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Vanishing viscosity limit for axisymmetric vortex rings

Thierry Gallay and Vladimı́r Šverák

April 12, 2024

Abstract

For the incompressible Navier-Stokes equations in R3 with low viscosity ν > 0, we consider
the Cauchy problem with initial vorticity ω0 that represents an infinitely thin vortex filament
of arbitrary given strength Γ supported on a circle. The vorticity field ω(x, t) of the solution
is smooth at any positive time and corresponds to a vortex ring of thickness

√
νt that is

translated along its symmetry axis due to self-induction, an effect anticipated by Helmholtz
in 1858 and quantified by Kelvin in 1867. For small viscosities, we show that ω(x, t) is well-
approximated on a large time interval by ωlin(x−a(t), t), where ωlin(·, t) = exp(νt∆)ω0 is the
solution of the heat equation with initial data ω0, and ȧ(t) is the instantaneous velocity given
by Kelvin’s formula. This gives a rigorous justification of the binormal motion for circular
vortex filaments in weakly viscous fluids. The proof relies on the construction of a precise
approximate solution, using a perturbative expansion in self-similar variables. To verify the
stability of this approximation, one needs to rule out potential instabilities coming from very
large advection terms in the linearized operator. This is done by adapting V. I. Arnold’s
geometric stability methods developed in the inviscid case ν = 0 to the slightly viscous
situation. It turns out that although the geometric structures behind Arnold’s approach are
no longer preserved by the equation for ν > 0, the relevant quadratic forms behave well on
larger subspaces than those originally used in Arnold’s theory and interact favorably with
the viscous terms.

1 Introduction and main result

We consider the Cauchy problem for the 3d incompressible Navier-Stokes equations in the vor-
ticity form

∂tω + u · ∇ω − ω · ∇u = ν∆ω in R3 × (0,∞) , (1.1)

ω|t=0 = ω0 in R3 , (1.2)

where we use the familiar notation ω(x, t) for the vorticity of the fluid, and the velocity u(x, t)
is given by the Biot-Savart law u(x, t) = (4π)−1

∫

R3 ω(y, t) ∧ (x − y) |x − y|−3 dy . Our focus is
on the special case where the initial vorticity ω0 = ΓδC is an idealized vortex filament given by
a current1 of strength Γ concentrated on an oriented circle C ⊂ R3. More precisely, ω0 is the
vector-valued measure on R3 defined by the identity

〈ω0 , ϕ〉 = Γ
3

∑

i=1

∫

C

ϕi dxi , (1.3)

which is assumed to hold for any continuous test function ϕ = (ϕ1, ϕ2, ϕ3). In the well-known
analogy between fluid mechanics and electromagnetism, ω0 can be thought of as an electric

1Here the term current can be understood in its heuristic meaning but also in the technical meaning of the
geometric measure theory, such as in [24].
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current of intensity Γ flowing through an infinitely thin wire represented by the circle C; the
direction of the current is then given by the orientation of the circle and the sign of Γ. Vortex
filaments were already considered in the classical 1858 paper of Helmholtz [40] which deals with
the inviscid case ν = 0 corresponding to the Euler equation. Helmholtz argued that a circular
vortex filament of zero thickness would move with infinite speed along its symmetry axis. In
1867 Kelvin [44] established the following formula for the speed of a vortex ring of small but
finite thickness d > 0 and radius r0 ≫ d :

V ≈ Γ

4πr0

(

log
8r0
d

−C
)

, (1.4)

where C ∈ R is a dimensionless constant that depends on the distribution of vorticity inside a
cross section of the ring. If the distribution is uniform, which is probably the assumption made
by Kelvin, the relevant value is C = 1

4 , see [46, §163].

V

r0

thickness ≈
√
νt

t = 0 t > 0

ω0 = ΓδC

=⇒

Figure 1: An illustration our main result. Starting from a vortex filament supported on an oriented circle

C, the solution of the Navier-Stokes equation evolves into a viscous vortex ring of thickness proportional

to
√
νt which moves along the symmetry axis at a speed V given by the Kelvin-Saffman formula (1.5). In

the right picture, the vortex lines are circles that fill the solid torus depicted in blue, whereas the black

arrows denote the trajectories of the fluid particles.

In the viscous case ν > 0, the solution originating from the singular filament ω0 = ΓδC
becomes smooth for any positive time t > 0 and is expected to represent a viscous vortex ring
of thickness proportional to

√
νt, as long as that quantity is small compared to the radius r0

of the ring. Based on Kelvin’s formula one anticipates that the vortex ring will move at the
(time-dependent) speed (1.4) with d =

√
νt and C corresponding to a Gaussian distribution of

vorticity inside the core. To the best of our knowledge, the relevant value of the constant C was
first determined by Saffman in [55]. The computation gives C = 3

2 log(2) +
1
2(1 − γE), where

γE ≈ 0.5772... is Euler’s constant.2 We will refer to the formula

V (t) =
Γ

4πr0

(

log
8r0√
νt

− 3

2
log 2− 1

2
(1− γE)

)

(1.5)

as the Kelvin-Saffman formula for the speed of a viscous vortex ring.

When the initial circle C is parametrized by (r0 cos θ, r0 sin θ, 0) for θ ∈ [0, 2π], with the
orientation in the direction of increasing θ, the translational motion will be in the positive
direction along the x3-axis if Γ > 0.

2Fraenkel’s paper [26] contains formulae that can be used to obtain the same result. Tung and Ting in [56]
also give a formula for C of a similar nature, which however needs a small correction.
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It is proved in [33] that the Cauchy problem (1.1), (1.2) with ω0 = ΓδC has a unique solution
in natural classes of axisymmetric fields. The main result of the present paper, Theorem 1.1
below, describes the precise behavior of that solution in the low viscosity regime where the
circulation Reynolds number Re := Γ/ν is large. Our description is valid on a time interval whose
length is intermediate between the advection time and the diffusion time, defined respectively
as

Tadv =
r20
Γ
, Tdif =

r20
ν
. (1.6)

Note that Tadv ≪ Tdif when Re ≫ 1. The leading term in our approximation is exactly the one
suggested by the Kelvin-Saffman formula together with the simplest diffusion heuristics: The
ring diffuses according to the linear heat equation, and translates with speed (1.5) along its
symmetry axis. Denoting by ωlin(x, t) the solution of the heat equation ∂tω = ν∆ω with initial
condition ω|t=0 = ω0 = ΓδC, and defining ‖η‖ = ‖η/r‖L1(R3), where r = r(x) is the distance
from x to the symmetry axis, we can state our main result as follows.

Theorem 1.1. There exist dimensionless constants K > 0, R0 > 0, and σ ∈ (0, 13) such that,
for all Γ > 0, all r0 > 0, and all ν > 0 satisfying Re := Γ/ν ≥ R0, the following holds. If
ω0 = Γ δC where C is an oriented circle of radius r0, the unique axisymmetric solution ω of the
Cauchy problem (1.1), (1.2) established in [33] can be expressed for t ∈ (0, Tadv Re

σ) as

ω(x, t) = ωlin(x− a(t), t) + ωcor(x, t) , with ‖ωcor(· , t)‖ ≤ K Γ

(
√
νt

r0

)1−3σ

, (1.7)

where a(t) describes the translation of the ring along its symmetry axis according to the Kelvin-
Saffman formula (1.5). Specifically, if C = {(r0 cos θ, r0 sin θ, 0) ; θ ∈ [0, 2π]} is oriented posi-
tively, one has a(t) = (0, 0, a3(t)) where a3(t) =

∫ t
0 V (s) ds and V is given by (1.5).

An extended version of our result, including a more precise approximate solution and a much
stronger control of the correction term, is formulated as Theorem 2.6 below, after the necessary
notation has been introduced in Section 2. In particular, the exponent 1 − 3σ in (1.7) can be
improved to 1 if we take into account higher-order corrections to the Kelvin-Saffman formula.

In Theorem 1.1, the constants K and R0 are large, whereas the exponent σ > 0 is taken
small. We conjecture that an approximation result of the form (1.7) remains valid on longer
time scales of order TadvRe

σ′

with σ′ close to 1, but we have no proof so far. In view of (1.4),
the advection time Tadv can be interpreted as the time needed for a vortex ring of circulation Γ
and small (but not infinitesimal) aspect ratio d/r0 to travel over a distance comparable to its
radius r0. In contrast, the diffusion time Tdif = TadvRe is the time at which the diffusion length√
νt becomes equal to the radius r0, so that the vortex ring structure is essentially lost. The

assumption that Re ≫ 1 means that the vortex ring can travel along its symmetry axis over a
very long distance, compared to its radius r0, before being destroyed by diffusion. In particular,
on the time scale T = Tadv Re

σ where Theorem 1.1 provides a rigorous control we find, using
(1.5) and (1.6),

|a(T )| =
∫ T

0
V (t) dt =

r0
4π

Reσ
(

log
(

Re
1−σ
2
)

+ C ′
)

,

for some constant C ′. Obviously the quantity in the right-hand side grows boundlessly as
Re → +∞, even in the limiting case where σ = 0 and T = Tadv.

It is instructive to compare the situation for vortex rings with the case of a rectilinear
filament, where the vorticity is initially concentrated on a straight line ℓ in R3. Let us denote
this initial vorticity field by ω0 = Γδℓ. In that case the solution of the full vorticity equation is
given by ω( · , t) = Γeνt∆δℓ, because the nonlinear terms vanish identically due to symmetries

3



when evaluated on the solution of the heat equation ∂tω = ν∆ω. Although the evolution of the
velocity and the vorticity fields does not look very dramatic, the fluid particles in the vicinity of
ℓ do move at very large speeds when νt is small, and the inertial forces in the fluid are therefore
significant. However, these forces are exactly balanced by the pressure gradient.

When the rectilinear filament is bent into a vortex ring (as already considered in Helmholtz’s
1858 paper), the inertial forces are no longer in balance and the ring has to move. To achieve a
relatively smooth motion, the bent vortex has to be “well-prepared” so that the inertial forces
generated by the fast-moving fluid particles are still mostly canceled and do not generate fast
oscillations. The initial condition ω0 = ΓδC has the advantage of letting the equation to adjust
the vorticity field into a well-prepared state without trying to achieve this “by hand”. Quite
remarkably, this adjustment is made in exactly such a way that the oscillations are avoided.3

The largest inertial forces still cancel and the situation remains somewhat close to the rectilinear
case with only two significant differences: (a) some motion of the ring along its axis of rotational
symmetry is needed to balance the forces, but the speed of this motion is much lower than the
speed of the fast particles in the fluid; (b) once the thickness of the ring becomes comparable to
its radius, new effects (not discussed in this work) appear.

Theorem 2.6 can be compared with a result by Brunelli and Marchioro [9], where the authors
consider general axisymmetric vorticities that are initially supported in a torus of major radius
r0 > 0 and minor radius 0 < ρ0 ≪ r0. Under certain technical assumptions, they show that the
solution of the Navier-Stokes equations remains essentially concentrated in a thin torus which
moves along the symmetry axis according to Kelvin’s law. If the vortex strength Γ is kept fixed,
the solution is under control on a time interval of length T log(r0/ρ0)

−1, which therefore shrinks
to zero as ρ0 → 0. Also, the authors assume that the viscosity satisfies νT ≤ ρ20 (up to a
logarithmic correction), so that the viscous effects can be treated perturbatively. In the same
spirit, the case of several vortex rings with a common symmetry axis was recently considered
in [11], see also [7, 12] for similar results in the inviscid case. Our Theorem 2.6 is restricted to
specific initial data, which correspond to ρ0 = 0, but it provides a more precise control of the
solution on a much longer time scale, and the diffusive effects are not treated perturbatively.

1.1 Main ideas of the proof of Theorem 1.1

Our analysis starts with the construction of a precise approximation of the solution ω(x, t).
This is achieved by writing the solution in suitable self-similar coordinates that capture well the
singular behavior of the solution at t = 0 through explicit rescalings of a smooth “profile” η
that can be thought of as a perturbation of a suitable Gaussian η0. The perturbed profile η is
expressed as an asymptotic series in the time-dependent parameter ǫ =

√
νt/r̄, with r̄ = r̄(t)

denoting the instantaneous radius of the ring. To achieve a precision that is sufficient for our
purposes, we need an expansion up to the fourth order: η = η0 + ǫη1 + ǫ2η2 + ǫ3η3 + ǫ4η4 + ηcor.
The profiles ηj with j ≥ 1 are obtained by inverting operators containing the small parameter
δ = 1/Re = ν/Γ, and in that sense we really deal with a two-parameter expansion. As far as we
know, this is somewhat different from other expansions in the literature, such as [14,55,30]. A
one-parameter formal expansion in ǫ would treat δ as ∼ ǫ2, in view of the relation r̄2ǫ2 = δ Γ t.
Keeping both parameters makes it easier to cover the regimes when ǫ2 and δ are not really
comparable, as is the case for very small and very large times. For the sake of completeness,
we mention that the vorticity profiles ηj for j ≥ 1 can also depend on log ǫ. That phenomenon
is well known, and the leading term in the speed of the ring is precisely related to choosing a
moving coordinate system in which the terms with log ǫ in η1 are eliminated.

3In the related situation of interacting vortices in R2, this was already observed in [31].
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The main difficulty in the proof of Theorem 1.1, however, is not in the computation of an
approximate solution, but in showing that the true solution remains close to this approximation
on a large time interval. This requires fairly strong stability properties for the linearization of
the vorticity equation at the approximate solution, which is very singular in the low viscosity
regime. When the initial condition corresponds to a finite number of parallel rectilinear vortices,
a stability analysis was carried on in [31] by using suitable weighted L2 spaces adapted to the
specific features of the rectilinear vortices with Gaussian profiles. In the vortex ring case the
nonlinearity of the equations starts affecting the formal expansions earlier and it is unclear
whether the setup in [31] can be used to show that the vortex ring will not disintegrate on
time-scales approaching zero as ν → 0. A recent important work [6] extends some of the 2d
methods for proving stability to a relevant 3d situation, but the length of the time interval over
which the solution is under control may approach 0 as ν tends to 0.

In physical flows and numerical experiments one observes a remarkable degree of stability
of vortex rings as well as signs of instabilities with respect to non-axisymmetric perturbations,
see for example [59,52]. At a rigorous mathematical level the stability issues have not been well
understood. In fact, when Γ/ν is not small, not only the stability, but even the uniqueness of
the solutions of the Cauchy problem above with ω0 = Γ δC (and also with ω0 = Γ δℓ) is open in
classes of solutions that do not share the symmetry of the initial data.

In the 1960s, V. I. Arnold suggested a variational method for proving stability of steady
solutions to Euler’s equation based on a geometric insight that can be summarized as follows,
using the Hamiltonian setup of [49]:

(a) The incompressible Euler equation can be viewed as a Poisson system with a Hamiltonian
function given by the usual kinetic energy.

(b) The steady states are critical points of the energy on the symplectic leaves. The latter
coincide with the coadjoint orbits, called just orbits in what follows, of the group of the volume-
preserving diffeomorphisms of the fluid domain acting by push-forward on the vorticity fields.

(c) When the critical point is a local maximum or a local minimum on an orbit, the corresponding
steady state should be stable.

These ideas fit into a broader family of methods used for proving stability of solutions of
Hamiltonian systems by invoking extremality properties of a conserved quantity under con-
straints given by other conserved quantities. For example, a circular planetary orbit in the
three-dimensional Kepler problem is stable because it minimizes energy for a given angular
momentum.4 In the applications to vortex rings, it is natural to restrict the analysis to axisym-
metric flows with no swirl, which means that the velocity field is invariant under rotations about
a symmetry axis and under reflection across any plane containing that axis.

Arnold’s method has found many applications to Euler flows in 2d (see, for example, [4]),
and has also been invoked in the work of Benjamin [8] on inviscid vortex rings that is directly
relevant for our purposes here. Although some arguments in [8] may not be fully rigorous, they
provide important suggestions for investigating stability of inviscid vortex rings in the class of
axisymmetric solutions. In a different direction, the conservation of energy, impulse, and vortex
strength has been used to control the evolution of a general class of concentrated solutions of
the Euler equations describing vortex rings, see for example [7, 12].

There is voluminous literature on the stationary vortex ring solutions of the Euler equation,
starting with the explicit solution of Hill [42], see e.g. [1,2,5,10,15–18,26–29,53,54,57]. Many of
these works rely in one way or another on variational aspects of the underlying PDEs that have
connections to the work of Arnold and Benjamin, albeit in an indirect way. Roughly speaking, if

4It is well-known that this is no longer the case in dimension four and higher [39].
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we compare Arnold’s setup to the maximization of a function f(x) under constraints gj(x) = cj ,
one can compare some of the variational approaches in the references above to searching for
critical points of f(x)− λ1g1(x)− · · · − λmgm(x) when the Lagrange multipliers λ1, . . . , λm are
given. Readers interested in related links can find more details in [34].

In our asymptotic expansions of the solutions of (1.1), (1.2) inviscid vortex ring solutions
can also be discerned. For each fixed time t > 0 the third-order expansion in our parameter
ǫ =

√
νt/r̄ is a good approximation of an inviscid vortex ring, at least in the limiting case where

our second parameter δ = ν/Γ is taken equal to zero. A part of our stability analysis can be
thus understood in terms of the stability properties of this ring, see Remark 2.3 and Section 3.8
for more details.

If one wishes to apply Arnold’s ideas to the solutions of (1.1), (1.2), there appears to be
a non-trivial obstacle: The viscous flows do not preserve the geometric structures that are at
the basis of Arnold’s considerations and the influence of the viscosity is too large to treat the
viscous terms perturbatively. At first this may seem to be a serious problem: If the preservation
of the orbits and the Hamiltonian nature of the equations are violated beyond the reach of the
perturbative approach (such as [9, 11]), can the geometric structure relying on maximization of
the energy on symplectic leaves be helpful? In our previous work [34] we showed, in a much
simpler situation, that the answer to this question can be positive. It turns out that the quadratic
forms coming up in Arnold’s stability analysis, although originally envisaged as quadratic forms
on the tangent spaces to the orbits, are often well-behaved on much larger subspaces. This point
can still be conceptually explained by the geometry of the Euler equation. What we find more
surprising is that Arnold’s forms also have favorable behavior with respect to the dissipative
term generated by the viscosity. We can show this by direct calculation, but we do not have
a good conceptual explanation of this fortuitous circumstance. In the paper [34] we showed
that the above ideas can be used to prove the stability of the rectilinear vortex solution (in
self-similar variables) with respect to perturbations for which the vorticity field stays parallel to
the original vortex line. This result has been established previously by a different method [36].
The new proof in [34] can be thought of as a proof of concept that the ideas of Arnold can be
applied even in the presence of viscosity. The application to vortex rings presented here is more
complicated, but we are not aware of any simpler approach in that case.

To conclude this section, we mention a recent important work by Dávila, Del Pino, Musso,
and Wei [22], where the authors rigorously establish “leapfrogging” of inviscid vortex rings.
The construction uses “gluing methods” that were previously developed in [21] to study the
interaction of vortices in the plane. The approach shares similarities with ours, as it relies on
the construction of accurate approximate solutions and their stability analysis. The stability
part also uses an Arnold-type energy functional, although the connection to Arnold’s geometric
viewpoint is not explicit. In the inviscid case, the expansion parameter ǫ > 0 does not need
to change during the motion, and the solution is controlled on a time interval of size T/| log ǫ|.
This is shorter than in Theorem 1.1, but our result is restricted to a single vortex ring, and uses
viscous effects. One expects the viscosity to have a stabilizing role, but its interaction with the
geometric structures of Arnold requires a careful analysis. One needs to show that the solutions
will stay “coherent” for a sufficiently long time and the viscous effects will not be enhanced too
much by the high velocities inside and near the ring.

Another description of the leapfrogging motion of vortex rings, in a different parameter
regime, can be found in [13].
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1.2 Comments on the local induction approximation for general filaments

The problem studied in this paper can be considered as a special case of the viscous version of
the local induction approximation conjecture. In the setup considered here the conjecture could
be formulated as follows: if we replace the circle C be a general smooth closed curve and consider
the Cauchy problem (1.1), (1.2) with ω0 = ΓδC, the motion of the filament C should still be
determined essentially by two effects: the diffusion, which transforms the filament into a vortex
tube of thickness d(t) ≈

√
νt at time t, and the advection by the self-induced velocity field. The

latter is described by a geometric equation that represents an extension of Kelvin’s formula to
general smooth curves, and was derived by Da Rios [20] in 1906:

V ≈
(

Γ

4πr
log

8r

d

)

b . (1.8)

Here V is the vector representing the local velocity of the filament, b denotes the local binormal
vector, r is the local radius of the curvature, and d denotes the local thickness of the filament. (All
these quantities may be time- and position-dependent.) In the limit ν → 0 the approximation
should be valid until the geometric evolution of the curve by the binormal flow leads to a self-
intersection. For general initial curves C the time of the first self-intersection may be approaching
zero as ν approaches zero. The first significant step towards this general case, a local-in time
well-posedness result for a fixed ν > 0, was obtained in [6]. Some formal computations related
to the conjecture are presented in [14] and we also refer the reader to the important conditional
result in [43]. Our result can be viewed as a proof of the viscous formulation of the conjecture
in the special case where the curve C is a circle.

For a general smooth curve C and a sufficiently small Reynolds number Γ/ν, the Cauchy
problem (1.1), (1.2) is globally well-posed as first shown in [38] by a perturbation analysis,
see also [45] for a more general result in the same spirit. Accurate calculations in the recent
noteworthy preprint [25] suggest that even in these perturbative regimes the motion by the local
induction approximation can still be discerned, although its effect is small and the distance
traveled by the ring due to the velocity field (1.8) seems to be quite shorter than its thickness.

The general case of the local induction approximation conjecture for the setup considered
in this paper seems to be difficult. In fact, it is unclear whether the strongest version of the
conjecture is valid even for small perturbations of the circle, as the perturbed filaments may
perhaps become unstable to general 3d perturbations before possible self-intersections. For
example, the instabilities studied in [59,52] may be relevant.

2 Preliminaries and sketch of the proof

In this section we introduce the notation that is necessary to formulate our result in its stronger
form, and we give a pretty detailed sketch of the overall proof. The construction of the approx-
imate solution will be performed in Section 3, and the stability analysis in Section 4. Technical
calculations are postponed to Appendix A and B.

2.1 Formulation of the problem in cylindrical coordinates

In a suitable Cartesian coordinate system, the circle of radius r0 > 0 which represents the
support of the initial vorticity (1.3) is given by C = {(r0 cos θ, r0 sin θ, 0) ; θ ∈ [0, 2π]}. Due to
the symmetries of the problem, it is natural to introduce the standard cylindrical coordinates
(r, θ, z) defined by x1 = r cos θ, x2 = r sin θ, x3 = z and to restrict our attention to velocity and
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vorticity fields of the form

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez , ω(x, t) = ωθ(r, z, t)eθ , (2.1)

where er, eθ, ez denote unit vectors in the radial, azimuthal, and vertical directions, respectively.
In the usual terminology, we thus consider axisymmetric flows with no swirl, see [48]. Due to
the incompressibility condition div u := r−1∂r(rur)+∂z(uz) = 0, the velocity components ur, uz
can be expressed in terms of the Stokes stream function ψ :

ur = −1

r
∂zψ , uz =

1

r
∂rψ . (2.2)

With this notation the vorticity formulation of the Navier-Stokes equation (1.1) becomes

∂tωθ +
{

ψ,
ωθ

r

}

= ν
[

(

∂2r + ∂2z )ωθ + ∂r
ωθ

r

]

, (2.3)

where {·, ·} is the Poisson bracket defined by {ψ, φ} = ∂rψ ∂zφ − ∂zψ ∂rφ. Eq. (2.3) is to be
solved in the domain Ω = {(r, z) ∈ R2 | r > 0}. The smoothness of the fields in the original
variables imposes the “boundary conditions” ωθ(r, z, t) = rζ(r, z, t) and ψ(r, z, t) = r2Ψ(r, z, t)
near r = 0, where ζ and Ψ can be extended to smooth functions on R2 × R+ that are even
functions of r.

The Stokes stream function can be represented in terms of the vorticity ωθ = ∂zur − ∂ruz
by the Biot-Savart law

ψ(r, z) =
1

2π

∫

Ω

√
rr̄ F

(

(r − r̄)2 + (z − z̄)2

rr̄

)

ωθ(r̄, z̄) dr̄ dz̄ , (2.4)

where F : (0,∞) → R is defined by

F (s) =

∫ π/2

0

1− 2 sin2 ψ
√

sin2 ψ + s/4
dψ , s > 0 . (2.5)

Formula (2.4) provides a solution to the equation

curl curl

(

ψ

r
eθ

)

= ωθ eθ or, equivalently, − ∂r

(∂rψ

r

)

− ∂2zψ

r
= ωθ , (2.6)

which is familiar in magnetostatics, see for example [51, §701]. The same expression can also be
found in the classical book [46, §161]. It is well-known (and not hard to check) that

F (s) =

{

log 8√
s
− 2 +O(s log s) as s→ 0 ,

π
2s3/2

+O(s−5/2) as s→ ∞ .
(2.7)

Since we wish to solve the Cauchy problem (1.1), (1.2) with initial data ω0 = ΓδC, we assume
that the vorticity ωθ in (2.1) satisfies the initial condition

ωθ

∣

∣

∣

t=0
= Γδ(r0,0) , (2.8)

where δ(r0,z0) denotes the Dirac mass at the location (r0, z0) ∈ Ω. Our starting point is the
following global well-posedness result for the vorticity equation (2.3) with such initial data.
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Theorem 2.1. [33] For any Γ > 0, any ν > 0, and any (r0, z0) ∈ Ω, the axisymmetric vorticity
equation (2.3) has a unique global mild solution ωθ ∈ C0((0,∞), L1(Ω) ∩ L∞(Ω)) such that

sup
t>0

‖ωθ(t)‖L1(Ω) < ∞ , and ωθ(t) dr dz ⇀ Γ δ(r0,z0) as t→ 0 . (2.9)

Moreover there exists a constant C > 0, depending only on the ratio Γ/ν, such that

∫

Ω

∣

∣

∣
ωθ(r, z, t) −

Γ

4πνt
e−

(r−r0)
2+(z−z0)

2

4νt

∣

∣

∣
dr dz ≤ C Γ

√
νt

r0
log

( r0√
νt

+ 1
)

, (2.10)

whenever t ∈ (0, Tdif), where Tdif = r20/ν.

