
HAL Id: hal-04709749
https://hal.science/hal-04709749v1

Submitted on 25 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning Representations of Satellite Images From
Metadata Supervision

Jules Bourcier, Gohar Dashyan, Karteek Alahari, Jocelyn Chanussot

To cite this version:
Jules Bourcier, Gohar Dashyan, Karteek Alahari, Jocelyn Chanussot. Learning Representations of
Satellite Images From Metadata Supervision. ECCV 2024 - 18th European Conference on Computer
Vision, Sep 2024, Milano, Italy. pp.1-30. �hal-04709749�

https://hal.science/hal-04709749v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Learning Representations of Satellite Images
From Metadata Supervision

Jules Bourcier1,2 , Gohar Dashyan1, Karteek Alahari2 , and Jocelyn
Chanussot2

1 Preligens, Paris, France
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Abstract. Self-supervised learning is increasingly applied to Earth ob-
servation problems that leverage satellite and other remotely sensed
data. Within satellite imagery, metadata such as time and location often
hold significant semantic information that improves scene understand-
ing. In this paper, we introduce Satellite Metadata-Image Pretraining
(SatMIP), a new approach for harnessing metadata in the pretraining
phase through a flexible and unified multimodal learning objective. Sat-
MIP represents metadata as textual captions and aligns images with
metadata in a shared embedding space by solving a metadata-image con-
trastive task. Our model learns a non-trivial image representation that
can effectively handle recognition tasks. We further enhance this model
by combining image self-supervision and metadata supervision, intro-
ducing SatMIPS. As a result, SatMIPS improves over its image-image
pretraining baseline, SimCLR, and accelerates convergence. Comparison
against four recent contrastive and masked autoencoding-based methods
for remote sensing also highlight the efficacy of our approach. Further-
more, our framework enables multimodal classification with metadata to
improve the performance of visual features, and yields more robust hier-
archical pretraining. Code and pretrained models will be made available
at: https://github.com/preligens-lab/satmip.

Keywords: Self-supervised and multimodal learning · Remote sensing

1 Introduction

In recent years, self-supervised learning (SSL) has become a staple pretraining
paradigm in computer vision, and has received much attention in the domain
of remote sensing and Earth observation (EO) [58]. This marked interest can
be attributed to two broad reasons. First, for a wide variety of high-impact EO
tasks, ranging from crop-yield prediction to urban planning [11,14,19,31,47,50,
54], labels are scarce and difficult to obtain, while unlabeled satellite imagery is
abundantly available. This makes SSL eminently practical. Second, the diversity
of remote sensors yields unique challenges of specialization, context awareness,
and multimodal fusion, with rich spatial, temporal, and spectral contexts. This
calls for the development of tailored representation learning methods, in order
to address limitations of existing generic vision models [46,53].
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Fig. 1: Examples of satellite images where metadata can help recognizing objects.
Ground sample distance (GSD) (a), which determines the area occupied by pixels,
provides information on size and scale (e.g., airport/airport terminal/airplane); time
(b) and location (c) can help understand the functional nature of man-made structures
having different appearance depending on time (e.g., shopping mall’s parking lot are
fuller on the weekend, crop fields undergo cycles) or place (e.g ., some sports facilities
correlated with regions on Earth), respectively.

EO satellites usually generate a rich set of metadata associated with the
images they capture. They provide information about the size, scale, time of
acquisition, as well as numerous other image properties. Some of these meta-
data, such as the ground sampling distance (GSD), timestamp, and geographic
location, can be highly explanatory of semantic content present in images, as
illustrated in Fig. 1.

Recent works have proposed SSL objectives using satellite metadata, such
as predicting geolocation from images as a pretext task [2], using spatial neigh-
bors or spatially-aligned images over time as positive views in contrastive learn-
ing [2, 26, 36, 42], or extending Vision Transformers (ViTs) [16] with positional
encodings that integrate information from timestamps and spectral groups [12]
or the GSD [44]. These methods have successfully improved contrastive/siamese
learning algorithms [6, 7, 22] or masked autoencoders (MAEs) [4, 21]. However,
these methods utilize different metadata fields via specialized model architec-
tures or tasks. To our knowledge, there has not been a unified and flexible ap-
proach for incorporating heterogeneous metadata into a pretraining algorithm.
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In this work, we propose a simple and effective model for learning visual rep-
resentations from satellite metadata supervision. Our model, Satellite Metadata-
Image Pretraining (SatMIP), encodes pairs of images and metadata as separate
modalities and aligns them in a deep embedding space via a contrastive task,
inspired by language-image pretraining [27, 43]. Through this task, we aim to
learn a visual encoder that embeds metadata information, and their latent se-
mantic characteristics, into image features. It requires metadata only during the
pretraining phase, and not necessarily during transfer to downstream tasks. We
pretrain ViTs backbones with SatMIP on the Functional Map of the World
(fMoW) dataset [11], using GSD, timestamp, and geolocation, among other
metadata fields. Through extensive experiments on various downstream clas-
sification datasets, we observe that the visual encoders pretrained with SatMIP
generate non-trivial representations that generalize to downstream recognition
tasks, showing that learning a joint embedding between images and metadata
makes a meaningful pretext task.

To go one step further, we combine SatMIP with the image SSL method Sim-
CLR [7], introducing SatMIPS. By co-solving an image-image and a metadata-
image contrastive task with an efficient “coupled” architecture, SatMIPS ben-
efits from both sources of supervision, and improves over it’s SimCLR base-
line, yielding better representations while converging faster. Moreover, on several
downstream tasks, it outperforms multiple existing MAE and contrastive-based
pretraining methods involving metadata for remote sensing. Furthermore, on
downstream tasks with metadata, SatMIP allows deploying metadata features
in tandem with visual features, which can further improves the classification per-
formance. In addition, we also show that metadata supervision yields stronger
results with hierarchical pretraining [45].

– We propose SatMIP, a novel self-supervised pretraining task and model for
remote sensing inspired by CLIP [43], which aligns images with their meta-
data in a joint embedding space.

– We further propose SatMIPS, an evolution of the SLIP [38] architecture,
which combines image-image and metadata-image contrastive learning.

– We conduct extensive experiments involving various downstream classifica-
tion datasets, demonstrating the effectiveness and efficiency of our approach.

2 Related Work

Using geospatial metadata for visual representation learning. Satellite
images systematically convey metadata that can be leveraged for free within
SSL tasks similarly to pseudo-labels. One strategy involves employing metadata
estimation as a pretext task: [61] proposes self-supervised time and location esti-
mation tasks for learning geotemporal image features, while [2] solves a location
classification as a subsidiary task to contrastive SSL [7,22]. Contrary to predict-
ing metadata information directly, our approach aligns image and metadata into
a common embedding space.
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Another avenue is the implicit incorporation of metadata information into ex-
isting pretext tasks, by using it to enrich the set of positive or negative instances
and thereby learn the invariances driven by these augmentations. Building on
this idea, some works use neighboring images in space as positives [26, 28, 42],
while others use spatially-aligned images over time as positives [2, 35, 36]. An-
other line of recent works have extended masked autoencoders (MAE) [21] for
remote sensing, and incorporated metadata information into positional encod-
ings in ViTs. [12] proposes a spectral and temporal reconstruction task, and
embeds timestamps and spectral bands into the positional encodings; [44] solves
a super-resolution task and embeds GSD into positional encodings to incorporate
scale information; [25] further extends this idea to multiple spectral bands, GSDs
and sensors. In contrast to our model that is agnostic to network architectures
or vision SSL frameworks, these approaches bake into ViTs and are specifically
tailored to MAEs.

