
HAL Id: hal-04709381
https://hal.science/hal-04709381v1

Submitted on 25 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracing and Fixing Inconsistencies in Clone-and-Own
Tabular Data Models

Nassim Bounouas, Mireille Blay-Fornarino, Philippe Collet

To cite this version:
Nassim Bounouas, Mireille Blay-Fornarino, Philippe Collet. Tracing and Fixing Inconsistencies in
Clone-and-Own Tabular Data Models. SPLC ’24: 28th ACM International Systems and Soft-
ware Product Line Conference, Sep 2024, Dommeldange, Luxembourg, Luxembourg. pp.191-202,
�10.1145/3646548.3672595�. �hal-04709381�

https://hal.science/hal-04709381v1
https://hal.archives-ouvertes.fr

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular
Data Models

Nassim Bounouas
nassim.bounouas@univ-cotedazur.fr
Doriane - Université Côte d’Azur,

CNRS, I3S
Sophia Antipolis, France

Mireille Blay-Fornarino
mireille.blay@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Philippe Collet
philippe.collet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Abstract
Many data-intensive applications handle tabular data with more ad-
vanced structuring and processes than spreadsheets, enabling end-
users to copy and adapt tabular data and processes to create new
templates or datasets anytime. Recent research advances demon-
strated that, in such clone-and-own scenarios, actions performed
on the data structure, together with cloning and adaptation actions,
can be captured within an operation-based model to prevent the
drift of the internal tabular data model. However, this approach is
limited by the assumption that each operation must maintain con-
sistency regarding dependencies generated by the domain-specific
languages that connect the observed and computed data.

To address this challenge, this paper first introduces an evolved
operation-based model that is designed to capture inconsistent
tabular data while keeping a fine-grained trace of what part of the
model is inconsistent. We then define specific trace operations to
either fix a dependency in a model or remove one if its creating
process is no longer relevant to the user. These operations support
high-level editing scenarios on the tabular data, which enables
easily fixing the equivalent of a spreadsheet formula or a process
statement, or making the user aware that some part of the model is
inconsistent while it is cloned. Additionally, we report on a positive
scalability experiment on the tracing of large tabular data models
with inconsistencies.

CCS Concepts
• Software and its engineering → Software product lines;
Software configuration management and version control systems.

Keywords
Tabular data, clone-and-own, variability management, operation-
based modeling, model-driven engineering, agronomy

1 Introduction
Data-intensive applications can be used in many different domains
(e.g., for scientific computation [27], in information systems [39]).
These applications mainly gather and process tabular data to han-
dle complex and tailored operations that cannot be handled by
spreadsheets because of their limited expressiveness [12] or their
poor performance on large datasets [13]. While they maintain the
basic and unavoidable functionalities of spreadsheets [9], these
data-intensive applications have to also provide some change and
adaptation means as flexible as the spreadsheet ones. Consequently,
the tabular models and processes that are conceived within these
applications and populated with data can be considered as a final
product that can be copied, totally or partially, to be adapted at any

time in the process and by different kinds of final users [10, 43].
As a result, any tabular model at any time can be considered as
a template to create a new model, being a product, or a template,
with some data being kept in it, with some processes linking the
data being kept, removed, or adapted.

This clearly characterizes a form of clone-and-own process [21,
29, 32, 41] at the level of the model used by the applications. While
these applications usually provide many facilities for the users to
adapt and reuse the tabular data models, they do not keep track of
what is cloned at a level detailed enough to be able to differentiate
the data models or reason on them. Understanding what has been
really changed on a cloned and evolved model is not easy and
propagating changes is at least time-consuming, cumbersome, and
impractical in many cases.

Facing these issues and the well-known negative effects on main-
tenance [29, 32, 47], we have recently introduced a partial solu-
tion [8] that is based on operation-based modeling [7]. It enables to
control of the clone-and-own process by keeping a complete trace
that captures all atomic operations on the tabular model together
with the cloning operations. These latter operations describe when
a product is derived from another, and what information from its
model is extracted in the cloned result. While the captured model
allows obtaining a whole variability-related history of the tabular
models, this approach is limited by the assumption for each cloning
or adaptation operation to maintain consistency in terms of depen-
dencies between data. These dependencies range from spreadsheet-
like formulas that depend on other data to compute a result to more
sophisticated low-code or domain-specific languages that define
user-tailored processes over several data inputs. In the first pro-
posed approach [8], all dependencies must always be consistent
between each operation, begin atomic actions or variability-related
ones for cloning. This assumption directly hinders its application
in real settings as dependencies should be made temporarily in-
consistent so that the users can clone, edit, and adapt without any
constraint. This is indeed typically the case in trial-based processes
of the agronomy software of our industrial partner, where subjects
are observed according to different criteria, with related criteria,
observations, and specific computations such as ANOVA1 variants.

To address these issues, this paper defines the concept of consis-
tency about data dependencies and proposes an evolved operation-
based model. This model is designed to identify and manage po-
tentially inconsistent tabular data using a comprehensive set of
operations. We also demonstrate that our proposed implementation
can incrementally verify the consistency of operation-based models

1ANalysis Of VAriance: statistical method used to compare the means of multiple
groups to determine if at least one group is significantly different from the others.

Bounouas et al.

that capture cloning and adaptation. Additionally, we report on a
scalability experiment involving the representation of real tabular
data from an industrial variability-rich agronomy software that has
evolved over many years. It shows that our approach of controlled
clone-and-own can scale in this context.

The remainder of the paper is organized as follows. Section 2 in-
troduces the context of clone-and-own in tabular data applications,
discusses related work with the first operation-based model, and
defines the problem statement. Section 4 describes our extension
of the operation-based model to handle inconsistent dependencies
in the tabular model. In Section 5, we present and discuss our two
evaluations, including the implementation of scenarios in Prolog.
Threats to validity and current limitations are discussed in Section 6,
while Section 7 concludes this paper and discusses future work.

2 Motivations
2.1 Context
Data-intensive processes are present in many software systems [27,
39] in which they rely heavily on structured data organized in tables
or similar formats. A spreadsheet is then the simplest and the most
flexible tool to exploit these tabular data [9, 10, 43] with live coding
accessible to almost all end-users. As their expressiveness is seen as
low [12] and large data sets do not scale well [13], spreadsheets are
often replaced by dedicated tabular data applications. These appli-
cations gather and process tabular data to handle complex tailored
data organizations and operations while keeping the flexibility and
adaptability of spreadsheets.

While their expressiveness is seen as low [12] and large data
sets do not scale well [13], research advances in the field of spread-
sheets have notably focused on smell detection in formula [26],
but also on extracting structural components and groups to reveal
the underlying semantics [11, 18–20]. This can also be observed in
all approaches building on model-driven engineering to describe
a model of the spreadsheet (e.g., ClassSheet [22]), and mainly to
reason from a spreadsheet on an inferred model [14–16] contain-
ing functional dependencies and formulas. Interestingly, to make a
bidirectional transformation [16], Cunha et al. use a representation
based on atomic operations [7] on the spreadsheet itself and its
model representation in ClassSheet. We consider that our approach
is similar but with a business-oriented representation of the tabular
data and, above all, variability-related support.

Our work is set in the context of an ongoing partnership with
an industrial company, Doriane, specialized in highly configurable
tabular data applications with a main focus on agronomy. Their
application aims to support breeders and seed companies that ma-
nipulate many forms of data and processes over several decades
despite their inherent variability and specificity. As in almost all ex-
perimental settings, the challenge lies in managing this variability,
which led to the initial use of spreadsheets by agronomic companies
due to their flexibility and accessibility. Consequently, the Dori-
ane application provides enhanced functionalities, such as more
robust data processing capabilities and analysis of complex datasets
with greater precision and flexibility. This software facilitates data
gathering and experimentation through a shared platform with
a generic GUI and a core engine that supports an open, tabular
data model. This model is designed to be extensible and highly

customizable to various user needs and specific processes. The cus-
tomization extends from application engineers creating templates
and examples to end-users, at multiple levels, tailoring these models
in their daily operations.

In this paper, we will use an example from our industrial partner
to illustrate the problem and our contribution. Let us consider
an agronomic research institute that is conducting a long-term
study on the impact of climate change on crop yields. The study
involves multiple species of crops, each plant across various plots
with different soil types, irrigation methods, and micro-climate
conditions. The objective is to understand which irrigation method
results in the best crop yields.

