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The finite precision implementation of mathematical functions frequently depends on polynomial approximations. A key

characteristic of this approach is that rounding errors occur both when representing the coefficients of the polynomial on a

finite number of bits, and when evaluating it in finite precision arithmetic. Hence, to find a best polynomial, for a given fixed

degree, norm and interval, it is necessary to account for both the approximation error and the floating-point evaluation error.

While efficient algorithms were already developed for taking into account the approximation error, the evaluation part is

usually a posteriori handled, in an ad-hoc manner. Here, we formulate a semi-infinite linear optimization problem whose

solution is a best polynomial with respect to the supremum norm of the sum of both errors. This problem is then solved

with an iterative exchange algorithm, which can be seen as an extension of the well-known Remez exchange algorithm. An

open-source C implementation using the Sollya library is presented and tested on several examples, which are then analyzed

and compared against state-of-the-art Sollya routines.

CCS Concepts: •Mathematics of computing→Mathematical software; Linear programming; Approximation; •
Theory of computation→ Rounding techniques; Numeric approximation algorithms.

Additional Key Words and Phrases: polynomial approximation, finite-precision, evaluation error, semi-infinite linear program-

ming, Remez exchange algorithm, mathematical library

1 INTRODUCTION

Polynomials are often used for approximating functions on computers [2, 39, 40]. Their evaluation only requires

additions and multiplications, which are efficiently implemented in hardware floating-point (FP) arithmetic

units. FP operations are specified by the IEEE 754-2019 [1] standard, which requires, among others, correctly

rounded basic arithmetic operations (+,−, ∗, /,√) for several precision formats, and recommends correctly rounded

elementary functions like exp, sin, cos. Very efficient fixed FP precision implementations exist for such functions

and are collected in mathematical libraries named libms (see for instance [24, 37] or [12] for further details on

the issues of correct rounding and existing libms). In the last two decades, sophisticated tools were developed,

which allow nowadays for almost automatically generated and tuned libms [10, 14, 33, 34].

In general, the problem of evaluating a function for the whole FP input range is firstly reduced to the evaluation

of an approximation valid in a rather small compact domain 𝐼 . This can be done for instance, by argument

reduction techniques, which are available only for specific elementary functions [41]. Otherwise, code generating

techniques extended to larger classes of special functions, which are widely used in scientific and technical

applications (like Bessel, Airy, Erf, etc.), are mostly based on piecewise polynomial approximations [35].

Then, the implementation task becomes: given a description of a function 𝑓 , an input interval 𝐼 , and a target

accuracy Y > 0, it is requested a source code which provides a function
˜𝑓 , such that:

(𝑓 − ˜𝑓 )/𝑓

𝐼
⩽ Y, where we

denote by ∥𝑔∥ 𝐼 := sup

𝑡 ∈𝐼
|𝑔(𝑡) | the supremum norm of 𝑔 on 𝐼 . Typically, this is handled in two main steps:
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a) Approximation. An approximation polynomial 𝑝 is searched for, such that two main requirements are

met: its coefficients are representable with a specified fixed precision format (usually, binary32, binary64, or an

unevaluated sum of such formats) and the approximation error is less than a target Yapprox, whether absolute

∥ 𝑓 − 𝑝 ∥ 𝐼 ⩽ Yapprox or relative ∥(𝑓 − 𝑝)/𝑓 ∥ 𝐼 ⩽ Yapprox.

When the coefficients of the polynomial are constrained to fit on a specific (sometimes small) number of bits,

efficient algorithms based on parametric integer linear programming were developed in [13], whose goal is to

enumerate the set of integer points which lie inside a convex polyhedron (this polyhedron can depend linearly

on one or more integer parameters). While this technique worked for precisions up to 32 bits, another idea based

on Euclidean lattice reduction [11] proved to be very efficient for higher precision (binary64, double-double, or

higher) and was successfully implemented in Sollya [22], a state-of-the-art tool for obtaining such approximations.

In the simpler case of polynomials 𝑝 with real coefficients and given degree 𝑛, 𝑝 =
𝑛∑
𝑖=0

𝑎𝑖𝑡
𝑖
, this problem is

known as the minimax approximation:

min

𝑎𝑖 ∈R,
𝑖∈[0..𝑛]

max

𝑡 ∈𝐼
|𝑓 (𝑡) − 𝑝 (𝑡) |,

(𝑃minimax)

which can be solved by the Remez exchange algorithm [46] (see also [11, 21, 53] and references therein). The

convergence of this iterative algorithm is quadratic under certain conditions [54] and it has rather low complexity,

since it involves solving a linear system of size 𝑛 + 2 at each step, together with numerically computing the

extrema of 𝑓 − 𝑝 over 𝐼 .

b) Evaluation. An efficient evaluation scheme for 𝑝 is searched for; since after each addition or multiplication,

rounding errors occur, one must ensure that the computed value 𝑝 satisfies ∥𝑝 − 𝑝 ∥ 𝐼 ⩽ Yeval (or ∥(𝑝 − 𝑝)/𝑝 ∥ 𝐼 ⩽
Yeval) for a given threshold Yeval.

Some heuristics like those presented in [15, 34] extend the precision of the important coefficients, such that

the evaluation error remains below Yeval. For instance, Sollya command implementpoly uses a Horner-based

evaluation scheme, which behaves rather well when the evaluation interval is sufficiently small and contains zero.

Otherwise, consider step 𝑖 of Horner evaluation 𝑎𝑖 + 𝑡𝑝𝑖 (𝑡), where 𝑝𝑖 is the already computed partial polynomial

evaluation: when the argument |𝑡 | >> 1, the accumulated evaluation error is much amplified when multiplying

by 𝑡 . Another heuristic is a ratio test between 𝑎𝑖 and 𝑡𝑝𝑖 (𝑡), to check for cancellation issues which appear when

both terms have the same order of magnitude and opposite signs.

Once the coefficients have been chosen, the approximation and the evaluation error can a posteriori be certified

by several existing algorithms and tools, like Sollya [22], Gappa
1
[26], Rosa

2
[25] or Real2Float

3
[47].

It is important to note that steps a) and b) are usually independently considered. An exception occurs for the

case of very small precisions or polynomial degrees, where an exhaustive search on the rounded coefficients is

possible [52].

In this sense, the approach developed in [36, 37] for the purpose of obtaining correctly rounded elementary

functions exploits linear programming (LP) in a different manner for the approximation step. Specifically, one

considers constraints on the coefficients of the form 𝑙 ⩽ 𝑝 (𝑡) ⩽ ℎ, where for an input 𝑡 , all the values in the

corresponding interval [𝑙, ℎ] round to the same value as 𝑓 (𝑡) (in the specific given precision and rounding mode).

By discretizing the input, an exact rational LP problem is solved. The evaluation step is done by a search-and-refine

technique. Initially, the candidate polynomial satisfies the set of constraints when evaluated in real numbers. If

an posteriori finite-precision evaluation fails to do so, the constraints are restricted iteratively. This strategy is

1
https://gappa.gitlabpages.inria.fr/

2
https://github.com/malyzajko/rosa/

3
https://github.com/afd/real2float/

https://gappa.gitlabpages.inria.fr/
https://github.com/malyzajko/rosa/
https://github.com/afd/real2float/
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reported to successfully work up to binary32 implementation, but it is unclear whether this scales beyond this

precision.

However, as explicitly mentioned in [13], one would like to take into account the roundoff error that occurs during

polynomial evaluation: getting the polynomial, with constraints on the size of the coefficients, that minimizes the

total (approximation plus roundoff) error would be extremely useful.

The main goal of this work is to make progress on the following open problem: provide and algorithm which

computes the coefficients of a polynomial 𝑝 (𝑡) =
𝑛∑
𝑖=0

𝑎𝑖𝑡
𝑖
, of given degree 𝑛, which minimizes the maximum of

the sum of both approximation and evaluation errors for a given evaluation scheme, over a given input interval 𝐼 ,

with respect to a given function 𝑓 . We consider a black-box description of 𝑓 i.e., one disposes of values 𝑓 (𝑡), up
to any required accuracy [34]. This allows for handling very general functions (elementary, special, etc.), but

also implies that no argument reduction step is usually possible. In the absolute error case the corresponding

optimization problem is stated as follows:

min

𝑎𝑖 ∈R,
𝑖∈[0..𝑛]

max

𝑡 ∈𝐼
( |𝑓 (𝑡) − 𝑝 (𝑡) | + |𝑝 (𝑡) − 𝑝 (𝑡) |) .

(𝑃general)

This article provides an extended version of our prior work [4].

In Section 2, a model for the evaluation error |𝑝 (𝑡) − 𝑝 (𝑡) | is proposed. Based on [42], the accuracy of a

given arbitrary polynomial evaluation scheme is recursively assessed by bounding the rounding error of each

elementary operation. The proposed implementation can handle different precisions and both linearized and

higher order error terms. This leads to the formulation in Section 3 of Problem 𝑃general as a linear semi-infinite

programming (LSIP) problem [45, 50]. We provide a concise, yet standalone description of the duality theory

employed, in particular, the theoretical formulation of a dual linear programming problem defined in the space of

positive measures. We revisit theoretical results which show that this problem is reducible to a discretization of

finite size, which allows for adapting a generalexchange algorithm for LSIP [16–18, 55] to our specific case. The

correctness of this tailored algorithm is proved in Section 4. Then, we turn to more practical aspects and discuss

in Section 5 the case of the relative error, which is similar from a theoretical standpoint, but requires a careful

implementation when the function 𝑓 cancels for certain values in the considered interval. In Section 6, we present

our new implementation in C, using in particular the Sollya library, which can handle many practical cases and

both high and low precision constraints on the coefficients. Finally, in Section 7, we conclude this first attempt at

optimizing with respect to the sum of both errors: practical examples show that in some cases the evaluation

error can be improved, while in some other cases, the minimax polynomial solution of problem 𝑃minimax is very

close to the solution of 𝑃general.

2 EVALUATION ERROR

Consider first some basic notation used for error analysis [41]. Firstly, assume radix-2, precision-𝑝 , floating-point

arithmetic with unbounded exponent range i.e, provided that overflows and underflows do not occur. If 𝑡 ∈ R,
define RN(𝑡) as 𝑡 rounded to nearest. This is the default rounding mode in IEEE-754 arithmetic [32], so that,

given two FP numbers 𝑎 and 𝑏, when the instruction 𝑐 = 𝑎⊤𝑏 appears in a program, what is effectively computed

is 𝑐 = RN(𝑎⊤𝑏), for any arithmetic operation ⊤ ∈ {+,−,×,÷}. We have

|𝑡 − RN(𝑡) |
|𝑡 | ⩽

𝑢

1 + 𝑢 < 𝑢, (1)

where 𝑢 = 2
−𝑝

is called the rounding unit.

Moreover, there exists a real number 𝜖 such that

RN(𝑎⊤𝑏) = (𝑎⊤𝑏) (1 + 𝜖), |𝜖 | ⩽ 𝑢. (2)
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Based on the previous property, the error of any arithmetic expression can be recursively bounded. Firstly,

for specific evaluation schemes, like Horner, bounds date back to the work of Oliver [42], which is detailed

below as an example. More recently, several works insisted on the automatic algorithmic approach via operator

overloading similar to automatic differentiation [9, 51]. Based on this, we propose, for completeness
4
, Algorithm 2,

which automatically computes linearized expressions for the evaluation error (like in (6)), for any given symbolic

expression tree 𝑒 , provided with symbolic rounding errors for each tree node. Let us exemplify how the linearized

Algorithm 1 Horner(p,t).