Embedding metadata. Recent studies aim to directly encode metadata along
with images and perform a form of metadata-image pretraining. Close to our
work, in [29, 34, 56], location encoders are learned through a contrastive image-
location pretraining task, aiming to be deployed on downstream tasks involving
location. In contrast to our approach, these works employ a two-step approach
of training an image encoder, then a location encoder on frozen image features.
Our objective being to train a visual encoder intended for downstream tasks
without necessarily relying on metadata, we adopt the opposite approach by
training a visual encoder with metadata supervision. Furthermore, instead of
relying on location-specific encoder architectures as them, we employ a generic
Transformer [55] that can be fed heterogeneous types of metadata beyond loca-
tion.

Closer to our approach, [64] uses EXIF metadata and images in contrastive
pretraining for learning to extract low-level camera properties of images for foren-
sics tasks. Our approach differs in that we propose metadata-image pretraining
for high-level representation learning. Furthermore, we enhance our metadata-
image objective by concurrently solving an image-image contrastive task. Other
work such as [20, 24] used medical images and biodata records as tabular fea-
tures in contrastive learning for increasing performances on downstream visual
diagnostic tasks. Such metadata is the result of a supervised and very expensive
collection process that does not scale to large datasets.

Language vs. metadata supervision. Language-image pretraining (LIP) has
emerged as a significant advance that bridges the gap between natural language
and image representation learning. The works of CLIP [43] and ALIGN [27]
showed that the straightforward pretext task of predicting which caption corre-
sponds to a given image is an effective way to learn image representations on
large-scale noisy (image, text) pairs. SLIP [38] extends CLIP via a multi-task
learning framework combining it with image-image contrastive pretraining [7],
showing that both objectives are synergistic. LIP has also recently garnered at-
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Fig. 2: (a) Satellite Metadata-Image Pretraining (SatMIP) learns a joint em-
bedding between images and associated metadata. Batches of inputs are processed by a
dual encoder and projection head, optimized through a contrastive loss, as in CLIP [43].
After pretraining, only the image encoder can be transferred to downstream tasks, or
both can be used to perform bimodal (image, metadata) recognition. (b) SatMIP
with Self-Supervision (SatMIPS) combines metadata with SimCLR-style [7] self-
supervision: it learns both a joint embedding between augmented views of an image
as well as an image and its metadata. The image encoder is shared between branches
unlike the projection heads, and one image view is coupled between the two objectives
for efficiency.

tention within the field of remote sensing [32,66]. However, while image captions
are available in huge web-crawled multimedia datasets such as YFCC100M [51]
or LAION-5B [48], such human-provided captions are scarce for remotely sensed
images. On the other hand, metadata are automatically produced by sensors and
are therefore widely available, which means that the number of image-metadata
pairs can follow the ever-growing number of satellite images. Seeking to har-
ness metadata for complementing vision, our SatMIP (respectively SatMIPS)
model is analogous to CLIP (respectively SLIP), but with metadata as an input
modality instead of language.

3 Method

We aim to learn a visual representation of remotely sensed images that embeds
the semantic information contained within metadata that is obtained directly
from the imaging sensor. To this end, we introduce SatMIP, a pretraining strat-
egy that learns a joint embedding between an image and its metadata. Then, we
introduce SatMIPS, which leverages both image self-supervision and metadata
supervision. The architectures of SatMIP and SatMIPS are presented in Fig. 2.
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3.1 SatMIP: Contrastive pretraining of metadata and image
embeddings

Contrastive pretext task. We assume that we have access to an unlabeled
dataset as X = {(vi,mi)}Ni=1, where (vi,mi) ∼ p(I,M) are associated images
and metadata pairs, sampled from their respective spaces I, M. The metadata
space M can be composed of a set of numerical variables (e.g ., GSD, location
coordinates, or look angle) and categorical variables (e.g ., sensor name). We
define two neural network encoders, one for images eI : I → Rd and one for
metadata eM : M → Rd. Each encoder eI/M is composed of a backbone fI/M

and a projection head gI/M. Given a sampled batch of K image and metadata
pairs, we compute embeddings of images zIi = eI(vi) and metadata zMi =
eM(mi). Following CLIP [43], we use a contrastive loss by considering matching
images and metadata as positives and non-matching images and metadata across
the batch as negatives. Let us define the generic contrastive loss function [41]:

Lclr(ai, bi) = − log
exp (s(ai, bi)/τ)∑K
j=1 exp (s(ai, bj)/τ)

, (1)

where (ai, bi) are two vectors of equal dimension, s is the cosine similarity and
τ is a parameter than adjusts the dynamic range. We define the loss of SatMIP
as the symmetrized contrastive loss between images and metadata embeddings:

LMI
i (zIi , z

M
i ) =

1

2

(
Lclr(zIi , z

M
i ) + Lclr(zMi , zIi )

)
. (2)

Through this objective, the weights of encoders eI and eM are optimized
simultaneously to embed feature vectors of the matching image and metadata
nearby in a common latent space. The objective can be naturally interpreted as
one of classifying the correct metadata from the image, and correct image from
the metadata. Intuitively, the image encoder will learn implicit neural features
from the metadata, and vice versa. Note that there does not exist a simple
1:1 mapping between images and metadata, because metadata can match many
image variations and vice versa (e.g ., due to the non-deterministic nature of
weather). This prevents the model from solely overfitting the pretext task. In
addition, we apply data augmentation to the images which futher regularizes the
task.

Transfer to downstream tasks. Our primary goal with SatMIP is to learn
a visual representation from the image backbone fI , to be transferred to down-
stream tasks. In this case, the metadata encoder is used only as a proxy for
pretraining and is then discarded. Alternatively, provided that a downstream
task provides a subset of metadata fields used to train the metadata encoder,
we can encode metadata alongside images with the dual backbone (fI , fM) and
fuse their embeddings as input to a supervised model. Several techniques exist
to fuse multimodal embeddings [1, 3]. We use the simplest strategy of concate-
nating both vectors and fitting a parametric classifier on top to learn an optimal
combination of features for a given task.
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3.2 SatMIPS: Combining self- with metadata supervision

We further introduce SatMIPS which combines the previously described SatMIP
with the SSL method SimCLR [7].

