence of inbred
individuals may generate intermediate values of relatedness coefficients, which
may in turn produce false positive results and/or be mistakenly interpreted
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as evidence for the presence of complex ties, such as those displayed in the
Koszyce dataset. However, while GRUPS-rs currently does not provide with a
correction scheme for inbreeding, the presence of such biases may be easily
detected by using its --self-comparison feature, since any fluctuation from
the expected background genetic diversity of the sample libraries — be it from
recent inbreeding, admixture, or a low effective population size, etc. — is quickly
betrayed by an obvious discrepancy between the observed P̂WD

obs
i,i , and the

corresponding theoretical distribution of P̂WD
sim
i,i,Sel f . Hence, we recommend

users to make extensive use of the --self-comparison flag when using
GRUPS-rs and, when applicable, apply dedicated methods such as hapROH
[62] to evaluate the presence of ROH within their sample libraries.

3.6.4 Impact of Post-mortem damage

While currently showcasing a simple scheme to account for sequencing
error rates during simulations, attention must be brought to the fact
that GRUPS-rs currently does not correct for the presence of post-mortem
damages, apart from providing with a simple flag to filter out transitions
(--exclude-transitions). As with many other ancient DNA softwares and
methods, we thus highly recommend that users take the required preliminary
steps to assess and eventually trim their data prior to using GRUPS-rs, though
it should be noted that an elevated presence of deamination should in no way
be expected to increase the amount of false positive results from this method.

4. Conclusions

These results demonstrate that GRUPS-rs is a fully-fledged, high-performance
kinship estimation software well capable of estimating genetic ties from low-
coverage ancient DNA, up to the third degree of relatedness.

While GRUPS may not have been used as widely as it could have, given its
runtime requirements, the updated version of GRUPS-rs effectively addresses
this initial limitation. As evidenced by the 14000:1 runtime performance
gain displayed in GRUPS-rs, we also underline that the construction of
finite state automata from VCF files may prove to be a relevant strategy to
maximize the memory efficiency and I/O throughput of any program requiring
specialized and/or repeated queries within massive sequence genotype
variation databases.

Ultimately, we advance that its ability to operate on isolated pairs of individuals,
while jointly taking into account the rate of modern human contamination,
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sequencing error rates, and the possibility of testing precisely-defined
hypotheses of complex inbreeding scenarios make GRUPS-rs a useful, flexible,
and constructive addition to the currently available pool of ancient DNA kinship
estimation methods.

GRUPS-rs and its companion library grups.plots are available on Github,
(https://github.com/MaelLefeuvre/grups-rs), will feature long-term code
maintenance, and are open to open-source contributions and additional
feature requests.
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