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Mars, with its physicochemical conditions resembling Earth's environment 4.5 to 3.5 Ga
ago, is a planet of interest in the search for past conditions adequate to life (Cabrol, 2018;
Mangold et al., 2021). Sedimentary rocks, specifically their geomorphological properties, have
been identified as a promising avenue for detecting bacterial activity in ancient Martian
environments (Noffke, 2021).

Most particularly, Microbially Induced Sedimentary Structures (MISS), well-preserved on
Earth in rocks dating back millions of years, raise the possibility of identifying similar structures
on Mars (Noffke, 2015). The use of expert knowledge for the search of MISS on Mars is based
on abductive inference, assuming that similar physicochemical processes should lead to
sedimentary morphologies with similar characteristics as on Earth (Corenblit et al., 2019).

Observations, like mud cracks in Gale Crater, by the Curiosity rover, confirm environmental
conditions suitable for MISS formation on Mars surface 3.8 Ga (Rapin et al., 2023). It was
suggested that the use of geomorphological visual descriptors in images captured by Martian
rovers to identify MISS in rocks may be conclusive (Corenblit et al., 2023). However, validating
the biotic origin of MISS-like structures remains challenging, since purely abiotic, i.e.,
physicochemical processes can produce structures resembling those left by fossilized microbial
mats (Davies et al., 2016). Visual expertise thus requires a detailed and robust understanding
of morphological parameters specific to MISS.

Until now, research efforts mostly focused on distinguishing signatures in rocks of purely
abiotic origin from those with a biotic origin, with the primary concern being the avoidance
of false positives in MISS identification (Davies et al., 2016). The variability of morphological
signatures in sediments in relation to microbial mat type and biomass (i.e., biological sources of
variability in sedimentary rocks) has not yet been thoroughly explored. The form(s) Martian life
might have taken and its abundance in ancient sedimentary environments remain uncertain.
Here, we are exploring the hypothesis that microorganism consortia in shallow waters have
given rise to various types of MISS due to potential variations in the quality and abundance of
microbial mats.

To address the question of biological sources of variability in morphological aspects of
sedimentary rocks, a controlled experiment was conducted at the Laboratory of Functional
Ecology and Environment in Toulouse (now: CRBE), France. The objective was to investigate the
development of microbial mats on an immersed sedimentary surface, along with the resulting
desiccation cracks, and to examine their morphological characteristics. The experiment
involved both the absence and presence of different types of microbial mats (including
cyanobacteria, diatom, green algae and a mixture of the three types), each with two levels of
biomass. This laboratory study was conducted in a phytotron and greenhouse with the aim to
assess in controlled conditions the inter- and intragroup variability in the morphological
response of a specific substrate composed of layers of sand and clay to the presence of
different microbial mats. The study encompassed conditions both without (abiotic control) and
with the four microbial mat treatments.

Beyond distinguishing abiotic and biotic situations, the experiment delineated
geomorphological variability from biological variability in MISS formation. Analyses, supported
by statistical tools and convolutional neural networks (CNN), permitted to identify 2D and 3D
discriminative parameters and resolution scales between controls and treatments and among
different biotic treatments. This research provides new insights into the potential of automatic
detection of ancient Martian biosignatures visible in rover images.
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With the latest developments of orbital measurement technologies and instruments, such
as satellites, as well as surface instruments, such as rovers employed on Mars, the research for
potential traces of extraterrestrial life is burgeoning. Thanks to NASA's Curiosity and
Perseverance rovers and their camera equipment (e.g., ChemCam and SuperCam), it is possible
to propose a new perspective for the detection of potential life signatures on Mars based on
the analysis of geochemical and geomorphological variables in sedimentary surfaces. The
research for fossil or modern signatures of life on the surface of telluric planets and their
satellites can be based on the detection of fossilized microorganisms, biologically influenced
minerals and chemical or isotopic biomarkers (Greaves et al., 2021; Westall et al., 2015). Given
the similarities in initial conditions between Earth and Mars, there is a strong presumption that
if microorganisms evolved on Mars during the Noachian period (>3.6 Ga), in habitats such as
crater lakes, they affected these geomorphological features at their surface (Noffke and
Awramik, 2013; Westall et al., 2021). Also, in the contrary to Earth, crust recycling, which
makes it difficult to study ancient surfaces, between 3.5 and 4 Ga or even more, is absent on
……

Extraterrestrial Life ?