Each year, new criteria might be introduced, and/or existing ones
might be modified or removed based on the previous year’s findings,
which may lead to a heteroscedasticity situation. The collected and
observed criteria are various in this context: irrigation methods,
fertilizer types, soil conditions, etc. When a data model is extracted
and/or derived by the end-user, changes to the criteria can inadver-
tently lead to inconsistencies in how data is gathered and recorded,
e.g., if one trial modifies the criteria for water usage (increasing the
range of recorded values) without adequately adjusting the criteria
in other trials, the variability within these groups will differ, leading
to heteroscedasticity2. These inconsistencies may also occur with
formulas that link several data, criteria, or observations, just like
a more complex broken spreadsheet formula, but they may also
affect Domain-Specific Languages (DSL) provided by the Doriane
application to build specific processes, such as a tailored ANOVA.
In an ANOVA, changes in the input can easily introduce signifi-
cant problems affecting the reliability and validity of the statistical
conclusions (e.g., impact on group means and variances, changes
in statistical power, and ethical concerns).

2.2 Clone-and-own in tabular data models
Tabular data applications should offer flexibility comparable to the
one provided by spreadsheets, preventing users from resorting to
them as an alternative. This leads to users being able to add, remove,
or modify any part of the underlying tabular data model through
high-level actions of the application UI. Additionally, similar flexible
changes can be applied to what defines processes, from spreadsheet-
like formulas to DSL or other low-code programs that demand few
programming skills to fit the different end-user profiles. Hence, the
tabular models and processes developed within these applications,
filled with data, can be viewed as finished products ready to be
duplicated, either wholly or partially, for adjustment at any stage
and by various end users [10, 43]. Every tabular model can then
serve as a blueprint for generating a new model whenever needed,
functioning either as a complete product or as a template, retaining
certain data and processes while allowing for the addition, removal,
or modification of others. This situation characterizes an actual
clone-and-own approach [21, 29, 32, 41] at the level of the tabular
model. The support of the clone-and-own mechanism naturally
becomes an unavoidable functionality of tabular data application
since it empowers incremental evolution and allows any end-user
to start from a template [8].

2Heteroscedasticity happens when the standard deviations of a predicted variable,
observed over different values of an independent variable, are non-constant.

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular Data Models

The clone-and-own approach is essential in research and data
management for adapting products to suit different analysis sce-
narios or target audiences. This method allows for the replication
of existing products, which are then modified to incorporate new
processes or findings. This need can be easily illustrated, in our
agronomic experiment field by considering two roles: a breeder,
who is responsible for the scientific program, and a field worker,
who is in charge of implementing this program. The breeder is
designing a program assessing the growth and yield responses of
tomatoes to various fertilizer regimes. She works incrementally
by selecting and aggregating various criteria that are essential for
observing and understanding the impacts of different fertilizers.
This incremental design phase leads to the creation of a tabular
data product, which serves as a tool for capturing and analyzing
the impact on tomato plants.

This product illustrated in Figure 1 includes the various criteria
that are essential for understanding the relationship between fer-
tilizer application and plant growth outcomes. These criteria are
evaluated through structured observations, where each observa-
tion specifically assesses a criterion and explicitly references the
associated subjects, ensuring comprehensive data integration and
traceability. The "criteria" here, refer to the specific aspects under
observation, such as types of fertilizer or plant growth metrics.
The "subjects" are the individual plants in a specific plot being ob-
served. The "observations" are the collected data on a specific "sub-
ject" about a specific "criterion". This structured approach makes it
easier to evaluate how different factors affect agricultural results,
helping the company gain detailed insights and understanding.
The concepts used from criteria to subjects also help in staying
in the business model of the users, which is not the case inside a
spreadsheet.

After the design of the trial experimentation by the breeder, its
practical application begins. In this phase, the field workers lever-
age the designed trial framework by employing a clone-and-own
strategy. They clone the original trial setup and make necessary
adaptations tailored to the specific conditions and variables en-
countered in the field. This approach ensures that the foundational
design created by the breeder is preserved while allowing for the
flexibility required to address practical conditions.

When an agronomic company faces legal regulations, such as
those controlling the use of phytosanitary products, the ability
to adapt and tailor their processes becomes crucial. To comply
with these legal requirements, the company must conduct parallel
trials that focus specifically on regulatory interests. By cloning the
existing trial setups, they can create specialized versions tailored to
meet these regulatory standards without having to design entirely
new trials from scratch. This enables the integration of new, legally
mandated criteria and protocols within the existing trial framework,
not only by adding specific requirements but also by refining the
scope of the trials to cater precisely to regulation and targeted
audiences.

2.3 Usage scenarios
To illustrate the problem to be tackled, we scope it by defining
several usage scenarios that describe the types of modifications or
reasoning that should be supported by the application on its tabular

Figure 1: Illustration of clones and adaptions of tabular data
model in agronomic trial management

model. Those scenarios are illustrated with our running example
represented in Figure 1.

Sc.1 As a Breeder, I want to design a trial to evaluate Tomato
Growth and Yield responses to different fertilizer regimes.
This trial should determine the impact of the quantity of
fertilizer on plant height, fruit number, and total yield.

Sc.2 As a Field Worker, I want to clone the trial designed by the
breeder to collect data on plant height, fruit number, and
yield for each plot. This will involve adding a unique plot
number to each data entry to ensure precise tracking and
analysis of the treatment effects on tomato growth.

Sc.3 As a Breeder, I want to reuse and modify my first design
to conduct a parallel trial assessing the impact of fertilizer
regimes on soil acidity and its compliance with European
phytosanitary regulations. It involves limiting the criteria to
ensure compliance without compromising the data already
collected. It is crucial to maintain traceability across both
trials to ensure reliable analysis.

Sc.4 As a Field Worker, I want to reuse the modified design to real-
ize the observations required by phytosanitary regulations.
Re-associating results with their respective plot numbers is
essential for maintaining traceability and compliance. This
ensures that each data point can be accurately traced back
to its origin, supporting regulatory audits and compliance
checks that require detailed documentation of agricultural
practices.

Bounouas et al.

While tabular data applications usually provide facilities for the
users to adapt and reuse their models, they do not keep track of what
is cloned at a level detailed enough to differentiate the data models
or reason on them. In the following, wewill discuss relatedwork and
introduce the operation-based model we previously proposed [8]
to tackle these issues. We will study its capabilities and limitations
before introducing our contribution as an extension of this model.

3 Problem statement
3.1 Related work

Clone-and-own. The clone-and-own approach [21, 29, 32, 41]
mainly consists of copying existing artifacts from a product to an-
other while modifying them as needed to fit the new product’s
needs. It has been shown that clone-and-own may easily lead to
unintentional divergence [29] between the products over time, cre-
ating in a form of model drift [47]. This drift in the models appears
when different cloned product models become so different from
each other that it is difficult or impossible to keep some consis-
tency across all products. Change propagation, domain analysis,
and quality assurance then demand an increasing and very costly
effort.

Clone-and-own is generally avoided upfront and there have
been numerous efforts to transition from it to the complete SPL
paradigm [3]. The primary challenge lies in identifying features
[3, 17, 36] within existing artifacts and cloned variants [48], often
requiring prior knowledge of the feature set and yielding impre-
cise results [23, 25, 28, 34, 37, 38, 49]. Despite its prevalent use in
industry [5], moving to a full SPL with feature management and
mapping can be risky and expensive [31], particularly in scenarios
with few products [40] or uncertain product evolution [21], poten-
tially resulting in reduced flexibility[32]. Based on the classification
of Antkiewicz et al. for the adoption process toward a full SPL [2]
we have already suggested addressing this challenge by enhanc-
ing management support for the clone-and-own approach "with
Provenance" with improved control and automation [8]

Managing clone-and-own product lines. Various approaches have
been proposed to manage variability in clone-and-own product
lines, leveraging feature traces for change propagation and product
composition [24, 29]. Some methods utilize version control systems
to identify features and variants, transitioning from code-based
to feature-based reasoning [41, 42]. While variant identification is
crucial, features are absent, posing challenges in representing differ-
ences between clones. A recent railway domain report highlights
the significance of model divergence in model-driven SPLs, em-
phasizing the need for differencing large models between products
and platforms [47]. Authors employ semantic lifting of model dif-
ferences, aided by high-level change patterns derived from model
repositories, for effective change propagation [45, 46]. Our con-
text shares similarities, being model-driven and addressing model
differences and drifts between evolving products. However, our
focus lies more on representing and tracing model differences with
inconsistencies, rather than mining them from external artifacts.