SimCLR learns a joint embedding between two augmented views of the same
image with a contrastive loss, which makes it very similar to CLIP. Let the image
encoder be e = g ◦ f : I → Rc. Given a batch of positive views {(vi,v

′
i)}Kk=1,

it computes embeddings zi = e(vi) and z′i = e(v′
i) and employs the following

symmetrized contrastive loss to align the embeddings of matching views:

LSim
i (zi, z

′
i) =

1

2

(
Lclr(zi, z

′
i) + Lclr(z′i, zi)

)
(3)

Multi-task framework. [38] proposed SLIP as a combination of CLIP and
SimCLR through multi-tasking. Following their framework, we express the Sat-
MIPS task as a linear combination of the two SimCLR and SatMIP objectives.
We share the visual backbone f = fI between both models and optimize the
sum of their loss:

LMI+Sim
i (zIi , z

M
i , zi, z

′
i) = LMI

i + λLSim
i (4)

where λ is a hyperparameter that weights the promicence of the SimCLR loss
relative to the SatMIP loss. We find that λ = 1, i.e., equal weighting works well
(we show this in additional ablations in the supplementary material).

Efficient view coupling. The main issue of SLIP is that it increases the num-
ber of images processed from 1 to 3, resulting in approximately 3× more acti-
vations [38] that increase training time and memory footprint significantly. To
alleviate this cost, in SatMIPS, we couple one of the image view vi between
SimCLR and SatMIP. The output of the backbone f on this shared view is di-
rected through the specific projection heads of SimCLR (g) and SatMIP (gI).
This design is driven by our tests which showed that SatMIP works well with
the same strong augmentation policy as SimCLR (cf . Sec. 4.7). Thanks to view
coupling, we can largely reduce the overhead without an impact on downstream
performance (cf . Sec. 4.7).

We have selected SimCLR as the image SSL method in SatMIPS for its
simplicity and conceptual similarity with SatMIP. However, the general design
of SatMIPS is agnostic to this choice, and the metadata-image objective could
be blended with another SSL method.

4 Experiments and results

We evaluate our SatMIP and SatMIPS models by studying the performance of
their learned representations on a set of remote sensing downstream classifica-
tion tasks. We conduct experiments to benchmark the quality of representations
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under k-nearest neighbors (kNN) and linear probing classification, the rate of
convergence of pretraining, and the application of hierarchical pretraining. We
then perform an ablation study of important components of our models.

4.1 Datasets

Pretraining. To pretrain our models we use the training set of the Functional
Map of the World (fMoW) dataset [11], similar to previous work [2, 12, 44]. It
consists of 363k global, very high-resolution images and associated metadata ob-
tained by MAXAR optical satellites. We use the fMoW-RGB product, composed
of the RGB pansharpened images. The metadata is composed of a diverse set of
metadata fields, including, among others, GSD, timestamp, location, location-
derived information such as UTM zone and country, cloud cover, and various
imaging angles; we describe the full metadata considered in the supplementary
material. We exclude any field that is obtained through manual annotation such
as areas of interests and land use categories. Unless otherwise specified, in our
SatMIP experiments, we used a combination of three fields: the GSD, timestamp,
and location, described in Tab. 1 and visualized in the supplementary material.
As we can see, the fields span an extensive range of values. We preprocess each
source image by cropping over the annotated area of interest and resizing to
224×224 pixels, and we transform the GSD and location fields to match the
preprocessed images.

Evaluation. To evaluate the performance of pretraining methods, we use a di-
verse set of 7 remote sensing RGB image classification datasets: (1) The labeled
version of fMoW with 62 classes of functional land use (sharing the same training
data as for pretraining); (2) RESISC45 [10] for land use/land cover classification
of multi-sensor (satellite & aerial) images; (3) Optimal31 [57] for land use/land
cover classification of multi-sensor images; (4) UC Merced [60] for land use clas-
sification of very-high resolution aerial images; (5) FGSC23 [63] for fine-grained
ship classification in high-resolution multi-sensor images; (6) EuroSAT [23] for
land use/land cover classification of Sentinel-2 images; (7) So2Sat [67] for local
climate zone classification of Sentinel-2 images. We report macro-averaged F1
score on fMoW and FGSC23, and top-1 accuracy on the other datasets.

4.2 Setup

Baseline and state-of-the-art. We adopt SimCLR [7] as the natural baseline
to compare SatMIP and SatMIPS to. We also compare to existing SSL models for
remote sensing that are pretrained on fMoW-RGB: Geo, TP, and Geo-TP from
[2], which are originally based on MoCo [8, 22]; SatMAE [12], Scale-MAE [44],
and SatMAE++ [40], which are based on MAE [21]. We reproduce contrastive
methods on top of SimCLR for an even comparison with our models, while
for MAE-based models, we take pretrained weights available on their official
repositories,.
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Table 1: The three fields of metadata we use to train our models, and descriptive
statistics of values in the fMoW training set.

Field Description Min Median Max

Ground sample
distance

Physical distance between pixel
centers, in x and y directions (m)

0.08, 0.06 0.76, 0.60 23.13, 22.35

Timestamp Date and time of acquisition
(UTC)

2002-01-28
07:04:18

2015-08-06
10:08:02

2017-07-12
08:25:25

Location Latitude and longitude of the im-
age centroid (degrees)

-54.9320,
-179.8810

37.9951,
7.0395

71.6118,
179.0439

Implementation details. Visual encoders: Unless otherwise noted, we use
the MoCoV3 [9] version of a ViT-Small with patch size 16, consisting of 21.7M
parameters.

Metadata encoders: To encode metadata, we experimented with two different
types of encoders: (a) a textual encoder, which first converts metadata to text
and then tokenizes it into as a sequence, processed like the language modality in
CLIP [43] (inspired by [64] which applied this approach to EXIF metadata); (b)
a tabular encoder, which natively supports numerical fields. For experiments tar-
geting image-only classification, we use a textual encoder, while we use a tabular
encoder for experiments involving bimodal (visual and metadata) classification.
Both approaches work within our models, but perform differently depending on
the downstream use case: we present a comparative study in the supplementary
material. We use Transformer models [55] composed of 3 layers with 8 atten-
tion heads and a width of 512. For the textual approach, we use a BERT-style
Transformer [15], while for the tabular approach, with use the FT-Transformer
model [17].

Projection heads: In SatMIP, we use a linear layer for the visual and textual
encoders. In SimCLR and SatMIPS, the projection head for the image-image
objective is a 3-layer MLP.

Data augmentation: For all models, the inputs image views are generated
with the augmentation policy of [7], with the addition of vertical flips and
rotations [5, 65]. We do not apply augmentation to the metadata.

Pretraining: We use a global batch size of 1024 for all models and train with
the AdamW [33] optimizer for 200 epochs, unless otherwise noted. All other
hyperparameters of SimCLR and SatMIP (S) are provided in the supplementary
material.

Evaluation schemes. The keyword we apply for evaluating the models is prac-
ticality, of both the learned representation and the pretraining algorithm. To
measure the achievement of these criteria, we evaluate the representation quality
by fitting kNN or linear classifiers on frozen features extracted from the training
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Table 2: kNN classification performance on various downstream datasets of SSL meth-
ods pretrained on fMoW. We compare SatMIP and SatMIPS against the baseline Sim-
CLR and existing contrastive and MAE-based methods, under a consistent evaluation.
For reference, Random indicates a feature extractor with random weights. We bold
the best accuracies per dataset. R45: RESISC45, O31: Optimal31, UCM: UC Merced,
F23: FGSC-23, Euro: EuroSAT, So2: So2Sat, Acc.: Accuracy (Top-1).