Here and in what follows, it is understood that L1(Ω) = L1(Ω,dr dz), and similarly for the
other Lebesgue spaces. Theorem 2.1 establishes the existence of a four-dimensional family of
vortex ring solutions to (2.3) parametrized by the circulation Γ > 0, the viscosity ν > 0, the
initial radius r0 > 0, and the initial vertical position z0 ∈ R. Due to translation invariance in the
vertical direction, we may assume without loss of generality that z0 = 0, and we can also take
r0 = 1 by rescaling the space variables. Then a rescaling of time allows us to change the values
of both ν and Γ, while keeping the ratio Γ/ν fixed. Therefore, up to symmetries, the viscous
vortex ring solutions we consider here form a one-parameter family indexed by the circulation
Reynolds number Re := Γ/ν.

The uniqueness of the vortex ring solution under the minimal assumptions (2.9) is discussed
in some detail in [33], so we concentrate here on the short-time estimate (2.10), which is of
limited use despite appearances. For a fixed value of the Reynolds number Re = Γ/ν, the
right-hand side of (2.10) is small whenever t≪ Tdif , which means that the solution of (2.3) with
initial data (2.8) is well approximated by a Gaussian vortex ring of thickness proportional to√
νt, located a the initial position (r0, z0) ∈ Ω. However, since the constant C depends on the

Reynolds number in a very bad way, estimate (2.10) gives no information on the solution at a
fixed time t > 0 in the low viscosity regime ν → 0. This limitation is not surprising: due to
the translational motion along the vertical axis predicted by the Kelvin-Saffman formula (1.5),
the vortex ring at time t > 0 is actually located at a new position which is rather far from the
initial one if ν is small.

Our goal in this paper is to replace (2.10) by an improved estimate of the form

∫

Ω

∣

∣

∣
ωθ(r, z, t) −

Γ

4πνt
e−

(r−r̄(t))2+(z−z̄(t))2

4νt

∣

∣

∣
dr dz ≤ K Γ

√
νt

r0
, t ∈ (0, Tadv Re

σ) , (2.11)

where the constant K is now independent of the Reynolds number, if Re ≫ 1. Comparing with
(2.10), we observe that (2.11) is valid up to the intermediate time Tadv Re

σ, for some σ ∈ (0, 13),
which is shorter than Tdif ≡ Tadv Re. But the main difference is that (2.11) compares the
solution ωθ(r, z, t) to a vortex ring located at a time-dependent position (r̄(t), z̄(t)), which has to
be determined. As we shall see, we can take r̄(t), z̄(t) to be continuous functions of time which
are smooth for t > 0 and satisfy r̄(0) = r0, z̄(0) = z0. Moreover

˙̄r(t) = O
( ν

r0

)

, ˙̄z(t) =
Γ

4πr0

(

log
1

ǫ(t)
+ v̂

)(

1 +O
(

ǫ(t)2 + δ2
)

)

, (2.12)

where ǫ(t) =
√
νt/r̄(t), v̂ = 3

2 log(2)+
1
2(γE−1), and δ = ν/Γ. The first relation in (2.12) implies

that r̄(t) = r0
(

1 +O(ǫ(t)2)
)

, which means that the change in the radius of the vortex ring over

the time interval under consideration is much smaller than the diffusion length
√
νt. The second

equality coincides with the Kelvin-Saffman formula (1.5), up to higher order corrections.
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2.2 Self-similar variables

From now on, we fix the circulation Γ > 0 and the position (r0, 0) ∈ Ω of the initial filament,
and we consider the vortex ring solution given by Theorem 2.1, in the regime where the viscosity
ν > 0 is small. In view of the approximation formula (2.11), which is our objective, it is natural
to make the following self-similar Ansatz for the axisymmetric vorticity and the associated Stokes
stream function :

ωθ(r, z, t) =
Γ

νt
η
(r − r̄(t)√

νt
,
z − z̄(t)√

νt
, t
)

,

ψ(r, z, t) = Γ r̄(t)φ
(r − r̄(t)√

νt
,
z − z̄(t)√

νt
, t
)

,

(2.13)

where the time-dependent position (r̄(t), z̄(t)) ∈ Ω has to be determined. We introduce the
important notation

δ =
ν

Γ
, ǫ =

√
νt

r̄(t)
, R =

r − r̄(t)√
νt

, Z =
z − z̄(t)√

νt
. (2.14)

The evolution equation for the rescaled vorticity η(R,Z, t) is found to be

t∂tη +
Γ

ν

{

φ ,
η

1 + ǫR

}

−
√

t

ν

(

˙̄r ∂Rη + ˙̄z ∂Zη
)

= Lη + ∂R

( ǫη

1 + ǫR

)

, (2.15)

where
{

φ, χ
}

= ∂Rφ∂Zχ− ∂Zφ∂Rχ is the Poisson bracket in the new variables (R,Z), and L is
the Fokker-Planck operator

L = ∂2R + ∂2Z +
1

2

(

R∂R + Z∂Z
)

+ 1 . (2.16)

Eq. (2.15) is to be solved in the time-dependent domain

Ωǫ =
{

(R,Z) ∈ R2
∣

∣ 1 + ǫR > 0
}

, (2.17)

with the Dirichlet boundary condition η(−1/ǫ, Z, t) = 0 for all (Z, t) ∈ R× R+.

As in [33], it is useful to introduce the velocity field U = (UR, UZ) defined by

UR = − ∂Zφ

1 + ǫR
, UZ =

∂Rφ

1 + ǫR
, (2.18)

in terms of which the nonlinearity in (2.15) reads
{

φ , η
1+ǫR

}

= ∂R
(

UR η) + ∂Z(UZ η). The
stream function φ in (2.15) satisfies the elliptic equation

η = ∂ZUR − ∂RUZ ≡ −∂R
( ∂Rφ

1 + ǫR

)

− ∂2Zφ

1 + ǫR
, (R,Z) ∈ Ωǫ , (2.19)

with boundary conditions φ(−1/ǫ, Z, t) = ∂Rφ(−1/ǫ, Z, t) = 0 for all (Z, t) ∈ R × R+. Using
(2.4), we easily obtain the representation formula [33]

φ(R,Z) =
1

2π

∫

Ωǫ

√

(1+ǫR)(1+ǫR′)F

(

ǫ2
(R−R′)2 + (Z−Z ′)2

(1+ǫR)(1+ǫR′)

)

η(R′, Z ′) dR′ dZ ′ , (2.20)

where F is as in (2.5). In what follows we write φ = BSǫ[η] when (2.20) holds.
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The quantities introduced in (2.14) are all dimensionless. The first one is the inverse Reynolds
number δ > 0, a fixed parameter that is assumed to be small. The second one is the time-
dependent aspect ratio ǫ > 0, which appears in the evolution equation (2.15), in the definition
of the domain (2.17), and in the Biot-Savart formula (2.20). Finally, the variables R, Z are self-
similar coordinates centered at the time-dependent location (r̄(t), z̄(t)) and normalized according
to the size

√
νt of the vortex core. Note that the rescaled functions η, φ defined in (2.13) are

also dimensionless.

Remark 2.2. Recalling that δ = ν/Γ and Tadv = r20/Γ, we observe that

ǫ2 =
νt

r20

r20
r̄(t)2

=
δt

Tadv

r20
r̄(t)2

≈ δt

Tadv
, (2.21)

as long as the ratio r0/r̄(t) remains close to unity, which will always be the case thanks to (2.12).
It follows in particular that ǫ2 is comparable to δ whenever t is comparable to Tadv. Our goal is
to control the solution of (2.3) when t ≤ Tadvδ

−σ for some σ ∈ (0, 13 ), and on that interval it
follows from (2.21) that ǫ2 . δ1−σ.

2.3 Approximate solution

The first important step in our analysis is the construction of an approximate solution of (2.15)
with initial data

η0(R,Z) =
1

4π
e−(R2+Z2)/4 , (R,Z) ∈ Ω0 = R2 . (2.22)

The associated stream function satisfies −∆0φ0 = η0, where ∆0 = ∂2R + ∂2Z . As η0, φ0 are both
radially symmetric, it is clear that {φ0, η0} = 0, and the Gaussian profile (2.22) has the property
that Lη0 = 0. Since ǫ = 0 when t = 0 in view of (2.14), we conclude that equation (2.15) is
satisfied at initial time if η0 is given by (2.22).

For t > 0, we construct our approximate solution as a power series in the time-dependent
parameter ǫ =

√
νt/r̄, the coefficients of which depend on the small parameter δ. To this end,

we multiply both sides of (2.15) by δ and rewrite the equation in the equivalent form

δ t∂tη +
{

φ ,
η

1 + ǫR

}

− ǫr̄

Γ

(

˙̄r ∂Rη + ˙̄z ∂Zη
)

= δ
[

Lη + ∂R

( ǫη

1 + ǫR

)]

. (2.23)

This equation is defined on the time-dependent domain Ωǫ, but expanding the factors (1+ǫR)−1

in powers of ǫ we get at each order a relation that can be solved in the whole plane Ω0 = R2.
The corresponding approximation for the stream function φ is obtained in a self-consistent way
by expanding the integrand in (2.20) in powers of ǫ, and integrating order by order over the
whole plane R2. As is shown in Section 3, this results in an asymptotic expansion of the form

ηapp(R,Z, t) =

M
∑

m=0

ǫm ηm(R,Z, βǫ) , φapp(R,Z, t) =

M
∑

m=0

ǫm φm(R,Z, βǫ) , (2.24)

where the dependence of the profiles ηm and φm on βǫ := log(1/ǫ) is polynomial. The profiles
also depend on the small parameter δ, but to make the notation lighter this dependence is
not indicated explicitly. The velocity of the vortex center is not known a priori, but can be
approximated in a similar way as a power series in ǫ :

˙̄r(t) =

M−1
∑

m=0

ǫm ˙̄rm(βǫ) , ˙̄z∗(t) =

M−1
∑

m=0

ǫm ˙̄zm(βǫ) , (2.25)
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where the quantities ˙̄rm(βǫ), ˙̄zm(βǫ) depend on δ and are polynomials in βǫ. As will be explained
below, the quantity ˙̄z∗(t) in (2.25) is only an initial approximation of the vertical speed of the
vortex ring; the final approximation ˙̄z(t) will be obtained from it by a small adjustment. It is
perhaps worth emphasizing that, throughout the paper, the point (r̄(t), z̄(t)) is not necessarily
the exact center of our vortex. Rather, it is its suitably chosen approximation.

The outcome of the analysis carried out in Section 3 below is that, if we want our expansions
(2.24), (2.25) to hold uniformly with respect to the parameter δ in the limit where δ → 0, there
is a unique choice of the profiles ηm, φm and of the velocities ˙̄rm, ˙̄zm such that :

a) Both members of (2.23) agree up to order O(ǫM+1), modulo powers of βǫ;

b) The point (r̄(t), z̄∗(t)) ∈ Ω is the center of the vorticity distribution ηapp(R,Z, t).

The integer M in (2.24), (2.25) determines the accuracy of our approximate solution. It turns
out that M = 4 will be sufficient for our purposes. The velocities ˙̄r(t), ˙̄z∗(t) given by (2.25) are
found to satisfy estimate (2.12) with δ = 0.

Remark 2.3. If we set δ = ˙̄r = 0, equation (2.23) reduces to

{

φ ,
η

1 + ǫR

}

− ǫr̄

Γ
˙̄z ∂Zη ≡

{

φ− r̄ ˙̄z

2Γ
(1 + ǫR)2 ,

η

1 + ǫR

}

= 0 , (2.26)

which is the relation satisfied by the vorticity η and the stream function φ of a stationary solution
of the Euler equations in a frame moving with speed ˙̄z ez. These are precisely the vortex rings
constructed, for instance, in [26,28,29,1,10]. In that situation the aspect ratio ǫ > 0 is fixed and,
as in (2.14), the dimensionless variables (R,Z) are defined so that (r, z) = (r̄, z̄) + ǫr̄ (R,Z).
An approximate solution of (2.26) can be constructed in the form of a power series in ǫ, as
in (2.24), where all profiles ηm, φm are even functions of the variable Z ∈ R, since this is the
case for the coefficients in (2.26) and for the initial approximation (2.22). Returning to the
approximate solution (2.24), we deduce by uniqueness that ηapp, φapp are even functions of Z in
the limit δ → 0, and that ˙̄r = Γ

r0
O(δ) as δ → 0.

Remark 2.4. In view of (2.14) and (2.25), the function ǫ(t) is implicitly defined by the relation

√
νt

ǫ(t)
= r̄(t) = r0 +

M−1
∑

m=0

∫ t

0
ǫ(s)m ˙̄rm

(

βǫ(s)
)

ds , (2.27)

which should hold when 0 < t ≪ Tdif . As was mentioned in the previous remark, the radial
velocities ˙̄rm are small when δ ≪ 1, so that Eq. (2.27) will be easy to solve, see Section 3.6.

The asymptotic approximation ηapp(R,Z, t) is defined on the whole plane and does not vanish
on the boundary ∂Ωǫ. To obtain a valid approximate solution of (2.15), we fix σ0 ∈ (0, 1) and
we truncate ηapp outside a large ball of radius ǫ−σ0 by setting

η∗(R,Z, t) = χ0

(

ǫσ0(R2+Z2)1/2
)

ηapp(R,Z, t) , φ∗(·, t) = BSǫ[η∗(·, t)] , (2.28)

where χ0 : R+ → [0, 1] is a smooth function such that χ0(r) = 1 for r ≤ 1 and χ0(r) = 0 for
r ≥ 2. The remainder of that approximation is defined as

Rem(R,Z, t) = Lη∗ + ∂R

( ǫη∗
1+ǫR

)

− t∂tη∗ −
1

δ

{

φ∗ ,
η∗

1+ǫR

}

+
ǫr̄

δΓ

(

˙̄r ∂Rη∗ + ˙̄z∗ ∂Zη∗
)

. (2.29)

By construction this quantity depends on time only through the parameter ǫ =
√
νt/r̄(t).

The accuracy of our approximate solution is quantified by the following result, which is
established in Section 3.7 below :
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Proposition 2.5. Given any γ0 < 1 and any γ5 < 5, there exist a constant C > 0 such that the
remainder (2.29) satisfies

sup
(R,Z)∈Ωǫ

eγ0(R
2+Z2)/4 |Rem(R,Z, t)| ≤ C

(

ǫδ + ǫγ5δ−1
)

, (2.30)

whenever the parameters ǫ, δ are small enough.

2.4 Stability estimates

In our previous work [33], the evolution equation (2.15) was carefully studied in the particular
case where r̄(t) = r0 and z̄(t) = z0. This does not make any substantial difference for the initial
value problem at fixed viscosity, and we can thus infer from the results of [33] that Eq. (2.15) has
a unique solution η(R,Z, t) with initial data η0 given by (2.22). Our purpose is to show that, if
the inverse Reynolds number δ = ν/Γ is sufficiently small, the solution η(R,Z, t) remains close
to the approximation (2.28) on a long time interval of the form (0, Tadvδ

−σ), for some small
σ > 0. We use the decomposition :

η(R,Z, t) = η∗(R,Z, t) + δ η̃(R,Z, t) , φ(R,Z, t) = φ∗(R,Z, t) + δ φ̃(R,Z, t) , (2.31)

where φ̃ = BSǫ[η̃] in the sense of (2.20). Similarly we assume that the vertical speed of the
vortex ring takes the form

˙̄z(t) = ˙̄z∗(t) + δ ˙̃z(t) , (2.32)

where ˙̄z∗(t) is given by (2.25) and ˙̃z(t) is a small correction which is chosen so that the perturba-
tion η̃ has vanishing first order moment in the vertical direction, see Section 4.1. The equation
satisfied by η̃ then reads

t∂tη̃ +
1

δ

{

φ∗ ,
η̃

1 + ǫR

}

+
1

δ

{

φ̃ ,
η∗

1 + ǫR

}

+
{

φ̃ ,
η̃

1 + ǫR

}

− ǫr̄

δΓ

(

˙̄r ∂Rη̃ + ˙̄z∗ ∂Z η̃
)

= Lη̃ + ∂R

( ǫη̃

1 + ǫR

)

+
1

δ
Rem(R,Z, t) +

ǫr̄

δΓ
˙̃z ∂Zη .

(2.33)

Since η∗(R,Z, 0) = η0(R,Z), the nonlinear evolution equation (2.33) is to be solved with zero
initial data. The solution is therefore driven by the source term δ−1Rem(R,Z, t), which is small
in view of Proposition 2.5 and Remark 2.2 if the parameter σ is small enough. As long as η̃ stays
small, the nonlinear term {φ̃, (1+ǫR)−1η̃} is of course harmless. The most serious difficulty in
controlling η̃ using (2.33) comes from the linear terms with a large prefactor δ−1 = Γ/ν. These
terms could conceivably trigger violent instabilities that might lead to strong amplification of η̃
in a short time. Our goal is to show that this scenario does not occur, due to the special structure
of the advection terms in (2.33). A similar strategy was applied in the previous work [31] devoted
to the vanishing viscosity limit of interacting vortices in the plane, but the specific estimates
used there do not seem to be easily adaptable to the present situation.

To control the time evolution of the solution of (2.33), we use the energy functional

Eǫ(t) =
1

2

∫

Ωǫ

Wǫ η̃
2 dRdZ − 1

2

∫

Ωǫ

φ̃ η̃ dRdZ , (2.34)

where Wǫ : Ωǫ → (0,+∞) is a weight function that will be described below. The first term in
the right-hand side of (2.34) is a weighted L2 integral of the vorticity η̃, similar to weighted
enstrophies that were used for the same purposes in [36,31,33], for instance. The second term is
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just the kinetic energy associated with the vorticity perturbation η̃, as can be seen by invoking
(2.18), (2.19) and integrating by parts :

1

2

∫

Ωǫ

φ̃ η̃ dRdZ =
1

2

∫

Ωǫ

|∂Rφ̃|2 + |∂Z φ̃|2
1 + ǫR

dRdZ =
1

2

∫

Ωǫ

(

|ŨR|2 + |ŨZ |2
)

(1 + ǫR) dRdZ .

To construct the weight Wǫ in (2.34), we consider three different regions :

1) The inner region where ρ := (R2+Z2)1/2 . ǫ−σ1 , for some small σ1 > 0. Here we choose

Wǫ =
1

1 + ǫR
Φ′
ǫ

( η∗
1 + ǫR

)

, (2.35)

where η∗ is the approximate solution (2.28) and Φǫ : (0,+∞) → R is a smooth function with
the property that, in the region under consideration,

φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2 = Φǫ

( η∗
1 + ǫR

)

+ O(ǫδ + ǫγ3) , (2.36)

for some γ3 < 3 that can be arbitrarily close to 3. It is not difficult to understand intuitively why
such a function should exist. Indeed, in the dimensionless variables (2.14), the left-hand side
of (2.36) is nothing but the stream function of the approximate solution η∗ in a frame moving
with constant speed ˙̄z∗ in the vertical direction, see Remark 2.3. If we drop the remainder term
O(ǫδ + ǫγ3) and consider ǫ > 0 as a fixed parameter, Eq. (2.36) expresses a functional relation
between the potential vorticity ζ∗ := (1 + ǫR)−1η∗ and the stream function, which implies that
η∗ is a stationary solution of the Euler equation in the moving frame. This is not exactly true,
of course, but the estimate on the remainder Rem(R,Z, t) in Proposition 2.5 ensures that the
approximate solution η∗ (for a fixed value of ǫ > 0) is not far from a stationary solution of Euler,
and in Section 3.8 we verify that this implies the existence of a function Φǫ satisfying (2.36).
Moreover, an easy calculation shows that

1

1 + ǫR
Φ′
ǫ

( η∗
1 + ǫR

)

=
4

ρ2
(

eρ
2/4 − 1

)

+O(ǫ) , ρ :=
√

R2 + Z2 ≤ ǫ−σ1 .

2) The intermediate region where ǫ−σ1 . ρ ≤ ǫ−σ2 , for some σ2 > 1. In this area we assume
that the weight is approximately constant in space, with value Wǫ ≈ exp(ǫ−2σ1/4).

3) The far field region where ρ ≥ ǫ−σ2 . Here we take Wǫ ≈ exp(ρ2γ/4), where γ = σ1/σ2.

The actual construction of the weight is more complicated, and ensures that Wǫ is Lipschitz
continuous at the boundaries of the three regions under consideration, see Section 4 below
for details. For the moment, we just mention that our choice of the energy functional in the
inner region is related to Arnold’s variational characterization of the steady states of the Euler
equation, as discussed in our previous work [34]. In fact, if we suppose that η∗ is a stationary
solution of the axisymmetric Euler equation in a moving frame (which not exactly true), then
the functional (2.34) with the weight (2.35) corresponds, up to a constant factor, to the second
variation of the kinetic energy on the isovortical surface, which is the set of (potential) vorticities
ζ := (1 + ǫR)−1η that are measure-preserving rearrangements of ζ∗ [3, 34]. Since the kinetic
energy is conserved under the inviscid dynamics, the advection terms involving δ−1 in (2.33),
which originate from the linearization of Euler’s equation at the “steady state” ζ∗, do not
contribute to the time evolution of the functional Eǫ. In reality ζ∗ is only an approximate
steady state of Euler, and the cancellations alluded to above only occur up to correction terms
of order O(ǫδ + ǫγ3), but this is sufficient to cancel the dangerous factors δ−1 in (2.33). On the
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≈ ǫ−σ1 ǫ−σ0 ǫ−1 ǫ−σ2 ρ1

exp(ǫ−2σ1/4)
Wǫ(R,Z)

A(ρ) exp(ρ2γ/4)

Figure 2: When ǫ > 0 is small, the weight Wǫ(R,Z) entering the energy functional (2.34) is close to a

piecewise smooth radially symmetric function, which satisfiesWǫ ≈ A(ρ) := (4/ρ2)
(

eρ
2/4−1

)

in the inner

region where ρ := (R2+Z2)1/2 . ǫ−σ1 . When Wǫ reaches the threshold value exp(ǫ−2σ1/4), the weight

is taken approximately constant until ρ = ǫ−σ2 , and outside that region we set Wǫ ≈ exp(ρ2γ/4) with

γ = σ1/σ2. The dashed lines reflect the fact that exp(ρ2γ/4) . Wǫ . A(ρ) where the implicit constants

do not depend on the parameter ǫ. The intermediate scales ǫ−σ0 , where the truncation (2.28) occurs, and

ǫ−1, which is the distance from the origin to the boundary ∂Ωǫ, are indicated for completeness.

other hand, away from the inner region, the last term in (2.34) is extremely small, so that our
functional Eǫ reduces to a weighted enstrophy. We assume that the weight Wǫ is approximately
constant in the intermediate region, so that the advection terms in (2.33) do not contribute
to the evolution of Eǫ, and in the far field region the dynamics is dominated by the diffusion
operator L in (2.33) so that we can just take any radially symmetric weight with appropriate
growth at infinity.

A technical difficulty inherent to our approach is the fact that the functional Eǫ is not
coercive, unless the perturbed vorticity η̃ satisfies some moment conditions. The problem comes
from the inner region, where the last term in (2.34) plays an important role. The results
established in [34, Section 2] indicate that Eǫ is positive definite provided η̃ has zero mean and
vanishing first order moments with respect to the space variables R,Z. In practice this means
that, in addition to the information provided by the energy Eǫ, we must control the integral
and the first order moments of the perturbed vorticity η̃. It turns out that

∫

η̃ dRdZ is always
extremely small, of the order of O(exp(−c/ǫ2)) for some c > 0. The radial moment

∫

R η̃ dRdZ
may take larger values, but can be controlled using the conservation of the total impulse of the
vortex ring. Finally, we choose the correction ˙̃z(t) of the vertical speed (2.32) in such a way that
∫

Z η̃ dRdZ = 0, see Section 4.1 below for further details. This correction thus plays the role of
a “modulation parameter”, see [58,50] for a similar idea in the context of the stability analysis
of solitary waves.

Disregarding these technical questions for the moment, we briefly indicate how the argument
is concluded. If we differentiate Eǫ with respect to time, and use the evolution equation (2.33)
together with the estimate (2.30) on the source term, we obtain after lengthy calculations a
differential inequality of the form

tE′
ǫ(t) ≤ −c1Eǫ(t) + c2

(

ǫ2 +
ǫ2γ3

δ2

)

, t ∈ (0, Tadvδ
−σ) , (2.37)
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for some positive constants c1, c2. Here we assume that ǫ2γ3 ≪ δ2 so that the source term in
(2.37) is small. Since ǫ2 . δ1−σ by Remark 2.2, this is the case if σ < 1−2/γ3, which is possible
if σ < 1/3 and γ3 is close enough to 3. Integrating (2.37) with initial condition Eǫ(0) = 0, we
find

Eǫ(t) ≤ c3

(

ǫ2 +
ǫ2γ3

δ2

)

, t ∈ (0, Tadvδ
−σ) , (2.38)

and using in addition the bounds on the moments of η̃ that are obtained by a different argument
we arrive at an estimate of the form δ‖η̃(t)‖Xǫ ≤ c(ǫδ + ǫγ3), where Xǫ is the weighted L2 space
equipped with the norm

‖η̃‖Xǫ =

(
∫

Ωǫ

Wǫ(R,Z) |η̃(R,Z)|2 dRdZ

)1/2

. (2.39)

This space depends on time through the parameter ǫ > 0, but we recall that the weight function
satisfies a uniform lower bound of the form Wǫ(R,Z) & exp(ρ2γ/4), see Figure 2.

The main result of this paper can now be formulated as follows :

Theorem 2.6. For any γ3 ∈ (2, 3), there exist constants K > 0, δ0 > 0, and σ ∈ (0, 13) such
that, for all Γ > 0, all r0 > 0, and all ν > 0 satisfying δ := ν/Γ ≤ δ0, the following holds. There
exist continuous functions r̄(t), z̄(t) which are smooth for positive times and satisfy (2.12) with
r̄(0) = r0, z̄(0) = 0 such that the unique solution η of (2.15) with initial data (2.22) satisfies

‖η(t) − η∗(t)‖Xǫ ≤ K
(

ǫδ + ǫγ3
)

, t ∈ (0, Tadvδ
−σ) , (2.40)

where ǫ =
√
νt/r̄(t) and η∗ is the approximate solution defined by (2.24), (2.28).

We recall that estimate (2.12) for the radial velocity ˙̄r implies that r̄(t) = r0
(

1 + O(ǫ2)
)

,
meaning that the major radius of the vortex ring remains essentially constant on the time interval
(0, Tadvδ

−σ). As for the vertical velocity, it is given by (2.32) where the approximate speed ˙̄z∗
defined in (2.25) and the correction ˙̃z satisfy

˙̄z∗ =
Γ

4πr0

(

log
1

ǫ
+ v̂

)(

1 +O
(

ǫ2)
)

, ˙̃z =
Γ

r0
O
(

(

ǫ+
ǫγ3

δ

)

log
1

ǫ
+ δ

)

. (2.41)

This gives the announced formula (2.12) for the full velocity ˙̄z = ˙̄z∗ + δ ˙̃z.