Operation-based modeling. Managing model differences is cru-
cial in Model-Driven Engineering for tasks such as comparison,
versioning, and model transformation [1, 6, 30, 33, 44]. Blanc et al.’s

work on operation-based modeling involves representing models
through sequences of elementary construction operations (e.g., cre-
ate, add, setProperty, setReference), enabling consistent detection
and resolution of structural inconsistencies across models with
different meta-models [7, 35]. This approach has been applied in
the SPL community to identify features in product variant source
code or UML models, always with the goal of migrating towards a
unified platform within a complete SPL approach [4, 37, 49].

The next section focuses on our previous proposal of operation-
based modeling to trace business actions and variability-related
operations.

3.2 Tracing variability with operation-based
modeling

In our previous work [8], we proposed an operation-based model
to facilitate the cloning and evolution of underlying tabular data
models in data-intensive applications. The notion of "observation"
is the cornerstone of this operation-based model and enables the
representation of what may typically be associated with a cell in a
tabular model. A spreadsheet cell often lacks explicit characteriza-
tion and relies instead on the implicit semantics suggested by its
position as a column header, the first cell(s) in a row that describe
what is observed in the row, or a cell evaluating something men-
tioned in its column header. On the contrary, our model introduced
explicit definitions of these notions, represented by the concepts
of observation, subject, criterion, requirement and dissociating the
value from the observation it values. This model is illustrated in
Figure 2 with its modification or addition appearing in red.

The observation is the cornerstone of the model. It serves both
as a generic element that facilitates the representation of subjects
and criteria and as the concrete representation of data collection.
This concrete observation pertains to a subject that describes the
object under consideration and evaluates an aspect of it, which is
represented as a criterion.

The requirement is not an observation itself but a reference to
a set of criteria applied to a criterion and transitively to the ob-
servations valuating it. This concept embodies the representation
of references, similar to how formulas express relationships in a
spreadsheet. However, unlike formulas in spreadsheets, which pri-
marily express relationships leading to computations, this concept
allows us to capture and represent relationships in spreadsheets
that are implied or known only to the spreadsheet’s author. Obser-
vations are aggregated in a product, which is a cohesive collection
of observations that encapsulates a specific instance of the data
model. The concept of product is intrinsically linked to the concept
of trace. The trace is a detailed record of actions, such as adaptations,
extractions, and clones, that have been applied to the products over
time to create new products. This linkage between products allows
for a comprehensive understanding of how the product has evolved,
capturing each step in its development and adaptation.

(1) [...]
(2) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑅𝑒 𝑓

(3) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑅𝑒 𝑓 , ”𝑠𝑝𝑒𝑐𝑖𝑒𝑠”)
(4) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒𝑅𝑒 𝑓

(5) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒𝑅𝑒 𝑓 ,
”𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒”)

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular Data Models

(6) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝐴𝑣𝑔𝑃𝑙𝑎𝑛𝑡𝐻𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓

(7) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔𝑃𝑙𝑎𝑛𝑡𝐻𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓 , ”𝑎𝑣𝑔.𝑃𝑙𝑎𝑛𝑡ℎ𝑒𝑖𝑔ℎ𝑡”)
(8) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑁𝑢𝑚𝐹𝑟𝑢𝑖𝑡𝑠𝑃𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝑅𝑒 𝑓

(9) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑁𝑢𝑚𝐹𝑟𝑢𝑖𝑡𝑠𝑃𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝑅𝑒 𝑓 ,
”𝑁𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝐹𝑟𝑢𝑖𝑡𝑠𝑝𝑒𝑟𝑃𝑙𝑎𝑛𝑡”)

(10) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝐴𝑣𝑔𝐹𝑟𝑢𝑖𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓

(11) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔𝐹𝑟𝑢𝑖𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓 ,

”𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑟𝑢𝑖𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)”)
(12) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑇𝑜𝑡𝑎𝑙𝑌𝑖𝑒𝑙𝑑𝑅𝑒 𝑓

(13) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑇𝑜𝑡𝑎𝑙𝑌𝑖𝑒𝑙𝑑𝑅𝑒 𝑓 ,
”𝑇𝑜𝑡𝑎𝑙𝑌𝑖𝑒𝑙𝑑 (𝑤𝑖𝑡ℎ𝑓 𝑜𝑟𝑚𝑢𝑙𝑎)”)

(14) [...]

Trace 1: First Product Design Trace (Figure 1).

The initial version of the model we proposed already supports
specific scenarios such as Sc.1 and Sc.2 as shown in traces Trace 1
and Trace 2. Scenario Sc.1 involves the creation of a template from
a product, establishing a baseline for future operations, while Sce-
nario Sc.2 focuses on the use of such a template to initiate a new
trial, incorporating adaptations at the product level as required by
specific use cases. Unlike the two first scenarios, scenarios Sc.3
and Sc.4 present challenges that are not currently supported by
this model as it did not support temporarily inconsistent products,
such as the third product in Figure 1 with a loss of the plot cri-
terion required by the measurement criteria. This situation can
typically occur during the process of adaptation and refinement
of the products designed to be used as templates (designed to be
cloned, adapted, and reused). In the model previously proposed,
all operations carry pre and postconditions that ensure that the
products are always consistent before and after each atomic opera-
tion. Using these operations of the initial model version to support
Sc.3 and Sc.4 would inevitably lead to the loss of essential criteria
and observations, or would require the removal of key associations
defining the trial framework (i.e., the requirements placed on cri-
teria, and the connections between subjects and their respective
observations). This would directly compromise the structural in-
tegrity and the intended purpose of the trial setup. In addition, these
two scenarios require that the tabular data application not only
supports inconsistencies within these products but also empowers
users to identify and rectify these inconsistencies effectively.

(1) [...]
(2) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑃𝑙𝑜𝑡𝑁𝑢𝑚𝑅𝑒𝑓

(3) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑃𝑙𝑜𝑡𝑁𝑢𝑚𝑅𝑒𝑓 , ”𝑃𝑙𝑜𝑡𝑁𝑢𝑚.”)
(4) 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑞(𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒𝑅𝑒 𝑓 , 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑅𝑒 𝑓 , 𝑃𝑙𝑜𝑡𝑁𝑢𝑚𝑅𝑒𝑓
(5) [...]
(6) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑅𝑒 𝑓 , {}) → 𝑆𝑝𝑒𝑐𝑖𝑒𝑠101𝑂𝑏𝑠
(7) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑆𝑝𝑒𝑐𝑖𝑒𝑠101𝑂𝑏𝑠, ”𝑇 𝐼108”)
(8) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑃𝑙𝑜𝑡𝑁𝑢𝑚𝑅𝑒𝑓 ,) → 𝑃𝑙𝑜𝑡101𝑂𝑏𝑠
(9) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑃𝑙𝑜𝑡101𝑂𝑏𝑠, ”101”)
(10) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒𝑅𝑒 𝑓 ,) → 𝑁𝑃𝐾101𝑂𝑏𝑠
(11) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑁𝑃𝐾101𝑂𝑏𝑠, ”175”)
(12) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔𝑃𝑙𝑎𝑛𝑡𝐻𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓 ,) → 𝐻𝑒𝑖𝑔ℎ𝑡101𝑂𝑏𝑠
(13) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐻𝑒𝑖𝑔ℎ𝑡101𝑂𝑏𝑠, ”130”)
(14) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑁𝑢𝑚𝐹𝑟𝑢𝑖𝑡𝑠𝑃𝑒𝑟𝑃𝑙𝑎𝑛𝑡𝑅𝑒 𝑓 ,) → 𝐹𝑟𝑢𝑖𝑡𝑠101𝑂𝑏𝑠
(15) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐹𝑟𝑢𝑖𝑡𝑠101𝑂𝑏𝑠, ”12”)
(16) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝐴𝑣𝑔𝐹𝑟𝑢𝑖𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑒 𝑓 ,) →𝑊𝑒𝑖𝑔ℎ𝑡101𝑂𝑏𝑠

Figure 2: Enhanced model to capture and trace the clone
tabular data models

(17) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑊𝑒𝑖𝑔ℎ𝑡101𝑂𝑏𝑠, ”149”)
(18) 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑇𝑜𝑡𝑎𝑙𝑌𝑖𝑒𝑙𝑑𝑅𝑒 𝑓 ,) → 𝑌𝑖𝑒𝑙𝑑101𝑂𝑏𝑠
(19) 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑌𝑖𝑒𝑙𝑑101𝑂𝑏𝑠, ”12.30”)
(20) [...]