Timeline of Earth (Cohen et al., 2013) and Mars (Kite, 2019; Rapin et al., 2023) periods

CONTEXT
Mars (Lapôtre et al., 2022). Consequently, absence of crust recycling on Mars represents an
advantage to the search for potential ancient biosignatures on its surface. An example of a
potentially interesting environment for the development of microorganisms was shown
recently at Gale crater surface, where polygonal mud (or desiccation) cracks, characteristic of a
sustained wet-dry cycling, were described (Rapin et al., 2023).

Potential signatures
Among the candidates for potential biosignatures, sediments that may have been

influenced by microbial activity were proposed by (Noffke, 2010). These candidates identified
in ancient rocks (e.g., Ordovician and Permian rocks in the Montagne Noire, France) are
called "MISS", Microbially Induced Sedimentary Structures (Noffke et al., 1996) and were
proposed as analogous models relevant to the search for signatures of life on Mars (Noffke,
2021, 2015, 2010).

Microbially Induced Sedimentary Structures a. modern (Peyriac-de-Mer, 
France), b. Permian fossil (Salagou, France)
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Expert knowledge of biogenic geomorphological structures (e.g., MISS), from micro
(inframillimeter to centimeter) to meso (centimeter to decameter) spatial scales, for which the
biotic origin is well recognized, or at least strong clues exist, can be employed to search for
potential signatures of life on Mars (Cady et al., 2003; Noffke, 2010). Such a method is based
on reasoning by abductive inference with the assumption that identical, or equivalent,
(bio)geomorphological processes produce similar (bio)geomorphological structures. Using the
Earth as a geological analogue for Mars, we hypothesize that potential microbial life on Mars
could have given rise, on the planet’s surface, to a variety of recognizable types of biogenic
geomorphological structures, such as MISS (Corenblit et al., 2019). This novel approach
requires the development of a conceptual and methodological framework specifically adapted
to the distinction of abiotic and biotic sedimentary structures (Corenblit et al., 2023; Davies et
al., 2016). In the case that biotic structures are detected, the variability of their morphological
aspects must be considered.

Expert knowledge of biogenic geomorphological structures (e.g., MISS), from micro
(inframillimeter to centimeter) to meso (centimeter to decameter) spatial scales, for which the
;;

CONTEXT
Noffke et al. (2001a) defined MISS as a new category within the classification of primary

sedimentary structures (Pettijohn and Potter, 1964), this is: “bedding modified by microbial
mats or biofilms”. These structures form at water/sediment interfaces and can take many
forms depending on the metabolism of the microorganisms present and the sediment
dynamics of the environment (Gerdes, 2007; Noffke, 2010; Schieber et al., 2007). The wealth
of data on MISS from Earth is possible for their presence in the modern (Bose and Chafetz,
2009; Gerdes et al., 2000; Noffke, 1998; Noffke et al., 2003; Schieber et al., 2007) and fossil
record (Davies et al., 2016, 2017; Noffke et al., 2001a; Noffke, 2008; Noffke et al., 2008; Pruss
et al., 2004). The interest of MISS in the search for signatures of ancient life on Earth and on
Mars can be supported with the first evidence of terrestrial microbial life dated at 2.5 Ga (Viles,
2012). Also, microbialites, i.e. sedimentary structures formed by microbial influence such as
stromatolites especially in vertical section, and MISS also present in bedding planes (Noffke and
Awramik, 2013), are dated to 3.5 Ga on Earth (Awramik, 2006; Awramik and Grey, 2005;
Hofmann et al., 1999).

A New Approach

biotic origin is well recognized, or at least strong clues exist, can be employed to search for
potential signatures of life on Mars (Cady et al., 2003; Noffke, 2010). Such a method is based
on reasoning by abductive inference with the assumption that identical, or equivalent,
(bio)geomorphological processes produce similar (bio)geomorphological structures. Using the
Earth as a geological analogue for Mars, we hypothesize that potential microbial life on Mars
could have given rise, on the planet’s surface, to a variety of recognizable types of biogenic
geomorphological structures, such as MISS (Corenblit et al., 2019). This novel approach
requires the development of a conceptual and methodological framework specifically adapted
to the distinction of abiotic and biotic sedimentary structures (Corenblit et al., 2023; Davies et
al., 2016). In the case that biotic structures are detected, the variability of their morphological
aspects must be considered.