It is not difficult to verify that Theorem 2.6 implies Theorem 1.1, see Section 4.9 for details.
Here we just show how to derive estimate (2.11), which is essentially a reformulation of (1.7). By
construction, our approximate solution satisfies ‖η∗(t)− η0‖Xǫ = O(ǫ), where η0 is the Gaussian
function (2.22). Moreover, the lower bound Wǫ(R,Z) & exp(ρ2γ/4) implies that Xǫ →֒ L1(Ωǫ)
uniformly in ǫ. It thus follows from (2.40) that

‖η(t)− η0‖L1(Ωǫ) ≤ C1

(

‖η(t) − η∗(t)‖Xǫ + ‖η∗(t)− η0‖Xǫ

)

≤ C2ǫ ,

for any t ∈ (0, Tadvδ
−σ), and returning to the original variables we arrive at estimate (2.11).

Remark 2.7. It follows from (2.24) and (2.40) that the solution of (2.15) satisfies

η(R,Z, t) = η0(R,Z) + ǫη1(R,Z) + ǫ2η2(R,Z, βǫ) +O
(

δǫ+ ǫγ3
)

, (2.42)

where the remainder term is estimated in the topology of Xǫ as ǫ → 0. Here η0 is the Gaussian
function (2.22), and the vorticity profiles η1, η2 are explicitly constructed in Section 3. Since
δ . ǫ2 except for very small times, see Remark 2.2, we see that (2.42) determines the shape of
the vortex core up to third order in ǫ.
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3 Construction of the approximate solution

In this section we construct perturbatively an approximate solution of (2.23) such that the
corresponding remainder satisfies (2.30). Approximations of vortex rings with varying degrees of
accuracy were obtained by many authors, and typically rely on matched asymptotics expansions
where the inner core of the vortex and the outer region are considered separately, see [44,41,23,
26, 27] in the inviscid case and [56, 14, 30] in the viscous case. Here we rather follow the direct
approach introduced in [31] for interacting vortices in the plane, which does not rely on matched
asymptotics techniques.

3.1 Expansion of the Biot-Savart formula

Our first task is to compute an accurate asymptotic expansion of the function F (s) defined by
(2.5) in the limit where s → 0. This can be done by expressing F in terms of elliptic integrals,
a procedure initiated in the early references [40,51].

Lemma 3.1. For 0 < s < 4 we have the power series representation

F (s) = log
( 8√

s

)

∞
∑

m=0

Ams
m +

∞
∑

m=0

Bms
m , (3.1)

where Am, Bm are real numbers. Moreover

A0 = 1 , A1 =
3

16
, A2 = − 15

1024
, B0 = −2 , B1 = − 1

16
, B2 =

31

2048
. (3.2)

Proof. If s > 0 and k = 2/
√
s+ 4 ∈ (0, 1), it is straightforward to verify that

F (s) =

∫ π/2

0

1− 2 sin2 ψ
√

sin2 ψ + s/4
dψ =

2− k2

k
K(k)− 2

k
E(k) , (3.3)

where K(k), E(k) are the complete elliptic integrals with modulus k :

K(k) =

∫ π/2

0

1
√

1− k2 sin2 θ
dθ , E(k) =

∫ π/2

0

√

1− k2 sin2 θ dθ .

We are interested in the limit where s → 0, namely k → 1. Introducing the complementary
modulus κ =

√
1− k2, we have the power series expansions (see [19])

K(k) =

∞
∑

m=0

a2m κ
2m

(

log
1

κ
+ 2bm

)

,

E(k) = 1 +
∞
∑

m=0

2m+ 1

2m+ 2
a2m κ

2m+2
(

log
1

κ
+ bm + bm+1

)

,

(3.4)

where a0 = 1, b0 = log(2), and

am =
1

2
· 3
4
· . . . · 2m−1

2m
, bm = log(2) +

2m
∑

ℓ=1

(−1)ℓ

ℓ
, m ∈ N∗ .

Combining (3.3), (3.4), we obtain a representation of the form

F (s) =
1 + κ2√
1− κ2

K(k)− 2√
1− κ2

E(k) = log
( 4

κ

)

∞
∑

m=0

Cmκ
2m +

∞
∑

m=0

Dmκ
2m , (3.5)
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which converges for 0 < κ < 1. Moreover, a direct calculation shows that

C0 = 1 , C1 =
3

4
, C2 =

33

64
, D0 = −2 , D1 = −3

4
, D2 = − 81

128
. (3.6)

As κ2 = s/(s+4), the right-hand side of (3.5) can be written in the form (3.1), and using (3.6)
we see that the first coefficients satisfy (3.2).

Remark 3.2. Various asymptotic expansions of the stream function given by the Biot-Savart law
(2.4) can be found in the literature [41,23,46,56,30], and are easily recovered using Lemma 3.1.

We next consider the rescaled Biot-Savart formula (2.20), which can be written in the equiv-
alent form

φ(R,Z) =
1

2π

∫

Ωǫ

Kǫ(R,Z;R
′, Z ′) η(R′, Z ′) dR′ dZ ′ , (3.7)

where

Kǫ =
√

(1+ǫR)(1+ǫR′) F

(

ǫ2D2

(1+ǫR)(1+ǫR′)

)

, D2 = (R−R′)2 + (Z−Z ′)2 . (3.8)

To simplify the notations below, we define

βǫ = log
1

ǫ
, L(R,Z;R′, Z ′) = log

( 8

D

)

. (3.9)

Lemma 3.3. For any (R,Z), (R′, Z ′) ∈ R2 with (R,Z) 6= (R′, Z ′) and any sufficiently small
ǫ > 0, we have the expansion

Kǫ = (βǫ + L)
∞
∑

m=0

ǫmPm +
∞
∑

m=0

ǫmQm , (3.10)

where Pm(R,Z;R′, Z ′), Qm(R,Z;R′, Z ′) are homogeneous polynomials of degree m in the three
variables R, R′, and Z − Z ′. Moreover

P0 = 1

P1 = 1
2(R +R′)

P2 = 1
16 (R−R′)2 + 3

16(Z − Z ′)2

Q0 = −2

Q1 = −1
2(R +R′)

Q2 = 1
4 (R

2 +R′2)− 1
16 D

2 .

(3.11)

Proof. If (R,Z), (R′, Z ′) are as in the statement, we take ǫ > 0 small enough so that

max
(

|R|, |R′|
)

<
1

ǫ
, and s :=

ǫ2D2

(1+ǫR)(1+ǫR′)
< 4 . (3.12)

As D 6= 0 by assumption, we have 0 < s < 4, so that we can apply expansion (3.1) to the
quantity F (s) in (3.8). In view of definitions (3.9) we have

log
( 8√

s

)

= βǫ + L+
1

2
log(1 + ǫR) +

1

2
log(1 + ǫR′) . (3.13)

We observe that the last two terms in (3.13), as well as the prefactor
√

(1+ǫR)(1+ǫR′) in (3.8)
and each monomial sm in the series (3.1), can be expanded into a power series in the three
variables ǫR, ǫR′, and ǫ(Z − Z ′). Thus, combining (3.1) and (3.8), we obtain a representation
of the form (3.10), where the first homogeneous polynomials Pm, Qm are easily computed using
the explicit values (3.2).
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Remark 3.4. In what follows, with a slight abuse of notation, we denote by L the integral
operator on R2 given by the kernel (3.9). For any continuous and rapidly decreasing function
η : R2 → R, we thus have

(

Lη
)

(R,Z) =

∫

R2

log

(

8
√

(R−R′)2 + (Z−Z ′)2

)

η(R′, Z ′) dR′ dZ ′ . (3.14)

Similarly, we associate integral operators to the homogeneous polynomials Pm, Qm in (3.10),
and to the functions LPm for all m ∈ N∗.

Definition 3.5. Using the notation introduced in Remark 3.4, we define the linear operators

BS0 =
1

2π
L , and BSm =

1

2π

(

βǫPm + LPm +Qm

)

, for all m ∈ N∗ . (3.15)

Note that, for m ≥ 1, the linear operator BSm depends on the parameter ǫ through the
constant factor βǫ = log(1/ǫ), but for simplicity this mild dependence is not indicated explicitly.
For convenience, we do not include the constant term βǫP0 + Q0 ≡ βǫ − 2 in the definition of
BS0, because the stream function is only defined up to an additive constant. It is important
to observe that, in (3.14) and in the corresponding definition of the integral operators Pm, Qm,
and LPm, the integration is performed on the whole plane R2, rather than on the half-plane Ωǫ.
This is justified because these operators will always be applied to functions that decay rapidly
at infinity, so that the integration on R2 \ Ωǫ gives a contribution of order O(ǫ∞) as ǫ → 0,
which can be neglected in our perturbative expansion. If η : R2 → R is compactly supported,
then according to Lemma 3.3 the following equality holds in any bounded region of R2:

BSǫ[η] =
βǫ − 2

2π

∫

R2

η(R′, Z ′) dR′ dZ ′ +
∞
∑

m=0

ǫm BSm[η] , (3.16)

provided ǫ > 0 is sufficiently small. As was already mentioned, the first term in the right-hand
side of (3.16) is a constant that can be omitted.

3.2 Function spaces and linear operators

We next introduce the function spaces in which we shall construct our approximate solution of
(2.23). These spaces consist of functions that are defined on the whole space R2, and not just on
the half-plane Ωǫ. Indeed, at each step of the approximation, the vorticity profile ηm(R,Z, βǫ)
and the stream function φm(R,Z, βǫ) in (2.24) are defined for all (R,Z) ∈ R2. To simplify the
writing we often denote X = (R,Z), and we use polar coordinates (ρ, ϑ) in R2 defined by the
relations R = ρ cos ϑ, Z = ρ sinϑ.

Following [35,36] we introduce the weighted L2 space

Y =
{

η ∈ L2(R2)
∣

∣

∣

∫

R2

|η(X)|2 e|X|2/4 dX <∞
}

, (3.17)

equipped with the scalar product (η1, η2)Y =
∫

R2 η1(X)η2(X) e|X|2/4 dX and the associated
norm. We also introduce the differential operator L : D(L) → Y corresponding to (2.16),
namely

Lη = ∆η +
1

2
X · ∇η + η , η ∈ D(L) =

{

η ∈ Y
∣

∣

∣
∆η ∈ Y , X · ∇η ∈ Y

}

, (3.18)
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as well as the integro-differential operator Λ : D(Λ) → Y defined by

Λη =
1

2π

(

{

Lη0 , η
}

+
{

Lη , η0
}

)

, η ∈ D(Λ) =
{

η ∈ Y
∣

∣

∣

{

Lη0 , η
}

∈ Y
}

, (3.19)

where η0 is the Gaussian function (2.22) and L denotes the integral operator (3.14). Here and
in what follows the Poisson bracket is understood with respect to the rescaled variables (R,Z),
so that {φ, η} = ∂Rφ∂Zη − ∂Zφ∂Rη. We recall the following well-known properties :

Proposition 3.6. [35, 36, 47]

1) The linear operator L is self-adjoint in Y, with purely discrete spectrum

σ(L) =
{

−n
2

∣

∣

∣
n = 0, 1, 2, . . .

}

.

The kernel of L is one-dimensional and spanned by the Gaussian function η0. More generally,
for any n ∈ N, the eigenspace corresponding to the eigenvalue λn = −n/2 is spanned by the n+1
Hermite functions ∂αη0 where α = (α1, α2) ∈ N2 and α1 + α2 = n.

2) The linear operator Λ is skew-adjoint in Y, so that Λ∗ = −Λ. Moreover,

Ker(Λ) = Y0 ⊕
{

β1∂Rη0 + β2∂Zη0
∣

∣ β1, β2 ∈ R
}

, (3.20)

where Y0 ⊂ Y is the subspace of all radially symmetric elements of Y.

A crucial observation is that both operators L, Λ are invariant under rotations about the
origin in R2. It is therefore advantageous to decompose the space Y into a direct sum

Y =
∞
⊕
n=0

Yn , (3.21)

where Y0 ⊂ Y is as in Proposition 3.6 and, for all n ≥ 1, the subspace Yn ⊂ Y consists
of all functions η ∈ Y such that η(ρ cos ϑ, ρ sinϑ) = a1(ρ) cos(nϑ) + a2(ρ) sin(nϑ) for some
a1, a2 : R+ → R. It is clear that Yn ⊥ Yn′ if n 6= n′. In particular, in view of (3.20), we have
Yn ∈ Ker(Λ)⊥ for all n ≥ 2. When n = 1, the functions ∂Rη0, ∂Zη0 belong to Y1 ∩Ker(Λ), and
we define

Y ′
1 = Y1 ∩Ker(Λ)⊥ =

{

η ∈ Y1

∣

∣

∣

∣

∫

R2

η(R,Z)R dR dZ =

∫

R2

η(R,Z)Z dRdZ = 0

}

. (3.22)

Since Λ is skew-adjoint, we know that Ker(Λ)⊥ = Ran(Λ), but the image of Λ is not dense
in Y and, therefore, we cannot solve the equation Λη = f for any f ∈ Ker(Λ)⊥. As is shown
in [37,31], the problem disappears if one assumes in addition that f belongs to a smaller space
such as

Z =
{

η : R2 → R

∣

∣

∣
e|X|2/4η ∈ S∗(R

2)
}

⊂ Y , (3.23)

where S∗(R2) denotes the space of all smooth functions which are slowly growing at infinity.
More precisely, a smooth function w : R2 → R belongs to S∗(R2) if, for any α = (α1, α2) ∈ N2,
there exist C > 0 and N ∈ N such that |∂αw(X)| ≤ C(1 + |X|)N for all X ∈ R2.

Remark 3.7. We do not need to specify the topology of the space Z, but the following notation
will be useful. If f ∈ Z depends on a small parameter ǫ > 0, we say that f = O(ǫ) in Z if, for
any α = (α1, α2) ∈ N2, there exist C > 0 and N ∈ N such that |∂αf(X)| ≤ Cǫ(1+ |X|)N e−|X|2/4

for all X ∈ R2.
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To formulate the main technical result of this section, we introduce the notation

ϕ(ρ) =
1

2πρ2
(

1− e−ρ2/4
)

, h(ρ) =
ρ2/4

eρ2/4 − 1
, ρ > 0 . (3.24)

The following statement is a slight extension of [31, Lemma 4]. For the reader’s convenience, we
give a short proof of it in Section A.1, emphasizing the case n = 1 which was not treated in [31].

Proposition 3.8. If n ≥ 2 and f ∈ Yn ∩ Z, or if n = 1 and f ∈ Y ′
1 ∩ Z, there exists a

unique η ∈ Yn ∩ Z (respectively, a unique η ∈ Y ′
1 ∩ Z) such that Λη = f . In particular, if

f = a(ρ) sin(nϑ), then η = ω(ρ) cos(nϑ), where

ω(ρ) = h(ρ)Ω(ρ) +
a(ρ)

nϕ(ρ)
, ρ > 0 , (3.25)

and where Ω : (0,∞) → R is the unique solution of the differential equation

−Ω′′(ρ)− 1

ρ
Ω′(ρ) +

(n2

ρ2
− h(ρ)

)

Ω(ρ) =
a(ρ)

nϕ(ρ)
, ρ > 0 , (3.26)

such that Ω(ρ) = O(ρn) as ρ→ 0 and Ω(ρ) = O(ρ−n) as ρ→ ∞.

Remark 3.9. As was observed in [31], if f = a(ρ) cos(nϑ), then η = −ω(ρ) sin(nϑ), where ω
is still given by (3.25), (3.26). The general case where f = a1(ρ) cos(nϑ)+ a2(ρ) sin(nϑ) follows
by linearity.

In the construction of an approximate solution of (2.23), we shall encounter linear equations
of the form

δ
(

κ− L
)

ηδ + Ληδ = f , (3.27)

where κ > 0 is fixed and the parameter δ > 0 can be arbitrarily small. Proposition 3.6 implies
that the linear operator δ(κ − L) + Λ is invertible in Y, so that (3.27) has a unique solution ηδ

for any f ∈ Y. In general, the best estimate we can hope for is

‖ηδ‖Y =
∥

∥

(

δ(κ − L) + Λ
)−1

f
∥

∥

Y ≤ 1

κδ
‖f‖Y . (3.28)

However, if f satisfies the assumptions of Proposition 3.8, the solution ηδ admits a regular
expansion in powers of the small parameter δ. More precisely :

Proposition 3.10. Assume that n ≥ 2 and f ∈ Yn ∩Z, or that n = 1 and f ∈ Y ′
1∩Z. For any

fixed κ > 0 and any δ > 0, equation (3.27) has a unique solution ηδ ∈ Yn (respectively, ηδ ∈ Y ′
1).

Moreover, for each nonzero N ∈ N, there exists a constant C > 0, depending only on f and N ,
such that

∥

∥

∥
ηδ −

N−1
∑

m=0

δmη̂m

∥

∥

∥

Y
≤ CδN , (3.29)

where the profiles η̂m ∈ Yn ∩ Z (respectively, η̂m ∈ Y ′
1 ∩ Z) are determined by the relations

Λη̂0 = f and Λη̂m = (L − κ)η̂m−1 for m ≥ 1.

Proof. Assume first that n ≥ 2. Since the space Yn is invariant under the action of both
operators L and Λ, it is clear that ηδ ∈ Yn if f ∈ Yn. If we suppose in addition that f ∈ Z,
Proposition 3.8 shows that there is a unique η̂0 ∈ Yn∩Z such that Λη̂0 = f . A direct calculation
then shows that (L − κ)η̂0 ∈ Yn ∩ Z, so that we can define η̂1 ∈ Yn ∩ Z as the unique solution
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of Λη̂1 = (L − κ)η̂0. Repeating this procedure, we construct the profiles η̂m for m = 0, . . . , N ,
and we define η̃ = ηδ −

(

η̂0 + δη̂1 + · · ·+ δN η̂N
)

, so that

(

δ(κ − L) + Λ
)

η̃ = f −
(

δ
(

κ− L
)

+ Λ
)

N
∑

m=0

δmη̂m = δN+1
(

L − κ
)

η̂N . (3.30)

Estimate (3.28) then gives the crude bound ‖η̃‖Y ≤ CδN , which nevertheless implies (3.29).
The proof is identical if n = 1 and f ∈ Y ′

1 ∩ Z.

3.3 First order approximation

We now begin the construction of an approximate solution of (2.23) in the form (2.24), (2.25).
We recall that, for an exact solution, the stream function is determined by the relation (2.20),
which we write in the compact form φ = BSǫ[η]. For our approximate solution, we expand the
Biot-Savart operator as in (3.16), omitting the constant term in the right-hand side. We thus
obtain the formal relation

∞
∑

m=0

ǫm BSm

[ M
∑

m=0

ǫmηm

]

=
M
∑

m=0

ǫmφm +O
(

ǫM+1
)

,

which we assume to be satisfied order by order in ǫ, up to order M . This leads to the relations
φ0 = BS0[η0], φ1 = BS0[η1] + BS1[η0], and more generally

φm = BS0[ηm] + BS1[ηm−1] + · · ·+ BSm−1[η1] + BSm[η0] . (3.31)

In particular, in view of (2.22) and (3.15), the leading order of our approximation is

η0(R,Z) =
1

4π
e−(R2+Z2)/4 , φ0(R,Z) =

1

2π

(

Lη0
)

(R,Z) , (3.32)

where L is the integral operator (3.14). The stream function φ0 has the expression

φ0(R,Z) = φ0(0)−
1

4π
Ein

(

R2+Z2

4

)

, where Ein(x) =

∫ x

0

1− e−t

t
dt , (3.33)

so that φ0 is radially symmetric and φ0(R,Z) ∼ −(2π)−1 log ρ as ρ := (R2 + Z2)1/2 → +∞.
The value at the origin does not play a big role in our analysis, but can be computed too, see
Section A.2 :

φ0(0) =
log(2)

π
+
γE
4π

, where γE is Euler’s constant.

Before proceeding further, we estimate the time derivative of the quantity ǫ =
√
νt/r̄(t)

introduced in (2.14). In view of (2.25), we have

tǫ̇ =
ǫ

2
− ǫt ˙̄r

r̄
=

ǫ

2
− ǫt

r̄

M−1
∑

m=0

ǫm ˙̄rm . (3.34)

At this stage the radial velocity profiles ˙̄rm are not determined yet, but in view of Remark 2.3
we can anticipate the fact that | ˙̄r| = (Γ/r0) · O(δ) as δ → 0. Since δt = (r20/Γ) · O(ǫ2) by
Remark 2.2, it follows that r̄(t) = r0

(

1 +O(ǫ2)
)

and that tǫ̇ = ǫ/2 +O(ǫ3) as ǫ→ 0.
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With that observation in mind, we substitute the expansions (2.24), (2.25) into the evolution
equation (2.23), keeping only the terms that are exactly of order ǫ or ǫβǫ. This gives the relation

{

φ1 , η0
}

+
{

φ0 , η1
}

+ η0∂Zφ0 −
r0
Γ

(

˙̄r0 ∂Rη0 + ˙̄z0 ∂Zη0

)

= δ
[

∂Rη0 +
(

L− 1
2

)

η1 − t∂tη1

]

. (3.35)

To solve (3.35) we first impose the relation

˙̄r0 = −Γδ

r0
, (3.36)

which ensures that the terms involving ∂Rη0 cancel exactly. We also assume that η1 does not
depend on βǫ, so that ∂tη1 = 0 (this property will be verified later). On the other hand, from
(3.31) with m = 1 we deduce that {φ1 , η0} = {BS0[η1] , η0}+ {BS1[η0] , η0}, where BS0, BS1 are
defined in (3.15). Using (3.32) and the definition (3.19) of the linear operator Λ, we thus find

{

φ1 , η0
}

+
{

φ0 , η1
}

=
1

2π

(

{

Lη1 , η0
}

+
{

Lη0 , η1
}

)

+
{

BS1[η0] , η0
}

= Λη1 +
βǫ − 1

2π

{

P1η0 , η0
}

+
1

2π

{

LP1η0 , η0
}

,

where in the second line we used the definition (3.15) of BS1 and the fact that Q1 = −P1 in
view of (3.11). Now, elementary calculations that are reproduced in Section A.2 show that

{

P1η0 , η0
}

=
1

2
∂Zη0 , and

1

2π

{

LP1η0 , η0
}

=
1

2
∂Z

(

φ0η0
)

. (3.37)

It follows that we can write (3.35) in the equivalent form

Λη1 + δ
(

1
2 − L

)

η1 =
(r0
Γ

˙̄z0 −
βǫ − 1

4π

)

∂Zη0 −
3

2
(∂Zφ0)η0 −

1

2
φ0∂Zη0 . (3.38)

Using the explicit expressions (3.32), (3.33) of the profiles η0, φ0, it is straightforward to
verify that the right-hand side of (3.38), which we denote by −R1, belongs to Y1∩Z, where Y1,
Z are the function spaces defined in (3.21), (3.23). Therefore, according to Proposition 3.10,
the linear equation (3.38) has a unique solution η1 ∈ Y1 for any δ > 0, and that solution has a
well-defined limit as δ → 0 if and only if R1 ∈ (ker Λ)⊥, namely if R1 ∈ Y ′

1. In view of (3.22),
this gives the solvability condition

∫

R2 R1Z dR dZ = 0, which determines uniquely the value of
the constant ˙̄z0 in (3.38). The calculations are reproduced in Section A.2, and yield the following
expression of the vertical velocity to leading order :

˙̄z0 =
Γ

4πr0

(

βǫ − 1 + 2v
)

, where v =
3

4
log(2) +

1

4
γE +

1

4
. (3.39)

Here again γE = 0, 5772 . . . denotes Euler’s constant.

Remark 3.11. The formula (3.39), including the leading term βǫ = log(1/ǫ) and the correct
value of the constant 2v− 1, was established by Saffman [55], see also Fukumoto & Moffatt [30].

We assume henceforth that ˙̄z0 is given by (3.39), so that (3.38) reduces to

Λη1 + δ
(

1
2 − L

)

η1 =
v

2π
∂Zη0 −

3

2
(∂Zφ0)η0 −

1

2
φ0∂Zη0 , (3.40)

where the right-hand side −R1 now belongs to Y ′
1 ∩Z and is independent of ǫ. Equation (3.40)

is of the form (3.27), and can be solved using Proposition 3.10. For our purposes, it is sufficient
to consider the approximate solution corresponding to the choice N = 2 in (3.29), which reads

η1(R,Z) = Rη10(ρ) + δZ η11(ρ) , ρ =
√

R2 + Z2 , (3.41)

23



where Λ(Rη10) = −R1 and Λ(Z η11) = (L − 1
2 )(Rη10). Note that η1 ∈ Y ′ ∩ Z, which implies

in particular that the functions η10, η11 are smooth and have a Gaussian decay at infinity. The
corresponding stream function φ1 = BS0[η1] +BS1[η0] is computed in Section A.2 and takes the
form

φ1(R,Z, βǫ) =
βǫ − 1

4π
R+

R

2
φ0 − ∂Rφ0 +Rφ10(ρ) + δZ φ11(ρ) , (3.42)

where Rφ10 = BS0[Rη10] and Z φ11 = BS0[Z η11]. One can check that the functions φ10, φ11 are
smooth and decay at least like 1/ρ2 as ρ→ +∞. Note that φ1 involves the time-dependent term
βǫ = log(1/ǫ), so that ∂tφ1 6= 0. With the choices (3.36), (3.39), (3.41), and (3.42), the relation
(3.35) is not satisfied exactly, but the difference of both members is O(δ2) in the topology of Z,
which is all we need.

3.4 Second order approximation

We next compute the second order terms in the asymptotic expansion (2.24). As we shall see,
it is consistent at this stage to take

˙̄r1 = ˙̄z1 = 0 , (3.43)

so we make that assumption from now on. As before, we deduce from (3.34), (3.36), (3.43) that
r̄(t) = r0

(

1 +O(ǫ2)
)

and tǫ̇ = ǫ/2 +O(ǫ3) as ǫ → 0. Substituting (2.24), (2.25) into (2.23) and
keeping only the terms involving ǫ2 or ǫ2βǫ, we obtain the relation

{

φ2 , η0
}

+
{

φ1 , η1 −Rη0
}

+
{

φ0 , η2 −Rη1 +R2η0
}

− r0
Γ

(

˙̄r0 ∂Rη1 + ˙̄z0 ∂Zη1

)

= δ
[

(

L − 1
)

η2 + ∂R(η1 −Rη0)− t∂tη2

]

.
(3.44)

In view of (3.36), the terms involving ∂Rη1 cancel exactly. Moreover, we know from (3.15),
(3.31) that

φ2 =
1

2π

(

Lη2 +
(

βǫP1 + LP1 +Q1

)

η1 +
(

βǫP2 + LP2 +Q2

)

η0

)

, (3.45)

where the notations are introduced in Lemma 3.3. Recalling the definition (3.19) of the operator
Λ, we can thus write (3.44) in the equivalent form

Λη2 + δ
(

t∂tη2 +
(

1−L
)

η2

)

+R2 = 0 , (3.46)

where

R2 =
1

2π

{

(βǫ − 1)P1η1 + LP1η1 , η0
}

+
1

2π

{

βǫP2η0 + LP2η0 +Q2η0 , η0
}

+
{

φ1 , η1
}

+ (∂Zφ1)η0 + (∂Zφ0)η1 −R
(

{

φ1 , η0
}

+
{

φ0 , η1
}

+ 2(∂Zφ0)η0

)

+ δ∂R(Rη0)−
r0 ˙̄z0
Γ

∂Zη1 .