Trace 2: Second product trial completion trace (Figure 1).
To address these limitations, we consider it necessary to adopt a

more flexible approach that allows for the capture and management
of temporarily inconsistent products while keeping the trace mech-
anism relying on the operation-based technique. This technique
provides fine-grained traceability and accountability in cloning and
adaptation of processes in tabular data applications. By preserving
the operation-based nature of the model, we expect that each step
of data manipulation remains transparent, traceable, and reversible,
allowing for more controlled data handling practices. In the follow-
ing, we will describe how the model evolved to trace inconsistent
products, but also how inconsistencies can be fixed afterward.

4 Contribution
To tackle the problem described in the previous section, we propose
to keep the underlying operation-based model from Bounouas et al.
[8] while extending it to represent inconsistent products (cf. Sec-
tion 4.1, to trace those inconsistencies (cf. Section 4.2), and finally
to be able to fix them (cf. Section 4.3).

4.1 Well-formed but inconsistent products
To support the different scenarios and the introduction of inconsis-
tencies, we characterize damaged observations and requirements
as model elements that reference lost observations, i.e., observa-
tions present in a previous product but removed during extraction,
regardless of whether they are criteria or subjects.

Example: In the second and third products of our running example,
the breeder decided to extract the criteria, subjects, and observations
from the second product necessary to conduct her parallel trial on
the impact of fertilizer on soil acidity. This extraction is guided by

Bounouas et al.

her business perspective. However, the second product was not only
completed by the Field Worker but also modified to associate each ob-
servation with a plot number. Consequently, the plot number criterion
became a requirement for many other criteria, leading the extraction
to potentially generate inconsistencies.

4.1.1 A model supporting lost observations. Our goal is to empower
users to own the new product, even if it contains references to lost
observations while providing them the means to fix these issues
later. Given the large number of observations, the objective is not
to assess inconsistencies retrospectively but to identify them along
the extraction process. To maintain the integrity of the well-formed
product, we construct transient observations that preserve the link
to the lost observations.

According to our previous work [8], a portfolio is a set of prod-
ucts. A product is a set of observations along with the trace of
operations that result in the product. An observation 𝑜 is defined
by a value 𝑣𝑜 , which is a reference to a datum, the criterion 𝑐𝑜
it evaluates, the set of observed subjects 𝑠𝑜 , the requirement 𝑟𝑜 it
should conform to. We note an observation 𝑜 = (𝑐𝑜 , 𝑠𝑜 , 𝑟𝑜 , 𝑣𝑜) while
eponymous functions are defined, such as 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑜) = 𝑠𝑜 . We
note the absence of value by 𝑛𝑢𝑙𝑙 and a place with any value by _.
A requirement is designed as a set of criteria it refers to. A criterion
is an observation 𝑐 that neither evaluates any other criterion nor
observes any subject.

A requirement 𝑟0 = 𝑟𝑒𝑞(𝑐, 𝑐1 ...𝑐𝑛) constrains the observations on
a target criterion 𝑐 relative to their subjects associated with criteria
𝑐1 ...𝑐𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟0) = 𝑐; 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟0) = {𝑐1 ...𝑐𝑛} For instance, the
yield is calculated based on the average weight of the fruits and
the fertilizer rate. The associated requirement is thus defined as
req(𝑌𝑖𝑒𝑙𝑑, {𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑅𝑎𝑡𝑒, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡}).

To support the concept of lost observations, the definition of a
product has been extended to include a collection of observations, a
specified set of lost observations, and the interrelationships between
them.
A product 𝑝 is then defined by:

– a name 𝑛𝑝
– a set of observations 𝑂𝑝

– a trace 𝑡𝑝 that stores the actions whose product is the
result (see next section).

– a set of lost observations 𝐿𝑝
We note it 𝑝 = (𝑛𝑝 ,𝑂𝑝 , 𝑡𝑝 , 𝐿𝑝) with again eponymous functions

being defined, such as 𝑙𝑜𝑠𝑡 (𝑝) = 𝐿𝑝 . By construction, an observation
belongs to a single product in a portfolio 𝑝𝑓 , i.e., ∀𝑝1 ∈ 𝑝𝑓 ,∀𝑜 ∈
𝑝1 ⇒ �𝑝2 ∈ 𝑝 𝑓 , 𝑜 ∈ 𝑝2
It is thus possible to know for an observation which product aggre-
gates it: 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑜) = 𝑝 ∈ 𝑝𝑓 , 𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝)

We complete this definition with the following derived functions,
which characterize a product’s damaged observations and require-
ments:

An observation is damaged if its criterion or one of the subjects
to which it relates is a lost observation:

𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝) = {𝑜 ∈ 𝑂𝑝 | 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) ∈ 𝑙𝑜𝑠𝑡 (𝑝) ∨
∃𝑠 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 (𝑜)⋂ 𝑙𝑜𝑠𝑡 (𝑝)}

A requirement is damaged if at least one criterion contained in
it is lost:

𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑝) = {𝑟𝑜 | ∃𝑜 ∈ 𝑂𝑝 | 𝑟𝑜 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑜)∧
∃𝑐𝑜 ∈ 𝑙𝑜𝑠𝑡 (𝑝)∩ (𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟𝑜) ∪ {𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟𝑜)})

4.1.2 Identifying Inconsistencies in a Product. Thanks to the previ-
ous definitions, the identification of inconsistencies in a product
is straightforward. If a product does not reference any lost obser-
vations, then it is considered consistent. Conversely, if it contains
lost observations, then it is considered inconsistent, meaning the
union of the sets of damaged observations and requirements is
non-empty.

4.2 Tracing the inconsistencies
To support the flexibility required for adapting a product, we define
cloning actions that permit the occurrence of inconsistencies during
the cloning process.

4.2.1 Adaptation Actions Supporting Inconsistencies. The creation
of transient lost observations during the extraction phase requires
defining an adaptation action addLostObservation(product, lostO-
bservation) that is not directly accessible to the end-user and can
only occur in a trace as a consequence of a cloning action.
𝑎𝑑𝑑𝐿𝑜𝑠𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) → 𝑣𝑜𝑖𝑑 : Add a lost

observation to a product
– Pre-conditions:

(1) the product and the observation exist and are
well-formed,

(2) the observation to add is defined in another prod-
uct.

– Post-conditions:
(1) the set of lost observations of the product con-

tains the observation.
To enhance the end-user usability, we also define the composite

operation addFreeObservation:
• 𝑎𝑑𝑑𝐹𝑟𝑒𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) → 𝑣𝑜𝑖𝑑 : Add

an observation 𝑜 = (𝑐𝑜 , 𝑠𝑜 , 𝑟𝑜 , 𝑣𝑜) to a product
– Pre-conditions:

(1) the product and the observation exist and are
well-formed,

(2) the observation is not already associated to a
product.

– Post-conditions:
(1) the product exists and contains the observation,
(2) 𝑐𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝)⋃ 𝑙𝑜𝑠𝑡 (𝑝)
(3) ∀𝑠 ∈ 𝑠𝑜 , 𝑠 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝)

⋃
𝑙𝑜𝑠𝑡 (𝑝)

(4) ∀𝑐 ∈ (𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟𝑜) ∪ {𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟𝑜)}),
𝑐 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝)⋃ 𝑙𝑜𝑠𝑡 (𝑝)

(5) The trace includes the ’add’ operations for the
lost observations, whereas the atomic action it-
self is an ’addObservation’.