1: 𝑟𝑛 ← 𝑎𝑛
2: for 𝑘 = 𝑛 − 1 downto 0 do
3: 𝑟𝑘 ← RN

(
RN(𝑟𝑘+1 × 𝑡) + 𝑎𝑘

)
4: end for
5: return 𝑟0

evaluation error is computed for the polynomial 𝑝 (𝑡) = 𝑎𝑛𝑡
𝑛 + 𝑎𝑛−1𝑡𝑛−1 + · · · + 𝑎0 using Horner’s rule, assuming

that a Fused Multiply Add (FMA) instruction is not employed. The actual machine operations are recalled in

Algorithm 1. We have:

𝑟𝑛 = 𝑎𝑛, (3a)

𝑟𝑛−1 =
(
𝑡𝑟𝑛 (1 + 𝜖×𝑛−1) + 𝑎𝑛−1

)
(1 + 𝜖+𝑛−1), (3b)

where 𝜖×𝑛−1 and 𝜖
+
𝑛−1 model the rounding errors for multiplication and addition at step 𝑛 − 1. By induction, one

obtains:

𝑟𝑘 =

𝑛∑︁
𝑖=𝑘

©«(1 + 𝜖+𝑖 )
𝑖−1∏
𝑗=𝑘

(1 + 𝜖+𝑗 ) (1 + 𝜖×𝑗 )
ª®¬𝑎𝑖𝑡𝑖−𝑘 , (4)

where we define 𝜖+𝑛 := 0 and

𝑘−1∏
𝑗=𝑘

(1 + 𝜖+𝑗 ) (1 + 𝜖×𝑗 ) := 1. This implies that the total evaluation error is:

𝑟0 −
𝑛∑︁
𝑖=0

𝑎𝑖𝑡
𝑖 =

𝑛∑︁
𝑖=0

(
(1 + 𝜖+𝑖 )

𝑖−1∏
𝑗=0

(1 + 𝜖+𝑗 ) (1 + 𝜖×𝑗 ) − 1
)
𝑎𝑖𝑡

𝑖 . (5)

Ignoring the higher order terms, the linear approximation \ lin of the evaluation error, function of 𝜖+𝑖 and 𝜖×𝑖 is:

\
(Horner)

lin
:=

𝑛−1∑︁
𝑗=0

(
𝑛∑︁

𝑖=𝑗+1
𝑎𝑖𝑡

𝑖

)
𝜖×𝑗 +

𝑛−1∑︁
𝑗=0

(
𝑛∑︁
𝑖=𝑗

𝑎𝑖𝑡
𝑖

)
𝜖+𝑗 . (6)

Moreover, provided bounds are specified for each rounding error, depending on the precision employed, one

obtains upper bounds for the linearized absolute evaluation error. For instance, if binary64 is used for all the

computations in Algorithm 1, with 𝑢 = 2
−53

, one has:���\ (Horner)
lin

��� ⩽ 2𝑢

𝑛∑︁′′

𝑗=0

����� 𝑛∑︁
𝑖=𝑗

𝑎𝑖𝑡
𝑖

����� , (7)

where the double superscript indicates that the first and last terms in the summation are to be halved.

4
While the general ideas are the same as in [9, 51] and references therein, we could not find the exact pseudo-code in literature, so it is stated

in order to provide a complete algorithmic solution for problem 𝑃
general

.
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In general, an automated error analysis is provided, for which one can consider higher order terms. This case is

of potential interest for evaluation schemes, where operations have different precisions. As exemplified in Table 1,

to automate the evaluation error analysis, we firstly associate to a mathematical expression 𝑒∗, a given symbolic

evaluation scheme 𝑒 , composed of terms RN(𝑒′, 𝑢). This means that 𝑒′ is rounded with a relative error |𝜖 [𝑢 ]
𝑒′ | ⩽ 𝑢.

This formulation models rounding errors occuring for both input variables (𝑒′ ∈ V , whereV denotes the set

of input variables) and for arithmetic operations (if 𝑒′ = 𝑎1⊤𝑒2). Then, we build an expression 𝑒 , as in (4), by

recursively replacing terms RN(𝑒′, 𝑢) in 𝑒 , with 𝑒′ (1 + 𝜖 [𝑢 ]
𝑒′ ). This formulation allows for modeling equal relative

errors corresponding to multiple occurences of the same subexpression RN(𝑒′, 𝑢) with one common variable 𝜖
[𝑢 ]
𝑒′ .

Furthermore, one can also consider different precisions for roundings, which translate to different bounds 𝑢𝑖 .

For instance, in Table 1, one considers both binary64 and binary32 operations by instantiating 𝑢1 = 2
−53

and

𝑢2 = 2
−24

.

⊲ Example A. Arithmetic operations in binary64, with 𝑢 = 2
−53

.

⊲ Mathematical expression: 𝑒∗
1
= 𝑎 + 𝑏𝑐

⊲ Evaluation scheme: 𝑒1 = RN(𝑎 + RN(𝑏 × 𝑐,𝑢), 𝑢)
⊲ Roundings expression: 𝑒1 = (𝑎 + 𝑏𝑐 (1 + 𝜖 [𝑢 ]𝑏×𝑐 )) (1 + 𝜖

[𝑢 ]
𝑎+RN(𝑏×𝑐,𝑢 ) )

⊲ Linearized error: \
(𝑒1 )
lin

= 𝑏𝑐𝜖
[𝑢 ]
𝑏×𝑐 + (𝑎 + 𝑏𝑐)𝜖

[𝑢 ]
𝑎+RN(𝑏×𝑐,𝑢 )

⊲ Linearized error bound: |\ (𝑒1 )
lin
| ⩽ ( |𝑏𝑐 | + |𝑎 + 𝑏𝑐 |)𝑢

⊲ Example B. Fused multiply-add (FMA) in double precision (𝑢1 = 2
−53

), with input 𝑎 rounded to binary32 (𝑢2 = 2
−24

).

⊲ Mathematical expression: 𝑒∗
2
= 𝑎 + 𝑏𝑎

⊲ Evaluation scheme: 𝑒2 = RN(RN(𝑎,𝑢2) + 𝑏 × RN(𝑎,𝑢2), 𝑢1)
⊲ Roundings expression: 𝑒2 = (𝑎(1 + 𝜖 [𝑢2 ]

𝑎 ) + 𝑏𝑎(1 + 𝜖 [𝑢2 ]
𝑎 )) (1 + 𝜖 [𝑢 ]

RN(𝑎,𝑢2 )+𝑏×RN(𝑎,𝑢2 ) )
⊲ Eval. error: \ (𝑒2 ) = (𝑎 + 𝑏𝑎)𝜖 [𝑢2 ]

𝑎 + (𝑎 + 𝑏𝑎)𝜖 [𝑢1 ]
RN(𝑎,𝑢2 )+𝑏×RN(𝑎,𝑢2 ) + (𝑎 + 𝑏𝑎)𝜖

[𝑢2 ]
𝑎 𝜖

[𝑢1 ]
RN(𝑎,𝑢2 )+𝑏×RN(𝑎,𝑢2 )

⊲ Error bound: |\ (𝑒2 ) | ⩽ |𝑎 + 𝑏𝑎 | (𝑢1 + 𝑢2 + 𝑢1𝑢2)
⊲ Example C. Horner scheme with both single (𝑢2 = 2

−24
) and double (𝑢1 = 2

−53
) precision operations.

⊲ Mathematical expression: 𝑒∗
3
= 𝑎0 + 𝑡 (𝑎1 + 𝑡𝑎2)

⊲ Evaluation scheme: 𝑒2 = RN(𝑎0 + RN(𝑡 × RN(𝑎1 + RN(𝑡 × 𝑎2, 𝑢2), 𝑢2), 𝑢1), 𝑢1)

⊲ Roundings expression:
𝑒3 = 𝑎0 (1 + 𝜖 [𝑢1 ]

+ ) + 𝑎1𝑡 (1 + 𝜖
[𝑢1 ]
+ ) (1 + 𝜖

[𝑢1 ]
× ) (1 + 𝜖

[𝑢2 ]
+ )

+𝑎2𝑡2 (1 + 𝜖 [𝑢1 ]
+ ) (1 + 𝜖

[𝑢1 ]
× ) (1 + 𝜖

[𝑢2 ]
+ ) (1 + 𝜖

[𝑢2 ]
× )

⊲ Eval. error:
\ (𝑒3 ) = (𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2)𝜖 [𝑢1 ]

+ + (𝑎1𝑡 + 𝑎2𝑡2) (𝜖 [𝑢1 ]
× + 𝜖 [𝑢2 ]

+ + 𝜖 [𝑢1 ]
+ 𝜖

[𝑢2 ]
+ + 𝜖 [𝑢1 ]

× 𝜖
[𝑢2 ]
+ )

+𝑎2𝑡2 (𝜖 [𝑢2 ]
× + 𝜖 [𝑢2 ]

+ 𝜖
[𝑢2 ]
× + 𝜖 [𝑢1 ]

+ 𝜖
[𝑢2 ]
× + 𝜖 [𝑢1 ]

× 𝜖
[𝑢2 ]
× ) + . . .

⊲ Error bound:
|\ (𝑒3 ) | ⩽ |𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 |𝑢1 + |𝑎1𝑡 + 𝑎2𝑡2 | (𝑢1 + 𝑢2 + 2𝑢1𝑢2)

+|𝑎2𝑡2 | (𝑢2 + 𝑢2

2
+ 2𝑢1𝑢2) +𝑂 (𝑢2

1
)

Table 1. Evaluation error examples.

Automatic linearized evaluation error expressions \ lin, such as in (6) and Example A in Table 1, are obtained

using Algorithm 2. Specifically, for an arithmetic expression with roundings 𝑒 , this algorithm recursively computes

an expression of the form \ lin =
𝑘∑
𝑖=1

\ lin,𝑖𝜖
[𝑢𝑖 ]
𝑒𝑖 , with symbolic 𝜖

[𝑢𝑖 ]
𝑒𝑖 (𝑖 ∈ [1 . . 𝑘]) for each term RN(𝑒𝑖 , 𝑢𝑖 ) in 𝑒 . The

coefficients \ lin,𝑖 are arithmetic expressions depending only on the input variables in 𝑒 . Note that RN(𝑒𝑖 , 𝑢𝑖 ) may

occur several times in 𝑒 , but the error variable 𝜖
[𝑢𝑖 ]
𝑒𝑖 is unique since the rounding operation is deterministic. This

allows to bound the linearized evaluation error as in (7).
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Proposition 1 (Correctness of Algorithm 2). Let 𝑒 be an arithmetic expression with roundings, and

\ lin =
𝑘∑
𝑖=1

\ lin,𝑖𝜖
[𝑢𝑖 ]
𝑒𝑖 the linearized expression for the evaluation error returned by Algorithm 2. If 𝑢𝑖 ⩽ 𝑢 for all

𝑖 ∈ [1 . . 𝑘], then:

|𝑒 − 𝑒∗ | ⩽
𝑘∑︁
𝑖=1

|\ lin,𝑖 |𝑢𝑖 + O
(
𝑢2

)
, as 𝑢 → 0.

However, in some cases, when several different precisions are used, higher order error terms may need to be

considered. A basic example (Example C) is shown in Table 1. The proposed implementation (similar to the linear

case algorithm) is discussed in Section 6.2.

Algorithm 2 LinEvalError(e)

Input: 𝑒 an arithmetic expression with explicit roundings.

Output: \
lin

the linearized evaluation error of 𝑒 .

if 𝑒 ∈ V then
return 0

else if 𝑒 = RN(𝑓 ,𝑢) then
\ ′
lin
← LinEvalError(𝑓 )

return \ ′
lin
+ 𝑓 ∗𝜖 [𝑢 ]

𝑓

else if 𝑒 = −𝑓 then
\ ′
lin
← LinEvalError(𝑓 )

return −\ ′
lin

else if 𝑒 = 𝑓 + 𝑔 then
\ ′
lin
← LinEvalError(𝑓 )

\ ′′
lin
← LinEvalError(𝑔)

return \ ′
lin
+ \ ′′

lin

else if 𝑒 = 𝑓 × 𝑔 then
\ ′
lin
← LinEvalError(𝑓 )

\ ′′
lin
← LinEvalError(𝑔)

return 𝑔∗\ ′
lin
+ 𝑓 ∗\ ′′

lin

end if

All in all, for the considered polynomial evaluation schemes, the functions \ lin,𝑖 are linear with respect to the

coefficients 𝒂 of 𝑝 (𝑡), that is 𝑢𝑖\ lin,𝑖 = 𝝅 𝑖 (𝑡)𝑇 𝒂, with 𝒂 ∈ R𝑛+1, 𝑡 ∈ R and for some 𝝅 𝑖 (𝑡) ∈ R𝑛+1
. Hence, we

obtain a linearized bound of the evaluation error of the form:

|\ lin (𝒂, 𝑡) | ⩽
𝑘∑︁
𝑖=1

|𝝅 𝑖 (𝑡)𝑇 𝒂 | := \ (𝒂, 𝑡). (8)

Example 1. For Horner evaluation, equation (7) gives:

𝝅1 (𝑡)𝑇 = (𝑢,𝑢𝑡, . . . , 𝑢𝑡𝑛−1, 𝑢𝑡𝑛),

𝝅2 (𝑡)𝑇 = (0, 2𝑢𝑡, . . . , 2𝑢𝑡𝑛−1, 2𝑢𝑡𝑛), . . . ,

𝝅𝑛 (𝑡)𝑇 = (0, 0, . . . , 2𝑢𝑡𝑛−1, 2𝑢𝑡𝑛)

𝝅𝑛+1 (𝑡)𝑇 = (0, 0, . . . , 0, 𝑢𝑡𝑛)
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3 SEMI-INFINITE PROGRAMMING FORMULATION

3.1 Problem (𝑃general) as a linear continuous SIP

Noting that Problem (𝑃general) is a piecewise-linear optimization problem and using the convex evaluation error

formula \ (𝒂, 𝑡) at point 𝑡 ∈ [𝑡𝑙 , 𝑡𝑟 ] obtained in Section 2, Problem (𝑃general) becomes Problem (𝑃 ′general) (see [8,
Section 4.3.1] for instance), with the compact index set 𝐼 = [𝑡𝑙 , 𝑡𝑟 ] and the monomial basis 𝝅0 (𝑡) = (1, . . . , 𝑡𝑛)𝑇 .

min

(𝑎,𝒂) ∈R𝑛+2
𝑎

s.t. |𝑓 (𝑡) − 𝝅0 (𝑡)𝑇 𝒂 | + \ (𝒂, 𝑡) − 𝑎 ⩽ 0, 𝑡 ∈ 𝐼 .
(𝑃 ′general)

Problem (𝑃 ′general) is a convex Semi-Infinite Programming (SIP) problem (see [45] which provides a compre-

hensive overview of SIP) that can be reformulated as a linear SIP problem, at the expense of a different index

set Ω replacing the previous index set 𝐼 . Here, the set of constraints of (𝑃 ′general) involving absolute values is

replaced by as many linear constraints as required to represent all possible sign combinations. The evaluation

error is as in equation (8), and define:

𝒙 = (𝑎, 𝒂) ∈ R𝑛+2, 𝒛 = (1, 0, . . . , 0) ∈ R𝑛+2,

𝜶 (𝑡, 𝜎0, . . . , 𝜎𝑘 ) = (1, 𝜎0𝝅0
𝑇 (𝑡) +

𝑘∑︁
𝑖=1

𝜎𝑖𝝅𝒊
𝑇 (𝑡))𝑇 ∈ R𝑛+2,

𝔖 = {−1, 0, 1}𝑘+1, 𝜔 = (𝑡, 𝜎0, . . . , 𝜎𝑘 ) ∈ Ω := 𝐼 ×𝔖.