(3.47)

We have the following result, whose proof is postponed to Section A.3 :

Lemma 3.12. The function R2 defined in (3.47) belongs to (δY0 + Y2) ∩ Z and satisfies

R2 =
3βǫ
16π

RZη0 +RZχ20 + δ
(

χ21 + (R2 − Z2)χ22

)

+ δ2RZχ23 , (3.48)

for some (time-independent) radially symmetric functions χ20, χ21, χ22, χ23 ∈ Y0 ∩ Z.
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In view of (3.48), we look for a solution of (3.46) in the form η2 = βǫη̂20 + η̂21 + η̂22, where
η̂20, η̂21 ∈ Y2 and η̂22 ∈ Y0 do not depend on βǫ. Inserting this ansatz into (3.46) and using the
fact that t∂tβǫ = −1/2 +O(ǫ2), we obtain the system

Λη̂20 + δ
(

1− L
)

η̂20 +
3

16π
RZη0 = 0 ,

Λη̂21 + δ
(

1− L
)

η̂21 −
δ

2
η̂20 + P2

(

R2 −
3βǫ
16π

RZη0

)

= 0 ,

δ
(

1− L
)

η̂22 + P0R2 = 0 ,

(3.49)

where Pn denotes the orthogonal projection in Y onto the subspace Yn. The first two equations
in (3.49) have a unique solution by Proposition 3.10, and as in Section 3.3 we are satisfied with
the approximate solution corresponding to (3.29) with N = 2. Since P0R2 = δχ21 by (3.48),
the third equation reduces to (1 − L)η̂22 + χ21 = 0, which also has a unique solution due to
Proposition 3.6. We conclude that we can choose η2 in the form

η2(R,Z, βǫ) = βǫ

(

(R2−Z2)η20 + δRZη21

)

+ (R2−Z2)η22 + δRZη23 + η24 , (3.50)

where all functions η2j belong to Y0 ∩ Z. Using (3.45) and the calculations at the beginning of
Section A.3, we obtain a similar expression for the corresponding stream function

φ2(R,Z, βǫ) = βǫ

(

(R2−Z2)φ20 + δRZφ21

)

+ (R2−Z2)φ22 + δRZφ23 + βǫφ24 + φ25 , (3.51)

where the functions φ2j are radially symmetric and belong to S∗(R2). With these choices, the
left-hand side of (3.46) is of size O(βǫδ

2 + ǫ2δ) in the topology of Z.

3.5 Third order approximation

The third order in the asymptotic expansion (2.24) can be computed in a similar way. According
to (3.36), (3.43) and Remark 2.3, we have r̄(t) = r0

(

1− ǫ2 +O(ǫ4−)
)

as ǫ→ 0, and using (3.34)
we deduce that tǫ̇ = ǫ/2 + ǫ3 +O(ǫ5−). So, if we substitute (2.24), (2.25) into (2.23) and keep
only the terms involving ǫ3 or ǫ3βǫ, we find
{

φ3 , η0
}

+
{

φ2 , η1 −Rη0
}

+
{

φ1 , η2 −Rη1 +R2η0
}

+
{

φ0 , η3 −Rη2 +R2η1 −R3η0
}

− r0
Γ

(

˙̄r0 ∂Rη2 +
(

˙̄r2− ˙̄r0
)

∂Rη0 + ˙̄z0 ∂Zη2 +
(

˙̄z2− ˙̄z0
)

∂Zη0

)

= δ
[

(

L− 3
2

)

η3 + ∂R(η2 −Rη1 +R2η0)− t∂tη3 − η1

]

.

(3.52)

On the other hand, using (3.31) with m = 3 and (3.15), we obtain

φ3 =
3

∑

m=0

BSm[η3−m] =
1

2π
Lη3 +

1

2π

3
∑

m=1

(

(βǫ + L)Pm +Qm

)

η3−m , (3.53)

where the polynomials Pm, Qm are defined in (3.11) for m ≤ 2 and in (A.19) for m = 3. We can
thus write (3.52) in the form

Λη3 + δ
(

t∂tη3 +
(

3
2 − L

)

η3

)

+R3 = 0 , (3.54)

where

R3 =
1

2π

{

3
∑

m=1

(

(βǫ + L)Pm +Qm

)

η3−m , η0

}

+
{

φ2 , η1 −Rη0
}

+
{

φ1 , η2 −Rη1 +R2η0
}

−
{

φ0 , Rη2 −R2η1 +R3η0
}

− r0
Γ

(

(

˙̄r2 − ˙̄r0
)

∂Rη0 +
(

˙̄z2 − ˙̄z0
)

∂Zη0 + ˙̄z0∂Zη2

)

+ δ∂R
(

Rη1 −R2η0
)

+ δη1 .

(3.55)
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Lemma 3.13. The function R3 defined in (3.55) belongs to (Y1 + Y3) ∩ Z and satisfies

R3 = βǫ

(

R2Zχ30 + Zχ31

)

+R2Zχ32 + Zχ33 +O(δ) , (3.56)

for some (time-independent) radially symmetric functions χ30, χ31, χ32, χ33 ∈ Y0 ∩ Z.

The proof of Lemma 3.13 is a direct calculation that is briefly outlined in Section A.4. In
particular we verify there that the quantity R3 does not contain any factor β2ǫ , which is perhaps
surprising since φ1, φ2, and η2 all contain at least one term multiplied by βǫ. We do not need
the expression of the O(δ) terms in (3.56), but they can be computed too and are found to be
of the form δβǫ

(

R3χ̃30 +Rχ̃31

)

+ δ
(

R3χ̃32 +Rχ̃33

)

, where χ̃3j are radially symmetric functions.
Finally we mention that R3 also includes terms of the form (3.56) that are multiplied by δ2.

As can be seen from the last line of (3.55), there is a unique way to choose the quantities
˙̄r2 and ˙̄z2 so that R3 ∈ Y ′

1 + Y3, where Y ′
1 is the subspace defined in (3.22). In view of (3.56),

(3.36), (3.39), the velocities obtained in this way satisfy

r0
Γ

˙̄r2 =
(

c1βǫ + c2
)

δ ,
r0
Γ

˙̄z2 = c3βǫ + c4 +O(δ2) , (3.57)

for some constants c1, c2, c3, c4. Now, decomposing R3 = βǫR31 + R32 where R31,R32 are
independent of βǫ, we look for a solution of (3.54) in the form η3 = βǫη̂31 + η̂32 where

Λη̂31 + δ
(

3
2 − L

)

η̂31 +R31 = 0 , Λη̂32 + δ
(

3
2 − L

)

η̂32 −
δ

2
η̂31 +R32 = 0 . (3.58)

SinceR31,R32 ∈ Y ′
1+Y3, both equations in (3.58) can be solved using Proposition 3.10. However,

at this stage, it is sufficient to use the crude approximation corresponding to N = 1 in (3.29).
This means that we can determine our profiles by solving the equations Λη̂3j + R3j = 0 for
j = 1, 2 using Proposition 3.8. We thus obtain an approximate solution of (3.54) of the form

η3(R,Z, βǫ) = βǫ

(

R3η30 +Rη31

)

+R3η32 +Rη33 , (3.59)

where all functions η3j belong to Y0 ∩ Z. Using (3.53) we deduce the corresponding expression
of the stream function

φ3(R,Z, βǫ) = βǫ

(

R3φ30 +Rφ31

)

+R3φ32 +Rφ33 , (3.60)

where the functions φ3j are radially symmetric and belong to S∗(R2). Note that (3.60) does
not contain any factor β2ǫ . With the choices (3.59), (3.60), the left-hand side of (3.54) is of size
O(βǫδ) in the topology of Z.

3.6 Fourth order approximation

Finally we compute the fourth order approximation, which is the final step in our construction.
No modification of the vortex speed is needed at this stage, so we can take

˙̄r3 = ˙̄z3 = 0 . (3.61)

The full expansion of the vortex speed is therefore

˙̄r(t) = ˙̄r0 + ǫ2 ˙̄r2(βǫ) , ˙̄z∗(t) = ˙̄z0(βǫ) + ǫ2 ˙̄z2(βǫ) , (3.62)
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where ˙̄r0, ˙̄z0 are defined in (3.36), (3.39) and ˙̄r2, ˙̄z2 satisfy (3.57). As is easily verified, this implies
that r̄(t) = r0

(

1− ǫ2 +O(ǫ4βǫ)
)

and tǫ̇ = ǫ/2 + ǫ3 +O(ǫ5βǫ) as ǫ → 0.

We look for an approximate solution of (2.23) of the form

ηapp(R,Z, t) =

4
∑

m=0

ǫmηm(R,Z, βǫ) , φapp(R,Z, t) =

4
∑

m=0

ǫmφm(R,Z, βǫ) , (3.63)

where the profiles ηm, φm for m ≤ 3 have been constructed in the previous steps, and η0, η1, φ0
are actually independent of βǫ. In analogy with (3.53), we have

φ4 =
1

2π
Lη4 +

1

2π

4
∑

m=1

(

(

βǫ + L
)

Pm +Qm

)

η4−m , (3.64)

where the polynomials Pm, Qm are defined in (3.11) for m ≤ 2, in (A.19) for m = 3, and in
(A.20) for m = 4. Replacing (3.62), (3.63), (3.64) into (2.23) and proceeding as in the previous
sections, we obtain the following equation for the profile η4 :

Λη4 + δ
(

t∂tη4 +
(

2−L
)

η4

)

+R4 = 0 , (3.65)

where

R4 =
1

2π

{

4
∑

m=1

(

(βǫ + L)Pm +Qm

)

η4−m , η0

}

+
{

φ3 , η1 −Rη0
}

+
{

φ2 , η2 −Rη1 +R2η0
}

+
{

φ1 , η3 −Rη2 +R2η1 −R3η0
}

−
{

φ0 , Rη3 −R2η2 +R3η1 −R4η0
}

(3.66)

− r0
Γ

(

(

˙̄r2 − ˙̄r0
)

∂Rη1 +
(

˙̄z2 − ˙̄z0
)

∂Zη1 + ˙̄z0∂Zη3

)

+ δ∂R
(

Rη2 −R2η1 +R3η0
)

+ 2δη2 .

Lemma 3.14. The function R4 defined in (3.66) belongs to (δY0 + Y2 + Y4) ∩ Z and satisfies

R4 =
2

∑

k=0

βkǫ

(

R3Zχ4k +RZχ5k

)

+O(δ) , (3.67)

for some (time-independent) radially symmetric functions χ4k, χ5k ∈ Y0 ∩ Z.

The proof of Lemma 3.14 is the same as that of Lemma 3.13, and can therefore be omitted.
The only important observation is that the projection of R4 onto the subspace Y0 is of size O(δ).
This can be seen as a consequence of Remark 2.3 : when δ = ˙̄r = 0, all profiles ηm, φm are even
functions of Z, so that the quantities Rm are odd in Z.

We now project Eq. (3.65) on the subspace Ym form = 0, 2, 4, and compute an (approximate)
solution Pmη4 invoking either Proposition 3.8 (for m = 2, 4) or Proposition 3.6 (for m = 0). In
the latter case, we use the observation that P0R4 = O(δ) to show that P0η4 is regular in the
limit δ → 0. Altogether, we obtain an approximate solution of (3.65) in the form

η4(R,Z, βǫ) =
2

∑

k=0

βkǫ

(

R2Z2η4k +
(

R2 − Z2
)

η5k + η6k

)

, (3.68)

where the functions ηjk ∈ Y0 ∩ Z are radially symmetric and time-independent. Using (3.64)
we deduce a similar expression for the stream function

φ4(R,Z, βǫ) =
2

∑

k=0

βkǫ

(

R2Z2φ4k +
(

R2 − Z2
)

φ5k + φ6k

)

, (3.69)
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and with these choices the left-hand side of (3.65) is of size O(β2ǫ δ) in the topology of Z.

Since we have now completed the construction of our approximate solution, we explain pre-
cisely how to define the vortex radius r̄(t) and the time-dependent aspect ratio ǫ(t) =

√
νt/r̄(t).

In view of (3.36), (3.57), and (3.62), the function r̄(t) satisfies the differential equation

˙̄r(t) = −Γδ

r0

(

1− ǫ(t)2
(

c1βǫ(t) + c2
)

)

= −Γδ

r0

(

1− νt

r̄(t)2

(

c1 log
r̄(t)√
νt

+ c2

)

)

, (3.70)

with initial condition r̄(0) = r0. The right-hand side of (3.70) is a smooth function of r̄ > 0,
uniformly in t ∈ (0, Tdif), and also a C0,α function of time for any α < 1. Applying the Cauchy-
Lipschitz theorem, we obtain a unique local solution of (3.70), which can be extended as long
as r̄(t) > 0. Now, if we define ǫ(t) =

√
νt/r̄(t), it follows that r̄(t) = r0

(

1 − ǫ(t)2 + O(ǫ4βǫ)
)

,
and it is easy to see that the solution of (3.70) is well-defined and has the required properties
on the time intervals relevant for our considerations.

Remark 3.15. It is useful to notice that the approximate solution ηapp given by (3.63) satisfies,
for all t > 0,

∫

R2

ηapp(R,Z, t) dR dZ = 1 , (3.71)

∫

R2

Rηapp(R,Z, t) dR dZ =

∫

R2

Z ηapp(R,Z, t) dR dZ = 0 . (3.72)

Indeed, at each step m ≥ 1, the vorticity profile ηm is constructed by solving equations of the form
Ληm +

(

m
2 − L

)

ηm +Rm = 0, where the source term Rm has vanishing integral (by definition)
and zero first order moments (due to the choice of the speeds ˙̄rm−1, ˙̄zm−1). These properties are
inherited by the profile ηm, due to Proposition 3.6, and in view of (3.32) this leads to (3.71),
(3.72).

3.7 Estimate of the remainder

This section is devoted to the proof of Proposition 2.5. Our task is to estimate the remainder
(2.29), where η∗, φ∗ are defined in (2.28), and for this we need bounds on the derivatives of
the stream function in terms of the vorticity. If φ = BSǫ[η], where the Biot-Savart operator is
defined in (2.20), we have the formulas

∂Zφ(R,Z) = − 1

2π

∫

Ωǫ

√

(1+ǫR)(1+ǫR′) F̃ (s)
(Z−Z ′) η(R′, Z ′)

(R−R′)2 + (Z−Z ′)2
dR′ dZ ′ ,

∂Rφ(R,Z) = − 1

2π

∫

Ωǫ

√

(1+ǫR)(1+ǫR′) F̃ (s)
(R−R′) η(R′, Z ′)

(R−R′)2 + (Z−Z ′)2
dR′ dZ ′ (3.73)

+
ǫ

4π

∫

Ωǫ

√
1+ǫR′

√
1 + ǫR

(

F (s) + F̃ (s)
)

η(R′, Z ′) dR′ dZ ′ ,

where F̃ (s) = −2sF ′(s), see [33, Section 4.2]. Here, as in (3.12), we use the shorthand notation

s =
ǫ2D2

(1+ǫR)(1+ǫR′)
≡ ǫ2

(R−R′)2 + (Z−Z ′)2

(1+ǫR)(1+ǫR′)
. (3.74)

In view of (2.7), we have F̃ (s) → 1 as s→ 0 and F̃ (s) = O(s−3/2) as s→ +∞.

Throughout the proof, we fix t > 0 and we assume that the parameters ǫ =
√
νt/r̄(t) and

δ = ν/Γ are small enough. By construction the vorticity η∗(R,Z, t) defined by (2.28) vanishes
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identically when ρ := (R2+Z2)1/2 ≥ 2ǫ−σ0 , so we can assume henceforth that ρ ≤ 2ǫ−σ0 . In
that region, we have for any γ ∈ (0, 1) the a priori bounds

∑

|α|≤2

|∂αη∗(R,Z, t)| ≤ C e−γρ2/4 ,
∑

|α|=1

|∂αφ∗(R,Z, t)| ≤ C , (3.75)

where α = (α1, α2) ∈ N2 and ∂α = ∂α1
R ∂α2

Z . Indeed, the first estimate in (3.75) holds because η∗
is obtained by truncating the asymptotic approximation ηapp(R,Z, t) which belongs to the space
Z defined in (3.23). The second estimate can then be obtained using the expressions (3.73) with
φ = φ∗ and η = η∗. To see this, we first observe that 1 + ǫR ≈ 1 and 1 + ǫR′ ≈ 1 in (3.73),
because both quantities ρ and ρ′ := (R′2+Z ′2)1/2 are smaller than 2ǫ−σ0 ≪ ǫ−1. If we use the
estimates |F̃ (s)| ≤ C in the first two lines of (3.73) and |F (s) + F̃ (s)| ≤ Cs−1/2 in the third
line, we thus obtain

|∂Rφ∗(R,Z, t)| + |∂Zφ∗(R,Z, t)| ≤ C

∫

R2

|η∗(R′, Z ′, t)|
√

(R−R′)2 + (Z−Z ′)2
dR′ dZ ′ ≤ C ,

which concludes the proof of (3.75). Finally, since

t∂tη∗(R,Z, t) = χ0

(

ǫσ0ρ
)

t∂tηapp(R,Z, t) + σ0 ǫ
σ0ρχ′

0

(

ǫσ0ρ
)

ηapp(R,Z, t) t∂t log(ǫ) ,

it follows from the expressions given in Sections 3.3–3.6 that t∂tη∗ satisfies the same bound as
η∗ in (3.75). Summarizing, in view of (3.75), the remainder Rem(R,Z, t) satisfies

eγ0ρ
2/4 |Rem(R,Z, t)| ≤ C δ−1(1 + ρ) e−(γ−γ0)ρ2/4 , when ρ ≤ 2ǫ−σ0 , (3.76)

for any γ0 ∈ (0, 1). If we assume that γ ∈ (γ0, 1), we conclude that the right-hand side of (3.76)
is O(δ−1ǫ∞) if ρ ≥ ǫ−σ0 . So from now on we may concentrate on the inner region ρ ≤ ǫ−σ0 ,
where η∗ = ηapp is given by (3.63).

In that region we decompose the stream function as φ∗ = BSǫ[χ0 ηapp] = φ0∗−φ1∗+φ2∗, where

φ0∗ =
4

∑

m=0

ǫm BSm[ηapp] , φ1∗ =
4

∑

m=0

ǫm BSm[(1−χ0) ηapp] , φ2∗ =
∞
∑

m=5

ǫmBSm[χ0 ηapp] .

Here χ0 is a shorthand notation for χ0(ǫ
σ0ρ). The convergence of the series defining φ2∗ is

easily justified using Lemmas 3.1 and 3.3, if we observe that both inequalities in (3.12) are
satisfied since ρ, ρ′ ≪ ǫ−1. The principal term BS5[χ0 ηapp] can be estimated using the explicit
representation (3.15), where P5, Q5 are homogeneous polynomials of degree 5, and this leads to
a bound of the form

|∂Rφ2∗(R,Z, t)| + |∂Zφ2∗(R,Z, t)| ≤ Cǫ5βǫ (1 + ρ)5 , ρ ≤ ǫ−σ0 ,

where βǫ = log(1/ǫ). Moreover we have |∂Rφ1∗|+ |∂Zφ1∗| = O(ǫ∞) because (1−χ0)ηapp = O(ǫ∞).
Finally, in view of (3.31) and (3.63), we have the identity

φ0∗ = φapp +
8

∑

m=5

ǫm
4

∑

k=m−4

BSk[ηm−k] .

from which we easily deduce

|∂R
(

φ0∗ − φapp
)

|+ |∂Z
(

φ0∗ − φapp
)

| ≤ Cǫ5β3ǫ (1 + ρ)5 .
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Collecting the estimates above, it is straightforward to verify that the remainder (2.29) satisfies

∣

∣Rem(R,Z, t) − R̂em(R,Z, t)
∣

∣ ≤ Cδ−1ǫ5β3ǫ (1 + ρ)5 e−γρ2/4 , ρ ≤ ǫ−σ0 , (3.77)

where R̂em(R,Z, t) is the quantity defined for all (R,Z) ∈ R2 by the formula

Lηapp + ǫ∂R
(

S4ηapp
)

− t∂tηapp −
1

δ

{

φapp , S4ηapp
}

+
ǫr̄

δΓ

(

˙̄r ∂Rηapp + ˙̄z∗ ∂Zηapp
)

, (3.78)

with S4 = 1− ǫR+ (ǫR)2 − (ǫR)3 + (ǫR)4.

Now the crucial observation is that the asymptotic approximation (2.24), (2.25) was con-
structed precisely so as to make the quantity (3.78) small in the topology of Z. More precisely,
the results of Sections 3.3–3.6 can be rephrased as follows:

δ R̂em(R,Z, t) = OZ
(

ǫδ2 + ǫ2βǫδ
2 + ǫ3βǫδ + ǫ4β2ǫ δ + ǫ5β3ǫ

)

. (3.79)

Inside the parenthesis in the right-hand side, the first four terms represent what remains from
the quantities ǫm

(

Ληm+δ
[

t∂t+
m
2 −L

]

ηm+Rm) for m = 1, 2, 3, 4 after the profiles ηm have been
determined, and the last one corresponds to those terms in (3.78) which are of order O(ǫ5) or
higher and were therefore not considered in the construction of ηapp. Combining (3.77), (3.79)
and using Young’s inequality, we obtain

sup
ρ≤ǫ−σ0

eγ0ρ
2/4 |Rem(R,Z, t)| ≤ C

δ

(

ǫδ2 + ǫ3βǫδ + ǫ5β3ǫ

)

≤ C
(

ǫδ + ǫγ5δ−1
)

,

for any γ5 < 5. This concludes the proof of (2.30). �

3.8 The Eulerian approximation

As was already observed in Remark 2.3, if we set δ = ˙̄r = 0 in the expansion (2.24), we obtain
an approximate solution ηEapp, φ

E
app, ˙̄zE of equation (2.26), which is nothing but the stationary

Euler equation in a frame moving with (constant) velocity ˙̄zE ez. As is well known [3], steady
states of the Euler system are often characterized by a global functional relation between the
vorticity and the stream function. In our case, in view of (2.26), we expect finding a function
Φǫ : R+ → R such that

φEapp(R,Z)−
r0 ˙̄zE
2Γ

(1 + ǫR)2 = Φǫ

(

ηEapp(R,Z)

1 + ǫR

)

+O
(

ǫM+1−) , (3.80)

for all (R,Z) ∈ R2 such that ρ :=
√
R2 + Z2 ≪ ǫ−1.

In this section, we first verify that a relation of the form (3.80) holds to second order, namely
with M = 2. Using the expressions (3.41), (3.42), (3.50), (3.51) with δ = 0 and simplifying
somehow the notation, we can write our approximate solution in the form

ηEapp(R,Z) = η0 + ǫRη1 + ǫ2(R2−Z2)η2 + ǫ2η3 ,

φEapp(R,Z) = φ0 + ǫRφ1 + ǫ2(R2−Z2)φ2 + ǫ2φ3 ,
(3.81)

where η0, φ0 are given by (3.32), and the profiles η1, η2, η3 ∈ Z and φ1, φ2, φ3 ∈ S∗(R2) are all
radially symmetric. Note that ηm, φm may include factors of βǫ = log(1/ǫ) when m ≥ 1, but
this dependence is not explicitly indicated. We also expand the unknown function Φǫ in (3.80)
in powers of ǫ :

Φǫ(s) = Φ0(s) + ǫΦ1(s) + ǫ2Φ2(s) . (3.82)
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Finally, to simplify the writing, we denote

ω =
1

4π

(

βǫ − 1 + 2v
)

=
r0 ˙̄zE
Γ

+O(ǫ2βǫ) , (3.83)

where the last equality follows from (3.39), (3.43), (3.57).

If we consider equality (3.80) to leading order in ǫ, thus neglecting all terms that are O(ǫ)
or O(ǫβǫ), we obtain the relation φ0 −ω/2 = Φ0(η0), which determines the principal term Φ0 in
the expansion (3.82). In view of (3.32), (3.33) we thus have

Φ0(s) = φ0(0) −
ω

2
− 1

4π
Ein

(

log
1

4πs

)

, s > 0 . (3.84)

The constant in (3.84) has no relevance, but it is important to note that Φ0(s) ∼ − 1
4π log log 1

s
as s→ 0. For later use we define

A(ρ) = Φ′
0

(

η0(ρ)
)

=
∂Rφ0
∂Rη0

=
∂Zφ0
∂Zη0

=
4

ρ2

(

eρ
2/4 − 1

)

, ρ > 0 . (3.85)

Incidentally we observe that A(ρ) = 1/h(ρ) where h is defined in (3.24).

To the next order in ǫ, we deduce from (3.80) the relation

(φ1 − ω)R = Φ′
0(η0)(η1 − η0)R+Φ1(η0) , (3.86)

which can be satisfied only if Φ1 = 0, because Φ1(η0) is the only radially symmetric term in
(3.86). Dividing by R, we obtain the equality φ1−ω = A(η1−η0), which happens to be satisfied
in view of our definitions of the profiles η1, φ1. This fact can be verified by following carefully
the calculations in Section 3.3.

Finally we exploit (3.80) to order ǫ2, keeping in mind that Φ1 = 0. In this calculation, we
neglect the O(ǫ2βǫ) correction in (3.83), because this term would only add an irrelevant constant
to the function Φ2. We thus obtain the relation

(R2−Z2)φ2 + φ3 −
ω

2
R2 = Φ′

0(η0)
(

(R2−Z2)η2 + η3 + (η0 − η1)R
2
)

+
1

2
Φ′′
0(η0)(η0 − η1)

2R2 +Φ2(η0) ,

where it is useful to substitute R2 = 1
2(R

2+Z2) + 1
2 (R

2−Z2). The terms containing R2−Z2

cancel exactly due to the identity

φ2 −
1

2
Ψ−Aη2 = 0 , where Ψ =

ω

2
+ Φ′

0(η0)(η0 − η1) +
1

2
Φ′′
0(η0)(η0 − η1)

2 ,

which is satisfied by definition of the profiles φ2, η2, as can be verified by following the calculations
in Section 3.4. We are thus left with a relation involving only radially symmetric terms

φ3 −
1

2
(R2+Z2)Ψ −Aη3 = Φ2(η0) , (3.87)

which provides the definition of the second order correction Φ2 in (3.82). Summarizing, if Φǫ is
defined by (3.82) with Φ1 = 0, Φ0 given by (3.84) and Φ2 by (3.87), we have shown that (3.80)
holds with M = 2.