Model ViT
size

Epochs fMoW
F1

R45
Acc.

O31
Acc.

UCM
Acc.

F23
Acc.

Euro
Acc.

So2
Acc.

Random S – 5.1±0.1 32.2±0.4 28.5±0.6 44.0±0.9 26.7±1.4 70.0±0.1 33.3±0.2

Contrastive-based
SimCLR [7] S 200 61.1±0.6 88.5±0.4 86.0±1.2 95.0±0.4 57.3±2.1 94.3±0.6 56.9±0.5

SimCLR-Geo [2] S 200 59.0±0.3 88.9±0.5 87.0±1.0 95.2±0.6 60.4±0.9 95.5±0.2 57.5±0.4

SimCLR-TP [2] S 200 65.2±0.3 90.4±0.5 87.6±1.1 97.6±0.4 61.2±2.3 95.00±0.2 57.3±0.7

SimCLR-Geo-TP [2] S 200 65.8±0.6 91.3±0.5 89.7±1.0 97.1±0.4 63.0±0.4 95.6±0.2 57.2±0.6

MAE-based
SatMAE [12] L 800 46.3 75.2 69.6 86.2 44.7 91.3 53.7
Scale-MAE [44] L 800 51.4 85.9 81.6 89.0 48.2 96.1 56.7
SatMAE++ [40] L 800 38.0 77.1 67.8 84.9 46.9 93.1 51.5

SatMIP S 200 55.2±0.2 87.5±0.1 84.8±0.6 95.2±0.8 56.4±0.2 95.7±0.5 55.9±0.2

SatMIPS S 200 62.3±0.0 89.7±0.2 87.9±0.2 94.9±0.7 60.8±0.6 95.1±0.1 57.1±0.5

set of downstream tasks, following regular protocols [6,59]. We measure resource
efficiency by comparing performance across amounts of pretraining epochs and
total training time.

4.3 Quality of visual representations

We present the results of our kNN classification experiments on fMoW and
the four downstream datasets in Tab. 2. First, we observe that SatMIP learns
non-trivial representations: it clearly outperforms random features, and even all
MAE-based methods on all datasets except Scale-MAE on Euro and So2. It also
competes with SimCLR on UCM and outperforms it on Euro. This validates that
using metadata as supervision is effective for learning high-level semantic repre-
sentations. Second, we see that SatMIPS outperforms SimCLR on all datasets,
with the exception of UCM and So2 where they tie. This shows that image and
metadata self-supervision interact constructively in SatMIPS to improve the
quality of the shared features. Moreover, SatMIPS outperforms SimCLR-Geo
on fMoW, R45, O31, and F23, and is comparable on other datasets. This tends
to indicate that integrating metadata into a joint embedding objective is more
effective than directly predicting metadata, as is done by Geo. Still, SatMIPS
is mostly outperformed by SimCLR-TP and Geo-TP: although adding temporal
positives makes a stronger extension than adding metadata supervision, we note
that both methods could potentially be combined. However, this is beyond the
scope of this work.
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4.4 Classification on image and metadata features

Table 3: Classification with varying modalities on fMoW and EuroSAT: performance
of image and combined image and metadata features learned via our models, using
linear probing.

Model fMoW F1 EuroSAT Acc.

Image Image+Meta. ∆ Image Image+Meta. ∆

SatMIP 59.3±0.3 63.1±0.1 +3.8±0.2 94.5±0.6 95.5±0.1 +1.0±0.4

SatMIPS 65.8±0.1 68.6±0.2 +2.8±0.2 95.8±0.3 96.4±0.2 +0.6±0.3

We investigate how the metadata modality can provide further benefits when
used in downstream classification tasks. We perform bimodal classification using
the combined representations of image and metadata encoders, on fMoW (using
GSDs, timestamps and locations) and also on EuroSAT, for which we use the
supplied GSDs and locations. We concatenate the features from each modal-
ity, and fit a linear classifier on the combined features. Results are presented
in Tab. 3. On fMoW, we observe that for both SatMIP and SatMIPS, bimodal
features provide a substantial performance improvement compared to features
from images alone. On EuroSAT, bimodal features also achieve modest improve-
ments. These results show that, in addition to forming useful supervision for
pretraining, the learned metadata features are complementary to visual features
for downstream tasks and can further improve performance.

4.5 Convergence speed analysis
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Fig. 3: kNN classification performance of various datasets as a function of total pre-
training time for SatMIP, SimCLR and SatMIPS. Error bars indicate mean ± std. dev.
over 3 runs. Data points correspond to 25, 50, 100 and 200 epochs in order of increas-
ing time. Training times are relative to SimCLR at 25 epochs. Performance metric is
accuracy except for fMoW and FGSC23 where it is F1 score.

To investigate the resource efficiency of pretraining procedures, we compare
the performance obtained for different amounts of pretraining epochs and the
resulting training time of SimCLR, SatMIP and SatMIPS. Results are presented
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in Fig. 3. First, we note that SatMIP trains faster than SimCLR (by about 44%),
and while it generally underperforms the baseline at 200 epochs, it generally
does better when comparing at equivalent training time. Second, we observe
that SatMIPS converges faster than SimCLR: the performance of the former at
100 epochs equates or surpasses the one of the latter at 200 epochs, on all the
datasets. Even though SatMIPS is marginally slower to train than SimCLR for
an equal amount of iterations/epochs (by about 5%), the higher convergence rate
makes it a more efficient method. This shows that our metadata-image objective
makes pretraining efficient, in addition to being effective.

4.6 Hierarchical pretraining

Table 4: kNN classification performance employing hierarchical pretraining
(HPT) [45], with base pretraining on YFCC [51] with SLIP [38], and further pre-
training each on fMoW with each model. Abbreviations share those of Tab. 2.

Model HPT from
SLIP-YFCC

fMoW
F1

R45
Acc.

O31
Acc.

UCM
Acc.

F23
Acc.

Euro
Acc.

So2
Acc.

Avg.
∆

SimCLR 61.1±0.6 88.5±0.4 86.0±1.2 95.0±0.4 57.3±2.1 94.3±0.6 56.9±0.5

✓ 63.7±0.1 90.0±0.2 88.5±0.8 94.8±0.0 55.1±1.3 94.2±0.3 57.1±0.4 +0.6

SatMIP 55.2±0.2 87.5±0.1 84.8±0.6 95.2±0.8 56.4±0.2 95.7±0.5 55.9±0.2

✓ 61.2±0.4 90.5±0.2 88.2±0.1 96.5±0.2 58.2±0.4 96.0±0.4 57.1±0.7 +2.4

SatMIPS 62.3±0.04 89.7±0.2 87.9±0.2 94.9±0.7 60.8±0.6 95.1±0.1 57.1±0.5

✓ 66.3±0.2 91.4±0.3 89.7±0.1 96.2±0.3 59.9±0.3 95.9±0.1 57.9±0.5 +1.4

We consider the compatibility of models with hierarchical pretraining (HPT)
as it is known to be a practical way to increase the performance of SSL models,
especially in remote sensing [37,45,62]. To do so, we initialize the ViT backbones
with openly-available base weights pretrained with SLIP, on the large generalist
YFCC15M [43, 51] dataset. Results are presented in Tab. 4. We see that, on
average, HPT provides greater performance improvements with SatMIP and
SatMIPS. With SatMIP, the gains are also more steady across datasets, while
HPT gives negative results on some datasets with SimCLR (UCM and F23)
and SatMIPS (F23). Thus, SatMIPS advantage over SimCLR is reinforced, but
more surprisingly, SatMIP outperforms SimCLR on all datasets except fMoW
and O31, showing that the performance gap between metadata supervision and
image self-supervision is largely closed when leveraging HPT.