Then, Problem (𝑃 ′general) is exactly the following linear SIP:

min

𝒙∈R𝑑
𝒛𝑇𝒙

s.t. 𝜶 (𝜔)𝑇𝒙 ⩾ 𝑐 (𝜔), 𝜔 ∈ Ω,
(𝑃 )

where 𝑑 = 𝑛 + 2, 𝑐 (𝜔) = 𝜎0 𝑓 (𝑡), Ω is a compact metric space and the function 𝑔(𝒙, 𝜔) = 𝑐 (𝜔) − 𝜶 (𝜔)𝑇𝒙 ⩽ 0

defining the feasible set is a continuous function from R𝑛+2 × Ω into R. As a result of the definition of the set Ω
and of the continuity properties of the functions 𝜶 (·) and 𝑐 (·) on Ω, the LSIP (𝑃 ′general) is called continuous [30,

Section 5.2]. Note that for𝔖′ = {−1, 1} × {0}𝑘 and Ω′ = 𝐼 ×𝔖′ ⊆ Ω, (𝑃minimax) is exactly retrieved as shown in

the next example.

Example 2. For 𝑛 = 5, Problem (𝑃minimax) is:

min

(𝑎,𝒂) ∈R7

𝑎

s.t. (1, 𝜎01, 𝜎0𝑡, . . . , 𝜎0𝑡5) (𝑎, 𝑎0, 𝑎1, . . . , 𝑎5)𝑇 ⩾ 𝜎0 𝑓 (𝑡),
𝜎0 = ±1, 𝑡 ∈ 𝐼 .

(Example 2 (a))

while Problem (𝑃 ′
general

), assuming Horner evaluation is:

min

(𝑎,𝒂) ∈R7

𝑎

s.t. (1, 𝜎0 + 𝜎1𝑢, (𝜎0 + 𝜎1𝑢 + 𝜎22𝑢)𝑡, . . . ,
(𝜎0 + 𝜎1𝑢 + . . . + 𝜎5𝑢)𝑡5) (𝑎, 𝑎0, 𝑎1, . . . , 𝑎5)𝑇 ⩾ 𝜎0 𝑓 (𝑡),

𝜎0 = ±1, 𝜎1 = ±1, . . . , 𝜎5 = ±1, 𝑡 ∈ 𝐼 .

(Example 2 (b))

In Section 4 an exchange algorithm which solves Problem (𝑃 ′general) is presented. It can be seen as a general-

ization, in the above framework, of the Remez exchange algorithm, which solves Problem (𝑃minimax). To prove

its correctness, important duality and discretization properties of continuous linear SIP problems are recalled,

closely following the survey [50] and the book [30].
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About the Haar condition. In the classical setting of Problem (𝑃minimax), the convergence of the Remez exchange

algorithm as well as the uniqueness of the optimal solution is guaranteed by the so-called Haar condition satisfied

by the system of (𝑛 + 1) linearly independent functions 𝝋 (𝑡) = (𝜑0 (𝑡), . . . , 𝜑𝑛 (𝑡))𝑇 used for the approximation

over 𝐼 = [𝑡ℓ , 𝑡𝑟 ]. This condition states that for any set of 𝑛 + 1 distinct points 𝑡ℓ ⩽ 𝑡1 < 𝑡2 < · · · < 𝑡𝑛+1 ⩽ 𝑡𝑟 , the

(𝑛 + 1) × (𝑛 + 1) determinant det

(
𝜑𝑖 (𝑡 𝑗 )

)
1⩽ 𝑗⩽𝑛+1
0⩽𝑖⩽𝑛 is nonzero. Equivalently, any nontrivial combination 𝝋 (𝑡)𝑇 𝒂 =

𝑎0𝜑0 (𝑡) + · · · +𝑎𝑛𝜑𝑛 (𝑡) (i.e., at least one 𝑎𝑖 is nonzero) has at most 𝑛 distinct zeros over 𝐼 (see, e.g., [44, §7.3] or [19,

§3.8] for more details). This condition is notably satisfied by the monomial basis 𝝋 (𝑡) = 𝝅0 (𝑡) = (1, 𝑡, . . . , 𝑡𝑛)𝑇
considered in this article.

For Problem (𝑃general), however, the index set Ω is no longer a real segment but a compact set isomorphic

to 3
𝑘+1

copies of 𝐼 . The Haar condition is not satisfied over it in general for the basis considered here, 𝝋 (𝜔) =
𝝋 (𝑡, 𝜎0, . . . , 𝜎𝑘 ) =

∑𝑘
𝑖=0 𝜎𝑖𝝅𝒊 (𝑡). To illustrate this issue, consider the case 𝑛 = 1with the Horner evaluation scheme.

Using the evaluation error formulas of Example 1, we have 𝝋 (𝜔) = (𝜎0 +𝑢𝜎1, 𝑡 (𝜎0 +𝑢𝜎1 +𝑢𝜎2)). It is then possible

to choose two distinct points 𝜔,𝜔 ′ ∈ Ω so that the associated 2 × 2 determinant vanishes. For example, take

𝑡, 𝑡 ′ ∈ 𝐼 with 𝑡 ′ = 𝑡 (1 + 2𝑢), and define 𝜔 = (𝑡, 1, 1, 1), 𝜔 ′ = (𝑡 ′, 1, 1,−1). Then 𝝋 (𝜔) = 𝝋 (𝜔 ′) = (1 + 𝑢, 𝑡 (1 + 2𝑢)),
hence the determinant is zero.

For this reason, the iterative exchange algorithm presented in Section 4 relies on an additional hypothesis

(Assumption 1) to prove its convergence.

3.2 Duality and Discretization for Continuous LSIP Problems

For a continuous LSIP Problem (𝑃 ), we denote respectively by val(𝑃) and Sol(𝑃), its optimal value and the

set of its optimal solutions. The concept of duality has a central role in the design of exchange algorithms for

SIP problems and will stand at the core of the specific exchange algorithm presented in Section 4. Associated

with (𝑃 ′general), different dual problems can be specified depending of the choice of the primal constraint and

variable spaces [3]. The problem (𝑃 ′general) is a continuous LSIP problem and if we define the continuous mapping

𝐺 : 𝒙 ↦→ 𝑔(𝒙, ·) fromR𝑑
to the Banach space of continuous functions C(Ω), equipped with the uniform norm

∥ℎ∥Ω = sup𝜔∈Ω |ℎ(𝜔) |, it is natural to embed the constraints of (𝑃 ′general) into the functional Banach space C(Ω).
Its topological dual is the space C(Ω)∗ of signed Borel measures ` over (Ω,B) where B is the Borel sigma algebra

of Ω (see the Riesz representation theorem in [38, Section 5.5] and [49, Section 21.5]). The dual norm of C(Ω)∗
is |` | (Ω), where |` | is the total variation of ` and the bilinear form pairing C(Ω) and C(Ω)∗ is defined by the

duality bracket:

⟨ℎ, `⟩ =
∫
Ω
ℎ(𝜔)𝑑` (𝜔). (9)

For a measure ` ∈ C(Ω)∗, its support is the smallest closed subset Γ of Ω such that |` | (Ω \ Γ) = 0. A positive

measure ` is denoted by ` ⪰ 0. A classical example of a positive measure with discrete support is the Dirac

measure of support {𝜔 𝑗 }:

𝛿𝜔 𝑗
(𝐴) =

{
0 if 𝜔 𝑗 ∉ 𝐴,

1 if 𝜔 𝑗 ∈ 𝐴,
(10)

for any set 𝐴 ⊆ Ω..
The dual problem of (𝑃 ′general) is now derived by using the usual Lagrangian approach. The Lagrangian of

(𝑃 ′general) is defined as:

L(𝑥, `) := 𝑧𝑇𝑥 + ⟨𝐺 (𝑥), `⟩ = 𝑧𝑇𝑥 +
∫
Ω
[𝑐 (𝜔) − 𝛼 (𝜔)𝑇𝑥]d` (𝜔), 𝑥 ∈ R𝑑 , ` ⪰ 0. (11)
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It is straightforward that:

sup

`⪰0
L(𝑥, `) =

{
𝑧𝑇𝑥 if 𝛼 (𝜔)𝑇𝑥 ⩾ 𝑐 (𝜔) for all 𝜔 ∈ Ω,
+∞ otherwise.

Hence, (𝑃) is equivalent to inf𝑥∈R𝑑 sup`⪰0 L(𝑥, `). Noticing that:

inf

𝑥∈R𝑑
L(𝑥, `) =

{∫
Ω
𝑐 (𝜔)d` (𝜔) if

∫
Ω
𝛼 (𝜔)d` (𝜔) = 𝑧,

−∞ otherwise

the Lagrangian dual problem (𝐷) related to the primal problem (𝑃) is obtained as the relaxation sup

`⪰0
inf

𝑥∈R𝑑
L(𝑥, `),

which reads:

max

`∈C(Ω)∗

∫
Ω
𝑐 (𝜔)d` (𝜔),

s.t.

∫
Ω
𝜶 (𝜔)d` (𝜔) = 𝒛,

` ⪰ 0.

(𝐷)

Problem (𝐷) is an LP problem defined in the space of positive measures which is hard to solve in general. If

the weak duality, that is val(𝐷) ⩽ val(𝑃) always holds, the central issue pertaining to duality theory is to find

conditions on the primal and/or dual to guarantee that val(𝐷) = val(𝑃).
Definition 1. [50] It is said that the ’no duality gap’ property holds if val(𝐷) = val(𝑃), and the ’strong duality’

property holds if val(𝐷) = val(𝑃) and the dual problem has an optimal solution.

These two properties of interest are strongly connected to the reducibility or discretizability properties of

both problems (𝑃) and (𝐷). A discretization (𝑃𝑚) of (𝑃) for a set 𝝎 = {𝜔1, . . . , 𝜔𝑚} ⊆ Ω is the following linear

program:

min

𝒙∈R𝑚
𝒛𝑇𝒙

s.t. 𝜶 (𝜔 𝑗 )𝑇𝒙 ⩾ 𝑐 (𝜔 𝑗 ), 𝑗 = 1, · · ·𝑚.
(𝑃𝑚)

Since the feasible set of (𝑃) is included in the feasible set of (𝑃𝑚), we have that val(𝑃𝑚) ⩽ val(𝑃). The existence
of a discretization (𝑃𝑚) such that the equality holds is a particularly appealing feature of some linear SIPs since

the solution of (𝑃) may be obtained by the solution of (𝑃𝑚) if we are able to find the corresponding set 𝝎.

Definition 2. [50] (𝑃) is said to be reducible if there exists a discretization (𝑃𝑚) defined by the subset

{𝜔1, . . . , 𝜔𝑚} ⊆ Ω such that val(𝑃𝑚) = val(𝑃).

Concerning the dual problem (𝐷), a discretized counterpart (𝐷𝑚) of (𝐷) is obtained, by restricting the support
of ` ⪰ 0 to {𝜔1, . . . , 𝜔𝑚}, that is considering positive discrete measures of the form ` =

∑𝑚
𝑗=1 𝑦 𝑗𝛿𝜔 𝑗

with 𝑦 𝑗 ⩾ 0:

max

𝑦 𝑗⩾0
𝑗∈[1..𝑚]

𝑚∑︁
𝑗=1

𝑐 (𝜔 𝑗 )𝑦 𝑗

s.t.

𝑚∑︁
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 ) = 𝒛,

(𝐷𝑚)

with val(𝐷𝑚) ⩽ val(𝐷) since the feasible set of (𝐷𝑚) is included in the feasible set of (𝐷). It is important to note

that the LP dual of the discretized problem (𝑃𝑚) is exactly (𝐷𝑚) which implies that val(𝐷𝑚) = val(𝑃𝑚) provided
that none of (𝑃𝑚) or (𝐷𝑚) is infeasible.