We now come back to the approximate solution η∗, φ∗ of (2.23) constructed in Sections 3.3–
3.6, and we show that it also satisfies a relation of the form (3.80), in a sufficiently small region
near the origin. To formulate that result, we denote

Θ(R,Z, t) = φ∗(R,Z, t) −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2 − Φǫ

(

η∗(R,Z, t)
1 + ǫR

)

, (R,Z) ∈ Ωǫ . (3.88)
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Proposition 3.16. There exist σ1 ∈ (0, σ0) and N ∈ N such that, for any γ3 < 3, the quantity
Θ defined by (3.88) satisfies, for some C > 0,

|∂RΘ(R,Z, t)| + |∂ZΘ(R,Z, t)| ≤ C(ǫδ + ǫγ3)(1 + ρ)N , ρ ≤ ǫ−σ1 , (3.89)

whenever ǫ and δ are small enough.

Proof. The idea is to compare Θ with the second order Eulerian approximation

ΘE
app(R,Z, t) = φEapp(R,Z, t) −

r0 ˙̄zE
2Γ

(1 + ǫR)2 − Φǫ

(

ηEapp(R,Z, t)

1 + ǫR

)

, (3.90)

which is of size O(ǫ3−) in view of (3.80). Here we consider both quantities ηEapp, φ
E
app as time-

dependent, because we deal with the viscous case where ǫ =
√
νt/r̄(t). We already estimated

the difference φ∗ − φapp in the proof of Proposition 2.5, and by construction we know that
φapp = φEapp +O(ǫδ + ǫ3βǫ). These arguments lead to the bound

|∂R
(

φ∗ − φEapp
)

|+ |∂Z
(

φ∗ − φEapp
)

| ≤ C
(

ǫδ + ǫ3βǫ
)

(1 + ρ)5 , ρ ≤ ǫ−σ0 . (3.91)

On the other hand, we know that that r̄(t) = r0(1 + O(ǫ2)), and in view of (3.43), (3.57) the
difference between the vertical speed ˙̄z∗ and its second order Eulerian approximation ˙̄zE is of
size (Γ/r0) · O(ǫ2βǫ). We thus find

∣

∣

∣

r̄ ˙̄z∗
2Γ

− r0 ˙̄zE
2Γ

∣

∣

∣

∣

∣∂R(1 + ǫR)2
∣

∣ ≤ Cǫ3βǫ , ρ ≤ ǫ−σ0 . (3.92)

Finally η∗ is just a truncation of ηapp and by definition ηapp−ηEapp = O(ǫδ+ǫ3βǫ) in the topology
of Z. This gives the following bound

∑

|α|≤1

∣

∣∂α
(

η∗ − ηEapp
)

(R,Z, t)
∣

∣ ≤ C
(

ǫδ + ǫ3βǫ
)

(1 + ρ)Ne−ρ2/4 , ρ ≤ ǫ−σ0 , (3.93)

for some N ∈ N.

At this point we observe that η∗ − η0 = O(ǫ) in the topology of Z when ρ ≤ ǫ−σ0 . In
particular, there exists N ∈ N such that |η∗ − η0| ≤ Cǫ(1 + ρ)Nη0 in that region, and one can
verify that N = 3 is in fact sufficient. If we choose σ1 > 0 small enough so that Nσ1 < 1, it
follows that

1

2
η0(ρ) ≤ η∗(R,Z, t)

1 + ǫR
≤ 2 η0(ρ) , ρ ≤ ǫ−σ1 , (3.94)

whenever ǫ > 0 is small enough. The same estimate holds for the Eulerian approximation ηEapp.

To conclude the proof of Proposition 3.16, we need bounds on the derivatives of the function
Φǫ defined in (3.82). We begin with the leading order term Φ0 which is given by the explicit
formula (3.84). We have

Φ′
0

( s

4π

)

=
1− s

s log(1/s)
,

1

4π
Φ′′
0

( s

4π

)

= −s− 1 + log(1/s)

s2
(

log(1/s)
)2 , s > 0 .

Thanks to (3.94) we only need to evaluate these expressions when the argument s/(4π) takes
its values in the interval

[

1
2η0(ρ), 2η0(ρ)

]

. In view of Lemma 3.17 below, there exists C > 1 such
that, for all λ ∈ [1/2, 2] and all ρ > 0,

A(ρ)

C
≤ Φ′

0

(

λη0(ρ)
)

≤ CA(ρ) ,
∣

∣Φ′′
0

(

λη0(ρ)
)
∣

∣ ≤ CB(ρ) , (3.95)
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where A(ρ) is defined in (3.85) and

B(ρ) = −Φ′′
0(η0(ρ)) =

16π

ρ4

(

(ρ2 − 4)eρ
2/2 + 4eρ

2/4
)

, ρ > 0 . (3.96)

The second order contribution Φ2 is not known explicitly, but from the definition (3.87), where
the left-hand side belongs to S∗(R2), we deduce that there exist C > 0 and N ∈ N such that

∣

∣Φ′
2

(

λη0(ρ)
)
∣

∣ ≤ CA(ρ)(1 + ρ)N ,
∣

∣Φ′′
2

(

λη0(ρ)
)
∣

∣ ≤ CB(ρ)(1 + ρ)N , (3.97)

for all ρ > 0 and all λ ∈ [1/2, 2].

Now, if ∂α = ∂R or ∂Z , we decompose

∂αΦǫ

( η∗
1+ǫR

)

− ∂αΦǫ

( ηEapp
1+ǫR

)

= Φ′
ǫ

( η∗
1+ǫR

)(

∂α
( η∗
1+ǫR

)

− ∂α
( ηEapp
1+ǫR

))

+
(

Φ′
ǫ

( η∗
1+ǫR

)

− Φ′
ǫ

( ηEapp
1+ǫR

))

∂α
( ηEapp
1+ǫR

)

,

and we estimate the right-hand side using (3.93), (3.95), and (3.97). Taking into account the
preliminary bounds (3.91), (3.92), we arrive at an estimate of the form

∑

|α|=1

∣

∣∂α
(

Θ(R,Z, t)−ΘE
app(R,Z, t)

)∣

∣ ≤ C(ǫδ + ǫ3βǫ)(1 + ρ)N , ρ ≤ ǫ−σ1 .

As was already mentioned, the approximation ΘE
app(R,Z, t) is O(ǫ3−) in the topology of S∗(R2),

so altogether we arrive at (3.89).

In the argument above we used the following elementary result, whose proof can be omitted.

Lemma 3.17. Let f, g : (0,+∞) → (0,+∞) be defined by

f(s) =
1− s

s log(1/s)
, g(s) =

s− 1 + log(1/s)

s2
(

log(1/s)
)2 = −f ′(s) , s > 0 .

Then given any Λ > 1 there exists C > 1 such that, for any λ ∈ [Λ−1,Λ] and any s > 0,

1

C
≤ f(λs)

f(s)
≤ C ,

1

C
≤ g(λs)

g(s)
≤ C .

4 Energy estimates and stability proof

In the previous section we constructed an approximate solution η∗ of the rescaled vorticity
equation (2.15) which corresponds, in the original variables, to a sharply concentrated vortex
ring of radius r̄(t) located at the approximate vertical position z̄∗(t). Our goal is now to control
the difference between this approximation and the actual solution η of (2.15) with initial data
η0, which is located at the modified vertical position z̄(t) = z̄∗(t) + δz̃(t) given by (2.32). This
will conclude the proof of our main results, Theorems 1.1 and 2.6.

Our starting point is the evolution equation (2.33) for the perturbation η̃ defined in (2.31),
which can be written in the form

t∂tη̃ +
1

δ

{

φ∗ , ζ̃
}

+
1

δ

{

φ̃ , ζ∗
}

+
{

φ̃ , ζ̃
}

− ǫr̄

δΓ

(

˙̄r ∂Rη̃ + ˙̄z∗ ∂Z η̃
)

= Lη̃ + ǫ∂Rζ̃ +
1

δ
Rem(R,Z, t) +

ǫr̄ ˙̃z

δΓ

(

∂Zη∗ + δ∂Z η̃
)

,

(4.1)
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where to simplify the notation we use the letter ζ to denote the potential vorticity:

ζ̃(R,Z, t) =
η̃(R,Z, t)

1 + ǫR
, ζ∗(R,Z, t) =

η∗(R,Z, t)
1 + ǫR

. (4.2)

From our previous work [33] we know that Eq. (4.1) has a unique solution η̃, in an appropriate
weighted L2 space, with zero initial data. Our goal is to control the evolution of that solution
on a large time interval, uniformly with respect to the viscosity in the limit ν → 0. This is not
an easy task, because several terms in (4.1) are multiplied by the Reynolds number δ−1 = Γ/ν,
which becomes arbitrarily large in the regime we consider. As was explained in the introduction,
we shall use energy estimates to control the solution of (4.1), but a few preliminary steps are
necessary before starting the actual calculations.

4.1 Control of the lowest order moments

To implement our strategy based on energy estimates, we need a precise information on the
lowest order moments of the solution of (4.1). We first define, for all t > 0,

µ0(t) =

∫

Ωǫ

η̃(R,Z, t) dX , µ1(t) =

∫

Ωǫ

(

R+ ǫR2/2
)

η̃(R,Z, t) dX , (4.3)

where dX = dRdZ denotes the Lebesgue measure in R2.

Lemma 4.1. The moments defined in (4.3) satisfy µ0(t) = O(ǫ∞δ−1) and µ1(t) = O(ǫ+ǫγ5δ−2)
for any γ5 < 1, whenever ǫ and δ are small enough.

Proof. The conclusion can be obtained by direct calculations, but we find it more illuminating
to use the conserved quantities of the original equation (2.3). The first one is the total circulation

M(t) =

∫

Ω
ωθ(r, z, t) dr dz = Γ

∫

Ωǫ

(

η∗ + δη̃
)

(R,Z, t) dX = Γ

∫

Ωǫ

η∗ dX + Γδµ0(t) , (4.4)

which satisfies M(0) = Γ and is almost constant in time. In fact it is proved in [33, Section 4.4]
that 0 ≤ 1−M(t)/Γ ≤ C exp(−c/ǫ2) for some positive constants C and c. Moreover, since the
approximate solution ηapp lies in the space Z defined by (3.23), it follows from (2.28) and (3.71)
that

∫

Ωǫ
η∗ dX = 1 +O(exp(−c/ǫ2σ0)). Therefore µ0(t) = O(exp(−c/ǫ2σ0) δ−1) by (4.4).

We next consider the total impulse in the vertical direction

I =

∫

Ω
r2ωθ(r, z, t) dr dz = Γr̄(t)2

∫

Ωǫ

(1 + ǫR)2
(

η∗ + δη̃
)

(R,Z, t) dX , (4.5)

which is known to be exactly conserved [48, 32], so that I = Γr20 for all times. Equality (4.5)
can be rephrased as I/Γ = I∗(t) + δr̄(t)2µ(t), where

I∗(t) = r̄(t)2
∫

Ωǫ

(1 + ǫR)2η∗(R,Z, t) dX , µ(t) = µ0(t) + 2ǫµ1(t) . (4.6)

It is not difficult to show that

tI ′∗(t) = −r̄(t)2
∫

Ωǫ

(1 + ǫR)2Rem(R,Z, t) dX . (4.7)

The easiest way to establish (4.7) is to observe that the impulse I∗(t) would be conserved if
η∗ was an exact solution of (2.15), so that the remainder Rem(R,Z, t) defined in (2.29) is
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the only term that contributes to the evolution of I∗(t). However equality (4.7) can also be
verified by a direct calculation. In any case, since Rem(R,Z, t) satisfies estimate (2.30) and
∫

Ωǫ
Rem(R,Z, t) dx = O(ǫ∞), we deduce from (4.7) that |tI ′∗(t)| ≤ Cr20

(

ǫ2δ + ǫγ5+1δ−1
)

, hence

|I∗(t)− r20| ≤
∫ t

0
|I ′∗(s)|ds ≤ Cr20

∫ t

0

ǫ(s)2δ + ǫ(s)γ5+1δ−1

s
ds ≤ Cr20

(

ǫ2δ + ǫγ5+1δ−1
)

.

As r20 − I∗(t) = δr̄(t)2µ(t), we conclude that µ(t) = O
(

ǫ2 + ǫγ5+1δ−2
)

, which gives the desired
estimate for µ1(t).

It is not clear if the strategy above can be applied to control the first order moment of the
perturbation η̃ with respect to the vertical variable Z. In particular, we are not aware of any
(approximately) conserved quantity that we could use for this purpose. Instead we choose the
modulation parameter z̃(t) in (2.32) so that the vertical moment vanishes identically :

µ2(t) :=

∫

Ωǫ

Z η̃(R,Z, t) dX = 0 . (4.8)

Differentiating (4.8) with respect to time and using (4.1), we obtain the relation

˙̃z(t)

∫

Ωǫ

Z
(

∂Zη∗ + δ∂Z η̃
)

dX =
δΓ

ǫr̄

∫

Ωǫ

ZR(R,Z, t) dX , (4.9)

where

R =
1

δ

{

φ∗ , ζ̃
}

+
1

δ

{

φ̃ , ζ∗
}

+
{

φ̃ , ζ̃
}

− ǫr̄

δΓ

(

˙̄r ∂Rη̃ + ˙̄z∗ ∂Z η̃
)

− Lη̃ − ǫ∂Rζ̃ −
1

δ
Rem(R,Z, t) .

(4.10)

In view of Lemma 4.1 the integral in the left-hand side of (4.9) is equal to −1 +O(ǫ∞), and is
therefore bounded away from zero if ǫ is small enough. The integral in the right-hand side is a
priori of size O(δ−1), but we observe that R = δ−1Λη̃+O(ǫδ−1), where Λ is the linear operator
defined in (3.19). Using the properties established in Proposition 3.6, we see that the leading
term gives no contribution :

1

4π

∫

R2

Z Λη̃ dX =
(

Zη0 ,Λη̃
)

Y = −
(

Λ(Zη0) , η̃
)

Y = 0 ,

since Zη0 = −2∂Zη0 is in the kernel of Λ. These considerations, which will be made rigorous
in Section 4.8 below, show that the modulation speed ˙̃z is uniquely determined by (4.9), and
suggest that ˙̃z(t) = O(‖η̃‖Xǫ) as long as ‖η̃‖Xǫ remains of size O(1). In particular δz̃(t) is indeed
a small correction to the vertical position of the vortex ring.

4.2 Definition and properties of the weight function

We now provide the precise definition of the weight function Wǫ : Ωǫ → (0,+∞) which appears
in the energy functional (2.34). We give ourselves three positive numbers σ1, σ2, γ such that

0 < σ1 < σ0 < 1 < σ2 , γ = σ1/σ2 , (4.11)

where σ0 ∈ (0, 1) is the cut-off exponent already introduced in (2.28). As we shall see σ2 > 1
can be chosen arbitrarily, but σ1 > 0 has to be taken sufficiently small. In particular σ1 should
be small enough so that Proposition 3.16 holds.
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As in (4.2), if ǫ > 0 and δ > 0 are sufficiently small, we denote ζ∗ = η∗/(1 + ǫR), where
η∗ is the approximate solution of (2.15) given by (2.28). We recall that ζ∗ and φ∗ := BSǫ[η∗]
satisfy the relation (2.36), where Φǫ : R+ → R is the function constructed in Section 3.8. We
decompose the domain Ωǫ =

{

(R,Z) ; 1 + ǫR > 0
}

into a disjoint union Ω′
ǫ ∪ Ω′′

ǫ ∪ Ω′′′
ǫ , where

Ω′
ǫ =

{

(R,Z) ∈ Ωǫ ; Φ
′
ǫ(ζ∗(R,Z)) < exp

(

ǫ−2σ1/4
)

}

,

Ω′′
ǫ =

{

(R,Z) ∈ Ωǫ \ Ω′
ǫ ; ρ ≤ ǫ−σ2

}

,

Ω′′′
ǫ =

{

(R,Z) ∈ Ωǫ ; ρ > ǫ−σ2

}

.

(4.12)

Here and in what follows, if (R,Z) ∈ R2, we denote ρ = (R2+Z2)1/2. The domains Ω′
ǫ,Ω

′′
ǫ also

depend (mildly) on δ, but for simplicity this dependence is not indicated explicitly.

Lemma 4.2. If ǫ > 0 is small enough, the inner region Ω′
ǫ defined in (4.12) is diffeomorphic to

a open disk, and there exists κ > 0 such that

{

(R,Z) ; ρ ≤ ǫ−σ1
}

⊂ Ω′
ǫ ⊂

{

(R,Z) ; ρ2 ≤ ǫ−2σ1 + κ log
1

ǫ

}

. (4.13)

Proof. The main properties of the function Φǫ are established in the proof of Proposition 3.16.
In particular, using estimates (3.94), (3.95), (3.97), it is easy to verify that

1

2
A(ρ) ≤ Φ′

ǫ

(

ζ∗(R,Z)
)

≤ 2A(ρ) , when ρ ≤ 2ǫ−σ1 . (4.14)

Here A(ρ) = (4/ρ2)
(

eρ
2/4 − 1

)

, see (3.85). Since 2A(ǫ−σ1) < exp(ǫ−2σ1/4) as soon as ǫ−σ1 ≥ 3,
we deduce that (R,Z) ∈ Ω′

ǫ if ρ ≤ ǫ−σ1 . Similarly, using the lower bound in (4.14), it is easy to
verify that the inner region Ω′

ǫ is contained in the disk ρ2 ≤ ǫ−2σ1 + κ log 1
ǫ if κ > 4σ1 and ǫ > 0

is small enough. Finally Ω′
ǫ is diffeomorphic to a disk because Φ′

ǫ(ζ∗) is C2-close to a strictly
increasing radially symmetric function when ǫ > 0 is small, see (3.82).

We next choose a smooth cut-off function χ1 : R → [12 , 3] such that

χ1(x) =
1

1 + x
for |x| ≤ 1

2
, χ′

1(x) = 0 for |x| ≥ 3

4
. (4.15)

The weight Wǫ : Ωǫ → (0,+∞) is defined by

Wǫ(R,Z) = χ1(ǫR)×















Φ′
ǫ

(

ζ∗(R,Z)
)

in Ω′
ǫ ,

exp
(

ǫ−2σ1/4
)

in Ω′′
ǫ ,

exp
(

ρ2γ/4
)

in Ω′′′
ǫ ,

(4.16)

where γ = σ1/σ2 < 1 and Ω′
ǫ,Ω

′′
ǫ ,Ω

′′′
ǫ are the regions defined in (4.12). In other words, we assume

that Wǫ = Φ′
ǫ(ζ∗)/(1+ǫR) as long as the numerator remains smaller than the threshold value

exp(ǫ−2σ1/4). Outside this inner region, the weight is radially symmetric except for the geometric
factor χ1(ǫR), and the radial profile remains constant as long as ρ ≤ ǫ−σ2 before increasing again
like exp(ρ2γ/4) when ρ > ǫ−σ2 . By construction the function Wǫ is locally Lipschitz continuous
in Ωǫ, and smooth in the interior of all three regions (4.12). The (mild) dependence of Wǫ upon
the parameter δ > 0 is not indicated explicitly. A schematic representation of the graph of Wǫ

is given in Figure 2.

Further properties of the weight Wǫ are collected in the following lemma.
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Lemma 4.3. There exist positive constants C1, C2 such that, if ǫ, δ, and σ1 are small enough,
the weight Wǫ satisfies the uniform bounds

C1 exp
(

ρ2γ/4
)

≤ Wǫ(R,Z) ≤ C2A(ρ) , (R,Z) ∈ Ωǫ , (4.17)

where ρ = (R2+Z2)1/2 and A(ρ) is defined in (3.85). Moreover, given any γ1 < 1 there exists
C3 > 0 such that the following estimates hold in the inner region

∣

∣Wǫ(R,Z)−A(ρ)
∣

∣ +
∣

∣∇Wǫ(R,Z)−∇A(ρ)
∣

∣ ≤ C3 ǫ
γ1A(ρ) , (R,Z) ∈ Ω′

ǫ . (4.18)

Proof. Since 1
2 ≤ χ1(ǫR) ≤ 3 and exp(ρ2γ/4) ≤ CA(ρ), we deduce from (4.14) that the bounds

(4.17) hold in the inner region Ω′
ǫ, as well as in the far field region Ω′′′

ǫ . In the intermediate
region Ω′′

ǫ we know that ρ ≤ ǫ−σ2 , so that exp(ρ2γ/4) ≤ exp(ǫ−2σ1/4) since γ = σ1/σ2, and this
gives the lower bound in (4.17). If ρ ≥ 2ǫ−σ1 , it is clear that exp(ǫ−2σ1/4) ≤ A(ρ), which is
the desired upper bound. Finally if (R,Z) ∈ Ω′′

ǫ and ρ ≤ 2ǫ−σ1 , we deduce from (4.14) that
exp(ǫ−2σ1/4) ≤ Φ′

ǫ

(

ζ∗(R,Z)
)

≤ 2A(ρ), which concludes the proof of the upper bound in (4.17).

To prove (4.18), we start from the expression (4.16) of the weight Wǫ in the inner region Ω′
ǫ.

We know from (3.85) that A(ρ) = Φ′
0(η0), where η0 is defined in (3.32). We thus find

|Wǫ(R,Z)−A(ρ)
∣

∣ ≤
∣

∣χ1(ǫR)− 1
∣

∣Φ′
ǫ(ζ∗) +

∣

∣Φ′
ǫ(ζ∗)− Φ′

ǫ(η0)
∣

∣+
∣

∣Φ′
ǫ(η0)− Φ′

0(η0)
∣

∣ . (4.19)

Since χ1(ǫR) = (1+ǫR)−1 when (R,Z) ∈ Ω′
ǫ, the first term in the right-hand of (4.19) is smaller

than Cǫ|R|Φ′
ǫ(ζ∗) ≤ Cǫ1−σ1A(ρ). For the second term, we use the bounds (3.94), (3.95), and

(3.97) to obtain
∣

∣Φ′
ǫ(ζ∗)− Φ′

ǫ(η0)
∣

∣ ≤ sup
1
2
≤λ≤2

∣

∣Φ′′
ǫ (λη0)

∣

∣ |ζ∗ − η0| ≤ CB(ρ)(1 + ρ)N ǫη0 ≤ Cǫγ1A(ρ) ,

where in the last inequality we assumed that σ1 > 0 is small enough so that Nσ1 ≤ 1− γ1. The
last term in (4.19) is bounded by ǫ2|Φ′

2(η0)| ≤ Cǫγ1A(ρ) in view of (3.97). Altogether we arrive
at the estimate |Wǫ(R,Z)−A(ρ)

∣

∣ ≤ Cǫγ1A(ρ). The corresponding inequality for the first order
derivatives can be obtained in a similar way, and we omit the details

4.3 Coercivity of the energy functional

For ǫ ≥ 0 small enough, we introduce the weighted L2 space Xǫ =
{

η ∈ L2(Ωǫ) ; ‖η‖Xǫ < ∞
}

defined by the norm (2.39), namely

‖η‖2Xǫ
=

∫

Ωǫ

Wǫ(R,Z) |η(R,Z)|2 dRdZ . (4.20)

In the limiting case ǫ = 0, it is understood that Ω0 = R2 and W0(R,Z) = A(ρ), in agreement
with (4.18). Assuming that ǫ > 0, we consider the energy functional (2.34), namely

Eǫ[η] =
1

2
‖η‖2Xǫ

− Ekin
ǫ [η] , η ∈ Xǫ , (4.21)

where Ekin
ǫ is the kinetic energy defined by

Ekin
ǫ [η] =

1

2

∫

Ωǫ

φ η dR dZ =
1

2

∫

Ωǫ

|∇φ|2
1 + ǫR

dR dZ , φ = BSǫ[η] . (4.22)

Since we are interested in the regime where ǫ is small, it is important to observe that Ekin
ǫ [η]

becomes singular in the limit ǫ → 0, if the vorticity η has nonzero mean. This divergence is
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related to the well-known fact that any (nontrivial) nonnegative vorticity distribution in R2

has infinite kinetic energy. The regular part of Ekin
ǫ [η] is given, to leading order, by the two-

dimensional energy

Ekin
0 [η] =

1

4π

∫

R2

(

Lη)η dX =
1

4π

∫

R2

∫

R2

log
( 8

D

)

η(R,Z)η(R′, Z ′) dX dX ′ , (4.23)

where L is the integral operator (3.14) and D2 = (R−R′)2 + (Z−Z ′)2. More precisely, we have
the following statement, whose proof is postponed to Section B.1.

Lemma 4.4. If ǫ > 0 is small and η ∈ Xǫ satisfies supp(η) ⊂ Bǫ := {(R,Z) ∈ Ωǫ ; ρ ≤ ǫ−σ1},
we have the expansion

Ekin
ǫ [η] =

βǫ − 2

4π
µ20 + Ekin

0 [η] +O
(

ǫβǫ‖η‖2Xǫ

)

, as ǫ→ 0 , (4.24)

where βǫ = log(1/ǫ) and µ0 =
∫

Ωǫ
η dR dZ.

We now consider the (formal) limit of the functional Eǫ[η] as ǫ → 0, assuming that η has
zero mean to avoid the logarithmic divergence in the right-hand side of (4.24). In view of (4.18)
and Lemma 4.4, we obtain the limiting functional

E0[η] =
1

2

∫

R2

A(ρ) η(R,Z)2 dR dZ − Ekin
0 [η] =

1

2
‖η‖2X0

− Ekin
0 [η] , (4.25)

which is studied in detail in our previous work [34]. In particular, we have the following property :

Proposition 4.5. There exists constants C4 > 2 and C5 > 0 such that, for all η ∈ X0,

‖η‖2X0
≤ C4E0[η] + C5

(

µ20 + µ21 + µ22
)

, (4.26)

where µ0 =
∫

R2 η dX, µ1 =
∫

R2 Rη dX, µ2 =
∫

R2 Zη dX.