In-depth statistical analyses of these images enabled us to identify and extract key variables, in
2D and 3D, of biotic and abiotic forms (texture, shape, pattern). In a second step, using artificial
intelligence, i.e., a supervised deep learning procedures based on convolutional neural
networks (CNN) architecture, this data will then be used for the development of a model that
shall permit to distinguish between biotic (MISS) and abiotic (equivalent geological context
such as desiccation cracks) structures. The main development stages using artificial intelligence
will be: (i) image pre-processing (normalization, augmentation) to homogenize and increase
the robustness of images data; (ii) the development of a classifier based on CNN using RGB
images ; (iii) the exploration of effects of 3D data inclusion and the visualization of Region of
Interests using Class Activation Maps. Objective image classification can potentially lead to the
formation of distinct biotic groups in cases where microorganisms significantly affect one or
more key parameters.
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The aim of this research is to develop a new technique for the automatic detection of
biotic signatures on modern and ancient sedimentary surfaces in the case study of MISS,
focusing on mat cracks. This method is based on :

(i) a better understanding of mat crack type MISS thanks to laboratory observations under
controlled conditions and field observation in recent and fossil records;

(ii) the constitution of a database of images representing MISS and their abiotic equivalents;

(iii) to couple AI with a classical statistical study to identify potential variables constituting a
signature of life on the samples observed;

(iv) a recognition of biogenic or non-biogenic structures as well as a classification of potential
biosignatures based on convolutional neural networks.

This approach, still confined to terrestrial samples, is intended to be applied to images of the
surface of Mars. This future step requires the optimization of the protocol to adapt it to the
constraints of Martian research.

OBJECTIVES MATERIAL & METHODS
MISS type

There are a multitude of forms of MISS (Davies et al., 2016; Gerdes, 2007; Noffke, 2010;
Noffke et al., 2001b; Schieber et al., 2007). For this study, we have chosen to focus on mat
cracks, which are present in the fossil and modern record (Noffke, 2010). This type of structure
is also of interest in terms of the limits of the distinction between biotic and abiotic structures,
which in this case are desiccation cracks in terms of their abiotic equivalent (Corenblit et al.,
2023; Davies et al., 2016). Mat cracks result from the activity of a biofilm, or microbial mat,
colonizing a surface in damp muddy siliciclastic depositional systems.

Mat cracks can easily be seen, for example, at the edges of ponds, lakes, and rivers. A thick
elastic membrane binds the sediment. It is also possible to observe a gradient in the formation
of the various mat cracks present in the environment, with, for example, the size of their tear
opening.

Ponds of Thau (Southern 
France) a. Mat cracks in 
environmental context, b. 
Gradient of mat crack 
opening sizes in the 
environment
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MATERIAL & METHODS
As the surface dries out, cracks appear until the MISS membrane tears completely. This tear

leaves the sedimentary support underneath exposed, which, once the membrane protection
has been removed after tearing, will in turn witness the formation of desiccation cracks. These
dynamic formation conditions may vary according to environmental conditions, the consortium
of microorganisms making up the biofilm or microbial mat, and the sediments.

Drying out of mat cracks and formation of desiccation cracks

Ex situ experiment
To explore the variability in the formation of the mat-cracks, we designed an experiment

under controlled conditions at the CRBE laboratory in Toulouse, France. The aim was to study
the development of biofilms on an immersed surface under drying conditions, and to examine
the morphological characteristics of the resulting surface.

Several types of treatment are present in this experiment, all replicated five times, except
for the abiotic controls (A) – which have no added microbial strain – replicated ten times, all
…….

To explore the variability in the formation of the mat-cracks, we designed an experiment
under controlled conditions at the CRBE laboratory in Toulouse, France. The aim was to study
the development of biofilms on an immersed surface under drying conditions, and to examine
the morphological characteristics of the resulting surface.