10 • Denis Arzelier, Florent Bréhard, Tom Hubrecht, and Mioara Joldes

So far, under these mild assumptions, we have that val(𝐷𝑚) = val(𝑃𝑚) ⩽ val(𝐷) ⩽ val(𝑃) and conditions

for having only equalities (respectively reducibility and strong duality properties) may be obtained by using

conjugate duality theory as developed in [50, Theorems 2.3, 3.1 and 3.2] and [7, Thm 5.99].

Theorem 1. [50, Thm. 2.3, 3.1, 3.2], [7, Thm 5.99] Under the assumptions:

A1 Ω is a compact metric space, 𝜶 : Ω → R𝑑 and 𝑐 : Ω → R are continuous functions;

A2 val(𝑃) is finite;
A3 (primal Slater’s condition): there exists 𝒙◦

such that:

𝜶 (𝜔)𝑇𝒙◦ > 𝑐 (𝜔), for all 𝜔 ∈ Ω; (12)

A4 (dual Slater’s condition): there exist 𝜔1, . . . , 𝜔𝑑 ∈ Ω with (𝜶 (𝜔1), · · · ,𝜶 (𝜔𝑑 )) linearly independent such

that:

∃ 𝑦1, . . . , 𝑦𝑑 > 0, 𝒛 =

𝑑∑︁
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 ), (13)

the following statements are true:

(i) Sol(𝑃) ≠ ∅ and is bounded;
(ii) Sol(𝐷) ≠ ∅ and is bounded;
(iii) Problem (𝑃) is reducible to a Problem (𝑃𝑚) with𝑚 ⩽ 𝑑 ;

(iv) val(𝑃) = val(𝐷) = val(𝑃𝑚) = val(𝐷𝑚).

Proposition 2. Assumptions A1-A4 are satisfied for our Problem (𝑃 ′general) and therefore results (i)–(iv) of

Theorem 1 apply.

Proof.

A1 By construction, our set Ω is a compact metric space and 𝛼 and 𝑐 are polynomials and therefore continuous

on Ω;
A2 val(𝑃) = +∞ means that the primal problem (𝑃 ′general) is not feasible but 𝒙 = (max

𝑡 ∈𝐼
|𝑓 (𝑡) |, 0 · · · , 0) is a

feasible point for (𝑃 ′general), therefore val(𝑃) < +∞. In addition, val(𝑃) > −∞ since 𝑎 ⩾ 0 by construction

and for all feasible points of (𝑃 ′general);
A3 It may be easily deduced from the proof of A2 that 𝒙◦ = (max

𝑡 ∈𝐼
|𝑓 (𝑡) | +𝜍, 0 · · · , 0) is a strictly feasible point

for (𝑃 ′general) for any 𝜍 > 0;

A4 An explicit instance for {𝜔1, . . . , 𝜔𝑑 } is provided by Algorithm InitPoints in Section 4 (see Lemma 1 for

its correctness). □

Remark 3.1. The dual Slater’s condition A4 is equivalent to the usual cone condition given in [50, Eq. (2.20)],

which is the regularity condition involving the moment cone of the LSIP Problem (𝑃) [29]. By the fundamental result

of Rogosinski [48], this cone is equivalently represented in the space of positive Borel measures. The condition A4 is

therefore equivalent to the regularity condition given in [7, Eq. (5.259)].

The fact that both (𝑃) and (𝐷) are reducible to a discretization of size of at most 𝑑 , allows for recasting the

problem (𝑃 ′general) as the problem of finding the right discretization {𝜔1, . . . , 𝜔𝑚}, (𝑚 ⩽ 𝑑), such that item (iv)

of Theorem 1 applies and to solve the associated (𝑃𝑚) and/or (𝐷𝑚). This goal may be reached by tailoring the

general exchange algorithm for semi-infinite linear programs presented in [16] to our specific case.

This algorithm can be seen as a particular instance of the dual-simplex primal-exchange algorithm [30]. The

main idea is to keep a set of𝑚 = 𝑑 = 𝑛 + 2 elements 𝝎 (ℓ ) = {𝜔 𝑗
(ℓ ) }𝑚𝑗=1, which is updated at each iteration ℓ

by a one-element exchange rule. This exchange rule requires finding the solution 𝒚 (ℓ ) of the discretized dual

problem (𝐷 (ℓ )𝑚 ), with 𝝎 (ℓ ) . Such a solution is a feasible (but not necessarily optimal) point of the dual Problem (𝐷).
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Moreover, the objective value z𝑇 x(ℓ ) of (𝑃 (ℓ )𝑚 ) and (𝑃 ) for the instance 𝒙 (ℓ ) := (𝑎 (ℓ ) , 𝒂 (ℓ ) ), obtained by solving the

primal (𝑃 (ℓ )𝑚 ), is equal to the objective value of (𝐷) for the instance 𝒚 (ℓ ) 5. Hence, either 𝒙 (ℓ ) is a feasible solution
of Problem (𝑃 ) by Theorem 1, or it is an infeasible point of Problem (𝑃 ). In the latter case, one of the violated

constraints (the worst one in terms of feasibility) is replaced by a new one, indexed by 𝜔∗ (ℓ ) , in an exchange step

in order to increase the objective value of the dual and works towards primal feasibility.

4 ITERATIVE EXCHANGE ALGORITHM

Algorithm Eval&ApproxOptimize computes a degree-𝑛 best polynomial approximation with respect to both

evaluation and approximation errors, i.e. it solves (𝑃 ′general) based on developments from Section 3.2. Regarding

the main steps of the new algorithm, an analogy with Remez is as follows:

- InitPoints provides a good set of initial points.

- At each step, SolvePrimal solves a linear system of equations (built w.r.t. the current set of points), where the

variables are the polynomial coefficients.

- Then, FindNewIndex finds a new point where the total error is maximal.

- Finally, Exchange replaces one point from the current set with this new point.

However, when considering both errors, one can not only rely on the primal problem (coefficients reconstruc-

tion), but also needs the dual problem. This implies:

- Besides classical points, a combination of signs (signatures) is required at each step.

- InitPoints and Exchange need the solution of the dual problem.

A running example for this algorithm is given in Section 6. We focus now on its correctness, which is stated in

Theorem 2. For this, one needs an assumption on the dual solution, which always holds in the Remez exchange

algorithm. It is not proven in our setting, but it never failed in practice.

Assumption 1. At each iteration ℓ , the solution 𝒚 (ℓ ) of the dual discretized Problem (𝐷 (ℓ )𝑚 ) is an interior point,

that is 𝑦
(ℓ )
𝑗

> 0 for all 𝑗 ∈ [1 . .𝑚].

Remark 4.1. Assumption 1 guarantees that at each iteration, the exchange rule of Exchange is well-defined

and that the linear systems spanned by 𝜶 (𝜔 𝑗 ) and solved in the routines InitPoints, SolvePrimal and Exchange

are always invertible. It is also crucial to prove the convergence of the overall Algorithm Eval&ApproxOptimize

(Theorem 2 below). Although this hypothesis may seem an ad-hoc assumption, it is justified by the following intuition.

As noted at the end of Section 3.1, the system of 𝑛 + 1 functions 𝝋 (𝜔) = (𝜑0 (𝜔), . . . , 𝜑𝑛 (𝜔)) =
∑𝑘

𝑖=0 𝜎𝑖𝝅𝒊 (𝑡) does not
satisfy, in general the Haar condition on 𝐼 , which would be the key to guarantee that this assumption always holds.

However, since 𝑢 = 2
−𝑝 ≪ 1, this system may be viewed as a slight perturbation of 𝝅0 (𝑡) = (1, 𝑡, . . . , 𝑡𝑛), which

satisfies the Haar condition on 𝐼 . Hence, we expect that the (𝑛 + 1)-tuples of points that violate the Haar condition by

cancelling the corresponding determinant, contain at least two very close points, within a distance proportional to

𝑢 (this was notably the case for the counter-example given previously). On the other hand, we expect that at each

iteration, similarly to the classical Remez exchange algorithm (see, e.g., [44, Thm. 9.2]), the points 𝑡 𝑗 associated to

𝜔 𝑗 are spaced far enough apart, so that the determinant of the Haar condition remains nonzero. However, note that

Assumption 1 never failed in our practical experiments.

In addition, one needs preliminary correctness proofs of InitPoints, SolvePrimal, FindNewIndex, and

Exchange.

Theorem 2. Let 𝑓 be a continuous function over an interval 𝐼 = [𝑡ℓ , 𝑡𝑟 ], a degree 𝑛 ⩾ 0, a linearized evaluation

error bound \ and a tolerance parameter 𝜏 > 0. Under Assumption 1, Eval&ApproxOptimize(𝑓 , 𝑛, 𝐼 , \, 𝜏) terminates

5
The feasible set of (𝑃 ) is included in the feasible set of (𝑃 (ℓ )𝑚 ), for all ℓ .



12 • Denis Arzelier, Florent Bréhard, Tom Hubrecht, and Mioara Joldes

and returns a degree-𝑛 polynomial approximation for 𝑓 with a total error Y (approximation and evaluation) satisfying:

Y∗ ⩽ Y ⩽ (1 + 𝜏)Y∗, (14)

where Y∗ is the total error of a best degree-𝑛 polynomial approximation of 𝑓 .

Proof. • It is proven by induction that the following properties hold at each iteration ℓ ⩾ 0:

(𝑖) {𝜶 (𝜔 (ℓ )
𝑗
)}𝑛+2𝑗=1 is a basis ofR

𝑛+2
;

(𝑖𝑖) 𝒚 (ℓ ) is the optimal solution of Problem (𝐷𝑚) for 𝝎 (ℓ ) ;
(𝑖𝑖𝑖) 𝒙 (ℓ ) is the optimal solution of Problem (𝑃𝑚) for 𝝎 (ℓ ) ;

(𝑖𝑣) 𝜔 (ℓ )∗ = argmax𝜔∈Ω
(
𝑐 (𝜔) − 𝜶 (𝜔)𝑇𝒙 (ℓ )

)
.

For ℓ = 0, InitPoints(𝑛, 𝐼 ) returns 𝝎 (0) , 𝒚 (0) satisfying (𝑖) and (𝑖𝑖). Then SolvePrimal(𝑓 , 𝑛, \,𝝎 (0) ) computes

𝒙 (0) = (𝑎 (0) , 𝒂 (0) ) satisfying (𝑖𝑖𝑖). Finally, FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂 (0) ) gives 𝜔 (0)∗ , 𝑎
(0)
∗ satisfying (𝑖𝑣).

For the inductive step, Exchange(𝑛, \,𝝎 (ℓ ) ,𝒚 (ℓ ) , 𝜔 (ℓ )∗ ) computes 𝝎 (ℓ+1) , 𝒚 (ℓ+1) satisfying (𝑖) and (𝑖𝑖), by in-

duction hypothesis on 𝝎 (ℓ ) , 𝒚 (ℓ ) , 𝜔 (ℓ )∗ . Then, SolvePrimal(𝑓 , 𝑛, \,𝝎 (ℓ+1) ) and FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂 (ℓ+1) )

compute 𝒙 (ℓ+1) , 𝜔 (ℓ+1)∗ , 𝑎
(ℓ+1)
∗ satisfying (𝑖𝑖𝑖) and (𝑖𝑣).

•Moreover, at each iteration ℓ , we have 𝑎 (ℓ ) ⩽ Y∗ ⩽ 𝑎
(ℓ )
∗ . Indeed, 𝒙 (ℓ ) is the optimal solution of the discretized

Problem (𝑃𝑚) for 𝝎 (ℓ ) , whose objective value 𝑎
(ℓ )

is less or equal to the optimal value Y∗ of Problem (𝑃 ). On the

other side, 𝑎
(ℓ )
∗ is the total error of degree-𝑛 polynomial 𝒂 (ℓ )𝑇𝝅0 (𝑡) and therefore, it is greater or equal to the

optimal error Y∗. In addition, [5, Lemma 5, Appendix] proves 𝑎 (ℓ ) ⩽ 𝑎 (ℓ+1) .
• Finally, the convergence of this iterative process is proved by [16, Theorem 2.1], relying on Assumption 1.

Hence, Algorithm Eval&ApproxOptimize terminates at some iteration ℓ , with 𝑎
(ℓ )
∗ ⩽ (1 + 𝜏)𝑎 (ℓ ) , yielding the

enclosure (14). □

Algorithm 3 Eval&ApproxOptimize(𝑓 , 𝑛, 𝐼 , \, 𝜏)

Input: function 𝑓 , 𝑛 ⩾ 0, 𝐼 , \ (𝒂, 𝑡) as in (8), 𝜏 > 0.

Output: (𝑎, 𝒂) solution of Problem (𝑃 ) within accuracy 𝜏 .