4.2.2 Free extraction. To improve the flexibility of our model and
accommodate scenarios involving transitional inconsistent prod-
ucts, we introduce the FreeExtract operation. This operation allows
for an under-constrained extraction based on a given product along

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular Data Models

with a specified list of observations and requirements to be removed.
It systematically constructs a trace to create a new product in which
the cloned requirements or observations may reference observa-
tions that have been removed. This capability intentionally permits
the generation of new products that may contain inconsistencies,
providing users with the freedom to explore and reconfigure data
relationships.

𝑓 𝑟𝑒𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑜𝑟𝑖𝑔𝑖𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡𝑇𝑜𝑅𝑒𝑚𝑜𝑣𝑒,
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑅𝑒𝑚𝑜𝑣𝑒, 𝑛𝑒𝑤𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑁𝑎𝑚𝑒)

→ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

This operation generates a new product that is structurally sound
but may contain inconsistencies if it includes observations that have
been designated as lost within the product.

Example:

(1) 𝑓 𝑟𝑒𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑝2, {𝑝𝑙𝑜𝑡𝑁𝑢𝑚𝑝2, 𝑛𝑢𝑚𝐹𝑟𝑢𝑖𝑡𝑠𝑝2}, {}
”𝑡𝑟𝑖𝑎𝑙𝑇𝑤𝑜”) → 𝑝3

(2) 𝑑𝑎 : 𝑐𝑟𝑒𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑛𝑢𝑙𝑙, {}) → 𝑡𝑒𝑚𝑝𝑝3
(3) 𝑑𝑎 : 𝑎𝑑𝑑𝐿𝑜𝑠𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(...)
(4) 𝑑𝑎 : 𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑡𝑒𝑚𝑝𝑝3, ”𝑇𝑜𝑡𝑎𝑙𝑌𝑖𝑒𝑙𝑑”)
(5) 𝑑𝑎 : 𝑎𝑑𝑑𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑝3, 𝑡𝑒𝑚𝑝𝑝3)

Trace 3: The trace of the extraction from 𝑝2 leading to the
product 𝑝3 illustrating the scenarios in Figure 1

The detailed process of a filtered extraction is as follows:

(1) Retrieve the source product’s trace 𝑎1, ...𝑎𝑛 .
(2) Remove every creation trace corresponding to an obser-

vation that is not kept. It includes removing valuation of
these observations (valuateObservation).

(3) For each remaining addObservation action, apply an addFreeOb-
servation:
– For each observation about a non-kept criterion (i.e.,

a criterion absent from the list of kept observations),
add the criterion to the set of lost observations,

– For an observation about a non-kept subject (i.e., a
subject absent from the list of kept observations), add
the subject to the set of lost observations.

Therefore, we have a well-formed but inconsistent product in the
sense that some of its observations refer to observations as criteria,
subjects, or through requirements that were not cloned. Instead,
the cloned observations refer to transient observations with the lost
status and enabling the traceability of each original observation.
Thus, all these referring observations are considered damaged. To
fix this issue, it is necessary either to eliminate all references to
these lost observations or to substitute some of them with new
observations to fix the damaged relationship.

4.3 Fixing the inconsistencies
In the previous section, we introduced the operations that facilitate
the identification of inconsistencies arising during the cloning and
adaptation of products, generating damaged observations. These
inconsistencies may stem from flawed requirements associated with
criteria or from losses in the subjects and criteria referenced by the,
now-damaged observations.

The subsequent discussion focuses on strategies and operations
to support the incremental repair of damaged observations or re-
quirements, thereby helping the user to progressively restore the
overall consistency and functionality of the data model.

Figure 3: Extraction introducing inconsistencies

4.3.1 Illustrative scenarios. The extraction illustrated in Figure 3
can be formalized as follows.
For the first product 𝑃1:
𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝1 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑠𝑝𝑒𝑐𝑖𝑒𝑠”)
𝑝𝑙𝑜𝑡𝑝1 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑝𝑙𝑜𝑡”)
𝑛𝑝𝑘𝑝1 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑟𝑒𝑞𝑝1, ”𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑟𝑎𝑡𝑒”)
𝑟𝑒𝑞𝑝1 = (𝑛𝑝𝑘𝑝1, [𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝1, 𝑝𝑙𝑜𝑡𝑝1])
𝑜𝑡𝑖108𝑝1 = (𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑇 𝐼108”)
𝑜102𝑝1 = (𝑝𝑙𝑜𝑡𝑝1, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”102”)
𝑜𝑛𝑝𝑘200𝑝1 = (𝑛𝑝𝑘𝑝1, [𝑜𝑡𝑖108𝑝1, 𝑜102𝑝1], 𝑛𝑢𝑙𝑙, ”200”)
[...]
For the extraction leading to 𝑃2:

𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑠𝑝𝑒𝑐𝑖𝑒𝑠”)
𝑛𝑝𝑘𝑝2 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑟𝑒𝑞𝑝2, ”𝑁𝑃𝐾𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑟𝑎𝑡𝑒”)
𝑟𝑒𝑞𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2, 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1)])
𝑜𝑡𝑖108𝑝2 = (𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑇 𝐼108”)
𝑜102𝑝2 = (𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1), 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”102”)
𝑜𝑛𝑝𝑘200𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑜𝑡𝑖108𝑝2, 𝑜102𝑝2], 𝑛𝑢𝑙𝑙, ”200”)
𝑜𝑡𝑖468𝑝2 = (𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝑇 𝐼468”)
𝑜𝑛𝑝𝑘225𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑜𝑡𝑖468𝑝2, 𝑙𝑜𝑠𝑡 (𝑜103𝑝1)], 𝑛𝑢𝑙𝑙, ”225”)

Bounouas et al.

Following the extraction from Figure 3, several observations
are damaged in 𝑃2 because the criterion 𝑝𝑙𝑜𝑡𝑝1 was not extracted
even though there is still a requirement 𝑟𝑒𝑞𝑝2 between 𝑛𝑝𝑘𝑝2 and
𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1). Indeed, the notion of plot does not seem immediately
essential except perhaps in the case of the plot "102", since the
observation 𝑜102𝑝1 has been cloned to be kept in 𝑜102𝑝2.

4.3.2 removeLostObservation. This operation addresses the need
to handle the problem of a lost observation by asserting its deletion
and cascading it to its references. It systematically removes the
observation from the model and ensures that all links and depen-
dencies that were previously referencing it are either updated or
removed to preserve the integrity of the data structure. After its
execution, the requirements depending on it are updated to remove
the reference or if the observation was referenced as a subject, this
subject is removed.

𝑟𝑒𝑚𝑜𝑣𝑒𝐿𝑜𝑠𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) → 𝑣𝑜𝑖𝑑 : remove
a lost observation 𝑜 = (𝑐𝑜 , 𝑠𝑜 , 𝑟𝑜 , 𝑣𝑜) from a product 𝑝
– Pre-conditions:

(1) the product and the observation exist and are
well-formed,

(2) the observation to remove is lost in p : 𝑜 ∈
𝑙𝑜𝑠𝑡 (𝑝)

(3) if 𝑐𝑜 ≠ 𝑛𝑢𝑙𝑙,∧𝑐𝑜 ∈ 𝑙𝑜𝑠𝑡 (𝑝),
�𝑟 ∈ 𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑝), 𝑐𝑜 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟)

(4) Let the list of observations on 𝑜 :
𝐿𝑂 = {𝑜𝑖 , 𝑜𝑖 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜𝑖) =
𝑜}

– Post-conditions: There are no more references to 𝑜 at
the end of the repair process.
(1) 𝑜 ∉ 𝑙𝑜𝑠𝑡 (𝑝)
(2) ∀𝑜𝑖 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝),

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜𝑖) ≠ 𝑜 ∧∀𝑠 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑜𝑖), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠) ≠
𝑜

∧𝑟𝑜𝑖 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑜𝑖), 𝑜 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟𝑜𝑖) ∧ 𝑜 ∉

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟𝑜𝑖)
(3) All observations that referred to the old criterion

were removed :
∀𝑜 ∈ 𝐿𝑂, 𝑜 ∉ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝)

Example: Fixing by removing a criterion. In the case of the second
product illustrated in Figure 3, asserting the removal of the lost
criterion 𝑝𝑙𝑜𝑡1 using 𝑟𝑒𝑚𝑜𝑣𝑒𝐿𝑜𝑠𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑝2, 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1)) in-
duces to remove all references to it.