4.7 Ablation study

We ablate key components of SatMIP and SatMIPS. For these experiments, we
pretrain only for 25 epochs on fMoW. Additional ablations are provided in the
supplementary material.
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Table 5: Influence of the choice of metadata fields in SatMIP. We report downstream
linear probing performance on fMoW and RESISC45, with “(I)” meaning classification
on image features, while “(I,M)” means bimodal classification with combined (image,
metadata) features. Time.: Timestamp, Loc.: Location. We highlight the defaults in
blue and bold the best accuracies.

Metadata fields Performance

GSD Time. Loc. 12 other
fields

fMoW(I)
F1

fMoW(I,M)
F1

R45(I)
Acc.

✓ 37.4±0.6 40.5±0.9 71.3±0.4

✓ 43.7±0.1 46.5±0.1 74.3±0.3

✓ 47.1±0.2 53.3±0.2 76.1±0.7

✓ ✓ 46.3±0.1 51.1±0.1 76.0±0.2

✓ ✓ 51.3±0.7 58.3±0.7 77.9±0.3

✓ ✓ 49.4±0.2 54.2±0.3 76.9±0.4

✓ ✓ ✓ 50.7±0.4 57.7±0.5 78.5±0.2

✓ ✓ ✓ ✓ 50.7±0.1 58.0±0.2 78.6±0.1

Choice of metadata in SatMIP. To study how each metadata field impacts
the quality of representations learned by SatMIP, we ablate the set of fields used
for pretraining and measure the performance of visual and bimodal classifica-
tion on downstream tasks. We compare different combinations of the three GSD,
timestamp and location fields, and using an “extended” set of fields composed of
these three, and 12 other fields available in fMoW, detailed in the supplementary
material. We present these results in Table 5. Regarding sets of single fields, we
see that GSD performs the worst, followed by timestamp and location. This sug-
gests that location contains the most useful semantic information for supervision.
fMoW being a globally distributed dataset with a high variability of locations
(cf . supplementary material), it likely contributes to the importance of location
in SatMIP. Nevertheless, all single fields yield non-trivial performances, and are
useful in bimodal classification on fMoW, demonstrating SatMIP’s ability to in-
corporate metadata flexibly.. Overall, combining multiple fields together tends
to improve performance over using single fields. On fMoW image and bimodal
classification, SatMIP reaches best performance with GSD and location-only for
both visual and bimodal classification, and enlarging to timestamp and other
fields does not improve performance further. On R45 however, we observe best
performance with GSD, timestamp and location. These results suggests that the
fields of GSD, timestamp and location contain most of the useful information
present in satellite metadata, and that SatMIP can constructively combine the
complementary information present in these heterogeneous fields.

Coupling in SatMIPS. We justify the SatMIPS design choice of coupling
image views between SimCLR and SatMIP. First, we ablate the image aug-
mentation policy in SatMIP, comparing the strong policy used for the SimCLR
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Table 6: Impact of image augmentation in SatMIP and view coupling in SatMIPS.
Training time and GPU memory consumption are reported relative to SimCLR. We
highlight the defaults in green/blue and bold the best numbers per model.

Model Augmentation Coupling? Training
time (rel.)

Memory
/GPU (rel.)

fMoW
F1

R45
Acc.

SimCLR SimCLR-Sat – 1. 1. 46.1±0.0 83.0±0.3

SimCLR crop – 1. 1. 33.4±0.2 77.5±0.2

SatMIP SimCLR-Sat – 0.56 0.62 45.6±0.4 81.9±0.2

SatMIP crop – 0.56 0.62 44.6±0.4 80.0±0.4

SatMIPS SimCLR-Sat no 1.53 1.58 54.5±0.1 87.5±0.1

SatMIPS SimCLR-Sat yes 1.05 1.11 53.9±0.1 87.1±0.0

baseline (SimCLR-Sat) with the light random resized cropping policy commonly
used for LIP [38, 43]. We observe that a strong policy performs better, show-
ing that it provides useful regularization while not altering the correctness of
the metadata enough to perturb the contrastive task. Consequently, we adopt a
common augmentation policy between SimCLR and SatMIP, and evaluate the
impact on view coupling in SatMIPS on resource efficiency and performance.
We observe that coupling reduces the training time and memory usage by about
30% relatively to decoupling, and has very little impact on the representation
performance. Thanks to coupling, SatMIPS’ training time is only 5% higher than
that of SimCLR, and memory usage is also contained.

5 Conclusion

In this paper, we proposed a new self-supervised model for harnessing semantic
information specific to satellite imagery metadata. We considered metadata as a
complimentary modality to images, and demonstrated that SatMIP successfully
learns useful visual and metadata representations. Our results have shown that
metadata supervision is a strong competitor to traditional image-based SSL
objectives, and that, within a multi-task framework, they are highly synergistic.

Our work on metadata supervision is focused on experiments with RGB
images, but it could be applied to other remote sensing modalities, such as
multispectral or radar images, since it does not make assumptions about the
visual encoder. Also, we expect such representations to benefit from combining
diverse sensors, thanks to the increased visual and metadata diversity. In addi-
tion, explicit information about the spectral bands could be included into the
metadata encoding (e.g ., wavelengths or calibration parameters [30]) for learning
spectrally-aware representations.

Additionally, our evaluation is focused on classification tasks on frozen fea-
tures. One more avenue for future work is to study the behavior of models
when finetuned, and exploring the transferrability our models to dense predic-
tion tasks.
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Supplementary Material

A Datasets details

We report properties of the used datasets in Tab. S1, including number of train
and test samples, number of classes, image resolution, GSD range, location extent
and the sensors comprising each dataset.

Table S1: Details of classification datasets used in experiments.