⊲ Initialization

1: (𝝎 (0) ,𝒚 (0) ) ← InitPoints(𝑛, 𝐼 )

2: (𝑎 (0) , 𝒂 (0) ) ← SolvePrimal(𝑓 , 𝑛, \,𝝎 (0) )
3: (𝜔∗ (0) , 𝑎 (0)∗ ) ← FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂 (0) )
4: ℓ ← 0

⊲ Iterate while accuracy 𝜏 not reached

5: while 𝑎 (ℓ )∗ /𝑎 (ℓ ) > 1 + 𝜏 do
6: (𝝎 (ℓ+1) ,𝒚 (ℓ+1) ) ← Exchange(𝑛, \,𝝎 (ℓ ) ,𝒚 (ℓ ) , 𝜔 (ℓ )∗ )

7: (𝑎 (ℓ+1) , 𝒂 (ℓ+1) ) ← SolvePrimal(𝑓 , 𝑛, \,𝝎 (ℓ+1) )
8: (𝜔∗ (ℓ+1) , 𝑎 (ℓ+1)∗ ) ← FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂 (ℓ+1) )
9: ℓ ← ℓ + 1
10: end while
11: return (𝑎 (ℓ ) , 𝒂 (ℓ ) )

Algorithm InitPoints. Algorithm InitPoints essentially initializes the dual problem (𝐷𝑛+2) with Chebyshev

nodes for heuristic efficiency and signatures corresponding to the sign alternation of the classical Remez exchange
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algorithm (without the evaluation error term). This heuristic is commonly used in the classical setting [11]. It

produces an initial dual optimal solution 𝒚 for this particular discretization.

Algorithm 4 InitPoints(𝑛, 𝐼 )

Input: 𝑛 ⩾ 0, 𝐼 = [𝑡ℓ , 𝑡𝑟 ].
Output: 𝝎 ∈ Ω𝑛+2

and solution 𝒚 of Problem (𝐷𝑛+2).

⊲ Initialize with Chebyshev nodes and Remez constraints

1: for 𝑗 in [1 . . 𝑛 + 2] do
2: 𝑡 𝑗 ← 𝑡ℓ+𝑡𝑟

2
+ cos

(
( 𝑗−1)𝜋
𝑛+1

)
𝑡ℓ−𝑡𝑟
2

3: 𝝈 𝑗 ← ((−1) 𝑗 , 0, . . . , 0)
4: 𝜔 𝑗 ← (𝑡 𝑗 ,𝝈 𝑗 )
5: end for
⊲ Compute dual solution

6: Solve for 𝒚 the linear system

𝑛+2∑
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 ) = 𝒛

7: return (𝝎,𝒚)

Lemma 1 (Correctness of InitPoints). InitPoints(𝑛, 𝐼 ) computes 𝝎 = {𝜔 𝑗 }𝑛+2𝑗=1 ∈ Ω𝑛+2
and 𝒚 ∈ R𝑛+2

satisfying:

• {𝜶 (𝜔 𝑗 )}𝑛+2𝑗=1 is a basis ofR
𝑛+2

;

• 𝒚 is the optimal solution of Problem (𝐷𝑛+2) for 𝝎;

• 𝑦 𝑗 > 0 for all 𝑗 ∈ [1 . . 𝑛 + 2].
Proof. Let 𝑨(𝝎) denote the (𝑛 + 2) square matrix whose columns are the 𝜶 (𝜔 𝑗 ). Since 𝝈𝒋 =

(
(−1) 𝑗 , 0, . . . , 0

)
,

we have

𝑨(𝝎) =

©«

1 . . . . . . 1

−1 . . . . . . (−1)𝑛+2
−𝑡1 . . . . . . (−1)𝑛+2𝑡𝑛+2
...

. . .
...

...
. . .

...

−𝑡𝑛
1

. . . . . . (−1)𝑛+2𝑡𝑛𝑛+2

ª®®®®®®®®®¬
.

First, we prove the existence of a feasible point 𝒚 in Problem (𝐷𝑛+2) for 𝝎, that is 𝑨(𝝎)𝒚 = 𝒛 and 𝒚 ⩾ 0.

From Farkas’ lemma [23, Section 2.4.2.], if such a vector 𝒚 does not exist, then there exists 𝒙 = (𝑎, 𝒂) ∈ R𝑛+2
s.t.

𝒛𝑇𝒙 = 𝑎 < 0 and 𝑨(𝝎)𝑇𝒙 ⩾ 0, that is

𝑎 + (−1) 𝑗𝒂𝑇𝝅0 (𝑡 𝑗 ) ⩾ 0, 𝑗 ∈ [1 . . 𝑛 + 2] .
Since 𝑎 < 0, this implies that sign(𝒂𝑇𝝅0 (𝑡 𝑗 )) = (−1) 𝑗 . But 𝒂𝑇𝝅0 (𝑡) is a polynomial of degree at most 𝑛, hence it

cannot strictly change signs 𝑛 + 2 times. Consequently, Problem (𝐷𝑛+2) has a feasible point 𝒚.
Now, suppose that the columns of 𝑨(𝝎) are not linearly independent, or that 𝑦 𝑗 = 0 for some 𝑗 . Both cases

imply that there exists I ⊂ [1 . . 𝑛 + 2] of size 𝑛 + 1, and �̃� ∈ R𝑛+1
s.t.

∑
𝑖∈I

𝑦𝑖𝜶 (𝜔𝑖 ) = 𝒛. The (𝑛 + 1) × (𝑛 + 1)

subsystem extracted by removing the first line of this system of linear equations clearly shows that the family

{𝝅0 (𝑡𝑖 )}𝑖∈I is linearly dependent (remember that 𝒛 = [1 0 · · · 0]𝑇 ). But the Vandermonde determinant of this

system cannot vanish since the 𝑡𝑖 are pairwise distinct. Therefore, {𝜶 (𝜔𝑖 )}𝑛+2𝑖=1 is a basis ofR
𝑛+2

, and 𝑦𝑖 > 0 for

all 𝑖 .
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Finally, since 𝑨(𝝎) is invertible, 𝒚 is the unique optimal feasible point of (𝐷𝑛+2). □

Algorithm SolvePrimal. This algorithm computes the optimal solution 𝒙 = (𝑎, 𝒂) of Problem (𝑃𝑛+2) corre-
sponding to the optimal dual solution 𝒚 of (𝐷𝑛+2). This means that the optimal primal and dual solutions are

related to the same discretization 𝝎 and that they satisfy the complementary slackness property of the associated

finite-dimensional LP problems [29].

Algorithm 5 SolvePrimal(𝑓 , 𝑛, \,𝝎)

Input: function 𝑓 , 𝑛 ⩾ 0, \ the evaluation error, 𝝎 ∈ Ω𝑛+2
.

Output: (𝑎, 𝒂) solution of Problem (𝑃𝑛+2) for 𝝎.

1: Solve for (𝑎, 𝒂) ∈ R𝑛+2
the linear system:

𝜶 (𝜔 𝑗 )𝑇 (𝑎, 𝒂) = 𝑐 (𝜔 𝑗 ), 𝑗 ∈ [1 . . 𝑛 + 2]
2: return (𝑎, 𝒂)

Lemma 2 (Correctness of SolvePrimal). If {𝜶 (𝜔 𝑗 )}𝑛+2𝑗=1 is a basis ofR
𝑛+2

and Problem (𝐷𝑛+2) is feasible for
𝝎, then SolvePrimal(𝑓 , 𝑛, \,𝝎) computes the optimal solution 𝒙 = (𝑎, 𝒂) of Problem (𝑃𝑛+2).

Proof. Algorithm SolvePrimal computes the solution 𝒙 ∈ R𝑛+2
of 𝜶 (𝜔 𝑗 )𝑇𝒙 = 𝑐 (𝜔 𝑗 ) for 𝑗 ∈ [1 . . 𝑛 + 2]. We

show that 𝒙 is the optimal solution of Problem (𝑃𝑛+2) for 𝝎.

Let �̃� be any feasible point in (𝑃𝑛+2). Since the dual Problem (𝐷𝑛+2) for 𝝎 is feasible and bounded, the primal

Problem (𝑃𝑛+2) is bounded. The feasibility of (𝐷𝑛+2) means that there exists 𝒚 ⩾ 0 s.t. 𝒛 =
𝑛+2∑
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 ). Then

𝒛𝑇 �̃� =

𝑛+2∑︁
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 )𝑇 �̃� ⩾
𝑛+2∑︁
𝑗=1

𝑦 𝑗𝑐 (𝜔 𝑗 ) =
𝑛+2∑︁
𝑗=1

𝑦 𝑗𝜶 (𝜔 𝑗 )𝑇𝒙 = 𝒛𝑇𝒙,

thereby establishing optimality of 𝒙 . □

Algorithm FindNewIndex. In this algorithm, an index 𝜔∗ is chosen so that the best possible increase in the

objective of the dual problem is achieved when adding it to the actual discretization 𝝎. This index is precisely the

one corresponding to the most violated constraint of the primal problem (𝑃).

Algorithm 6 FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂)

Input: function 𝑓 , 𝑛 ⩾ 0, 𝐼 = [𝑡ℓ , 𝑡𝑟 ], \ the evaluation error as in (8), coefficients 𝒂 ∈ R𝑛+1
.

Output: (𝜔∗, 𝑎∗) with 𝜔∗ = (𝑡∗,𝝈∗) ∈ Ω
⊲ Compute maximal error in absolute value

1: 𝑡∗ ← argmax

𝑡ℓ⩽𝑡⩽𝑡𝑟
|𝒂𝑇 𝝅0 (𝑡) − 𝑓 (𝑡) | +

𝑘∑︁
𝑖=1

|𝒂𝑇 𝝅𝑖 (𝑡) |

2: 𝑎∗ ← max

𝑡ℓ⩽𝑡⩽𝑡𝑟
|𝒂𝑇 𝝅0 (𝑡) − 𝑓 (𝑡) | +

𝑘∑︁
𝑖=1

|𝒂𝑇 𝝅𝑖 (𝑡) |

⊲ Reconstruct signature

3: 𝜎∗0 ← −sign(𝒂𝑇 𝝅0 (𝑡∗) − 𝑓 (𝑡∗))
4: 𝜎∗𝑖 ← −sign(𝒂𝑇 𝝅𝑖 (𝑡∗)), 𝑖 ∈ [1 . . 𝑘]
5: 𝜔∗ ← (𝑡∗,𝝈∗)
6: return (𝜔∗, 𝑎∗)
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Lemma 3 (Correctness of FindNewIndex). Given 𝒙 = (𝑎, 𝒂), FindNewIndex(𝑓 , 𝑛, 𝐼 , \, 𝒂) computes 𝜔∗ and 𝑎∗
corresponding to the most violated constraint of the primal problem (P):

𝜔∗ = argmax

𝜔∈Ω

(
𝑐 (𝜔) − 𝜶 (𝜔)𝑇𝒙

)
,

𝑎∗ − 𝑎 = max

𝜔∈Ω

(
𝑐 (𝜔) − 𝜶 (𝜔)𝑇𝒙

)
.

Proof. We have

max

𝜔∈Ω

(
𝑐 (𝜔) − 𝜶 (𝜔)𝑇𝒙

)
= max

𝜔=(𝑡,𝝈 ) ∈Ω

(
𝜎0

(
𝑓 (𝑡) − 𝒂𝑇𝝅0 (𝑡)

)
−

𝑘∑︁
𝑖=1

𝜎𝑖𝒂
𝑇𝝅𝒊 (𝑡)

)
− 𝑎

= max

𝑡ℓ⩽𝑡⩽𝑡𝑟

(
|𝒂𝑇𝝅0 (𝑡) − 𝑓 (𝑡) | +

𝑘∑︁
𝑖=1

|𝒂𝑇𝝅𝒊 (𝑡) |
)
− 𝑎.

Therefore, by computing 𝑡∗ (line 1) and 𝝈∗ (lines 3-4), Algorithm FindNewIndex ensures that 𝜔∗ := (𝑡∗,𝝈∗) is
the index of the most violated constraint, with

𝑐 (𝜔∗) − 𝜶 (𝜔∗)𝑇𝒙 = 𝑎∗ − 𝑎 ⩾ 0. □

Although the formulation of FindNewIndex theoretically requires the values of 𝑓 over thewhole interval [𝑡𝑙 , 𝑡𝑟 ],
which would contradict a black-box approach, in practice FindNewIndex is implemented via a discretization of

[𝑡𝑙 , 𝑡𝑟 ], evaluating 𝑓 on it, and then picking 𝑡∗ among these grid points.

Algorithm Exchange. Given an index set 𝝎 =
{
𝜔 𝑗

}𝑛+2
𝑗=1

, the optimal solution𝒚 of the associated discretized dual

problem (𝐷𝑛+2) and the index 𝜔∗ computed by algorithm FindNewIndex and corresponding to the most violated

constraint of the primal problem (𝑃), the objective of Algorithm Exchange is twofold. Firstly, the new index 𝜔∗
will replace one element 𝜔 𝑗0 of 𝝎 so that the discretized dual problem (𝐷 ′𝑛+2) associated to the resulting index

set 𝝎′ = 𝝎 \
{
𝜔 𝑗0

}
∪ {𝜔∗} improves the approximation of the optimal value val(𝐷) i.e. val(𝐷 ′𝑛+2) ⩾ val(𝐷𝑛+2).