All preconditions are verified and after the execution of the
operation :

- no observation contained in 𝐿𝑂 is associated with 𝑝2 ;
- the requirement 𝑟𝑒𝑞𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2]) does not refer-

ence 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1) anymore ;
- any observation referencing 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1) as its criterion has

been removed i.e., 𝑜102𝑝2 ;
- any reference to𝑜102𝑝2 (or to an observation having the 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡1)

as a criterion) as a subject is removed.

4.3.3 replaceFixCriterion. This operation addresses the need to
handle the problem of lost criterion by replacing it. It serves as a

corrective mechanism by allowing the substitution of a new crite-
rion in place of a lost one.

Replacing a criterion with a new one requires ensuring that the
model remains well constructed and that the requirements remain
verified. Since we cannot correct lost observations (they have not
been cloned), this operation is only possible if no lost observation
refers to this old criterion. Furthermore, to ensure the consistency
of the substitution, the new criterion can only carry a requirement
that does not refer to any lost criteria.

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐹𝑖𝑥𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑝, 𝑐𝑙𝑜𝑠𝑡 , 𝑐𝑛𝑒𝑤) → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 :
Fix the references to the lost criterion 𝑐𝑙𝑜𝑠𝑡 by a new cri-
terion 𝑐𝑛𝑒𝑤 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑟𝑛𝑒𝑤 , 𝑣𝑛𝑒𝑤). If by replacing all
the references to the lost criterion, we have maintained
consistency between all the observations, the operation is
successful. If the new requirements cannot be verified, then
the operation is not carried out.

Pre-conditions:
(1) 𝑐𝑙𝑜𝑠𝑡 ∈ 𝑙𝑜𝑠𝑡 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡)
(2) 𝑐𝑛𝑒𝑤 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡)
(3) 𝑖𝑠𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑐𝑙𝑜𝑠𝑡) ∧ 𝑖𝑠𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑐𝑛𝑒𝑤)
(4) �𝑜 ∈ 𝑙𝑜𝑠𝑡 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) = 𝑐𝑙𝑜𝑠𝑡
(5) �𝑠 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟𝑛𝑒𝑤), 𝑠 ∈ 𝑙𝑜𝑠𝑡 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡)
(6) Let the list of observations on 𝑐𝑙𝑜𝑠𝑡 :

𝐿𝑂 = {𝑜, 𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) =

𝑐𝑙𝑜𝑠𝑡 }
(7) Let the list of requirements whose subjects con-

tains 𝑐𝑙𝑜𝑠𝑡 :
𝑅 = {𝑟 | 𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑜 = (_, _, 𝑟 , _), 𝑐𝑙𝑜𝑠𝑡 ∈
𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟)}

– Post-conditions: If consistency cannot be maintained,
the system state will not be modified; otherwise, the
following postconditions hold:
(1) 𝑐𝑙𝑜𝑠𝑡 ∉ 𝑙𝑜𝑠𝑡 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡)
(2) All observations that referred to the old criterion

now refer to the new criterion and comply with
its requirements :
∀𝑜 ∈ 𝐿𝑂, 𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) =

𝑐𝑛𝑒𝑤 , 𝑐𝑜𝑛𝑓 𝑜𝑟𝑚𝑠 (𝑟𝑛𝑒𝑤 , 𝑜)
(3) All requirements have been updated with the

new criterion : ∀𝑟 ∈ 𝑅, 𝑐𝑛𝑒𝑤 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟)
(4) All observations complywith their requirements :

∀𝑟 ∈ 𝑅, 𝑐𝑟 = 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟) ∀𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) =
𝑐𝑟 , 𝑐𝑜𝑛𝑓 𝑜𝑟𝑚𝑠 (𝑟, 𝑜)

Example: Failure in the repair by replacing with a new criterion.
If we add into Figure 3 a new observation which is the criterion
defined as 𝑝𝑙𝑜𝑡𝑝2 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑜𝑡”) and we want to
replace the reference 𝑙𝑜𝑠𝑡 (𝑝𝑙𝑜𝑡𝑝1) by a reference to 𝑝𝑙𝑜𝑡𝑝2, the pre-
conditions 1 to 3 would then be successfully checked. However
the observation 𝑜225𝑝2 would not meet precondition 4, meaning
that we should not be able to repair this observation and the re-
quirements that involved 𝑙𝑜𝑠𝑡 (𝑝1, 𝑝𝑙𝑜𝑡𝑝2) as a subject, could not be
satisfied. The operation would then not be applied.

4.3.4 replaceFixRequirement. Unlike the previous case where we
prohibited the replacement of a criterion 𝑐𝑙𝑜𝑠𝑡 if there existed a lost
observation referring to the criterion to be replaced, in the current

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular Data Models

scenario, we automatically clone the observations associated with
this requirement, which had not been cloned previously.

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐹𝑖𝑥𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑝, 𝑟, 𝑐𝑙𝑜𝑠𝑡 , 𝑐𝑛𝑒𝑤) → 𝑣𝑜𝑖𝑑 :
Fix the references to the lost criterion 𝑐𝑙𝑜𝑠𝑡 in requirement
𝑟 , by a new criterion 𝑐𝑛𝑒𝑤

Pre-conditions:
(1) 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑟) = 𝑐𝑡 , 𝑐𝑙𝑜𝑠𝑡 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟)
(2) 𝑐𝑡 ∉ 𝑙𝑜𝑠𝑡 (𝑝)
(3) 𝑐𝑙𝑜𝑠𝑡 ∈ 𝑙𝑜𝑠𝑡 (𝑝), 𝑖𝑠𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑐𝑙𝑜𝑠𝑡)
(4) 𝑐𝑛𝑒𝑤 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑖𝑠𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑐𝑛𝑒𝑤)
(5) There are no other requirements in 𝑝 that refer

to 𝑐𝑙𝑜𝑠𝑡
(6) Let the list of observations in 𝑝 whose criterion

we have to change for 𝑐𝑛𝑒𝑤
𝐿𝑡𝑜𝐹𝑖𝑥 = {𝑜𝑠 | 𝑜𝑠 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜𝑠) =
𝑐𝑙𝑜𝑠𝑡 }

(7) Let the observations on 𝑐𝑡 whose subjects refer
to 𝑐𝑙𝑜𝑠𝑡
𝐿𝑡𝑜𝑅𝑒𝑝𝑎𝑖𝑟 = {𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝) | 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) =
𝑐𝑡 , 𝑜𝑠 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑜), 𝑜𝑠 ∈ 𝑙𝑜𝑠𝑡 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜𝑠) =
𝑐𝑙𝑜𝑠𝑡 }

– Post-conditions: All observations requiring fixing now
refer to 𝑐𝑛𝑒𝑤 . All necessary lost observations have
been cloned and are referenced as subjects.
(1) 𝑐𝑙𝑜𝑠𝑡 ∉ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟), 𝑐𝑛𝑒𝑤 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟)
(2) ∀𝑜 ∈ 𝐿𝑡𝑜𝐹𝑖𝑥 , 𝑜 ∈ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑝), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑜) =

𝑐𝑛𝑒𝑤
(3) ∀𝑜 ∈ 𝐿𝑡𝑜𝑅𝑒𝑝𝑎𝑖𝑟 ,∃𝑠 ∈ 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑜), 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑠) =

𝑐𝑛𝑒𝑤

Example: repairing a requirement. The requirement 𝑟𝑒𝑞𝑝2 illus-
trates the application of this operation. We create a new criterion
represented as 𝑝𝑙𝑜𝑡𝑝2 = (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”𝐿𝑜𝑐𝑎𝑙𝑃𝑙𝑜𝑡”) and modify
the fertilizer criterion so that it no longer refers to the previous cri-
terion, but instead to the newly created one. Then, we repair 𝑟𝑒𝑞𝑝2
substituting the reference from 𝑝𝑙𝑜𝑡𝑝1 to 𝑝𝑙𝑜𝑡𝑝2. A direct replace-
ment of the former is not feasible because it includes a reference to
plot 103, which was not cloned. Therefore, we choose to repair by
fixing the requirement, so that it may potentially retrieve any lost
observations and their clones.
In that case the preconditions are satisfied:

- the criterion 𝑝𝑙𝑜𝑡𝑝2 exists and does not reference any require-
ment.