Dataset Num. train
samples

Num. test
samples

Num.
classes

Resolution
(px)

GSD
(m)

Location
extent

Sensor(s)

fMoW [11] 363,572 53,043 62 224×224 0.06–23 207 countries /
400 UTM

zones

WorldView-2,
WorldView-3,
QuickBird-2,
GeoEye-1

RESISC45 [10] 18,900 6,300 45 256×256 0.2–30+ global various
(Google Earth)

Optimal31 [57] 930 930 31 256×256 0.5–8 global various
(Google Earth)

UC Merced [60] 1260 840 21 256×256 0.3 Contiguous
USA

NAIP

FGSC-23 [63] 3256 824 23 variable (40–800) 0.4–2 Unknown various
(Google
Earth),
GaoFen-1

EuroSAT [23] 16,200 5,400 10 64×64 10 34 European
countries

Sentinel-2

So2Sat [67] 352,366 48,307 17 32×32 10 42 cities
distributed

globally

Sentinel-2

Spectral bands. We perform all experiments on three-bands RGB images. For
EuroSAT and So2Sat which provide additional spectral bands, we retain only
the RGB bands.

Data splits. We use one train and one test split for all datasets. For fMoW, we
use the official train and validation splits as our train and test splits respectively,
following [2,12,44]. For RESISC45, UC Merced, EuroSAT and So2Sat, we use the
train and test splits available in TorchGeo [49], which are taken from [39]. For
UC Merced, we use the combined test and val splits as our test set, to inflate its
size. For So2Sat, we use the “Culture-10” version of the dataset. For Optimal31,
we randomly split the full dataset (1,860 samples) between train and test with
a 50/50 ratio.
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fMoW preprocessing. Our preprocessing of fMoW aligns with previous works [2,
11, 12]. We use the fMoW-RGB dataset product composed pansharpened color
images converted to 8-bit JPEGs files, and JSON metadata files. We preprocess
the dataset using the standard method: each image is cropped around an area
of interest (AOI) and resized to 224×224 pixels. Resized cropping affects the as-
sociated GSD and location. We transform the GSD height and width according
to the size ratio of the cropped image to the resized cropped image. We replace
the location polygon with the one encompassing the AOI. Other metadata fields
are not affected.

Resizing and normalization. For the evaluation of fMoW-pretrained models,
we follow [13] for resizing and normalizing of images. We resize to the resolu-
tion used for pretraining (224×224 pixels) or keep the original size if it is higher.
Doing so tends to give optimal performance for all the compared models on all
datasets, except for Scale-MAE, which we evaluate using a resolution of 128×128
pixels on all datasets as it gives better performance3. For pretraining and evalua-
tion, we perform channel-wise standardisation with mean and standard deviation
statistics computed on the training set of each dataset [13].

B Pretraining details

Visual encoders. We follow [38] for the configurations of the ViT backbones.
We use the ViT-S variant from MoCoV3 [9] with 12 heads per attention layer
(vs. 6 in original ViT-S [52]). We use a patch size of 16, and learnable positional
embeddings. The output representation that is passed to the projection head for
pretraining, and used for downstream tasks, is the CLS token of the last layer.

Textual metadata encoders. For our experiments with a textual represen-
tation of metadata, we apply the following processing. Following [64], we for-
mat different fields as key-value pairs of strings, and concatenate each key-value
pair together to form a composite string using the syntax "key1: value1, . . .,
keyn: valuen". Afterwards, we tokenize the text using the CLIP’s Byte Pair
Encoding (BPE) tokenizer. We then feed the sequence of tokens to a BERT-
style [15] Transformer encoder with 3 layers, width 512, 8 attention heads per
layer, and a FFN size factor of 4. We use learnable positional embeddings. We use
the “pre-norm” variant of Transformer following [43]. The output representation
that is passed to the projection head for pretraining, and used for downstream
tasks, is the CLS token of the last layer.

Tabular metadata encoders. For our experiments with metadata as tabu-
lar features, we decompose the metadata into atomic numerical or categorical
fields; the only field for which this is not straightforward is timestamp, which
3 this is consistent with the results of [44]
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we convert into year, month, day, hour, and weekday. The numerical features
are further standardized by removing the mean and scaling to unit variance.
We concatenate both numerical and categorical vectors and pass as input to a
FT-Transformer [17] composed of a feature tokenizer (see [17] for details) and a
Transformer with 3 layers, a width of 192, 8 attention heads per layer and a FFN
size factor of 4/3. We use the “pre-norm” variant of Transformer, and remove the
first normalization from the first layer following [17]. The output representation
that is passed to the projection head for pretraining, and used for downstream
tasks, is the CLS token of the last layer.

Projection heads. We follow [38] for the configuration of projection heads.
The projection head for the metadata-image loss in SatMIP(s) is a linear layer
specific to each modality that map each representation to a 512-dim embedding.
The projection head for the image-image loss in SimCLR and SatMIPS is a MLP
composed of 3 4096-dim hidden layers, interposed with BatchNorm and ReLU,
and outputs 256-dim embeddings.

Temporature scaling in contrastive loss. Following [38], the temperature
τ is set to 0.1 for the image-image loss in SimCLR and SatMIPS, while it is set
to a learnable parameter in the metadata-image loss in SatMIP(S).

Augmentation. We use the same augmentation policy across image inputs
in SimCLR/SatMIP(S). Borrowing from [5], we opt for a modified version of
the standard SimCLR policy for satellite images, composed of: random resized
cropping with a scale ratio sampled uniformly in [0.2, 1.0] and target size 224
px, color jittering with p = 0.8, grayscaling with p = 0.2, Gaussian blurring
with p = 0.5, horizontal flipping with p = 0.5; vertical flipping with p = 0.5,
and rotation with p = 0.75 by an angle sampled uniformly in {90, 180, 270}. In
the ablation of Tab. 6 in the main paper, the “crop” policy is random resized
cropping with a scale ratio sampled between [0.5, 1.0] [38].

Training. Most of our training hyperparameters are reused from [38], and we
translate their recipes of CLIP and SLIP to our SatMIP and SatMIPS, respec-
tively. We perform stochastic gradient descent with the AdamW [33] optimizer
(with (β1, β2) = (0.9, 0.98) and ϵ = 1e− 8). We use a global batch size of 1024,
and a cosine learning rate decay, with 1 epoch of linear warmup [7]. We apply
the linear scaling rule [18] to set the initial learning rate: lr = lrbase ·bs/256, with
bs the batch size and lrbase a base learning rate. We train the models with mixed
precision. Base learning rate and weight decay have different values depending
on the model, given in the following table:

Model SimCLR SatMIP SatMIPS

base learning rate 2e-4 1.875e-4 3.75e-4
weight decay 0.1 0.5 0.5



Learning Representations of Satellite Images From Metadata Supervision 23

In SatMIPS loss, we set the value of λ to 1. We show the impact of λ in
Tab. S4.

Code and compute environment. Our implementation of SimCLR, SatMIP
and SatMIPS is based on the official code of SLIP4. We use PyTorch 2.1. Train-
ings are performed on compute nodes with 4 Nvidia V100-32GB or 8 Nvidia
A100-40GB. kNN evaluations are performed on one V100-32GB.

C kNN classification details

After pretraining, the representation we evaluate is the CLS token output of
ViT backbones. We use a weighted kNN classifier following standard practice
[6,44,59]. We freeze the pretrained model and extract the representations of the
training and testing set examples. We classify each test sample by performing
a weighted vote among the top k training samples sorted by decreasing cosine
similarity. We do not use any data augmentation. We sweep the number of
neighbors k in the set {1, 5, 20, 100} for each model and dataset combination,
and report optimal results. For all contrastive-based models, we select k = 100
on fMoW and k = 5 on the other datasets. For MAE-based models, we select
k = 20 on fMoW and k = 5 on the other datasets. We enable mixed precision
for feature extraction and calculating the pairwise similarities between samples.