Secondly, the index 𝜔 𝑗0 is selected in order to guarantee the feasibility of the new solution 𝒚′
of the linear system

𝑛+2∑︁
𝑗=1

𝑦′𝑗𝛼 (𝜔 ′𝑗 ) = 𝑧, (𝑦′𝑖 ⩾ 0, for 𝑖 = 1, · · · , 𝑛 + 2) and therefore the optimality of 𝒚′
for the problem (𝐷 ′𝑛+2). Keeping

this last point in mind and denoting by 𝛾 ∈ R𝑛+2 the vector of coordinates of the vector 𝜶 (𝜔∗) in the basis

{𝜶 (𝜔 𝑗 )}𝑛+2𝑗=1 , a new dual vector �̃� ∈ R𝑛+3 is defined as 𝑦 𝑗 = 𝑦 𝑗 − _𝛾 𝑗 , 𝑗 ∈ [1 . . 𝑛 + 2] and 𝑦𝑛+3 = _ for any _ ∈ R.
It is clearly feasible for the dual Problem on 𝑛 + 3 points 𝜔 𝑗 , 𝑗 ∈ [1 . . 𝑛 + 2] ∪ {∗}. The maximum possible value

for _ that preserves the positivity (feasibility) conditions 𝑦′𝑗 = 𝑦 𝑗 ⩾ 0 is

_ = min

𝑗

{
𝑦 𝑗

𝛾 𝑗

���� 𝛾 𝑗 > 0

}
=
𝑦 𝑗0

𝛾 𝑗0
= 𝑦∗ .

Finally, the index 𝜔 𝑗0 is replaced by the index 𝜔∗ to build the new index set 𝝎′
of the dual Problem (𝐷𝑛+2).
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Algorithm 7 Exchange(𝑛, \,𝝎,𝒚, 𝜔∗)

Input: 𝑛 ⩾ 0, \ the evaluation error, 𝝎 ∈ Ω𝑛+2
, dual solution 𝒚 ∈ R𝑛+2

, new index 𝜔∗ ∈ Ω.
Output: new set 𝝎′ ∈ Ω𝑛+2

and dual solution 𝒚′ ∈ R𝑛+2
.

1: Solve for 𝜸 ∈ R𝑛+2
the linear system:

𝑛+2∑︁
𝑗=1

𝛾 𝑗𝜶 (𝜔 𝑗 ) = 𝜶 (𝜔∗)

⊲ Exiting index

2: 𝑗0 ← argmin

{
𝑦 𝑗

𝛾 𝑗

��� 𝛾 𝑗 > 0

}
⊲ Update dual solution

3: 𝑦∗ ←
𝑦 𝑗

0

𝛾 𝑗
0

4: 𝑦 𝑗 ← 𝑦 𝑗 − 𝛾 𝑗𝑦∗, 𝑗 ∈ [1 . . 𝑛 + 2]
5: {(𝝎′

𝒋 , 𝑦
′
𝑗
)} ←

{
(𝜔 𝑗 , 𝑦 𝑗 ), 𝑗 ∈ [1 . . 𝑛 + 2] \ { 𝑗0} ∪ {∗}

}
6: return (𝝎′,𝒚′)

Lemma 4 (Correctness of Exchange). If {𝜶 (𝜔 𝑗 )}𝑛+2𝑗=1 is a basis of R
𝑛+2

and𝒚 is the optimal solution of Problem

(𝐷𝑛+2) for 𝝎, then Exchange(𝑛, \,𝝎,𝒚, 𝜔∗) computes a new index set 𝝎′ = 𝝎 \ {𝜔 𝑗0 }∪ {𝜔∗} for some 𝑗0 ∈ [1..𝑛+2],
and 𝒚′ ∈ R𝑛+2 such that:

(1) 𝒚′
is the optimal solution of the discretized dual problem (𝐷 ′𝑛+2) associated to 𝝎′

;

(2) the optimal value of (𝐷 ′𝑛+2) is no less than the one of (𝐷𝑛+2):

val(𝐷 ′𝑛+2) =
𝑛+2∑︁
𝑗=1

𝑦′𝑗𝑐 (𝜔 ′𝑗 ) ⩾
𝑛+2∑︁
𝑗=1

𝑦 𝑗𝑐 (𝜔 𝑗 ) = val(𝐷𝑛+2);

(3) {𝜶 (𝜔 ′𝑗 )}𝑛+2𝑗=1 is a basis of R
𝑛+2

.

Proof.

(1) First, note that since {𝜶 (𝜔 𝑗 )}𝑛+2𝑗=1 is a basis ofR
𝑛+2

, there exist some𝛾 𝑗 ∈ R such that 𝜶 (𝜔∗) =
𝑛+2∑︁
𝑗=1

𝛾 𝑗𝜶 (𝜔 𝑗 ).

The solution 𝛾 ∈ R𝑛+2 of the linear system in line 1 of Exchange satisfies the equation

𝑛+2∑︁
𝑗=1

𝛾 𝑗 = 1 (first

row of the linear system). Hence, at least one of the 𝛾 𝑗 is strictly positive, so that 𝑗0 exists (line 2), though

it is not necessarily unique.

Let us now show that 𝒚′
is a feasible solution of Problem (𝐷 ′𝑛+2) for 𝝎

′
. As 𝑦∗ =

𝑦 𝑗0

𝛾 𝑗0
with 𝑦 𝑗0 ⩾ 0 and

𝛾 𝑗0 > 0, we have that 𝑦∗ ⩾ 0. Similarly, the definition of 𝑦 𝑗 = 𝑦 𝑗 − 𝛾 𝑗𝑦∗ = 𝑦 𝑗 − 𝛾 𝑗 min

{
𝑦 𝑗

𝛾 𝑗

��� 𝛾 𝑗 > 0

}
clearly

shows that 𝑦 𝑗 = 𝑦′𝑗 ⩾ 0, ∀ 𝑗 ∈ [1 . . 𝑛 + 2] \ { 𝑗0} and 𝑦 𝑗0 = 0. In addition, we have that

𝑛+2∑︁
𝑗=1

𝑦′𝑗𝛼 (𝜔 ′𝑗 ) =

𝑛+2∑︁
𝑗=1, 𝑗≠𝑗0

𝑦′𝑗𝛼 (𝜔 ′𝑗 ) + 𝑦∗𝛼 (𝜔∗)

=

𝑛+2∑︁
𝑗=1, 𝑗≠𝑗0

𝑦 𝑗𝛼 (𝜔 𝑗 ) −
𝑛+2∑︁

𝑗=1, 𝑗≠𝑗0

𝛾 𝑗𝑦∗𝛼 (𝜔 𝑗 ) +
𝑛+2∑︁

𝑗=1, 𝑗≠𝑗0

𝛾 𝑗𝑦∗𝛼 (𝜔 𝑗 ) + 𝛾 𝑗0𝛼 (𝜔 𝑗0 )𝑦∗

=

𝑛+2∑︁
𝑗=1, 𝑗≠𝑗0

𝑦 𝑗𝛼 (𝜔 𝑗 ) + 𝛼 (𝜔 𝑗0 )𝑦 𝑗0 =

𝑛+2∑︁
𝑗=1

𝑦 𝑗𝛼 (𝜔 𝑗 ) = 𝑧.
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It follows that 𝒚′
is a feasible solution of Problem (𝐷 ′𝑛+2) for 𝝎

′
, and actually the optimal solution since

the feasible set is reduced to a singleton (uniqueness of the decomposition of 𝒛 in a basis).

(2) Following similar steps as for point (1), val(𝐷 ′𝑛+2) for 𝝎′
and 𝒚′

can be written as

val(𝐷 ′𝑛+2) =

𝑛+2∑︁
𝑗=1

𝑦′𝑗𝑐 (𝜔 ′𝑗 ) =

𝑛+2∑︁
𝑗=1, 𝑗≠𝑗0

𝑦 𝑗𝑐 (𝜔 ′𝑗 ) + 𝑦∗𝛼 (𝜔∗)

=

𝑛+2∑︁
𝑗=1

𝑦 𝑗𝛼 (𝜔 𝑗 ) +
𝑦0

𝛾 𝑗0

[
𝑐 (𝜔∗) −

𝑛+2∑︁
𝑗=1

𝑐 (𝜔 𝑗 )𝛾 𝑗

]
.

Note that 𝑐 (𝜔∗) −
𝑛+2∑︁
𝑗=1

𝑐 (𝜔 𝑗 )𝛾 𝑗 = 𝑐 (𝜔∗) − 𝛼 (𝜔∗)𝑥 ⩾ 0 where 𝛼𝑇 (𝜔 𝑗 )𝑥 = 𝑐 (𝜔 𝑗 ) from SolvePrimal and

the positivity is obtained from FindNewIndex. It is then concluded that val(𝐷 ′𝑛+2) =
𝑛+2∑︁
𝑗=1

𝑦′𝑗𝑐 (𝜔 ′𝑗 ) ⩾

𝑛+2∑︁
𝑗=1

𝑦 𝑗𝑐 (𝜔 𝑗 ).

(3) Finally, {𝜶 (𝜔 ′𝑗 )} 𝑗∈[1..𝑛+2] = {𝜶 (𝜔 𝑗 )} 𝑗∈[1..𝑛+2]\{ 𝑗0 }∪{∗} is a basis ofR𝑛+2
since 𝛾 𝑗0 ≠ 0, i.e. 𝜶 (𝜔∗) does not

belong to the linear subspace spanned by {𝜶 (𝜔 𝑗 )} 𝑗∈[1..𝑛+2]\{ 𝑗0 } . □

Lemma 5. The total error 𝑎 (ℓ ) computed over the discrete set 𝝎 (ℓ ) increases at each iteration.

Proof. Let 𝑦
(ℓ )
∗ and 𝛾

(ℓ )
𝑗

denote the variables 𝑦∗ and 𝛾 𝑗 for 𝑗 ∈ [1 . . 𝑛 + 2] in Exchange(𝑛, \,𝝎 (ℓ ) ,𝒚 (ℓ ) , 𝜔 (ℓ )∗ ). By

strong duality in linear programming, 𝑎 (ℓ ) is also the objective value of the optimal solution𝒚 (ℓ ) in the discretized

dual problem (𝐷𝑛+2) for 𝝎 (ℓ ) . Hence, by writing

𝑎 (ℓ ) =
𝑛+2∑︁
𝑗=1

𝑦
(ℓ )
𝑗
𝑐 (𝜔 (ℓ )

𝑗
), and

𝑎 (ℓ+1) =
𝑛+2∑︁
𝑗=1

𝑦
(ℓ+1)
𝑗

𝑐 (𝜔 (ℓ+1)
𝑗
),

we have 𝑎 (ℓ+1) − 𝑎 (ℓ ) =
𝑛+2∑︁
𝑗=1

𝑦
(ℓ+1)
𝑗

𝑐 (𝜔 (ℓ+1)
𝑗
) −

𝑛+2∑︁
𝑗=1

𝑦
(ℓ )
𝑗
𝑐 (𝜔 (ℓ )

𝑗
) ⩾ 0 by Lemma 4. □

5 OPTIMIZING THE RELATIVE ERROR

Since many interesting practical cases appearing in the implementation of libms involve the relative error, we
also describe the modifications needed for the previously presented algorithms to handle these cases. When

considering the relative error instead of of the absolute error, Problem (𝑃general) is replaced by

min

𝑎𝑖 ∈R,
𝑖∈[0..𝑛]

max

𝑡 ∈𝐼

(
|𝑓 (𝑡) − 𝑝 (𝑡) | + |𝑝 (𝑡) − 𝑝 (𝑡) |

|𝑓 |

)
. (𝑃 rel

general
)

Two cases are worth mentioning. On the one hand, if 𝑓 has constant sign over 𝐼 (𝑓 does not cancel in 𝐼 ),

Problem (𝑃 rel

general
) is equivalent to multiplying the error variable 𝑎 by |𝑓 | in Problem (𝑃 ′general), yielding the
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following new linear SIP formulation

min

𝒙∈R𝑑
𝒛𝑇𝒙

s.t. 𝜶𝒓 (𝜔)𝑇𝒙 ⩾ 𝑐 (𝜔), 𝜔 ∈ Ω,
(𝑃 rel

)

with

𝒙 = (𝑎, 𝒂) ∈ R𝑛+2, 𝒛 = (1, 0, . . . , 0) ∈ R𝑛+2,

𝜶𝒓 (𝑡, 𝜎0, . . . , 𝜎𝑘 ) = (𝑓 (𝑡), 𝜎0𝝅0
𝑇 (𝑡) +

𝑘∑︁
𝑖=1

𝜎𝑖𝝅𝒊
𝑇 (𝑡))𝑇 ∈ R𝑛+2,

𝔖 = {−1, 0, 1}𝑘+1, 𝜔 = (𝑡, 𝜎0, . . . , 𝜎𝑘 ) ∈ Ω := 𝐼 ×𝔖.