Proof. The results of [34, Section 2] show that (4.26) holds when µ0 = µ1 = µ2 = 0, and the
general case is easily deduced by the following argument. Given η ∈ X0 we define

η̂ = η − µ0η0 + µ1∂Rη0 + µ2∂Zη0 , φ̂ = φ− µ0φ0 + µ1∂Rφ0 + µ2∂Zφ0 ,

where φ = (2π)−1Lη and η0, φ0 are as in (3.32). By construction the integral and the first order
moments of the new function η̂ ∈ X0 vanish, so that we can apply the results of [34] which give
the bound ‖η̂‖2X0

≤ C4E0[η̂]. On the other hand, expanding the quadratic expressions ‖η̂‖2X0

and E0[η̂] and using Hölder’s inequality, it is straightforward to verify that

‖η̂‖2X0
≥ 1

2
‖η‖2X0

− C
(

µ20 + µ21 + µ22) , E0[η̂] ≤ E0[η] +
1

4C4
‖η‖2X0

+ C
(

µ20 + µ21 + µ22) ,

for some C > 0. If we combine these estimates, we arrive at the bound (4.26) with a deteriorated
constant C4.

Using Proposition 4.5, we now establish a similar coercivity property for the functional Eǫ

when ǫ > 0 is small. The proof of the following proposition is again postponed to Section B.1.

Proposition 4.6. If the weight Wǫ satisfies (4.17) and (4.18), there exist constants C6 > 0 and
C7 > 0 such that, for all sufficiently small ǫ > 0 and all η ∈ Xǫ, we have the estimate

‖η‖2Xǫ
≤ C6Eǫ[η] + C7

(

βǫµ
2
0 + µ21 + µ22

)

, (4.27)

where βǫ = log(1/ǫ) and µ0 =
∫

Ωǫ
η dX, µ1 =

∫

Ωǫ
Rη dX, µ2 =

∫

Ωǫ
Zη dX.

In what follows we use the bound (4.27) to estimate the vorticity perturbation η̃ introduced
in (2.31). The corresponding moments µ0, µ1 are under control thanks to Lemma 4.1, and µ2 = 0
according to (4.8). So it remains to bound the energy functional Eǫ[η̃], which is the purpose of
the remaining sections.
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4.4 Time evolution of the energy

Let η̃ be the solution of (4.1) with zero initial data. Assuming that δ > 0 and σ > 0 are
sufficiently small, we consider for t ∈ (0, Tadvδ

−σ) the energy function

Eǫ(t) =
1

2

∫

Ωǫ

Wǫ(R,Z) η̃(R,Z, t)
2 dX − 1

2

∫

Ωǫ

φ̃(R,Z, t) η̃(R,Z, t) dX , (4.28)

where ǫ =
√
νt/r̄(t) and Wǫ is the weight function defined by (4.16). The first term in the

right-hand side of (4.28) is equal to 1
2‖η̃‖2Xǫ

, and the second one is the kinetic energy Ekin
ǫ [η̃],

which satisfies (4.22) and involves the stream function φ̃ = BSǫ[η̃] defined by the Biot-Savart
formula (2.20). Differentiating (4.28) with respect to time and using the relations (3.34), (4.22)
together with the evolution equation (4.1), we obtain by a direct calculation

t∂tEǫ =

∫

Ωǫ

(

Wǫη̃ t∂tη̃ +
1

2
t(∂tWǫ)η̃

2
)

dX −
∫

Ωǫ

(

φ̃ t∂tη̃ +
tǫ̇

2

R|∇φ̃|2
(1 + ǫR)2

)

dX

= I1 + I2 + I3 + I4 + I5 + I6 ,

where the quantities I1, . . . , I6 collect the following terms.

1. Local advection terms :

I1 = −1

δ

∫

Ωǫ

Wǫη̃
{

φ∗ , ζ̃
}

dX +
ǫr̄ ˙̄z∗
δΓ

∫

Ωǫ

Wǫη̃ ∂Z η̃ dX

= −1

δ

∫

Ωǫ

Wǫη̃
{

φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2 , ζ̃
}

dX

= − 1

2δ

∫

Ωǫ

{

Wǫ(1 + ǫR) , φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2
}

ζ̃2 dX .

(4.29)

2. Nonlocal advection terms :

I2 =
1

δ

∫

Ωǫ

φ̃
{

φ∗ , ζ̃
}

dX − ǫr̄ ˙̄z∗
δΓ

∫

Ωǫ

φ̃ ∂Z η̃ dX − 1

δ

∫

Ωǫ

(

Wǫη̃ − φ̃
){

φ̃ , ζ∗
}

dX

=
1

δ

∫

Ωǫ

φ̃
{

φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2 , ζ̃
}

dX − 1

δ

∫

Ωǫ

Wǫη̃
{

φ̃ , ζ∗
}

dX

=
1

δ

∫

Ωǫ

{

φ̃ , φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2
}

ζ̃ dX − 1

δ

∫

Ωǫ

Wǫ(1 + ǫR)
{

φ̃ , ζ∗
}

ζ̃ dX .

(4.30)

3. Nonlinear terms :

I3 = −
∫

Ωǫ

(

Wǫη̃ − φ̃
){

φ̃ , ζ̃
}

dX = −
∫

Ωǫ

{

Wǫη̃ , φ̃
}

ζ̃ dX . (4.31)

4. Diffusive terms :

I4 =

∫

Ωǫ

(

Wǫη̃ − φ̃
)

(

Lη̃ + ǫ∂Rζ̃
)

dX .

Integrating by parts as explained in Section B.2, we obtain the equivalent expression

I4 = −
∫

Ωǫ

Wǫ|∇η̃|2 dX −
∫

Ωǫ

(∇Wǫ · ∇η̃)η̃ dX −
∫

Ωǫ

Vǫη̃
2 dX

− ǫ

2

∫

Ωǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX +
ǫ

4

∫

Ωǫ

R|∇φ̃|2
(1 + ǫR)2

dX ,

(4.32)
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where

Vǫ =
1

4
(R∂R + Z∂Z)Wǫ −

1

2
Wǫ − (1 + ǫR) . (4.33)

5. Remainder term :

I5 =
1

δ

∫

Ωǫ

(

Wǫη̃ − φ̃
)

Rem(R,Z, t) dX . (4.34)

6. Additional terms :

I6 =
1

2

∫

Ωǫ

t(∂tWǫ)η̃
2 dX +

ǫr̄ ˙̄r

δΓ

∫

Ωǫ

(

Wǫη̃ − φ̃
)

∂Rη̃ dX

− tǫ̇

2

∫

Ωǫ

R|∇φ̃|2
(1 + ǫR)2

dX +
ǫr̄ ˙̃z

δΓ

∫

Ωǫ

(

Wǫη̃ − φ̃
) (

∂Zη∗ + δ∂Z η̃
)

dX .

(4.35)

For the purposes of our analysis, it is useful to reorganize some terms appearing in the
quantities I4 and I6. First, using (2.19) and integrating by parts, it is easy to verify that

−
∫

Ωǫ

φ̃ ∂Rη̃ dX =

∫

Ωǫ

η̃ ∂Rφ̃dX =
ǫ

2

∫

Ωǫ

|∇φ̃|2
(1 + ǫR)2

dX . (4.36)

So, if we collect all terms involving |∇φ̃|2 in (4.32), (4.35), and (4.36), we obtain the quantity

( ǫ

4
− tǫ̇

2

)

∫

Ωǫ

R|∇φ̃|2
(1 + ǫR)2

dX +
ǫ2r̄ ˙̄r

2δΓ

∫

Ωǫ

|∇φ̃|2
(1 + ǫR)2

dX =
t ˙̄r

2r̄

∫

Ωǫ

|∇φ̃|2
1 + ǫR

dX ,

where we used the expression (3.34) of tǫ̇. Next, we prefer including the term involving t∂tWǫ in
I4 rather than I6, because it will be combined with the diffusive terms in I4 to obtain negative
quantities that will allow us to control the evolution of the energy. Summarizing, if we define

Î4 = −
∫

Ωǫ

Wǫ|∇η̃|2 dX −
∫

Ωǫ

(∇Wǫ · ∇η̃)η̃ dX −
∫

Ωǫ

Vǫη̃
2 dX

− ǫ

2

∫

Ωǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX +
1

2

∫

Ωǫ

t(∂tWǫ)η̃
2 dX ,

(4.37)

and

Î6 =
ǫr̄ ˙̄r

δΓ

∫

Ωǫ

Wǫη̃∂Rη̃ dX +
t ˙̄r

r̄
Ekin

ǫ [η̃] +
ǫr̄ ˙̃z

δΓ

∫

Ωǫ

(

Wǫη̃ − φ̃
) (

∂Zη∗ + δ∂Z η̃
)

dX , (4.38)

we obtain the identity t∂tEǫ = I1 + I2 + I3 + Î4 + I5 + Î6, which we exploit in Sections 4.6–4.9.

4.5 Bounds on the stream function

In this section we collect a few estimates on the stream function φ = BSǫ[η], where BSǫ is the
ǫ-dependent Biot-Savart operator (2.20). We are especially interested in bounds on the velocity
field U = (UR, UZ) defined by (2.18).

Lemma 4.7. There exists a constant C > 0 such that, for all ǫ ∈ (0, 1),

∣

∣

∣

∂Rφ

1 + ǫR

∣

∣

∣
+

∣

∣

∣

∂Zφ

1 + ǫR

∣

∣

∣
≤

∫

Ωǫ

C
√

(R−R′)2 + (Z−Z ′)2
|η(R′, Z ′)|dX ′ . (4.39)

In particular, for any q > 2, we have ‖U‖Lq ≤ Cq‖η‖Xǫ where U is the velocity field (2.18).

40



Proof. Estimate (4.39) is established in the proof of [33, Lemma 4.1], which in turn relies
on [32, Proposition 2.3]. Using the Hardy-Littlewood-Sobolev inequality, we deduce from (4.39)
that ‖U‖Lq ≤ Cq‖η‖Lp if q > 2 and p ∈ (1, 2) satisfy the relation 1/p = 1/q + 1/2. Finally, the
lower bound on Wǫ in (4.17) implies that ‖η‖Lp ≤ C‖η‖Xǫ for any p ∈ [1, 2].

The particular case where η = η∗ is the approximate solution (2.28) plays an important role.

Lemma 4.8. The following estimates hold for the stream function φ∗ = BSǫ[η∗] :

∣

∣

∣

∂Rφ∗
1 + ǫR

∣

∣

∣
+

∣

∣

∣

∂Zφ∗
1 + ǫR

∣

∣

∣
≤ C

1 + ρ+ ǫ2ρ3
,

∣

∣

∣

∂Zφ∗
(1 + ǫR)2

∣

∣

∣
≤ C

1 + ρ+ ǫ3ρ4
, (4.40)

where ρ = (R2+Z2)1/2.

Proof. In the region where ρ ≤ 1/(2ǫ), we can use estimate (4.39) with η = η∗. Since η∗ satisfies
the Gaussian bound (3.75), we easily deduce that |U | ≤ C(1+ ρ)−1, which gives estimate (4.40)
in that case. We now concentrate on the region ρ ≥ 1/(2ǫ), where a more careful analysis
is needed. We start from the formulas (3.73) with η = η∗, and we first estimate the vertical
derivative ∂Zφ∗. Since |F̃ (s)| ≤ Cs−3/2 for all s > 0, we see that

∣

∣

∣

∂Zφ∗
(1 + ǫR)2

∣

∣

∣
≤ C

ǫ3

∫

Ωǫ

(1+ǫR′)2 |η∗(R′, Z ′)|
(

(R−R′)2 + (Z−Z ′)2
)2 dR

′ dZ ′ . (4.41)

Note that the integral is, in fact, taken over the support of η∗, which is included in the ball
ρ′ := (R′2+Z ′2)1/2 ≤ 2ǫ−σ0 where σ0 < 1. In particular we can disregard the factor (1+ǫR′)2 in
the numerator, and the denominator is always larger that ρ4/2 if ǫ is sufficiently small. So the
right-hand side of (4.41) is bounded by Cǫ−3ρ−4 when ρ ≥ 1/(2ǫ), which concludes the proof of
the second inequality in (4.40). Since 1 + ǫR ≤ 1 + ǫρ, the estimate on ∂Zφ∗/(1+ǫR) in (4.40)
follows immediately.

To conclude the proof of the first inequality in (4.40), we must estimate the quantity ∂Rφ∗
which contains an additional term given by the last line in (3.73). In the region where ρ ≥ 1/(2ǫ),
using the fact that |F (s)| + |F̃ (s)| ≤ Cs−3/2, we see that the contribution of that term to the
vertical speed UZ = ∂Rφ∗/(1+ǫR) is bounded by

C

ǫ2

∫

Ωǫ

(1+ǫR′)2 |η∗(R′, Z ′)|
(

(R−R′)2 + (Z−Z ′)2
)3/2

dR′ dZ ′ ≤ C

ǫ2ρ3
.

The proof of (4.40) is thus complete.

4.6 Control of the advection terms

In what follows we always assume that δ > 0 is sufficiently small and that ǫ2 . δ1−σ for some
small σ > 0, see Remark 2.2. As in Lemma 4.3, we also suppose that the exponent σ1 > 0
is small enough. We first estimate the advection terms I1, I2 defined in (4.29), (4.30). These
terms are potentially dangerous because they include a factor 1/δ which is very large in the
vanishing viscosity limit, but the energy functional (2.34) was designed precisely so that these
contributions can be controlled.

Lemma 4.9. There exist γ1 > 0 and C > 0 such that

|I1| ≤ Cǫγ1 ‖η̃‖2Xǫ
+
Cǫ2

δ

∫

Ω′′

ǫ

Wǫη̃
2 dX . (4.42)
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Proof. To exploit the properties of the weight Wǫ, we decompose the integral (4.29) defining
I1 in three pieces, which correspond to the subdomains (4.12). If (R,Z) ∈ Ω′

ǫ, we know from
(4.16), (3.88) that

Wǫ =
Φ′
ǫ(ζ∗)

1 + ǫR
, φ∗ −

r̄ ˙̄z∗
2Γ

(1 + ǫR)2 = Φǫ(ζ∗) + Θ , (4.43)

where Θ is a remainder term that is studied in Proposition 3.16. It follows that

{

Wǫ(1 + ǫR) , φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2
}

=
{

Φ′
ǫ(ζ∗) , Φǫ(ζ∗) + Θ

}

=
{

Φ′
ǫ(ζ∗) , Θ

}

,

where the right-hand side can be controlled using the bounds (3.89) on Θ and the estimates
(4.14), (4.18) on the weight Wǫ in Ω′

ǫ. This gives, for some integer N and any γ3 ∈ (2, 3),

∣

∣

{

Φ′
ǫ(ζ∗) , Θ

}
∣

∣ ≤ C
(

ǫδ + ǫγ3
)

(1 + ρ)N Wǫ ≤ C
(

ǫδ + ǫγ3
)

ǫ−Nσ1 Wǫ , (4.44)

where we used the fact that 1 + ρ ≤ 2ǫ−σ1 when (R,Z) ∈ Ω′
ǫ. Since ζ̃ ≈ η̃ in Ω′

ǫ and since
δ−1 . ǫ−2/(1−σ) in the parameter regime we consider, it follows from (4.44) that

1

δ

∫

Ω′
ǫ

∣

∣

{

Φ′
ǫ(ζ∗) , Θ

}
∣

∣ ζ̃2 dX ≤ C
(

ǫ+
ǫγ3

δ

)

ǫ−Nσ1

∫

Ω′
ǫ

Wǫη̃
2 dX ≤ Cǫγ1 ‖η̃‖2Xǫ

, (4.45)

where γ1 is taken so that 0 < γ1 < γ3 − 2/(1−σ)−Nσ1. As γ3 < 3 is arbitrary, such a choice is
always possible if we assume that σ > 0 and σ1 > 0 are small enough.

We next consider the intermediate region Ω′′
ǫ in which Wǫ(1 + ǫR) = χ2(ǫR) exp

(

ǫ−2σ1/4
)

,
where χ2(x) = (1 + x)χ1(x). In that region, we thus have

Jǫ :=
{

Wǫ(1 + ǫR) , φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2
}

= ǫχ′
2(ǫR) exp

(

ǫ−2σ1/4
)

∂Zφ∗ .

Since χ2(x) = 1 when |x| ≤ 1
2 , the quantity Jǫ vanishes when ρ := (R2+Z2)1/2 ≤ 1/(2ǫ). In the

region where 1/(2ǫ) ≤ ρ ≤ ǫ−σ2 , we know from (4.40) that |∂Zφ∗/(1+ǫR)2| ≤ Cǫ−3ρ−4 ≤ Cǫ,
and that Wǫ ≈ exp

(

ǫ−2σ1/4
)

. Since χ′
2 is a bounded function, we deduce

1

δ

∫

Ω′′

ǫ

|Jǫ| ζ̃2 dX =
1

δ

∫

Ω′′

ǫ

|Jǫ| η̃2
(1+ǫR)2

dX ≤ Cǫ2

δ

∫

Ω′′

ǫ

Wǫη̃
2 dX . (4.46)

Finally, in Ω′′′
ǫ we have Wǫ(1 + ǫR) = χ2(ǫR)Ŵǫ where Ŵǫ = exp(ρ2γ/4), so that

Jǫ = ǫχ′
2(ǫR)Ŵǫ ∂Zφ∗ +

ǫr̄ ˙̄z∗
Γ

χ1(ǫR)(1 + ǫR)2∂ZŴǫ + χ2(ǫR)
{

Ŵǫ , φ∗
}

.

The first term in the right-hand side is estimated as above, with the difference that we now have
the improved bound |∂Zφ∗/(1+ǫR)2| ≤ Cǫ−3ρ−4 ≤ Cǫ4σ2−3. For the second one we observe that

∣

∣∂RŴǫ

∣

∣+
∣

∣∂ZŴǫ

∣

∣ ≤ γ ρ2γ−1 Ŵǫ ≤ γ ǫσ2−2σ1 Ŵǫ , since ρ ≥ ǫ−σ2 , (4.47)

and the last term is estimated using (4.47) and the first bound in (4.40). Altogether we find

1

δ

∫

Ω′′′
ǫ

|Jǫ| ζ̃2 dX ≤ C

δ

∫

Ω′′′
ǫ

( 1

ǫ2ρ4
+
r̄| ˙̄z∗|
Γ

ǫ

ρ1−2γ
+

1

ǫ2ρ4−2γ

)

Wǫη̃
2 dX ≤ Cǫγ1 ‖η̃‖2Xǫ

, (4.48)

provided 0 < γ1 < σ2+1− 2σ1 − 2/(1−σ). Since σ2 > 1, such a choice is again possible if σ > 0
and σ1 > 0 are small enough. Combining (4.45), (4.46), (4.48), we arrive at (4.42).

42



Lemma 4.10. There exist γ1 > 0 and C > 0 such that

|I2| ≤ Cǫγ1 ‖η̃‖2Xǫ
. (4.49)

Proof. In Ω′
ǫ we have Wǫ(1+ ǫR) = Φ′

ǫ(ζ∗) by (4.43), hence Wǫ(1+ ǫR)
{

φ̃ , ζ∗
}

=
{

φ̃ , Φǫ(ζ∗)
}

.
Using the second relation in (4.43), we deduce that

{

φ̃ , φ∗ −
r̄ ˙̄z∗
2Γ

(1 + ǫR)2
}

−Wǫ(1 + ǫR)
{

φ̃ , ζ∗
}

=
{

φ̃ , Θ
}

. (4.50)

The first-order derivatives of Θ are estimated in Proposition 3.16. Proceeding as in the previous
lemma, we thus obtain

1

δ

∫

Ω′

ǫ

∣

∣

{

φ̃ , Θ
}
∣

∣ |ζ̃|dX ≤ C
(

ǫ+
ǫγ3

δ

)

ǫ−Nσ1

∫

Ω′

ǫ

|∇φ̃|
1+ǫR

|η̃|dX ≤ Cǫγ1 ‖η̃‖2Xǫ
, (4.51)

where 0 < γ1 < γ3−2/(1−σ)−Nσ1. In the last step, we used Hölder’s inequality with exponents
3 and 3/2, and we invoked Lemma 4.7 to control the L3 norm of ∇φ̃/(1 + ǫR).

In Dǫ := Ωǫ \ Ω′
ǫ, we consider both terms in the left-hand side of (4.50) separately. The

contribution of the first one to I2 is estimated by

1

δ

∫

Dǫ

|∇φ̃| |∇φ∗|
1 + ǫR

| η̃|dX +
ǫr̄| ˙̄z∗|
δΓ

∫

Dǫ

|∂Z φ̃| |η̃|dX = O
(

ǫ∞‖η̃‖2Xǫ

)

, (4.52)

because |∇φ∗| ≤ C by (4.40), ‖∇φ̃/(1+ǫR)‖L3 ≤ C‖η̃‖Xǫ by Lemma 4.7, and

‖η̃‖L3/2(Dǫ)
≤

(
∫

Dǫ

Wǫη̃
2 dX

)1/2(∫

Dǫ

W−3
ǫ dX

)1/6

= O
(

ǫ∞‖η̃‖Xǫ

)

.

The second term in the left-hand side of (4.50) is nonzero only if ρ ≤ 2ǫ−σ0 , in view of (2.28).
In that region, we know that Wǫ|∇ζ∗| ≤ C(1+ ρ)N for some integer N , because Wǫ satisfies the
upper bound in (4.17) and η∗ belongs to the space Z defined in (3.23). The contribution of that
term to I2 can therefore be estimated in the same way as above:

1

δ

∫

Dǫ

Wǫ |
{

φ̃, ζ∗
}

| |ζ̃|dX ≤ C

δ

∫

Dǫ

|∇φ̃| |η̃|
1 + ǫR

(1 + ρ)N dX = O
(

ǫ∞‖η̃‖2Xǫ

)

. (4.53)

Combining (4.51), (4.52), (4.53), we obtain (4.49).

4.7 Control of the diffusive terms

Our next task is to estimate the diffusive terms collected in (4.37). To formulate the result, we
introduce the continuous function ργ : R2 × R+ → R+ defined by

ργ(R,Z, ǫ) =











ρ if ρ ≤ ǫ−σ1 ,

ǫ−σ1 if ǫ−σ1 < ρ < ǫ−σ2 ,

ργ if ρ ≥ ǫ−σ2 ,

(4.54)

where as usual ρ = (R2 + Z2)1/2. Our goal in this section is:

Proposition 4.11. There exist κ > 0 and C > 0 such that

Î4 ≤ −κ
∫

Ωǫ

Wǫ

(

|∇η̃|2 + ρ2γ η̃
2 + η̃2

)

dX + C
(

µ20 + µ21 + µ22
)

, (4.55)

where µ0, µ1, µ2 are defined in (4.3), (4.8).
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The proof of Proposition 4.11 requires several steps. We first control the term in Î4 that
involves the time derivative of the weight function Wǫ.

Lemma 4.12. There exist C > 0 and γ1 > 0 such that
∫

Ωǫ

t(∂tWǫ)η̃
2 dX ≤ −σ1

5

∫

Ω′′
ǫ

Wǫρ
2
γ η̃

2 dX + C

∫

Ω′′′
ǫ

Wǫη̃
2 dX + Cǫγ1‖η̃‖2Xǫ

. (4.56)

Proof. Following (4.16) we decompose Wǫ(R,Z) = χ1(ǫR) Ŵǫ(R,Z), so that

t∂tWǫ = χ1(ǫR) t∂tŴǫ(R,Z) + tǫ̇Rχ′
1(ǫR) Ŵǫ(R,Z) . (4.57)

We first estimate the right-hand side in the region Ω′
ǫ defined by (4.12), where Ŵǫ = Φ′

ǫ(ζ∗). As
Φǫ = Φ0 + ǫ2Φ2 according to (3.82), we have t∂tŴǫ = Φ′′

ǫ (ζ∗) t∂tζ∗ + 2tǫǫ̇Φ′
2(ζ∗) in that region.

We recall that 2tǫ̇ = ǫ(1 +O(ǫ2)) by (3.34), and that the functions Φ0,Φ2 satisfy the estimates
(3.95), (3.97). It follows immediately that |tǫǫ̇Φ′

2(ζ∗)| ≤ Cǫ2−Nσ1Ŵǫ ≤ CǫWǫ. Moreover, since
ζ∗ = η∗/(1+ǫR) with η∗ = ηapp in Ω′

ǫ, we also have |Φ′′
ǫ (ζ∗)t∂tζ∗| ≤ Cǫ(1 + ρ)NŴǫ ≤ Cǫγ1Wǫ,

provided 0 < γ1 < 1−Nσ1. Finally, the last term in (4.57) is bounded by CǫρWǫ ≤ Cǫ1−σ1Wǫ.
Altogether we have shown that |t∂tWǫ| ≤ Cǫγ1Wǫ in Ω′

ǫ.

In the intermediate region Ω′′
ǫ we have Ŵǫ = exp

(

ǫ−2σ1/4
)

and ργ = ǫ−σ1 , so that

t∂tŴǫ = −σ1
2

exp
(

ǫ−2σ1/4
) tǫ̇

ǫ2σ1+1
= −σ1

2
Ŵǫ ρ

2
γ

tǫ̇

ǫ
≈ −σ1

4
Ŵǫ ρ

2
γ .

Since |tǫ̇Rχ′
1(ǫR)| ≤ |ǫRχ′

1(ǫR)| ≤ C, it follows that t∂tWǫ ≤ −(σ1/5)Wǫρ
2
γ in Ω′′

ǫ . Finally, in

the exterior region Ω′′′
ǫ , the function Ŵǫ = exp(ρ2γ/4) does not depend on time, and we deduce

from (4.57) that |t∂tWǫ| ≤ CWǫ. Collecting all these estimates, we arrive at (4.56).

We next consider the term involving ζ̃ in (4.37).

Lemma 4.13. There exist C > 0 and γ1 > 0 such that

− ǫ
2

∫

Ωǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX ≤ −ǫ
2

4

∫

Ωǫ

Wǫζ̃
2 dX + Cǫγ1‖η̃‖2Xǫ

. (4.58)

Proof. If Dǫ denotes any of the three regions defined in (4.12), we have

− ǫ
2

∫

Dǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX = −ǫ
2

2

∫

Dǫ

Wǫζ̃
2 dX − ǫ

2

∫

Dǫ

(

∂RWǫ

)

ζ̃η̃ dX (4.59)

≤ −ǫ
2

4

∫

Dǫ

Wǫζ̃
2 dX +

1

4

∫

Dǫ

(∂RWǫ)
2

Wǫ
η̃2 dX , (4.60)

where in the second line we used Young’s inequality. In the inner region Ω′
ǫ we observe that

ζ̃ ≈ η̃, because |ǫR| ≤ 2ǫ1−σ1 ≪ 1. Moreover we have ǫ|∂RWǫ| ≤ Cǫγ1Wǫ for some γ1 > 0, so
taking Dǫ = Ω′

ǫ and using (4.59) we obtain the analogue of (4.58) in that region. Outside Ω′
ǫ,

we cannot directly compare ζ̃ and η̃, so we prefer using inequality (4.60). In the intermediate
region Ω′′

ǫ , we have |∂RWǫ| ≤ CǫWǫ by (4.16), and (4.58) easily follows. Finally, in the exterior
region Ω′′′

ǫ , we observe that

∂RWǫ =

(

ǫχ′
1(ǫR)

χ1(ǫR)
+
γR

2
ρ2γ−2

)

Wǫ .