D Linear probing classification details

For linear probing, we fit a logistic regression classifier on the training set embed-
dings, using L-BFGS optimizer with 200 maximum iterations, and no regular-
ization. For bimodal classification, we first extract image and metadata features
and concatenate both [CLS] token embeddings, standardize the feature to zero
mean and unit variance, and fit a logistic regression classifier.

E Description of fMoW metadata

In Tab. S2, we detail the full set of 15 metadata fields from fMoW that we
considered throughout our experiments. Recall that by default, we used the
subset of GSD, timestamp, and location fields (row (1), (4), and (5) in Tab. S2,
respectively). This full set of 15 fields was used in the ablation in Tab. 5 of the
main paper.

Additionally, we visualize the distribution of the main metadata fields:

– GSD: In Fig. S1, we observe that the vast majority of GSD width and height
values are concentrated between 0.3 m and 2 m. The distribution has a long
tail of higher GSD values ranging up to 23 m.

4 https://github.com/facebookresearch/SLIP

https://github.com/facebookresearch/SLIP
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Table S2: Details of the full set of 15 metadata fields selected from the fMoW dataset
for our experiments. Colors designate two types of metadata: (a) sensor : fields that are
determined by the sensor’s characteristics and/or it’s relative position to the target);
(b) environment: fields that are determined by the environment (i.e., the geotemporal
context). Refer to the fMoW paper [11] for a detailed documentation.

Field Description Example
value

Ground sample
distance

GSD of panchromatic band in the raw image strip, in meters.
Transformed according to resized cropping (cf . Sec. A).

[0.3749, 0.2916]

Multispectral
ground sample
distance

GSD of multispectral bands in the raw image strip, in meters.
We include the average of width and height. Transformed
according to resized cropping.

1.3365

Pixel size Size of a pixel in longitude and latitude units in the panchro-
matic band, in degrees. Transformed according to resized
cropping.

[3.27e-06,
2.54e-06]

Timestamp ISO UTC timestamp of acquisition down to the second. 2016-07-02
T12:40:44Z

Location Longitude (-180–180) and latitude (-90–90) of the image cen-
troid, in degrees. Transformed according to cropping (cf .
Sec. A).

[-43.246798,
-22.982982]

UTM zone Provides a number for the UTM zone (1–60), along with a
letter representing the latitude band (“C”–“X”).

23K

Country code ISO alpha-3 country code. BRA

Cloud cover Percentage of the raw image strip that is completely obscured
by clouds (0–100).

0

Scan direction Direction in which the sensor is pointed during take, rela-
tively to the orbital path. Equals “Forward" if taken ahead
of the orbital path and “Reverse" if taken behind.

Reverse

Wavelengths Approximate central wavelength of the red, green and blue
bands. b

[661, 545, 477]

Target azimuth Azimuth angle of the sensor to the center of the image strip,
from north, clockwise, in degrees (0–360).

0.58

Sun azimuth Azimuth angle of the sun to the center of the image strip,
from north, clockwise, in degrees (0–360).

67.86

Sun elevation Elevation angle of the sun from the horizon, in degrees (0–
90).

61.34

Off-nadir angle The off-nadir angle of the sensor to the center of the image
strip, in degrees (0–90).

43.92

Sensor platform Name of the sensor, among: WorldView-2, WorldView-3,
QuickBird-2, and GeoEye-1.

GEOEYE01

a Note that all sensors capture at the same wavelengths, so this field is constant throughout the
dataset, making it inoperative.
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– Location: In Fig. S2, we see that locations span a global distribution across
all five continents. However, we note an overall bias towards the global North,
while some regions, such as Subsaharan Africa and South Asia, are under-
represented.

– Timestamp: In Fig. S3, we see that dates are unequally spread in the full
12-years time range, with the majority being 2014 and 2017. Months and
weekdays, however, are more uniformly distributed.

Fig. S1: Distribution of ground sampling distances (width and height) in the fMoW
training set. Note the log scale.

Fig. S2: Distribution of geographic locations in the fMoW training set.

F Examples of images and metadata

Tab. S3 presents sample images and metadata pairs from the fMoW dataset, that
we used for metadata-image pretraining within SatMIP and SatMIPS. Metadata
is here shown as text form.
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Table S3: Sample images from the fMoW dataset with their metadata as a formatted
text, using the full set of 15 fields described in Tab. S2. We also report the number
of resulting text tokens (excluding start-of and end-of-text tokens), and the class the
sample belongs to.

Image Metadata (text) Class

(1) ground_sample_distance: [11.4546, 9.1344],
multispectral_ground_sample_distance: 41.1896, pixel_size:
[1.03e-04, 8.23e-05], timestamp: 2015-09-21T15:30:08Z,
location: [-73.310776, -3.785814], utm_zone: 18M,
country_code: PER, cloud_cover: 14, scan_direction: Reverse,
wavelengths: [661, 545, 477], target_azimuth: 39.12,
sun_azimuth: 77.28, sun_elevation: 70.44, off_nadir_angle:
27.70, sensor_platform: GEOEYE01

Airport

(2) ground_sample_distance: [2.0638, 1.8120],
multispectral_ground_sample_distance: 7.7561, pixel_size:
[1.86e-05, 1.64e-05], timestamp: 2016-07-02T07:33:42Z,
location: [51.253020, 35.711928], utm_zone: 39S, country_code:
IRN, cloud_cover: 3, scan_direction: Forward, wavelengths:
[661, 545, 477], target_azimuth: 312.30, sun_azimuth: 126.03,
sun_elevation: 71.28, off_nadir_angle: 22.31, sensor_platform:
WORLDVIEW03_VNIR

Interchange

(3) ground_sample_distance: [1.8129, 1.9807],
multispectral_ground_sample_distance: 7.5664, pixel_size:
[1.65e-05, 1.80e-05], timestamp: 2014-05-27T03:05:01Z,
location: [120.572210, 14.984249], utm_zone: 51P,
country_code: PHL, cloud_cover: 6, scan_direction: Reverse,
wavelengths: [661, 545, 477], target_azimuth: 85.94,
sun_azimuth: 58.19, sun_elevation: 76.37, off_nadir_angle:
25.91, sensor_platform: WORLDVIEW02

Crop Field

(4) ground_sample_distance: [2.1283, 1.3499],
multispectral_ground_sample_distance: 6.9531, pixel_size:
[1.89e-05, 1.20e-05], timestamp: 2005-12-21T17:59:22Z,
location: [-105.222951, 39.749676], utm_zone: 13S,
country_code: USA, cloud_cover: 2, scan_direction: Forward,
wavelengths: [661, 545, 477], target_azimuth: 289.08,
sun_azimuth: 164.96, sun_elevation: 25.32, off_nadir_angle:
25.12, sensor_platform: QUICKBIRD02

Educational
Institution

(5) ground_sample_distance: [0.3191, 0.4155],
multispectral_ground_sample_distance: 1.4697, pixel_size:
[3.24e-06, 4.22e-06], timestamp: 2017-04-26T10:08:48Z,
location: [6.462309, 13.403795], utm_zone: 32P, country_code:
NGA, cloud_cover: 0, scan_direction: Reverse, wavelengths:
[661, 545, 477], target_azimuth: 341.90, sun_azimuth: 84.84,
sun_elevation: 69.78, off_nadir_angle: 17.99, sensor_platform:
GEOEYE01

Single-
Unit

Residential
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Fig. S3: Distribution of timestamps’ years, months and weekdays in the fMoW training
set.