(15)

Therefore, replacing 𝜶 (𝜔) by 𝜶𝒓 (𝜔) in Eval&ApproxOptimize and its subroutines provides an algorithm to

compute the best degree-𝑛 polynomial w.r.t. both approximation and evaluation errors in a relative setting.

On the other hand, 𝑓 may cancel for certain values in 𝐼 . In this case, the relative error may sometimes be

defined by continuity, when the numerator |𝑓 (𝑡) − 𝑝 (𝑡) | + |𝑝 (𝑡) − 𝑝 (𝑡) | also cancels for the same values in 𝐼

(these values are often called apparent singularities). Interesting practical examples involve the case when 𝑓 has

a unique zero 𝑡𝑧 , of finite order 𝑠 in 𝐼 . For instance, consider the function exmp1, 𝑓 (𝑡) = exp(𝑡) − 1, which has a

unique zero 𝑡𝑧 = 0, of order 1, in the interval 𝐼 = [−1/4, 1/4]. Not only should we find a way to keep the relative

error between the polynomial and the function bounded in a neighborhood of 𝑡𝑧 but one also should particularly

take care of discretizations 𝝎 including 𝑡 = 0, in the SolvePrimal and Exchange algorithms. For this particular

example, a simple way to tackle this issue is to cancel the numerator of the relative error, by approximating 𝑓 by

a polynomial 𝑝 (𝑡) = ∑𝑛
𝑖=1 𝑎𝑖𝑡

𝑖
(the constant coefficient is set to 0). More generally, when the function 𝑓 has a

unique zero 𝑡𝑧 , of finite order 𝑠 in 𝐼 , it is suggested in the reference [20, Example 2.11], to work with the modified

form

min

𝒙∈R𝑑
𝒛𝑇𝒙

s.t. �̃�𝒓 (𝜔)𝑇𝒙 ⩾ 𝑐 (𝜔), 𝜔 ∈ Ω,
(𝑃 rel2

)

with

𝒙 = (𝑎, 𝒂) ∈ R𝑛+2−𝑠 , 𝒛 = (1, 0, . . . , 0) ∈ R𝑛+2−𝑠 ,

�̃�𝒓 (𝑡, 𝜎0, . . . , 𝜎𝑘 ) = (1, 𝜎0𝝅0
𝑇 (𝑡)/𝑓 (𝑡) +

𝑘∑︁
𝑖=1

𝜎𝑖𝝅𝒊
𝑇 (𝑡)/𝑓 (𝑡))𝑇 ∈ R𝑛+2−𝑠 ,

𝝅0 (𝑡) = ((𝑡 − 𝑡𝑧)𝑠 , . . . , (𝑡 − 𝑡𝑧)𝑛)𝑇 , 𝑐 (𝜔) = 𝜎0,

𝔖 = {−1, 0, 1}𝑘+1, 𝜔 = (𝑡, 𝜎0, . . . , 𝜎𝑘 ) ∈ Ω := 𝐼 ×𝔖.

(16)

Problem 𝑃 rel2
is indeed the equivalent formulation for the evaluation and approximation problem of the function

𝑡 ↦→ 1 by the system of basis functions (𝑡 − 𝑡𝑧)𝑠/𝑓 (𝑡), (𝑡 − 𝑡𝑧)𝑠+1/𝑓 (𝑡), . . . , (𝑡 − 𝑡𝑧)𝑛/𝑓 (𝑡), considering the

minimization of the absolute error. It is important to notice that the system (𝑡 −𝑡𝑧)𝑠/𝑓 (𝑡), (𝑡 −𝑡𝑧)𝑠+1/𝑓 (𝑡), . . . , (𝑡 −
𝑡𝑧)𝑛/𝑓 (𝑡) satisfies the so-called Haar condition [20, Example 2.11] for the initialization step, ensuring that the

routine InitPoints works.

6 IMPLEMENTATION AND EXAMPLES

Algorithm Eval&ApproxOptimize is firstly illustrated by a tutorial example for Airy special function. Then, we

detail our implementation and exemplify it on approximations with higher precision (binary64, double-extended,

double double) coefficients of elementary functions like arcsin and the sigmoid (logistic) function.
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Fig. 1. Approximation of Ai over [−2, 2]: iteration 0

6.1 Example 1 - Airy function

The Airy function Ai is a special function frequently used in theoretical physics. In particular, some applications

require to compute Ai(𝑡) for possibly large negative values of 𝑡 , where the function exhibits a highly oscillatory

behavior (see Figure 4a). However, contrary to elementary functions, there exists no simple argument reduction

for Ai. Therefore, one polynomial approximation is needed for each interval of the domain subdivision, and these

intervals cannot be assumed to be small. Hence, controlling the evaluation error is essential.

6.1.1 Toy example in small precision. Let us firstly utilize a toy example for approximating Ai over 𝐼 = [−2, 2],
by a polynomial of degree 𝑛 = 6, evaluated using the Horner scheme with 𝑢 = 2

−12
. The terms {𝝅1, . . . , 𝝅7}

defining the evaluation error \ are given in Example 1. We fix a tolerance 𝜏 = 0.01. The proof of concept code in

Mathematica, used to produce the graphics in this example is available at https://gitlab.laas.fr/mmjoldes/xatom.

At iteration 0 (Figure 1), the points 𝑡
(0)
𝑗

are initialized with the Chebyshev nodes and the signatures 𝝈𝒋
(0)

define a Remez-like system of linear equations on the coefficients of the polynomial (Figure 1d). Its solution

𝒙 (0) = (𝑎 (0) , 𝒂 (0) ) defines a polynomial 𝑝 (0) (𝑡) = 𝒂 (0)𝑇𝝅0 (𝑡), whose approximation error is depicted in Figure 1a.

It exhibits quasi-equioscillations indicating that 𝒑 (0) is rather close to the degree-6 minimax approximation of Ai

over 𝐼 . However, the total error is more important near −2 and 2 (Figure 1b), due to the evaluation depicted in

https://gitlab.laas.fr/mmjoldes/xatom
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Fig. 2. Approximation of Ai over [−2, 2]: iteration 6

green. In particular, the algorithm detects the maximum error at 𝑡
(0)
∗ = −2 (in orange). Note that 𝑡

(0)
1

was already

equal to −2, but 𝜔 (0)
1

≠ 𝜔
(0)
∗ since the signatures are different. To perform the exchange, the dual solution is

needed (Figure 1c). It is a positive combination of Dirac measures supported on the finite set 𝝎 (0) .
Moving forward to iteration 6 (Figure 2), the total error is more balanced, though still not optimal. Both the

signatures and the approximation error are now completely different from the Remez solution.

Eventually, the algorithm stops at iteration 9 (Figure 3). Indeed, the maximum total error 𝑎
(9)
∗ (in orange) is less

than 1% higher than the error 𝑎 (9) over the discrete set 𝝎 (9) . Note that the total error reaches its maximum at

𝑛 + 2 = 8 points. This became possible by unbalancing the approximation error, namely reducing the amplitude

of the oscillations near −2 and 2, at the cost of higher oscillations in the middle of 𝐼 .

6.1.2 Further comparisons in single precision. We here consider the approximation of the Airy function over

𝐼 = [−4, 0] with polynomials evaluated using the Horner scheme with binary32 floating-point numbers, that

is, single precision (𝑢 = 2
−24

). Figure 4b shows the total error (approximation and evaluation) of the degree-𝑛

minimax polynomial (in blue), in function of 𝑛. Specifically, the total error starts to decrease when 𝑛 increases,

thanks to the improvement of the approximation error. However, at some point (here 𝑛 = 9), the total error starts

again to increase, due to the evaluation error of higher degree polynomials. On the contrary, the evaluation error
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Fig. 3. Approximation of Ai over [−2, 2]: iteration 9

of polynomials obtained with Eval&ApproxOptimize (in yellow) continues to decrease to some asymptotic

threshold (around 5 · 10−6). In such a case, reducing the evaluation error by using a higher degree can be more

efficient than increasing the floating-point precision.

6.2 Implementation using the Sollya Library

We propose a C implementation of the described algorithms available at https://gitlab.laas.fr/mmjoldes/xatom.

It handles multiple precision computations, based on the MPFR library [28] which allows for obtaining poly-

nomial approximations with coefficients represented in various formats (including binary32, binary64, double-

double, double-extended or any custom-precision floating-point format). The C code is interfaced via a so-called

externalprocedure with the Sollya software tool [22], which is a state-of-the-art environment for safe floating-

point code development, particularly targeted for libm implementations. This allows for direct comparisons with

the available routines remez and fpminimax, which provide tuned polynomials optimized with respect to the

approximation error and coefficients formats (without taking the evaluation error into account).

In order to handle the evaluation error, we provide additional C code which computes, for a polynomial

evaluation scheme composed of terms RN(𝑒′, 𝑢𝑖 ) (as exemplified in Section 2 and Table 1), an evaluation error

bound of the form \ (𝒂, 𝑡), required for Problem 𝑃 ′general. Generic evaluation schemes can be handled, provided

that the corresponding mathematical expression is a univariate polynomial (that is, the coefficients 𝒂 appear

https://gitlab.laas.fr/mmjoldes/xatom
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Fig. 4. Approximation of Ai over [−4, 0]

linearly in arithmetic expressions involving additions and multiplications, which additionally, depend only on

one variable 𝑡 ).

To exemplify the code usage, we consider as in [34, Section 4.1.1.], the function expm1(𝑥) = exp(𝑥) − 1, on the

interval 𝐼 = [−1/4, 1/4]. We search for the single-precision coefficients of a polynomial of degree 5, which should

minimize the total relative error, with respect to the Horner evaluation scheme. Firstly, an evaluation scheme

input file contains on the first line: the evaluation model, followed on subsequent lines by specifications regarding

which error terms should be considered in the order-𝑖 (linear, quadratic, etc.) error. For instance in Figure 5, the

file hornerIn.txt, specifies that all linear terms are considered and the rounding error is bounded by |𝑢𝑖 | ⩽ 2
−24

,

for 1 ⩽ 𝑖 ⩾ 9. Note also that we consider a polynomial whose constant coefficient is zero by default, since we

approximate with respect to the relative error which cancels at zero (cf. Section 5).

In Sollya, the corresponding code given in Figure 5 runs the external procedure evalApproxOptim which

parses the evaluation scheme information and runs the proposed algorithm. The second parameter of the

evalApproxOptim corresponds to a weight by which the absolute error is divided. In this case, this is 𝑓 , which

directly gives the relative error. The resulted polynomial is stored in 𝑝 and, the total relative error estimated

by our model as the sum of the relative approximation error |1 − 𝑝/𝑓 | and the relative evaluation error model

\ (𝒂, 𝑡)/𝑓 is plotted in Figure 6a. Its maximum is 2.7965 · 10−7. Figure 6b provides a plot of a discretization of

the actual total relative error obtained after the implementation. This shows that the mathematical model of the

error may overestimate the actual attained error, as it is often the case for this kind of rounding error modeling.

For completeness, let us compare with the classical method, where the coefficients are obtained in two steps:

the remez routine, followed by rounding of the coefficients to the requested format. In this case, our total relative

mathematical error model (where only the coefficients are changed) as well as its corresponding actual estimation

via a discretization are plotted in Figure 6c and 6d. The plot shows that the coefficients obtained in this case

are not optimal with respect to the error model. Its maximum 2.973 · 10−7 is higher than in the previous case.

However, the discretizations seem to give similar numeric errors in this example, whose primary goal is to show

the features of the implementation. Beside handling generic evaluation schemes and relative errors, our code

allows for generating corresponding implementations in Gappa, C wih Mpfr or interpreted Sollya language. This

in turn allows for generating all the plots in Figure 6, but the whole file was omitted for brevity.
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R(t*R(R(c1,u10)+R(t*R(R(c2,u11)+R(t*R(R(c3,u12)+R(t*R(R(c4,u13)+
R(t*R(c5,u14),u9),u8),u7),u6),u5),u4),u3),u2),u1)

1 all
--
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14

> externalproc(evalApproxOptimize, "./result/evalApproxOptim",
(function, function, range, constant, integer, string, string) ->object);
> I = [-0.25, 0.25];
> tau = 0.001;
> fileIn = "hornerIn.txt";
> fileOut= "hornerOut.txt";
> f = expm1(x);
> prec = 100;
> maxIter=30;
> res = evalApproxOptim(f, f, I, tau, maxIter, fileIn, fileOut);
> p=head(res);
> approxError=res[1];
> evalError=res[2];
> a_star = res[3];
> plot(approxError+evalError, I);

Fig. 5. The evaluation scheme file hornerIn.txt and the corresponding Sollya code.