Several types of treatment are present in this experiment, all replicated five times, except
for the abiotic controls (A) – which have no added microbial strain – replicated ten times, all
distributed in open plastic trays of 29*19*7-centimeter. The sediment base is composed of a
layer of sand (mass = 1080 g; grain size < 3000 μm) overlaid by a layer of clay (mass = 240 g;
grain size < 120 μm). The water used in the experiment is from the Volvic brand, whose
composition is well known, with neutral or even slightly alkaline properties. Three microbial
strains were tested: cyanobacteria (C), diatoms (D) and green algae (G). An additional
treatment was added to the study: mixed (M), which is a mixture of C, D and G representing
3/13, 5/13 and 5/13 of M respectively. These treatments (C, D, G and M) are doubled into two
biomasses: low (1) and high (2), with a ratio of 5. The result is 9 different types of treatment: A,
C1, C2, D1, D2, G1, G2, M1, M2.

Design of the ex-situ 
experiment a. 
Distribution of biotic 
concentrations 
between treatment ; 
b. Distribution plan 
of tanks in the 
phytotron
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MATERIAL & METHODS
The treatments were all placed in the phytotron for the duration of the biofilm growth

period (11 days for low biomass and 21 days for high biomass). At the end of the allotted time,
the water in the tanks was siphoned off and the tanks were taken to the greenhouse, where
the residual water could finish evaporating. The following analyses are based on fully dried
treatments.

Biotic treatment tanks in the phytotron and drying of treatments in the greenhouse.

In situ observations

Microbial studies

The three strains of microorganisms chosen represent a variety of aquatic environments
(e.g., oceans, lakes, rivers) where MISS can be found, including mat cracks. Cyanobacteria are
photosynthetic bacteria, with some species forming algal blooms under bright, nutrient-
enriched conditions. Diatoms are microalgae characterized by their unique silica cell wall.
Green algae are a group of photosynthetic eukaryotes present in a variety of environments
(marine environments, continental freshwater, and brackish water wetland habitats). These
groups are very diverse today, but they are also very diverse in the fossil record.

Sedimentary structures

The choice of mat cracks is based on field observations. For the modern register, we
investigated the ponds of Bages and Thau in France at the beginning of 2024. We could
observe modern mat cracks developing in natural environments and to note the variability of
the structures present according to variations in wet and dry environmental conditions and to
micro-organism consortium types. Furthermore, in the Montagne Noire region near the
Salagou lake, France, fossil mat cracks are present in rocks dating from the Permian period,
where the formation of tears can clearly be identified.

The laboratory experiment also represents a field reality.

Different MISS records a. modern mat cracks observed at the ponds of Peyriac-de-Mer (France), 
c. fossil mat cracks observed at the Montagne Noire near the Salagou lake (France)
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Dense point clouds, 3D models, digital elevation models (DEM) and orthophotos were
computed using the standard workflow of the Metashape photogrammetric software applied
to the 21 context-images of each tray (Rose et al., 2022). Scaling of the photogrammetric
products was done using height referenced markers, identically arranged around all the tray
edges, in a submillimetric grid accuracy. The root mean square error (RMSE) of the scaling
operation ranges from 0.2 to 0.7 mm. Then, a systematic clipping was performed to remove
the plastic edges of the trays from the 3D scenes. Therefore, all photogrammetric products are
superimposable and can be robustly compared from each other to assess morphometric
variation among treatments with a submillimetric accuracy. Dense point clouds range from 3 to
7.5 million points. DEM resolution ranges from 0.11 to 0.15 mm whereas orthophotos
resolution ranges from 0.06 to 0.08 mm. For convenience, all orthophotos were resampled to
0.08 mm in resolution.

Video of the C1a treatment’s 
dense points cloud

C1a treatment: 
a. Orthophoto, 

b. Digital Elevation Model

MATERIAL & METHODS
Digital elevation models, orthophotos and 
geomorphometric derivatives production 

Digital elevation models (DEMs)

From each of the 50 DEMs, eight typical geomorphometric rasters (Hengl and Reuter, 2008)
were derived in order to quantitatively capture the topographical and morphological
arrangements emerging from the experiment: Slope, Aspect, Curvature, Sky View Factor (SVF),
Multi-Scale Topographic Position Index (TPI), Terrain Ruggedness Index (TRI), Vector
Ruggedness Measure (VRM) and the so-called geomorphons derivatives were computed from
the DEM using RSAGA algorithms (Brenning, 2008; Conrad et al., 2015).