Taking σ1 small enough so that γ ≡ σ1/σ2 < 1/2, and using the fact that ρ ≥ ǫ−σ2 in Ω′′′
ǫ ,

we deduce that |∂RWǫ| ≤ Cǫγ1Wǫ for some γ1 > 0, and this leads to (4.58). The proof is thus
complete.
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To conclude the proof of Proposition 4.11, we consider the quadratic form given by the first
line of (4.37), namely

Qǫ[η] =

∫

Ωǫ

Wǫ|∇η|2 dX +

∫

Ωǫ

(∇Wǫ · ∇η)η dX +

∫

Ωǫ

Vǫη
2 dX , (4.61)

where Vǫ is defined in (4.33). Taking formally the limit ǫ→ 0 in (4.61), we obtain using (4.18)

Q0[η] =

∫

R2

A|∇η|2 dX +

∫

R2

(∇A · ∇η)η dX +

∫

R2

V η2 dX , (4.62)

where A is defined by (3.85) and V = 1
4(R∂R + Z∂Z)A − 1

2A− 1. The limiting quadratic form
(4.62) is carefully studied in our previous work [34], and we have the following result :

Proposition 4.14. There exists constants C8 > 2 and C9 > 0 such that, for all η ∈ X0 with
ρη ∈ X0 and ∇η ∈ X 2

0 , we have

‖∇η‖2X0
+ ‖ρη‖2X0

+ ‖η‖2X0
≤ C8Q0[η] + C9

(

µ20 + µ21 + µ22
)

, (4.63)

where µ0 =
∫

R2 η dX, µ1 =
∫

R2 Rη dX, µ2 =
∫

R2 Zη dX.

Proof. In [34, Theorem 4.2] we prove that there exists δ0 > 0 such that Q0[η] ≥ δ0‖η‖2X0
for

any η ∈ X0 such that µ0 = µ1 = µ2 = 0. On the other hand, if we apply Young’s inequality to
the middle term in the right-hand side of (4.62), we obtain the lower bound

Q0[η] ≥
1

4

∫

R2

A|∇η|2 dX +

∫

R2

(

V − |∇A|2
3A

)

η2 dX ≥ 1

4
‖∇η‖2X0

+
1

24
‖ρη‖2X0

− C‖η‖2X0
,

because a direct calculation reveals that V/A − |∇A|2/(3A2) ≥ ρ2/(24) − C for some constant
C > 0. Taking a convex combination of both estimates, we see that there exists C8 > 0 such
that

‖∇η‖2X0
+ ‖ρη‖2X0

+ ‖η‖2X0
≤ C8Q0[η] , (4.64)

whenever η ∈ X0 satisfies µ0 = µ1 = µ2 = 0. It remains to deduce (4.63) from (4.64), which is
easily done using exactly the same arguments as in the proof of Proposition 4.5.

The analogue of Proposition 4.14 for the full quadratic form (4.61) is the following statement,
whose proof is postponed to Section B.3.

Proposition 4.15. There exists constants C10 > 2 and C11 > 0 such that, for all sufficiently
small ǫ > 0 and all η ∈ Xǫ with ργη ∈ Xǫ and ∇η ∈ X 2

ǫ , we have

‖∇η‖2Xǫ
+ ‖η‖2Xǫ

+

∫

Ω′
ǫ∪Ω′′′

ǫ

Wǫρ
2
γη

2 dX ≤ C10Qǫ[η] + C11

(

µ2 +

∫

Ω′′
ǫ

Wǫη
2 dX

)

, (4.65)

where µ2 = µ20 + µ21 + µ22 and µ0 =
∫

Ωǫ
η dX, µ1 =

∫

Ωǫ
Rη dX, µ2 =

∫

Ωǫ
Zη dX.

End of the proof of Proposition 4.11. In view of (4.37) and (4.61) we have

Î4 = −Qǫ[η̃]−
ǫ

2

∫

Ωǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX +
1

2

∫

Ωǫ

t(∂tWǫ)η̃
2 dX .

The three terms in the right-hand side are estimated using (4.65), (4.58), and (4.56), respectively.
Taking ǫ > 0 sufficiently small and recalling that ργ ≥ ǫ−σ1 ≫ 1 outside the inner region
Ω′
ǫ, we arrive at (4.55). The slight discrepancy between the definitions of µ1 in (4.3) and in

Proposition 4.15 is completely harmless.
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4.8 Control of the remaining terms

In this section, we estimate the remaining terms I3, I5, and Î6 defined in (4.31), (4.34), and
(4.38), respectively.

Control of I3. We deduce from (4.31) that

|I3| ≤
∫

Ωǫ

|∇φ̃|
1+ǫR

|η̃|
∣

∣∇(Wǫη̃)
∣

∣ dX ≤
∫

Ωǫ

|∇φ̃|
1+ǫR

|η̃|
(

|η̃||∇Wǫ|+Wǫ|∇η̃|
)

dX . (4.66)

To estimate the right-hand side, we use (4.39) and [35, Lemma 2.1] to obtain the uniform bound

∥

∥

∥

|∇φ̃|
1+ǫR

∥

∥

∥

L∞

≤ C‖η̃‖1/2
L4/3‖η̃‖1/2L4 ≤ C‖η̃‖1/2Xǫ

(

‖η̃‖1/2Xǫ
+ ‖∇η̃‖1/2Xǫ

)

.

On the other hand it is easy to verify that |∇Wǫ| ≤ C(1 + ργ)Wǫ where ργ is defined in (4.54).
It follows that

|I3| ≤ C‖η̃‖3/2Xǫ

(

‖η̃‖1/2Xǫ
+ ‖∇η̃‖1/2Xǫ

)(

‖η̃‖Xǫ + ‖ργ η̃‖Xǫ + ‖∇η̃‖Xǫ

)

≤ C‖η̃‖XǫDǫ[η̃] , (4.67)

where for convenience we denote

Dǫ[η̃] = ‖∇η̃‖2Xǫ
+ ‖ργ η̃‖2Xǫ

+ ‖η̃‖2Xǫ
. (4.68)

Control of I5. Proposition 2.5 asserts that the remainder Rem(R,Z, t) satisfies the pointwise
estimate (2.30), which implies in particular that Rem ∈ Xǫ. In view of (4.34), we thus find

|I5| ≤
1

δ
‖Rem‖Xǫ

(

‖η̃‖Xǫ + ‖W−1
ǫ φ̃‖Xǫ

)

≤ C
(

ǫ+
ǫγ5

δ2

)(

‖η̃‖Xǫ + ‖W−1
ǫ φ̃‖Xǫ

)

.

It remains to estimate the norm of W−1
ǫ φ̃ in the space Xǫ. This can be done by decomposing the

Biot-Savart kernel as in the proof of Lemma 4.4, see in particular Eq. (B.2) below. Neglecting
contributions of order O(ǫ∞), we can restrict the integrals to the region where R2 +Z2 ≤ ǫ−2σ1

and R′2 +Z ′2 ≤ ǫ−2σ1 . Invoking (B.3) and recalling that µ0(t) = O(ǫ∞) by Lemma 4.1, we find

that ‖W−1
ǫ φ̃‖Xǫ = ‖W−1/2

ǫ φ̃‖L2(Ωǫ) ≤ C‖η̃‖Xǫ . We conclude that

|I5| ≤ C
(

ǫ+
ǫγ5

δ2

)

‖η̃‖Xǫ . (4.69)

Control of Î6. The first two terms in (4.38) are easily estimated, because ˙̄r = O(δ) by (3.70).
Proceeding as in Lemma 4.4 to control the kinetic energy, and recalling that µ0(t) = O(ǫ∞), we
find

I0 :=

∣

∣

∣

∣

ǫr̄ ˙̄r

δΓ

∫

Ωǫ

Wǫη̃∂Rη̃ dX +
t ˙̄r

r̄
Ekin

ǫ [η̃]

∣

∣

∣

∣

≤ Cǫ‖η̃‖Xǫ‖∇η̃‖Xǫ + Cǫ2‖η̃‖2Xǫ
.

So it remains to estimate the last term in (4.38), which involves the correction ˙̃z(t) to the vertical
speed introduced in (4.9). Using (2.19) and integrating by parts we first observe that

I1 : =

∫

Ωǫ

(

Wǫη̃ − φ̃
)

∂Zη∗ dX =

∫

Ωǫ

(

Wǫ∂Zη∗ − ∂Zφ∗
)

η̃ dX

= −
∫

Ω′
ǫ

(∂ZΘ)η̃ dX +

∫

Ω′′
ǫ ∪Ω′′′

ǫ

(

Wǫ∂Zη∗ − ∂Zφ∗
)

η̃ dX ,
(4.70)
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where Θ is defined in (3.88). In the second line, we used the expression (4.16) of Wǫ in the
inner region Ω′

ǫ to obtain the identity Wǫ∂Zη∗ − ∂Zφ∗ = Φ′
ǫ(ζ∗)∂Zζ∗ − ∂Zφ∗ = −∂ZΘ. The

last integral in (4.70) is of order O(ǫ∞‖η̃‖Xǫ), and the integral over Ω′
ǫ can be controlled using

Proposition 3.16. We thus obtain |I1| ≤ C(ǫδ + ǫγ3)‖η̃‖Xǫ . Moreover, we obviously have

I2 :=

∣

∣

∣

∣

∫

Ωǫ

(

Wǫη̃ − φ̃
)

∂Z η̃ dX

∣

∣

∣

∣

≤ C‖η̃‖Xǫ‖∇η̃‖Xǫ .

Finally, to control the velocity ˙̃z(t), we need the following lemma:

Lemma 4.16. Let J(t) =
∫

Ωǫ
ZR(R,Z, t) dX where R is defined in (4.10). Then there exists a

constant C > 0 such that

|J | ≤ Cǫβǫ
δ

(

‖η̃‖Xǫ + δ‖η̃‖2Xǫ

)

+ C
(

ǫ+
ǫγ5

δ2

)

. (4.71)

Proof. We consider separately the various terms in the right-hand side of (4.10). Integrating
by parts, we find

J1 :=
1

δ

∫

Ωǫ

Z
(

{

φ∗ , ζ̃
}

+
{

φ̃ , ζ∗
}

)

dX = −1

δ

∫

Ωǫ

(

η̃∂Rφ∗
1+ǫR

+
η∗∂Rφ̃
1+ǫR

)

dX .

In the right-hand side, we can restrict the integration to the region where ρ ≤ ǫ−σ1 , because the
integral on the complement is of order O

(

ǫ∞‖η̃‖Xǫ

)

. Thus, expanding the Biot-Savart formula
as in Section 3.1, we obtain

−δJ1 =
1

2π

∫

R2

(

η̃∂R(Lη∗) + η∗∂R(Lη̃)
)

dX +O
(

ǫβǫ‖η̃‖Xǫ

)

, (4.72)

where L is the convolution operator (3.14). Since L is symmetric in L2(R2) and commutes with
∂R, the integral in (4.72) vanishes and we conclude that |J1| ≤ δ−1ǫβǫ‖η̃‖Xǫ .

Similarly, we have

J2 :=

∫

Ωǫ

Z
{

φ̃ , ζ̃
}

dX =

∫

Ωǫ

{

Z , φ̃
}

ζ̃ dX = −
∫

Ωǫ

η̃∂Rφ̃

1+ǫR
dX .

Here again, up to a negligible error, we can assume that η̃ is supported in the ball ρ ≤ ǫ−σ1 .
Proceeding as before, we thus find

J2 = − 1

2π

∫

R2

η̃∂R(Lη̃) dX +O
(

ǫβǫ‖η̃‖2Xǫ

)

= O
(

ǫβǫ‖η̃‖2Xǫ

)

. (4.73)

The remaining terms in (4.10) are easier to treat. In view of (4.8) we have

∫

Ωǫ

Z
(

Lη̃ + ǫ∂Rζ̃
)

dx = 0 , and

∫

Ωǫ

Z
(

˙̄r ∂Rη̃ + ˙̄z∗ ∂Z η̃
)

dX = − ˙̄z∗µ0 ,

where µ0(t) = O(ǫ∞) by Lemma 4.1. Finally, using estimate (2.30), we obtain

1

δ

∫

Ωǫ

|Z| |Rem(R,Z, t)|dX ≤ C
(

ǫ+
ǫγ5

δ2

)

. (4.74)

Combining (4.72), (4.73), and (4.74), we arrive at (4.71).
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Corollary 4.17. There exists a constant C > 0 such that the velocity ˙̃z defined by (4.9) satisfies

r̄| ˙̃z|
Γ

≤ Cβǫ

(

‖η̃‖Xǫ + δ‖η̃‖2Xǫ

)

+ C
(

δ +
ǫγ5−1

δ

)

. (4.75)

We now conclude the estimate of the term Î6. To simplify the writing, we assume that
‖η̃‖Xǫ ≤ 1 and we use the shorthand notation (4.68). Also, since ǫ2 . δ1−σ we observe that

ǫ+
ǫγ5

δ2
. Rǫ(t) , where Rǫ(t) := ǫ+

ǫγ3

δ
. (4.76)

Here γ3 = γ5 − 2/(1−σ) < 3, so that γ3 can be chosen arbitrary close to γ5 − 2 if σ > 0 is small
enough. In view of (4.9) and (4.38) we have |Î6| ≤ I0 + |J |

(

|I1|+ δI2
)

, so that

|Î6| ≤ Cǫ‖η̃‖XǫD
1/2
ǫ + C

(ǫβǫ
δ

‖η̃‖Xǫ +Rǫ

)(

δRǫ‖η̃‖Xǫ + δ‖η̃‖XǫD
1/2
ǫ

)

≤ C‖η̃‖Xǫ

(

D1/2
ǫ +Rǫ

)(

ǫβǫ + δRǫ

)

≤ Cǫβǫ‖η̃‖Xǫ

(

D1/2
ǫ +Rǫ

)

.
(4.77)

4.9 Conclusion of the proof

We are now in position to conclude the proof of Theorem 2.6, hence also of Theorem 1.1. Let
η̃ be the unique solution of (2.33) with zero initial data. The associated energy (2.34) satisfies
the evolution equation

t∂tEǫ(t) = I1 + I2 + I3 + Î4 + I5 + Î6 , (4.78)

where the various terms in the right-hand side are defined in Section 4.4 and estimated in
Sections 4.6–4.8. Using (4.42), (4.49), (4.67), (4.55), (4.69), and (4.77), we find that, as long as
t ≤ Tadvδ

−σ and ‖η̃‖Xǫ ≤ 1, there exist positive constants C,C∗, κ such that

t∂tEǫ(t) ≤ −κDǫ + C∗‖η̃‖XǫDǫ +C‖η̃‖Xǫ

(

Rǫ + ǫβǫD
1/2
ǫ

)

+
Cǫ2

δ

∫

Ω′′

ǫ

Wǫη̃
2 dX + Cµ2 ,

where Dǫ is defined in (4.68), Rǫ in (4.76), and µ2 := µ20+µ
2
1+µ

2
2 ≤ CR

2
ǫ by Lemma 4.1. Since

ργ ≥ ǫ−σ1 in the region Ω′′
ǫ , the integral term can be estimated as follows

ǫ2

δ

∫

Ω′′
ǫ

Wǫη̃
2 dX ≤ ǫ2+2σ1

δ

∫

Ω′′
ǫ

Wǫρ
2
γ η̃

2 dX . ǫγ∗Dǫ ,

where γ∗ = 2+2σ1−2/(1−σ) > 0 if σ > 0 is small enough. So, if we assume that C∗‖η̃‖Xǫ ≤ κ/4
and that ǫ is sufficiently small, we obtain by Young’s inequality

t∂tEǫ(t) ≤ −κ
2
Dǫ + CRǫ‖η̃‖Xǫ + Cµ2 ≤ −κ

4
Dǫ + CR

2
ǫ .

Integrating that differential inequality over the time interval (0, t) and recalling that Eǫ(0) = 0,
we arrive at

Eǫ(t) +
κ

4

∫ t

0

Dǫ(s)

s
ds ≤ C

∫ t

0

Rǫ(s)
2

s
ds ≤ CRǫ(t)

2 .

Finally, in view of (4.27), (4.8), and Lemma 4.1, we infer that

‖η̃(t)‖2Xǫ
≤ C6Eǫ(t) + C7

(

βǫµ0(t)
2 + µ1(t)

2
)

≤ CRǫ(t)
2 . (4.79)

Inequality (4.79) holds as long as ‖η̃(t)‖Xǫ ≤ min
(

1, κ/(4C∗)
)

and t < Tadvδ
−σ . But on that time

interval we know that Rǫ . ǫγ3−2/(1−σ) ≪ 1, so (4.79) is actually valid for all t ∈ (0, Tadvδ
−σ) if
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ǫ > 0 is small enough. Returning to the solution of (2.15) with initial data (2.22), we obtain in
view of (2.31), (4.79)

‖η(t) − η∗(t)‖Xǫ = δ‖η̃(t)‖Xǫ ≤ CδRǫ(t) = C
(

ǫδ + ǫγ3
)

, t ∈ (0, Tadvδ
−σ) ,

which gives (2.40). This concludes the proof of Theorem 2.6. �

Remark 4.18. The correction z̃(t) to the vertical position of the vortex is small, and produces
negligible effects in our calculations. Indeed, it follows from (4.75) and (4.79) that

r̄| ˙̃z(t)|
Γ

.
(

βǫRǫ + δ
)

, hence δ|z̃(t)| . ǫ2r̄(t)
(

δ + βǫRǫ

)

. (4.80)

This gives in particular (2.41).

Proof of Theorem 1.1. Let ωlin(r, z, t) be the solution of the (axisymmetric) heat equation in
Ω with initial data Γ δ(r0,z0). Using the same self-similar variables as in the proof of Theorem 2.6,
we define the rescaled vorticity ηlin by the relation

ωlin

(

r, z − a3(t), t
)

=
Γ

νt
ηlin

(r − r̄(t)√
νt

,
z − z̄∗(t)− δz̃(t)√

νt
, t
)

, (4.81)

where a3(t) =
∫ t
0 V (s) ds and V is given by (1.5). A direct calculation then shows that ηlin

satisfies the linear equation

t∂tηlin −
ǫr̄

δΓ

(

˙̄r ∂Rηlin + ṡ ∂Zηlin

)

= Lηlin + ∂R

( ǫηlin
1 + ǫR

)

, (4.82)

with initial data η0, where the shift s(t) = z̄∗(t)− a3(t) + δz̃(t) measures the difference between
the vertical position of the vortex as computed in Theorem 2.6 and the approximation given by
the Kelvin-Saffman formula (1.5) without correction terms. Since ȧ3 = ˙̄z0, it follows from (3.62)
that ṡ = ǫ2 ˙̄z2 + δ ˙̃z. Using (3.57) and (4.80), we thus obtain

ǫr̄|ṡ(t)|
δΓ

≤ C
(βǫǫ

3

δ
+ βǫǫ

2 + ǫδ
)

≤ Cǫ1−3σ , (4.83)

because ǫ2 . δ1−σ so that βǫǫ
3δ−1 ≤ ǫ1−3σ if 0 < σ < 1/3 and ǫ > 0 is small enough.

The solution of (4.82) with initial data η0 can be estimated as in [33, Section 4.4], with
substantial simplifications. We use the approximate solution η̂0(R,Z, t) := χ0(4ǫρ)η0(R,Z),
where χ0 is the cut-off function in (2.28). Decomposing ηlin = η̂0 + η̂, we see that the correction
η̂ satisfies

t∂tη̂ −
ǫr̄

δΓ

(

˙̄r ∂Rη̂ + ṡ ∂Z η̂
)

= Lη̂ + ∂R

( ǫη̂

1 + ǫR

)

+R0 , (4.84)

where

R0 = Lη̂0 + ∂R

( ǫη̂0
1 + ǫR

)

+
ǫr̄

δΓ

(

˙̄r ∂Rη̂0 + ṡ ∂Z η̂0

)

− t∂tη̂0 .

To control the solution of (4.84), we introduce the space X̂ǫ defined by the norm

‖η̂‖2X̂ǫ
=

∫

Ωǫ

e(R
2+Z2)/4 η̂(R,Z)2 dR dZ .

In view of (4.83) we have ‖R0‖X̂ǫ
≤ Cǫ1−3σ, and using energy estimates as in [33] we deduce

that the solution of (4.84) with zero initial data satisfies ‖η̂‖X̂ǫ
≤ Cǫ1−3σ for t ∈ (0, Tadvδ

−σ).

Since X̂ǫ →֒ Xǫ by (4.17), (4.20), we conclude that ‖ηlin − η0‖Xǫ = O
(

ǫ1−3σ) as ǫ→ 0.
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Now the solution of (2.3) with initial data Γ δ(r0,z0) satisfies, instead of (2.13),

ωθ(r, z, t) =
Γ

νt
η
(r − r̄(t)√

νt
,
z − z̄∗(t)− δz̃(t)√

νt
, t
)

, (4.85)

so combining (4.81), (4.85) we obtain

1

Γ

∫

Ω

∣

∣

∣
ωθ

(

r, z, t
)

− ωlin

(

r, z − a3(t), t
)

∣

∣

∣
dr dz = ‖η(t)− ηlin(t)‖L1(Ωǫ)

≤ C‖η(t)− ηlin(t)‖Xǫ ≤ Cǫ1−3σ ,

(4.86)

because ‖η(t)− η0‖Xǫ ≤ Cǫ and ‖η0 − ηlin‖Xǫ ≤ Cǫ1−3σ. Using the notations of (1.7), inequality
(4.86) exactly means that ‖ωcor(· , t)‖ ≤ CΓǫ1−3σ. This concludes the proof of Theorem 1.1.

A Appendix to Section 3

A.1 Inverting the operator Λ

Following [31], we give here a short proof of Proposition 3.8. Assume that n ≥ 2 and f ∈ Yn∩Z,
or that n = 1 and f ∈ Y ′

1 ∩ Z. In both cases, we have f ∈ Ker(Λ)⊥. We want to show that
there exists a unique η ∈ Yn ∩ Z (respectively, η ∈ Y ′

1 ∩ Z if n = 1) such that Λη = f .

To make things concrete, we suppose without loss of generality that f = a(ρ) sin(nϑ), for
some function a : R+ → R. Our hypotheses imply that a is smooth, that a(ρ) = O(ρn) as ρ→ 0,
and that eρ

2/4a(ρ) grows at most polynomially as ρ → ∞. We look for a solution of the form
η = ω(ρ) cos(nϑ), where ω : R+ → R has to be determined. By (3.19), we have

Λη =
{

φ0 , η
}

+ {Ψ , η0
}

, where φ0 =
1

2π
Lη0 , Ψ =

1

2π
Lη . (A.1)

The function φ0 is radially symmetric and satisfies ∂ρφ0 = −ρϕ(ρ), see (3.24) and (A.12) below.
It follows that

{

φ0 , η
}

= ∂ρφ0
1

ρ
∂ϑη = nϕ(ρ)ω(ρ) sin(nϑ) . (A.2)

On the other hand, as −∆Ψ = η, we have Ψ = Ω(ρ) cos(nϑ), where Ω is the unique regular
solution of the differential equation

−Ω′′(ρ)− 1

ρ
Ω′(ρ) +

n2

ρ2
Ω(ρ) = ω(ρ) , ρ > 0 . (A.3)

Since η0 is radially symmetric and ∂ρη0 = −(ρ/2)η0 = −ρϕ(ρ)h(ρ), see (3.24), we deduce

{Ψ , η0
}

= −∂ρη0
1

ρ
∂ϑΨ = −nϕ(ρ)h(ρ)Ω(ρ) sin(nϑ) . (A.4)

In view of (A.1), (A.2), (A.4), the equation Λη = f is equivalent to the relation (3.25), and
using in addition (A.3) we obtain the differential equation (3.26) for the stream function Ω.

The main step in the proof is to show that (3.26) has a unique solution that is regular at
the origin and decays to zero at infinity. Here we distinguish two cases according to the value
of the angular Fourier mode n.

1. If n ≥ 2, the homogeneous equation (3.26) with a ≡ 0 has two linearly independent solutions
ψ+, ψ− which satisfy

ψ−(ρ) ∼
{

ρn as ρ→ 0 ,

κρn as ρ→ ∞ ,
ψ+(ρ) ∼

{

κρ−n as ρ→ 0 ,

ρ−n as ρ→ ∞ ,
(A.5)
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for some κ > 0, see [31]. Here we use the crucial observation that (n2/ρ2)−h(ρ) > 0 when n ≥ 2,
so that the differential operator in the left-hand side of (3.26) satisfies the Maximum Principle.
We deduce the following representation formula for the solution of the inhomogeneous equation :

Ω(ρ) = ψ+(ρ)

∫ ρ

0

r

w0
ψ−(r)

a(r)

nϕ(r)
dr + ψ−(ρ)

∫ ∞

ρ

r

w0
ψ+(r)

a(r)

nϕ(r)
dr , (A.6)

where w0 = 2nκ. It is then straightforward to verify that Ω(ρ) = O(ρn) as ρ → 0 and Ω(ρ) =
O(ρ−n) as ρ → ∞. Moreover, if ω is defined by (3.25), the function η = ω(ρ) cos(nϑ) lies in
Yn ∩ Z and satisfies Λη = f by construction. The details can be found in [31, Lemma 4].

2. The situation is quite different when n = 1, because the lower order term 1/ρ2 − h(ρ) in
(3.26) is no longer positive. In that case, it happens that the homogeneous equation (3.26) with
a ≡ 0 has a solution ψ(ρ) = ρϕ(ρ) which satisfies ψ(ρ) ∼ ρ/(8π) as ρ→ 0 and ψ(ρ) ∼ 1/(2πρ) as
ρ→ ∞. In other words, the linear operator in the left-hand side of (3.26) has a one-dimensional
kernel, and for that reason we have to impose the solvability condition

f ∈ Y ′
1 ⊂ Ker(Λ)⊥ , or equivalently

∫ ∞

0
a(ρ)ρ2 dρ = 0 . (A.7)

To solve (3.26) for n = 1, we look for a solution of the form Ω(ρ) = b(ρ)ψ(ρ), which leads to a
first-order differential equation for b(ρ). In view of (A.7), we thus find

b′(ρ) = − 1

ρψ(ρ)2

∫ ρ

0
a(r)r2 dr =

1

ρψ(ρ)2

∫ ∞

ρ
a(r)r2 dr . (A.8)

Integrating (A.8) gives the representation formula

b(ρ) = b0 −
∫ ρ

0
a(r)r2

(

F(ρ)−F(r)
)

dr , for some b0 ∈ R ,

where

F(ρ) = 8π2
(

log
(

eρ
2/4 − 1

)

− 1

eρ2/4 − 1

)

, F ′(ρ) =
1

ρψ(ρ)2
.