- the observation 𝑜102𝑝2 is contained within 𝐿𝑡𝑜𝐹𝑖𝑥 .
- the observation 𝑜225𝑝2 is contained within 𝐿𝑡𝑜𝑅𝑒𝑝𝑎𝑟𝑒 .

After executing 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐹𝑖𝑥𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (𝑝2, 𝑟𝑒𝑞𝑝2, 𝑝𝑙𝑜𝑡𝑝2, 𝑝𝑙𝑜𝑡𝑝1),
𝑝2 corresponds to:
𝑜102𝑝2 = (𝑝𝑙𝑜𝑡𝑝2), 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”102”)
𝑜103𝑝2 = (𝑝𝑙𝑜𝑡𝑝2), 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ”103”)
𝑟𝑒𝑞𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑝2, 𝑝𝑙𝑜𝑡𝑝2]
𝑜200𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑜𝑇 𝐼108𝑝2, 𝑜102𝑝2], 𝑛𝑢𝑙𝑙, ”102”)
𝑜225𝑝2 = (𝑛𝑝𝑘𝑝2, [𝑜𝑇 𝐼468𝑝2, 𝑜103𝑝2)], 𝑛𝑢𝑙𝑙, ”225”)

5 Evaluation
5.1 First qualitative evaluation
Our first evaluation assesses the usefulness of our approach for
practitioners on the basis of the current re-engineering of the appli-
cation of our industrial partner, Doriane. The application is actually
completely rewritten to be able to avoid the model drift of the pre-
vious version, which has been produced and evolved for more than
19 years now. As a first evaluation, we have then implemented an
extension of our previous Prolog prototype to cover all scenarios
and all operations described in Section 4. We have created examples
that materialize the four scenarios and served also as unit tests.
Then we validated the proposed scenarios, especially scenarios 3
and 4, with the main product owner (PO) of the new application,
and one of the consultants, who have strong experience based on
the company’s historical products.

With the product owner, we have created example traces from
our proposed model to illustrate scenarios 3 and 4. These traces
use the demonstration data and experiments that are used by the
PO and consultants to showcase the current Doriane application
to future customers. Both scenarios have been validated by the PO
while the tracing and fixing functionalities that can be implemented
from this reasoning capabilities have been integrated into the new
application backlog. The first minimum viable product of the tracing
feature is under development at the time of writing.

The consultant we interviewed supports customers when they
configure the Doriane application to their experimentation needs
and when they migrate data into it. With him, we managed to take
the last large reconfiguration that was made on a customer site to
verify that the different modifications made can be captured by the
model. As a result, all the changes made to the data organization and
simple formulas have been seen as able to be captured. There were
some difficulties with some analysis procedures that are currently
hard-coded in the application and should be re-implemented with
DSLs in the new version, but they were not related to the model
capabilities.

5.2 Scalability evaluation
To evaluate the scalability of our model within real-world appli-
cations, we investigated the space and time consumption of our
Prolog prototype when applied to large configurations. Based on
data from Doriane’s largest customers, we determined the average
configuration size, which serves as the baseline for our scalability
assessments. We created randomized products equivalent in size
to the real products, ensuring that the randomized products are
representative of the real ones. These products were generated
using randomized cloning and extraction processes that selectively
remove certain required observations.

We then conducted controlled experiments on a growing range
of observations to compare three specific scenarios: the removal
of all required observations, the removal of half of the required
observations, and a full clone where every observation is retained.
Those scenarios are encompassing the spectrum of customer be-
haviors and contexts encountered by Doriane. The full removal
scenario reflects the practices of customers who extensively modify
their processes and engage in exploratory research, whereas the full
clone scenario represents those with stable and consistent research

Bounouas et al.

processes. These customers conduct numerous trials but seldom
revise their methodologies.

We are expanding the number of observations to assess the scal-
ability of our model, focusing specifically on this metric rather
than the number of products. This provides a more granular and
insightful representation of customer activities. Large products are
frequently divided into smaller ones to manage configuration com-
plexities more effectively. Consequently, the capability to manage
a few large products is often more critical than handling numer-
ous smaller ones. Based on the measured memory footprint and
time consumption we can derive several insights regarding the
performance3 of our model under these three situations (cf. fig. 4).
There is a clear trend, as the number of observations increases,
both the required memory and processing time escalate. However,
the full clone situation where no observation is removed is clearly
our worst case with the highest memory footprint and time con-
sumed. This can be attributed to the trace of the cloned product that
replicates every single observation, including their intricate tracing
information, being fully recreated and re-executed, resulting in a
heavier computational load and increased memory usage.

In contrast, the scenario with the maximal extraction —where all
required observations are removed — shows the lowest consump-
tion in both memory and time. This decrease can be explained by
the reduced trace information necessary for the lost observations.
Since these observations are not retained in the product, the system
does not need to manage their full trace information, resulting in
a lighter and more efficient process. The scenario with half of the
observations removed logically falls between the two others, owing
to a balanced load of trace information.

These results underline an important aspect of our model: it
performs better in scenarios involving significant extraction. This
is particularly advantageous in practical applications, as most of
our partner’s clients engage in extractions, with full clones without
any extractions being less common. The model performance in
large extraction scenarios suggests that our approach can handle
extensive datasets effectively, making it suitable for contexts where
tailored extractions and specific observations are essential.

6 Threats to validity and limitations
A primary concern regarding the construct validity of our model
arises from the simplifications necessary to translate the clone-and-
own processes into a computational framework. While our model
has been refined through the partial proposal previously validated
on some scenarios [8], it is also based on expert consultation and
designed to reflect prevalent industry scenarios. Still, the subtleties
of actual usage patterns may not be fully captured. We expect
the incremental implementation of our proposal in Doriane’s new
application to provide validation and feedback on these patterns.

Internally, the prototype used for the scalability study shows
some limitations as it is currently a proof of concept on which no
optimization or profiling has been realized. Further work and its in-
tegration with the Doriane application should bring improvements.
Besides, the study assumes a direct causal relationship between the
model operations and the observed performance metrics. However,

3The non-linear memory growth could be attributed to the Prolog engine’s memory
management tactics, including block-allocation and garbage collection strategies.

Figure 4: Space-Time comparative analysis

the presence of underlying, unaccounted-for factors within the tab-
ular data and processes may disrupt these assumed relationships.

The external validity of our findings is closely tied to the con-
texts within which the model has been evaluated. The generated
data, derived from scenarios provided by our industrial partner,
raise questions about the model’s applicability across a broader
spectrum of domains or with datasets that differ substantially in
size or complexity.

7 Conclusion
Operation-based modeling can be employed to trace all atomic
business operations and cloning actions on the tabular data models
used in data-intensive applications. This avoids model drift, but the
current solutions could not represent inconsistent models, let alone
the capacity to fix them.

In this paper, we have shown that our evolved operation-based
model allows us to capture inconsistencies typically arising during
the adaptation phase, which were previously unmanageable. This
model robustly supports not only the process of identifying and
tracing these inconsistencies but also provides mechanisms to fix
them, thereby restoring coherence to the tabular data models. A
first evaluation with practitioners shows that the scenarios covered
by our proposal are highly relevant. A benchmark on scalability
shows that a prototype implementation of our solution reasonably
manages space and time efficiency.

Future work will focus on refining the model further, considering
additional real-world scenarios and a complete coverage of formulas
and DSLs.We also plan to extend the applicability of the approach to
other domains where tabular data plays a critical role and where our
industry partner could provide solutions with its new application
integrating our proposal.

References
[1] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A survey on

model versioning approaches. International Journal of Web Information Systems
5, 3 (2009), 271–304.

Tracing and Fixing Inconsistencies in Clone-and-Own Tabular Data Models

[2] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lämmel, S, tefan Stănciulescu, Andrzej Wąsowski, and Ina Schae-
fer. 2014. Flexible product line engineering with a virtual platform. In Companion
Proceedings of the 36th International Conference on Software Engineering. 532–535.

[3] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering
22, 6 (2017), 2972–3016.

[4] Wesley KG Assunção, Silvia R Vergilio, and Roberto E Lopez-Herrejon. 2020.
Automatic extraction of product line architecture and feature models from UML
class diagram variants. Information and Software Technology 117 (2020), 106198.