G Additional ablations

We present additional ablations of our SatMIP and SatMIPS models.

G.1 Multi-task balancing in SatMIPS loss

In Tab. S4, we ablate the value of the hyperparameter λ, which balances the
metadata-image and image-image objectives. We pretrain on fMoW for 25 epochs
with a textual metadata encoder. We observe that performance is not signifi-
cantly impacted by the choice of λ, provided that the value is greather than 0 (or
it is equivalent to SatMIP). SatMIPS can benefit equally from both objectives
regarless of their weighting.

Table S4: Impact of the multi-task loss balancing factor λ in SatMIPS. Note that
λ = 0 is equivalent to SatMIP as the SimCLR objective is null.

λ fMoW
F1

R45
Acc.

F23
Acc.

So2
Acc.

0 45.6±0.4 81.9±0.2 54.1±0.4 54.7±0.5

0.5 53.7±0.3 86.8±0.03 57.0±0.4 56.0±0.1

1.0 53.9±0.1 87.1±0.02 57.6±0.5 56.2±0.6

2 53.9±0.4 86.7±0.1 58.4±1.1 56.3±0.2

G.2 Textual vs. tabular metadata encoders in SatMIP

We present an extensive comparison of the two approaches we adopt for encoding
metadata within SatMIP: using a text encoder (BERT-style Transformer on tex-
tualized inputs), and a tabular encoder (FT-Transformer on featurized inputs).
Our choice for using a textual encoder was motivated by [64], who demonstrated
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the flexibility and effectiveness of textual encoding on EXIF tags. Nevertheless,
we may hypothesize that a textual representation should be ill-suited for numer-
ical fields such as location or GSD: as it treats them as sequences of digit tokens,
it must limited understanding of those fields. Using vectorized features as in-
put to a tabular encoder must be more suited for numerical fields by definition.
First, in Tab. S5, we compare the kNN classification performance of SatMIP(S)
trained with both type of encoders on the various datasets as well as their ef-
ficiency. We observe that for SatMIP, surprisingly, a textual encoder tends to
perform better, with higher accuracies on 5 out of the 7 datasets. For SatMIPS,
their performance is on par overall, except in favor of the textual encoder on one
dataset (O31). These results indicate that a textual encoder tends to be more
effective, although the tabular encoder is competitive. However, this observation
may just be due to the choice of hyper-parameters, as we mostly reused the
hyperparameters from SLIP [38] with minimal tuning, and SLIP uses a textual
encoder on language captions. Therefore, we cannot draw any definitive conclu-
sions. However, we note that the tabular encoder is more memory efficient, as it
requires way less tokens to train (about 10× for GSD, timestamp and location
as inputs).

Then, in Sec. G.2, we compare the linear probing performance of SatMIP(S)
trained with both encoders using multiple modalities. We observe than when
metadata features are used as input to classification, the tabular encoder peforms
much better than the textual encoder, which is in contrast to using image features
alone. This clearly shows that numerical fields understanding is important for
deploying metadata encoders. The textual encoder might be good at solving
the image-metadata matching task from token sequences, but it is limited in
it’s ability to generalize to new data on downstream tasks. This shows that a
tabular encoder should be favored when considering multimodal classification
with SatMIP(S).

Table S5: kNN classification performance with a tabular encoder vs. a textual encoder
for metadatas. 200 epochs pretraining on fMoW. Training time and memory usage are
relative to the baseline, SimCLR.

Model Encoder fMoW
F1

R45
Acc.

O31
Acc.

UCM
Acc.

FGSC-23
F1

Euro
Acc.

So2
Acc.

Train.
time

Mem.
/GPU

SatMIP Textual 55.2±0.2 87.5±0.1 84.8±0.6 95.2±0.8 56.4±0.2 95.7±0.5 55.9±0.2 0.56 0.62
Tabular 55.8±0.3 87.2±0.3 82.4±0.9 94.3±0.3 55.3±1.3 94.2±0.4 55.2±0.5 0.56 0.52

SatMIPS Textual 62.4±0.1 89.7±0.1 88.1±1.1 95.2±0.6 58.8±0.5 94.8±0.1 57.3±0.1 1.05 1.11
Tabular 62.5±0.4 89.6±0.2 86.5±0.9 95.6±0.4 59.2±1.1 94.9±0.2 57.2±0.4 1.05 1.01
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Table S6: Linear probing classification on fMoW using multiple modalities: image,
metadata, or both, after pretraining on fMoW for 25 or 200 epochs.

fMoW F1

Model Modality 25 epochs 200 epochs

SatMIP Image 49.5±0.3 57.6±0.5

Meta 18.7±0.6 19.5±0.3

Image+Meta 54.0±0.5 59.3±0.6

SatMIPS Image 57.7±0.1 66.3±0.4

Meta 19.4±1.2 19.6±0.2

Image+Meta 60.5±0.9 67.0±1.5

(a) Textual metadata encoder

fMoW F1

Model Modality 25 epochs 200 epochs

SatMIP Image 50.7±0.4 59.3±0.3

Meta 27.8±0.1 27.8±0.2

Image+Meta 57.7±0.5 63.1±0.1

SatMIPS Image 59.5±0.1 65.8±0.1

Meta 27.9±0.1 27.8±0.1

Image+Meta 64.6±0.2 68.6±0.2

(b) Tabular metadata encoder
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H Additional results

We report additional results corresponding to the experiments presented in the
main paper.

We have analyzed the time and memory efficiency of method relatively to our
baseline (SimCLR). In Tab. S8, we report the absolute numbers, corresponding
to the 200 epochs pretraining runs in Fig. 3 of the main paper.

Table S8: Absolute training time and peak memory usage of the different pretraining
methods, for 200 epochs, with ViT-S backbone and a batch size of 1024 distributed
over 4 Nvidia V100-32GB. The reported training times are averages of 3 runs.

Model Training
time (minutes)

Peak memory
usage (GiB)

SimCLR 392 17.3
SatMIP 222 10.7
SatMIPS 414 19.2

I CO2 emissions related to experiments

Experiments performed throughout this project consumed a total of 5,123 hours
of V100-SXM2-32GB compute and 9358 hours of A100-SXM4-80GB compute.
We performed our experiments on the Jean Zay HPC cluster from IDRIS, lo-
cated in Orsay, France. As reported by our HPC cluster monitoring tool, the
experiments amount to a total of 0,504 T CO2eq.
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