We now substitute Ω(ρ) = b(ρ)ψ(ρ) into (3.25) with n = 1, and we choose the constant b0 so
that

∫∞
0 ω(ρ)ρ2 dρ = 0. This is always possible in a unique way, since

∫ ∞

0
h(ρ)ψ(ρ)ρ2 dρ =

∫ ∞

0
h(ρ)ϕ(ρ)ρ3 dρ =

1

8π

∫ ∞

0
e−ρ2/4ρ3 dρ =

1

π
6= 0 .

To conclude the proof, it remains to verify that the function η = ω(ρ) cos(ϑ) constructed above
belongs to Y ′

1 ∩ Z and satisfies Λη = f . These are straightforward calculations, which can be
omitted. �

A.2 First order calculations

We first establish the relations (3.37). As η0 ∈ Y0 has unit mass we find, using (3.11),

(

P1η0
)

(R,Z) =

∫

R2

R+R′

2
η0(R

′, Z ′) dR′ dZ ′ =
R

2
, (A.9)

hence {P1η0 , η0} = 1
2 ∂Zη0. On the other hand, since ∂Rη0 = −(R/2)η0 and L is a convolution

operator, which therefore commutes with derivatives, we have

(

LP1η0
)

(R,Z) =
R

2
(Lη0)(R,Z) + L

(R

2
η0

)

(R,Z) =
R

2
(Lη0)(R,Z)− ∂R

(

Lη0
)

(R,Z) .
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Recalling that Lη0 = 2πφ0, and that {φ0, η0} = 0 because both φ0, η0 are radially symmetric,
we thus obtain

1

2π

{

LP1η0 , η0
}

=
{R

2
φ0 − ∂Rφ0 , η0

}

=
1

2
φ0 ∂Zη0 +

{

φ0 , ∂Rη0
}

=
1

2
φ0 ∂Zη0 −

{

φ0 ,
R

2
η0

}

=
1

2
φ0 ∂Zη0 +

1

2
(∂Zφ0)η0 ,

which concludes the proof of (3.37).

We next prove formula (3.39) for the vertical velocity. Assuming that ˙̄z0 is given by (3.39)
for some v ∈ R, we see that the right-hand side of (3.38) belongs to Y ′

1 = Y ∩ Ker(Λ)⊥ if and
only if

∫

R2

( v

2π
∂Zη0 −

3

2
(∂Zφ0)η0 −

1

2
φ0∂Zη0

)

Z dRdZ = 0 . (A.10)

Since ∂Zη0 = −(Z/2)η0 and
∫

R2 Z
2η0 dR dZ = 2, it is straightforward to verify that (A.10) is

equivalent to

v = π

∫

R2

φ0η0
(

3− Z2
)

dR dZ =
π

2

∫

R2

φ0η0
(

6− |X|2
)

dX , (A.11)

where X = (R,Z) and |X|2 = R2 + Z2.

To evaluate the right-hand side of (A.11), we temporarily denote ψ0 = 2πφ0 = Lη0, namely

ψ0(X) =
1

4π

∫

R2

log
( 8

|X − Y |
)

e−|Y |2/4 dY , X ∈ R2 .

This function satisfies −∆ψ0 = 2πη0 =
1
2 e

−|X|2/4, so that

ψ0(X) = ψ0(0) −
∫ |X|

0

1− e−ρ2/4

ρ
dρ =: ψ̃0(|X|) , X ∈ R2 , (A.12)

where

ψ0(0) = log(8) − 1

4π

∫

R2

log(|Y |) e−|Y |2/4 dY = 2 log(2) +
γE
2
. (A.13)

Using (A.12), (A.13) and integrating by parts, we easily find

∫

R2

ψ0η0 dX =
1

2

∫ ∞

0
ψ̃0(ρ)e

−ρ2/4ρdρ = ψ0(0) +

∫ ∞

0
ψ̃′
0(ρ)e

−ρ2/4 dρ =
3

2
log(2) +

γE
2
,

and similarly

∫

R2

ψ0η0|X|2 dX = 4ψ0(0) +

∫ ∞

0
ψ̃′
0(ρ)e

−ρ2/4(ρ2 + 4) dρ = 6 log(2) + 2γE − 1 .

Returning to (A.11), we conclude that

v =
1

4

∫

R2

ψ0η0
(

6− |X|2
)

dX =
3

4
log(2) +

1

4
γE +

1

4
. (A.14)

A.3 Second order calculations

Our goal here is to prove Lemma 3.12. To establish (3.48), we consider separately the various
terms in (3.47). As η1 ∈ Y1 has zero mean, we find as in (A.9) that P1η1 is a constant, which
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can be disregarded. Moreover LP1η1 =
R
2 Lη1 +L

(

R
2 η1

)

, hence using the expression (3.41) of η1
we find that

LP1η1 = (R2 − Z2)χ1(ρ) + δRZχ2(ρ) + χ3(ρ) ,

where χ1, χ2, . . . are functions of the radial variable ρ = (R2 + Z2)1/2. As η0 itself is radially
symmetric, we deduce that

{

(βǫ − 1)P1η1 + LP1η1 , η0
}

= RZχ4(ρ) + δ(R2 − Z2)χ5(ρ) . (A.15)

Next, using the expression (3.11) of P2, we see that

(

P2η0
)

(R,Z) =
1

16

∫

R2

(

(R−R′)2 + 3(Z−Z ′)2
)

η0(R
′, Z ′) dR′ dZ ′ =

R2

16
+

3Z2

16
+

1

2
,

and a similar calculation gives Q2η0 =
3R2

16 − Z2

16 + 1
4 . Moreover,

(

LP2η0
)

(R,Z) =
1

16

∫

R2

log
( 8

D

)(

2D2 + (Z−Z ′)2 − (R−R′)2
)

η0(R
′, Z ′) dR′ dZ ′ ,

where D2 = (R−R′)2 + (Z−Z ′)2. Using the fact that η0 given by (3.32) is radially symmetric,
we easily obtain

1

2π

(

LP2η0
)

(R,Z) = χ6(ρ) + (R2 − Z2)χ7(ρ) .

Altogether, we arrive at

1

2π

{

βǫP2η0 + LP2η0 +Q2η0 , η0
}

=
βǫ
16π

RZη0 +RZχ8(ρ) . (A.16)

The remaining terms in (3.47) are easier to treat. In view of (3.39), (3.41), (3.42), we have

{

φ1 , η1
}

− r0 ˙̄z0
Γ

∂Zη1 =
{

φ1 −
βǫ − 1

4π
R , η1

}

− v

2π
∂Zη1

=
{R

2
φ0 − ∂Rφ0 +Rφ10(ρ) + δZ φ11(ρ) , R η10(ρ) + δZ η11(ρ)

}

− v

2π
∂Zη1

= RZ χ9(ρ) + δ
(

χ10(ρ) + (R2 − Z2)χ11(ρ)
)

+ δ2RZ χ12(ρ) .

(A.17)

It is also easy to verify that the terms (∂Zφ1)η0+(∂Zφ0)η1−2R(∂Zφ0)η0+δ∂R(Rη0) are exactly
of the same form. Finally, using again (3.41), (3.42), we obtain

R
(

{

φ1 , η0
}

+
{

φ0 , η1
}

)

= R
(βǫ − 1

4π
∂Zη0 + Zχ13(ρ) + δRχ14(ρ)

)

. (A.18)

If we now combine (A.15), (A.16), (A.17), (A.18), we arrive at (3.48). �

A.4 Higher order order calculations

The calculations carried out in Sections 3.5 and 3.6 do not require new ideas, but a more
compact notation is often helpful. To prove Lemma 3.13 and similar statements, it is important
to understand how the decomposition (3.21) of the function space Y behaves under the Poisson
bracket. If we use polar coordinates R = ρ cos ϑ, Z = ρ sinϑ, we recall that Yn is the subspace
of Y spanned by functions of the form a(ρ) cos(nϑ) and b(ρ) sin(nϑ). Since

{

f , g
}

= ∂Rf∂Zg − ∂Zf∂Rg =
1

ρ

(

∂ρf∂ϑg − ∂ϑf∂ρg
)

,

we easily obtain the following result :
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Lemma A.1. If a, b : R+ → R are smooth functions and n,m ∈ N, then

{

a(ρ) cos(nϑ) , b(ρ) cos(mϑ)
}

= c11(ρ) sin((n−m)ϑ) + c12(ρ) sin((n+m)ϑ) ,
{

a(ρ) sin(nϑ) , b(ρ) sin(mϑ)
}

= c21(ρ) sin((n−m)ϑ) + c22(ρ) sin((n+m)ϑ) ,
{

a(ρ) sin(nϑ) , b(ρ) cos(mϑ)
}

= c31(ρ) cos((n−m)ϑ) + c32(ρ) cos((n+m)ϑ) ,

where cij : R+ → R are smooth functions. In particular {Yn,Ym} ⊂ Yn−m + Yn+m if m ≤ n.

It is also necessary to compute the homogeneous polynomials Pj , Qj in (3.10) for higher
values of j than in Lemma 3.3. This is a cumbersome calculation that can be done for instance
using computer algebra. For j = 3 we find

P3 = − 1

32
(R+R′)

(

(R−R′)2 + 3(Z − Z ′)2
)

,

Q3 = − 1

48
(R+R′)

(

(R+R′)2 − 6(Z − Z ′)2
)

,

(A.19)

and the calculation for j = 4 yields the more complicated expressions

P4 = − 15

1024
(Z−Z ′)4 +

21

512
(R−R′)2(Z−Z ′)2 +

3

16
RR′ (Z−Z ′)2

+
17

1024
(R2−R′2)2 − 1

256
RR′ (R−R′)2 ,

Q4 =
31

2048
(Z−Z ′)4 − 89

1024
(R+R′)2(Z−Z ′)2 +

1

256
RR′ (Z−Z ′)2

− 19

6144
(R2−R′2)2 +

35

1536
RR′(R+R′)2 − 1

128
R2R′2 .

(A.20)

The proof of Lemma 3.13 is similar to that of Lemma 3.12, and the details can be omitted.
We use the expressions (3.41), (3.50) of the vorticities η1, η2, the formulas (3.42), (3.51) for the
stream functions φ1, φ2, and the definition (3.15) of the Biot-Savart operators, which involve
the polynomials (3.11) and (A.19). Using Lemma A.1, it is straightforward to verify that the
quantity defined in (3.55) satisfies R3 ∈ Y1 + Y3 and takes the form

R3 = χ1(ρ) sin(ϑ) + χ2(ρ) sin(3ϑ) + δ
(

χ3(ρ) cos(ϑ) + χ4(ρ) cos(3ϑ)
)

+O(δ2) ,

where χ1, χ2, χ3, χ4 are radially symmetric functions which may depend linearly on βǫ. To arrive
at (3.56), it remains to verify that R3 does not contain any term involving β2ǫ . Indeed, according
to (3.11), (3.50), we have

βǫ
2π

P1η2 =
βǫ
4π

∫

R2

(R+R′) η2(R
′, Z ′) dR′ dZ ′ =

βǫR

4π

∫

R2

η24(R
′, Z ′) dR′ dZ ′ ,

so that the first term in (3.55) does not contain β2ǫ . The only other terms that we have to check
are

{

φ1 , η2
}

− r0
Γ

˙̄z0∂Zη2 =
{

φ1 −
βǫ − 1 + 2v

4π
R , η2

}

,

but using the expressions (3.42), (3.50) we immediately see that the right-hand side does not
contain any factor β2ǫ . Altogether we arrive at (3.56). �
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B Appendix to Section 4

B.1 Properties of the energy functional

Proof of Lemma 4.4. We use the first expression of Ekin
ǫ [η] in (4.22) and the representation

formula (2.20) for the stream function φ. Since supp(η) ⊂ Bǫ by assumption, we have

Ekin
ǫ [η] =

1

4π

∫

Bǫ

∫

Bǫ

Kǫ(R,Z;R
′, Z ′) η(R,Z) η(R′, Z ′) dX dX ′ , (B.1)

where the integral kernel Kǫ is defined in (3.8). As R2 + Z2 ≤ ǫ−2σ1 and R′2 + Z ′2 ≤ ǫ−2σ1 ,
the argument of F in (3.8) is not larger than Cǫ2−2σ1 for some C > 0. Using the asymptotic
expansion of F (s) as s→ 0 and proceeding as in Section 3.1, we easily obtain the decomposition

Kǫ(R,Z;R
′, Z ′) = βǫ − 2 + log

8

D
+ K̃ǫ(R,Z;R

′, Z ′) , (B.2)

where βǫ = log(1/ǫ) and D2 = (R−R′)2 + (Z−Z ′)2. The remainder K̃ǫ satisfies the estimate

|K̃ǫ(R,Z;R
′, Z ′)| ≤ Cǫ

(

|R|+ |R′|
)

(

βǫ + 1 + log
8

D

)

+O
(

βǫǫ
2−2σ1

)

. (B.3)

If we insert the decomposition (B.2) into (B.1), the contributions of βǫ − 2 and log(8/D) give
exactly the first two terms in the right-hand side of (4.24), in view of (4.23). Moreover, taking
into account estimate (B.3) where ǫ2−2σ1 ≤ ǫ, we see that the contributions of K̃ǫ to the kinetic
energy (B.1) are of order O

(

ǫβǫ‖η‖2Xǫ

)

, as stated in (4.24).

Proof of Proposition 4.6. Given η ∈ Xǫ, we decompose η = η1 + η2 where η1 = η1Bǫ and
1Bǫ is the indicator function of the ball Bǫ = {(R,Z) ∈ Ωǫ ; R

2 + Z2 ≤ ǫ−2σ1}. We thus have

Eǫ[η] =
1

2

∫

Ωǫ

Wǫ η
2
1 dX +

1

2

∫

Ωǫ

Wǫ η
2
2 dX − 1

2

∫

Ωǫ

(

φ1 + φ2
)(

η1 + η2
)

dX , (B.4)

where φj = BSǫ[ηj ] for j = 1, 2. We claim that

1

2

∫

Ωǫ

(

φ1 + φ2
)(

η1 + η2
)

dX = Ekin
ǫ [η1] +O

(

ǫ∞‖η‖2Xǫ

)

, (B.5)

so that

Eǫ[η] = Eǫ[η1] +
1

2
‖η2‖2Xǫ

+O
(

ǫ∞‖η‖2Xǫ

)

. (B.6)

To prove (B.5), we recall that φj(R,Z) = 1
2π

∫

Ωǫ
Kǫ(R,Z;R

′, Z ′)ηj(R′, Z ′) dX ′, where the

kernel Kǫ is given by (3.8). Using the crude estimate |F (s)| ≤ C
(

| log s|+ 1
)

, we easily obtain

∣

∣Kǫ(R,Z;R
′, Z ′)

∣

∣ ≤ C
(

1+ǫ|R|
)a(

1+ǫ|R′|
)a(

βǫ +
∣

∣logD
∣

∣+ 1
)

, (B.7)

for some a > 1/2. It follows in particular that

|φ(R,Z)| ≤ C
(

βǫ + 1
)

(1 + ρ)b‖η‖Xǫ , ρ =
√

R2 + Z2 ,

for some b > 1/2, and using Hölder’s inequality we deduce

∫

Ωǫ

|φ(R,Z)| |η2(R,Z)|dX ≤ C
(

βǫ + 1
)

‖η‖2Xǫ

(
∫

Bc
ǫ

(1 + ρ)2bWǫ(R,Z)
−1 dX

)1/2

,
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where the last integral is O(ǫ∞) in view of (4.17). In a similar way we have

|φ2(R,Z)| ≤ C
(

βǫ + 1
)

(1 + ρ)b
(
∫

Bc
ǫ

(1 + ρ′)2b|η(R′, Z ′)|2 dX ′
)1/2

= O
(

ǫ∞‖η‖Xǫ

)

(1 + ρ)b ,

so that
∫

Ωǫ
φ2η1 dx = O

(

ǫ∞‖η‖2Xǫ

)

. Altogether we arrive at (B.5).

Now, since η1 is supported in the ball Bǫ, it follows from (4.18) and Lemma 4.4 that

‖η1‖2Xǫ
= ‖η1‖2X0

+O
(

ǫγ1‖η‖2Xǫ

)

, Ekin
ǫ [η1] =

βǫ−2

4π
µ̃20 + Ekin

0 [η1] +O
(

ǫβǫ‖η‖2Xǫ

)

. (B.8)

Moreover we know from Proposition 4.5 that

‖η1‖2X0
≤ C4E0[η1] + C5

(

µ̃20 + µ̃21 + µ̃22
)

, (B.9)

where µ̃0, µ̃1, µ̃2 are the moments of η1, which satisfy µ̃j = µj +O
(

ǫ∞‖η‖Xǫ

)

. Combining both
estimates in (B.8) we obtain

E0[η1] =
1

2
‖η1‖2X0

− Ekin
0 [η1] ≤

1

2
‖η1‖2Xǫ

− Ekin
ǫ [η1] +

βǫ−2

4π
µ̃20 +O

(

ǫγ1‖η‖2Xǫ

)

,

namely E0[η1] ≤ Eǫ[η1] +
βǫ−2
4π µ̃20 +O

(

ǫγ1‖η‖2Xǫ

)

. Using in addition (B.9) we deduce

‖η1‖2Xǫ
≤ ‖η1‖2X0

+O
(

ǫγ1‖η‖2Xǫ

)

≤ C4Eǫ[η1] + C
(

βǫµ̃
2
0 + µ̃21 + µ̃22

)

+O
(

ǫγ1‖η‖2Xǫ

)

.

Finally, invoking (B.6) and recalling that C4 > 2, we find

‖η‖2Xǫ
≤ ‖η1‖2Xǫ

+
C4

2
‖η2‖2Xǫ

≤ C4Eǫ[η] +C
(

βǫµ̃
2
0 + µ̃21 + µ̃22

)

+O
(

ǫγ1‖η‖2Xǫ

)

,

and estimate (4.27) follows, since µ̃j = µj +O
(

ǫ∞‖η‖Xǫ

)

for j = 0, 1, 2.

B.2 Diffusive terms in the energy functional

We justify here the expression (4.32) of the quantity I4. Integrating by parts as in [34], we find
∫

Ωǫ

Wǫη̃ Lη̃ dX = −
∫

Ωǫ

Wǫ|∇η̃|2 dX −
∫

Ωǫ

(∇Wǫ · ∇η̃)η̃ dX −
∫

Ωǫ

Ṽǫη̃
2 dX ,

where Ṽǫ =
1
4(R∂R + Z∂Z)Wǫ − 1

2Wǫ. Similarly,

ǫ

∫

Ωǫ

Wǫη̃ ∂Rζ̃ dX = ǫ

∫

Ωǫ

Wǫ(1 + ǫR)ζ̃ ∂Rζ̃ dX = − ǫ
2

∫

Ωǫ

∂R
(

Wǫ(1 + ǫR)
)

ζ̃2 dX .

On the other hand, integrating by parts and using the relation (2.19) between φ̃ and η̃, we obtain

∫

Ωǫ

φ̃
(

Lη̃ + ǫ∂Rζ̃
)

dX =

∫

Ωǫ

η̃
(

∆φ̃− ǫ∂Rφ̃

1 + ǫR

)

dX − 1

2

∫

Ωǫ

η̃
(

R∂R + Z∂Z
)

φ̃dX

= −
∫

Ωǫ

η̃2(1 + ǫR) dX − 1

2

∫

Ωǫ

η̃
(

R∂R + Z∂Z
)

φ̃dX .

It remains to treat the last term in the right-hand side. Here again, we use the relation (2.19)
and integrate by parts to obtain

1

2

∫

Ωǫ

η̃
(

R∂R + Z∂Z
)

φ̃dX =
ǫ

4

∫

Ωǫ

R|∇φ̃|2
(1 + ǫR)2

dX .

Altogether we arrive at (4.32), with Vǫ = Ṽǫ − (1 + ǫR).
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B.3 Coercivity of the diffusive quadratic form

This section is devoted to the proof of Proposition 4.15. Given ǫ > 0 sufficiently small, we take
a smooth partition of unity of the form 1 = χ2

3 + χ2
4, where χ3, χ4 are radially symmetric and

χ3 = 1 when ρ ≤ 1
2ǫ

−σ1 , χ3 = 0 when ρ ≥ ǫ−σ1 . We can also assume that |∇χ3|+ |∇χ4| ≤ Cǫσ1 .
Given η as in the statement of Proposition 4.15, we define η3 = χ3η, η4 = χ4η. We thus have
the decompositions η2 = η23 + η24 , η∇η = η3∇η3 + η4∇η4, and

|∇η|2 = |∇η3|2 + |∇η4|2 −
(

|∇χ3|2 + |∇χ4|2
)

η2 . (B.10)

As a consequence, the quadratic form Qǫ[η] can be decomposed as

Qǫ[η] = Qǫ[η3] +Qǫ[η4]−
∫

Ωǫ

Wǫ

(

|∇χ3|2 + |∇χ4|2
)

η2 dX . (B.11)

The last term in (B.11) is bounded by Cǫ2σ1‖η‖2Xǫ
and is thus negligible when ǫ ≪ 1. So our

main task is to estimate from below the terms Qǫ[η3] and Qǫ[η4].

We first consider the function η3 which is supported in the region where ρ ≤ ǫ−σ1 . We recall
that the weight Wǫ in (4.16) satisfies the estimates (4.18), which read

|∇Wǫ(R,Z)−∇A(ρ)|+ |Wǫ(R,Z)−A(ρ)| ≤ Cǫγ1A(ρ) , when ρ ≤ ǫ−σ1 , (B.12)

where γ1 > 0. We easily deduce that

Qǫ[η3] ≥ Q0[η3]− Cǫγ1
(

‖∇η3‖2X0
+ ‖ρη3‖2X0

+ ‖η3‖2X0

)

, (B.13)

where Q0 is the limiting quadratic form (4.62). On the other hand, we know from Proposi-
tion 4.14 that

C8Q0[η3] ≥ ‖∇η3‖2X0
+ ‖ρη3‖2X0

+ ‖η3‖2X0
− C9

(

µ̃20 + µ̃21 + µ̃22
)

, (B.14)

where µ̃0, µ̃1, µ̃2 are the moments of η3, which satisfy µ̃j = µj+O
(

ǫ∞‖η‖Xǫ

)

. Combining (B.13),
(B.14) and using (B.12) once again, we arrive at

‖∇η3‖2Xǫ
+ ‖ρη3‖2Xǫ

+ ‖η3‖2Xǫ
≤ 2C8Qǫ[η3] + C

(

µ̃20 + µ̃21 + µ̃22
)

. (B.15)

We next consider the function η4, which is nonzero only if ρ ≥ 1
2ǫ

−σ1 . Our starting point is
the lower bound

Qǫ[η4] ≥
1

4

∫

Ωǫ

Wǫ|∇η4|2 dX +

∫

Ωǫ

(

Vǫ −
|∇Wǫ|2
3Wǫ

)

η24 dX ,

which is obtained from (4.61) by applying Young’s inequality to the middle term in the right-
hand side. Using the expression (4.16) of the weight function, as well as the estimates (B.12) in
the inner region Ω′

ǫ, it is not difficult to verify that

Vǫ
Wǫ

− |∇Wǫ|2
3W 2

ǫ

≥











Cρ2 − C̃ in Ω′
ǫ ,

−C̃ in Ω′′
ǫ ,

Cρ2γ in Ω′′′
ǫ ,

for some positive constants C, C̃. It follows that

Qǫ[η4] ≥
1

4
‖∇η4‖2Xǫ

+ C

∫

Ω′

ǫ∪Ω′′′

ǫ

Wǫ ρ
2
γη

2
4 dX − C̃

∫

Ω′′

ǫ

Wǫ η
2
4 dX . (B.16)
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If we now combine (B.15) and (B.16), we obtain

‖∇η3‖2Xǫ
+ ‖∇η4‖2Xǫ

+ ‖η‖2Xǫ
+

∫

Ω′
ǫ∪Ω′′′

ǫ

Wǫ ρ
2
γη

2 dX

≤ C10

(

Qǫ[η3] +Qǫ[η4]
)

+ C11

(

µ̃2 +

∫

Ω′′
ǫ

Wǫη
2 dX

)

,

(B.17)

for some positive constants C10, C11, where µ̃
2 = µ̃20 + µ̃21 + µ̃22. Finally, using again (B.10) as

well as (B.11), and recalling that µ̃j = µj +O
(

ǫ∞‖η‖Xǫ

)

, we deduce (4.65) from (B.17). �

Acknowledgments. ThG is partially supported by the grant SingFlows ANR-18-CE40-0027
of the French National Research Agency (ANR). The research of VS is supported in part by
grant DMS 1956092 from the National Science Foundation.

References

[1] A. Ambrosetti and M. Struwe, Existence of steady vortex rings in an ideal fluid, Arch.
Rational Mech. Anal. 108 (1989), 97–109.

[2] C. J. Amick and R. E. L. Turner, A global branch of steady vortex rings, J. Reine Andge-
wandte Math. 384 (1988), 1–23.

[3] V. I. Arnold, Conditions for nonlinear stability of stationary plane curvilinear flows of an
ideal fluid, Dokl. Acad. Nauk SSSR 162 (1965), 975–978.

[4] V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical
Sciences 125, Springer, 1998.

[5] T. V. Badiani and G. R. Burton, Vortex rings in R3 and rearrangements, Proc. Royal
Society A 457 (2009), 1115–1135.

[6] J. Bedrossian, P. Germain, and B. Harrop-Griffiths, Vortex filament solutions of the Navier-
Stokes equations, Commun. Pure Appl. Math. 76 (2023), 685–787.

[7] D. Benedetto, E. Caglioti, and C. Marchioro, On the motion of a vortex ring with a sharply
concentrated vorticity, Math. Methods Appl. Sci. 23 (2000), 147–168.

[8] T. Brooke Benjamin, The alliance of practical and analytical insights into the nonlinear
problems of fluid mechanics, in : Applications of Methods of Functional Analysis to Problems
in Mechanics, Lecture Notes in Mathematics 503, Springer, 1976, 8–29.

[9] E. Brunelli and C. Marchioro, Vanishing viscosity limit for a smoke ring with concentrated
vorticity, J. Math. Fluid Mech. 13 (2011), 421–428.

[10] G. R. Burton, Vortex-rings of prescribed impulse, Math. Proc. Cambridge Phil. Society
134 (2003), 515–528.
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