[5] Thorsten Berger, Jan-Philipp Steghöfer, Tewfik Ziadi, Jacques Robin, and Jabier
Martinez. 2020. The state of adoption and the challenges of systematic variability
management in industry. Empirical Software Engineering 25 (2020), 1755–1797.

[6] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. 2012. Formal foundation
of consistent EMF model transformations by algebraic graph transformation.
Software & Systems Modeling 11 (2012), 227–250.

[7] Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. 2008. Detecting
model inconsistency through operation-based model construction. In Proceedings
of the 30th international conference on Software engineering. 511–520.

[8] Nassim Bounouas, Mireille Blay-Fornarino, and Philippe Collet. 2023. An Action-
based Model to Handle Cloning and Adaptation in Tabular Data Applications.
In Proceedings of the 27th ACM International Systems and Software Product Line
Conference-Volume A. 201–212.

[9] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. 2003. Morgan Kaufmann series in data management systems:
Designing data-intensive Web applications. Morgan Kaufmann.

[10] Yolande E Chan and Veda C Storey. 1996. The use of spreadsheets in organizations:
Determinants and consequences. Information & Management 31, 3 (1996), 119–
134.

[11] Zhe Chen and Michael Cafarella. 2013. Automatic web spreadsheet data extrac-
tion. In Proceedings of the 3rd International Workshop on Semantic Search over the
Web. 1–8.

[12] Samuel Clemens. 2011. Five Ways To Tell You Have Outgrown Excel. https:
//www.insightsquared.com/blog/5-ways-to-tell-you-have-outgrown-excel/

[13] Rob Collie. 2012. Big Data is Just Data, Why Excel “Sucks”, and 1,000 Miles
of Data. http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-
excel-sucks-and-1000-miles-of-data/

[14] Jácome Cunha, Martin Erwig, Jorge Mendes, and João Saraiva. 2016. Model
inference for spreadsheets. Automated Software Engineering 23 (2016), 361–392.

[15] Jácome Cunha, Martin Erwig, and Joao Saraiva. 2010. Automatically inferring
classsheet models from spreadsheets. In 2010 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. IEEE, 93–100.

[16] Jácome Cunha, João P Fernandes, Jorge Mendes, Hugo Pacheco, and Joao Saraiva.
2012. Bidirectional transformation of model-driven spreadsheets. In Theory
and Practice of Model Transformations: 5th International Conference, ICMT 2012,
Prague, Czech Republic, May 28-29, 2012. Proceedings 5. Springer, 105–120.

[17] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[18] Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang. 2019. Se-
mantic structure extraction for spreadsheet tables with a multi-task learning
architecture. InWorkshop on Document Intelligence at NeurIPS 2019.

[19] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018. Expand-
able group identification in spreadsheets. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 498–508.

[20] Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and
Dongmei Zhang. 2021. TabularNet: A neural network architecture for under-
standing semantic structures of tabular data. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 322–331.

[21] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An exploratory study of cloning in industrial
software product lines. In 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, 25–34.

[22] Gregor Engels and Martin Erwig. 2005. ClassSheets: automatic generation of
spreadsheet applications from object-oriented specifications. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software engineering.
124–133.

[23] Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-preserving refactorings for migrating cloned products to
a product line. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 316–326.

[24] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In 2014 IEEE International conference on software maintenance
and evolution. IEEE, 391–400.

[25] Stefan Fischer, Lukas Linsbauer, Roberto E Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO tool: Extraction and composition for clone-and-own. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
IEEE, 665–668.

[26] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin
Swidan, and David Hoepelman. 2016. Spreadsheets are code: An overview of
software engineering approaches applied to spreadsheets. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 5. IEEE, 56–65.

[27] Tony Hey. 2012. The Fourth Paradigm–Data-Intensive Scientific Discovery.
In E-Science and Information Management: Third International Symposium on
Information Management in a Changing World, IMCW 2012, Ankara, Turkey,
September 19-21, 2012. Proceedings, Vol. 317. Springer, 1.

[28] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. 2013. Variability
mining: Consistent semi-automatic detection of product-line features. IEEE
Transactions on Software Engineering 40, 1 (2013), 67–82.

[29] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the gap between clone-and-own and software product lines. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). IEEE, 21–25.

[30] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. Model com-
parison: a foundation for model composition and model transformation testing.
In Proceedings of the 2006 international workshop on Global integrated model
management. 13–20.

[31] Jacob Krüger and Thorsten Berger. 2020. Activities and costs of re-engineering
cloned variants into an integrated platform. In Proceedings of the 14th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems.
1–10.

[32] Jacob Krüger and Thorsten Berger. 2020. An empirical analysis of the costs of
clone-and platform-oriented software reuse. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 432–444.

[33] Yuehua Lin, Jing Zhang, and Jeff Gray. 2004. Model comparison: A key chal-
lenge for transformation testing and version control in model driven software
development. In OOPSLA Workshop on Best Practices for Model-Driven Software
Development, Vol. 108. Citeseer, 6.

[34] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2018.
Variability extraction and modeling for product variants. In Proceedings of the
22nd International Systems and Software Product Line Conference-Volume 1. 250–
250.

[35] Ernst Lippe and Norbert Van Oosterom. 1992. Operation-based merging. In
Proceedings of the fifth ACM SIGSOFT symposium on Software development envi-
ronments. 78–87.

[36] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of software: evolution and process 30, 2 (2018), e1912.

[37] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Automating the extraction of model-based software product
lines from model variants (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 396–406.

[38] Gabriela K Michelon, Lukas Linsbauer, Wesley KG Assunção, Stefan Fischer,
and Alexander Egyed. 2021. A Hybrid Feature Location Technique for Re-
engineering Single Systems into Software Product Lines. In 15th International
Working Conference on Variability Modelling of Software-Intensive Systems. 1–9.

[39] Celina M Olszak and Ewa Ziemba. 2007. Approach to building and implementing
business intelligence systems. Interdisciplinary Journal of Information, Knowledge,
and Management 2, 1 (2007), 135–148.

[40] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer Science &
Business Media.

[41] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. 101–110.

[42] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging forked product variants. In Proceedings of the 16th International Software
Product Line Conference-Volume 1. 156–160.

[43] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers
of end users and end user programmers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05). IEEE, 207–214.

[44] Matthew Stephan and James R Cordy. 2013. A Survey of Model Comparison
Approaches and Applications. Modelsward (2013), 265–277.

[45] Christof Tinnes, Timo Kehrer, Mitchell Joblin, UweHohenstein, Andreas Biesdorf,
and Sven Apel. 2021. Learning domain-specific edit operations from model
repositories with frequent subgraph mining. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 930–942.

[46] Christof Tinnes, Timo Kehrer, Mitchell Joblin, Uwe Hohenstein, Andreas Bies-
dorf, and Sven Apel. 2023. Mining domain-specific edit operations from model
repositories with applications to semantic lifting of model differences and change
profiling. Automated Software Engineering 30, 2 (2023), 17.

https://www.insightsquared.com/blog/5-ways-to-tell-you-have-outgrown-excel/
https://www.insightsquared.com/blog/5-ways-to-tell-you-have-outgrown-excel/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
https://doi.org/10.1002/smr.567

Bounouas et al.

[47] Christof Tinnes, Wolfgang Rössler, Uwe Hohenstein, Torsten Kühn, Andreas
Biesdorf, and Sven Apel. 2022. Sometimes you have to treat the symptoms:
tackling model drift in an industrial clone-and-own software product line. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1355–1366.

[48] Yinxing Xue. 2011. Reengineering legacy software products into software product
line based on automatic variability analysis. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering. 1114–1117.

[49] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.
Feature identification from the source code of product variants. In 2012 16th
European Conference on Software Maintenance and Reengineering. IEEE, 417–422.

	Abstract
	1 Introduction
	2 Motivations
	2.1 Context
	2.2 Clone-and-own in tabular data models
	2.3 Usage scenarios

	3 Problem statement
	3.1 Related work
	3.2 Tracing variability with operation-based modeling

	4 Contribution
	4.1 Well-formed but inconsistent products
	4.2 Tracing the inconsistencies
	4.3 Fixing the inconsistencies

	5 Evaluation
	5.1 First qualitative evaluation
	5.2 Scalability evaluation

	6 Threats to validity and limitations
	7 Conclusion
	References