6.3 Example - Sigmoid function

The sigmoid function is defined as sigmoid(𝑥) = 1/(1 + exp(−𝑥)) and is often used as an activation function

for recurrent neural networks. Half-precision and single-precision implementations based on polynomial ap-

proximations are needed in practice, especially in the context of custom architectures on FPGAs [43], where

implementations based on composition of 1/𝑥 and exp(𝑥) are less efficient both in terms of circuit area and

latency. This example is based on the features presented in [43]: for a single-precision implementation, the interval

of interest is [0, 16) (the values for the negative range are easily reconstructed from these); two interesting imple-

mentation choices of the authors were to consider either degree-3 polynomials on 256 equal-size subintervals,

or respectively, degree-2 polynomials on 512 subintervals. Furthermore, they observed that evaluating these

polynomials in single-precision arithmetic results in very low accuracies: the total relative error, that is the

sum of the relative approximation and evaluation error for each of these polynomials is much worse than the

approximation error alone, which renders these approximations less practical. We note for completeness, that the

Taylor approximation also suffers from this phenomenon. In Figure 7 we compare the total errors obtained with

our algorithm with respect to two state of the art techniques. Firstly, we consider the classical Remez exchange

algorithm which solves Problem (𝑃minimax) and then rounds the coefficients to the requested format. Secondly,

we compare with the improved algorithm, which uses euclidean lattices-based techniques in order to take into

account the imposed coefficients formats [11] (but does not handle the evaluation error). Both algorithms are

available in Sollya, under the so-called remez and fpminimax routines. The total obtained relative accuracy in 𝑏

bits is plotted for each of the subintervals considered. That is, both the relative approximation and evaluation

errors are taken into account, such that |1−𝑝𝑖 (𝑥)/sigmoid(𝑥) | ⩽ 2
−𝑏

on each interval 𝐼𝑖 , (𝑖 = 1, . . . , 256), where 𝑝𝑖
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Fig. 6. Total relative error plots: the mathematical model versus the actual numerical discretization are analyzed. Two

methods are compared: evalApprox vs. Remez with rounded coefficients.

represents the Horner scheme implementing the evaluation in single precision of the approximation polynomials

𝑝𝑖 , obtained with the three algorithms. One observes an accuracy improvement when using our algorithm for

the first case (Fig. 7a, degree-3 polynomials, coarser subdivision) on intervals which are further away from

zero, while for intervals close to zero, fpminimax routine is slightly more accurate. For the second case (Fig. 7b,

degree-2 polynomials, finer subdivision) all the three methods perform similarly, with fpminimax being slightly

more accurate. While one could argue that both cases lead to the same accuracy in average, from the hardware

implementation point of view, we note that the second case requires however twice as much storage (for the

coefficients on each interval), while the first case demands an extra addition and multiplication – a final trade-off

depending on the architecture has to be considered.
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Fig. 7. Final accuracy (number of correct bits) on each subinterval, when using degree-2 or degree-3 polynomials (on each

subinterval) and single-precision evaluation. Three methods are compared:present paper aka. evalApprox, Remez with

rounded coefficients and FPMinimax.

6.4 Example 2 - Arcsine function

Consider 𝑓 = arcsin, over the interval 𝐼 = [𝑏; 1], where the lower bound 𝑏 ≈ 0.78 is the binary64 floating

number 0x3FE8F5C200000000
6
. This example is particularly insightful because 𝑓 is ill-conditioned over 𝐼 due to

its singularity at 1. In this particular case, argument reduction techniques make it possible to tackle the singularity

(see, e.g., the documentation of CRLibm [24] or the reference [11]). For illustrative purposes, however, we assume

no such technique is available, as it would be the case for other singular or ill-conditioned functions known only

through sampling via a black-box approach.

Our goal is to represent 𝑓 over 𝐼 using a degree 21 polynomial with binary64 coefficients, evaluated using a

Horner’s scheme with binary64 arithmetic operations as well. Since the range of 𝑓 over 𝐼 is roughly [0.89, 1.57],
the absolute or relative error treatment is similar, and we choose the former for the sake of simplicity.

Figure (8a) shows the absolute approximation error between 𝑓 and the best degree 21 polynomial approximation

𝑝Remez with real coefficients, for which max𝐼 |𝑓 − 𝑝Remez | ≈ 4.42 · 10−3. However, when rounding the coefficients

of 𝑝Remez to the nearest binary64 representable number, the resulting polynomial roundCoeff(𝑝Remez) becomes

completely irrelevant, namelymax𝐼 |𝑓 − roundCoeff(𝑝Remez) | ≈ 1.85 · 1012 (cf. Figure (8b)). This is due to the high
magnitude of the coefficients. To search for better coefficients, one could use the competitive FPMinimax routine

of Sollya [22], which optimizes on the coefficient space of representable FP numbers. The approximation error

in this case is shown in Figure (8c) and one has max𝐼 |𝑓 − 𝑝FPMinimax) | ≈ 1.57. Although this seems much better

(even if still not sufficient to obtain at least one correct digit), when evaluating these polynomials with a Horner’s

scheme in binary64 floating-point arithmetic, the actual error sampled in Figures (8d) and (8e) using MPFR is

catastrophic in both cases.

In contrast, our Algorithm Eval&ApproxOptimize computes a degree 21 polynomial 𝑝E&A with binary64

coefficients. The total error found by our algorithm and verified in practice is max𝐼 |𝑓 − 𝑝E&A | ≈ 8.00 · 10−3
(see Figures (8f) and (8g)). Hence the algorithm was able to find an optimal solution by moving away from the

minimax polynomial to drastically reduce the evaluation error, at the expense of a factor less than 2 in the total

6
This is one of the sub-intervals of [−1, 1] considered for the implementation of the arcsin function in CRLibm [24].
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error. One can then actually certify with Gappa [26] that the Horner scheme evaluation of 𝑝E&A has an absolute

error less than 1.17 · 10−4.
Finally, let us consider the same function on the interval 𝐼2 = [0.5;𝑏] and approximate it with polynomials

for a target relative error of 2
−60

. Using the guessdegree routine of sollya, the minimum required degree is

𝑑 = 23. The remez routine provides a polynomial with real (or very high precision coefficients, e.g. 300 bits

in our experiments) with an error bounded by 2
−62.77

. When rounding the coefficients to double extended
(DE, 64 bits mantissa), the approximation error quality drops to 2

−30.67
. The fpminimax routine allows for a

very good tuning of the coefficients to fit the DE format, since we obtain a relative error bounded by 2
−61.39

.

However when evaluating with a Horner scheme in DE operations, the resulting total error attains 2
−29.34

(see

Fig. 9). The Eval&ApproxOptimize routine provides a polynomial with DE coefficients which evaluates with

the same DE scheme with an error of at most 2
−48.56

. It is interesting to note that increasing the approximation

degree corresponds to decreasing the approximation error when real (high precision) coefficients are considered.

However, when the coefficient format is imposed (as mentioned before), the total error does not improve, as

shown in Table 2. In fact, for the fpminimax routine, the precision deteriorates towards no significant bit, while

for our algorithm, the total error seems to slowly converge towards 52 precision bits. For completeness, we also

mention in the same table the results obtained with the Estrin evaluation scheme [27] (which can be handled by

our code): both evaluation schemes provide similar accuracy, with Estrin being slighly less accurate.

Method

Degree

23 24 25 26 27

Rel. Approx. Error (2
−𝑝
)

Remez 62.77 65.16 67.55 69.94 72.32

Rounded Remez 30.67 27.04 28.15 23.85 21.24

FPMinimax 61.39 61.39 61.39 61.39 0

Total Rel. Error with Horner Scheme (2
−𝑝
)

Rounded Remez 29.30 25.90 24.25 22.66 20.08

FPMinimax 29.34 26.90 24.25 22.66 0

Eval&ApproxOptimize 48.56 49.45 50.40 51.10 51.67

Total Rel. Error with Estrin Scheme (2
−𝑝
)

Rounded Remez 28.31 25.43 24.4 21.93 20.08

FPMinimax 27.89 26.43 23.76 22.05 0

Eval&ApproxOptimize 48.43 49.35 50.11 51.04 51.51

Table 2. Relative errors for successive degrees, when approximating 𝑓 = arcsin over 𝐼 = [0.5, 0x3FE8F5C200000000] and
Horner/Estrin scheme in double extended (DE) arithmetic: Comparing the minimax polynomial (a.k.a. Remez), the rounded

minimax polynomial aka. Rounded Remez, the polynomial obtained avec FPMinimax and polynomial obtained using our

Algorithm Eval&ApproxOptimize.

7 CONCLUSION

In this article, we proposed a contribution to the field of fixed-precision implementation of mathematical functions

that relies on the powerful and versatile framework of Linear Semi-Infinite Programming (LSIP). Specifically, we

proposed a first formulation of an LSIP optimization problem for the total error (approximation plus evaluation
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Fig. 8. Approximating 𝑓 = arcsin over 𝐼 = [0x3FE8F5C200000000, 1.] using a degree 21 polynomial and a Horner’s scheme in

binary64 arithmetic: Comparing the minimax polynomial 𝑝Remez, the rounded minimax polynomial roundCoeff(𝑝Remez) and
the polynomial 𝑝E&A obtained using our Algorithm Eval&ApproxOptimize.



28 • Denis Arzelier, Florent Bréhard, Tom Hubrecht, and Mioara Joldes

-1.5e-19

-1e-19

-5e-20

0

5e-20

1e-19

1.5e-19

0.5 0.55 0.6 0.65 0.7 0.75

(a) Approx. error 𝑓 − 𝑝Remez

-1e-10

0

1e-10

2e-10

3e-10

4e-10

5e-10

6e-10

0.5 0.55 0.6 0.65 0.7 0.75

(b) Approx. error 𝑓 −roundCoeff(𝑝Remez)

-2e-19

-1.5e-19

-1e-19

-5e-20

0

5e-20

1e-19

1.5e-19

2e-19

0.5 0.55 0.6 0.65 0.7 0.75

(c) Approx. error 𝑓 − 𝑝FPMinimax

-2.5e-09

-2e-09

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

1.5e-09

2e-09

0.5 0.55 0.6 0.65 0.7 0.75

(d) Relative error between roundCoeff(𝑝Remez) evaluated in

DE and 𝑓

-2e-09

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

1.5e-09

0.5 0.55 0.6 0.65 0.7 0.75

(e) Relative error between 𝑝FPMinimax evaluated in DE and 𝑓

0

5e-16

1e-15

1.5e-15

2e-15

2.5e-15

0.5 0.55 0.6 0.65 0.7 0.75

(f) Total (= approximation + evaluation) error |1 − 𝑝E&A/𝑓 |

-2.5e-15

-2e-15

-1.5e-15

-1e-15

-5e-16

0

5e-16

1e-15

1.5e-15

2e-15

2.5e-15

0.5 0.55 0.6 0.65 0.7 0.75

(g) Relative error between 𝑝E&A evaluated in DE and 𝑓

Fig. 9. Approximating 𝑓 = arcsin over 𝐼 = [0.5, 0x3FE8F5C200000000] using a degree 23 polynomial and a Horner’s scheme

in double extended (DE) arithmetic: Comparing the minimax polynomial 𝑝Remez, the rounded minimax polynomial

roundCoeff(𝑝Remez) and the polynomial 𝑝E&A obtained using our Algorithm Eval&ApproxOptimize.
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errors) of polynomials used for the evaluation of mathematical functions, with a black-box description. This allows

for handling very general functions (elementary, special, etc.), but also implies that no argument reduction step is

usually possible. To reformulate the problem as an LSIP instance, we bounded the evaluation error using the

classical relative rounding error model of floating-point arithmetic. Then, we described an exchange algorithm to

solve this particular problem, which can be seen as an extension of Remez’ exchange algorithm that optimizes the

approximation error only. This work was fully implemented in C, using the Sollya library and various numerical

experiments were carried out to assess its practical efficiency.

The conclusion is twofold. On certain examples with potentially high evaluation error, like for instance Horner

schemes on non-zero-centered intervals, approximations on intervals close to function’s singularities, etc.), our

algorithm is able to improve the total error, in order to keep the constrained precision(s) in the evaluation scheme

reasonable. Furthermore, the proposed algorithm scales to higher precisions imposed on the coefficients (examples

with double, double-extended, double-double were presented) compared to other linear programming inspired

approaches available. On the other hand, for examples where the coefficients of the approximation polynomial are

highly constrained (typical cases are smooth functions on small, zero-centered intervals), our method provides

polynomials that are very similar to the ones obtained with the classical Remez algorithm. The main observation

is that, in such cases, the continuous relative rounding error model employed may be too conservative (as seen in

Example 6.2) since the bound in 𝑢 is not attained in practice for each operation.

Therefore, this opens the question for several future extensions. Concerning the modeling of the evaluation

error, one can take into account a stochastic error model like in [31], in order to optimize the average total error.

In addition, while our current implementation directly allows for the estimation of evaluation errors for other

numerical schemes, a further extension could also take other polynomial bases [6] into account. Finally, our work

opens the way for a mixed-integer linear programming formulation in the provided optimization framework.

However, the theoretical properties of the obtained problems need to be further studied and a similar exchange

procedure in this case is not direct.
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