Geomorphometric rasters of the C1a treatments: Aspect, curvature (CURV), 
geomorphon (GEOM), slope, sky view factor (SVF), multi-scale topographic 
position index (TPI), terrain ruggedness (TRI), vector ruggedness measure 

(VRM), and hypsometric curves (HYPSO) 
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Digital elevation models (DEMs)

Aspect, Curvature, and Slope: the most widely used topographic metrics and were computed
following the method of (Zevenbergen and Thorne, 1987).

Geomorphon: raster dataset that classifies DEM into ten types of terrain forms (flat, summit,
ridge, shoulder, spur, slope, depression, valley, footslope, hollow) based on local topography
analysis through line-of-sight principle in 8 different directions (Jasiewicz and Stepinski, 2013).
The geomorphon rasters were calculated using a radial limit of line-of-sight computation of 30
cm (i.e., equivalent to the length of the widest edge of the tray) and a flatness threshold angle
(angle below which the pixel is classified as flat) of 1 degree.

Hypsometric curves: compare the distribution of elevations between treatments and biomass
levels and expressed the proportion of area above relative height (Strahler, 1964; Willgoose
and Hancock, 1998).

Multi-Scale Topographic Position Index (TPI): calculated by averaging the DEM over a user-
defined moving window size (expressed as a radius in pixel) and subtracting the original DEM
from the averaged version to get the residual (Guisan et al., 1999). TPI extracts finer-scale
landforms from regional-scale relief (Positive TPI values represent ridges or hills, and negative
TPI values represent valleys or pits). The multiscale version of TPI calculates a standardized TPI
over multiple neighbourhood radii from 1 to 8 pixels wide, starting at the largest
neighbourhood size. For subsequent steps, the standardized TPI is updated with pixels where
the absolute TPI values exceed the TPI values of the previous step.

Sky View Factor (SVF): gives the portion of visible sky, limited by the surrounding relief, from
each cell. It is computed with a search radius of 30 cm (i.e., equivalent to the length of the
widest edge of the tray) using the method of (Zakšek et al., 2011).

Terrain Ruggedness Index (TRI): represents the mean change in elevation between a grid cell
and its neighbours, over a moving window of 5 pixels radius (Riley et al., 1999).

Vector Ruggedness Measure (VRM): calculated by decomposing slope and aspect into 3-
dimensional vectors and calculating the resultant vector magnitude within a moving window of
5 pixels radius (Sappington et al., 2007).

Different geomorphons

MATERIAL & METHODS

The Kruskal-Wallis test (one-way analysis of variance) was used to study the variability of
treatments (A, C, D, G, and M) and biomasses (1 and 2) between them, but also as a function of
the different geomorphons.

Summary statistics for each geomorphometric rasters and for each tray were computed and
assembled in a data frame for multivariate data exploration using Principal Component Analysis
(PCA) and Hierarchical Clustering on Principle Components (HCPC) using the R FactoMineR
package.

Data compilation and exploration
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The set of images was divided into three subsets: a learning/validation set representing 80%
(1400 images), of which 75% and 25% were respectively dedicated for learning and validation
phases. The remaining 20% (350 images) testing set was designed so that each modality (C1,
C2, D1, D2, G1, G2, M1, M2, and A) was represented by pictures extracted from a tray that had
never been used during the training/validation phase.

As the dataset size was not sufficient to train a CNN from scratch, a transfer learning
approach was adopted using a Resnet50 pre-trained on ImageNet. Resnet CNNs have proven
their high capacities to deal with a wide variety of cases (classification, detection, and
localization). ResNet50 is a good compromise between the performances and the
computational needs (He et al., 2016). The training was done on the classification layer while
freezing the deepest layers. Cross-Entropy Loss as loss function and Adam optimizer with a
………

Automated image slicing and DEM 
derivatives for AI

Example D1a, a. Orthophoto b. Cutting 
illustration c. Cutting result

MATERIAL & METHODS

This method consists of slicing the initial image into 512x512 pixel tiles to be adapted for AI
processing. The algorithm reads the original image, determines its size, calculates the number
of overlap pixels to be applied and slices the image. The idea is then to apply the same slicing
to the DEM and its derivatives.

The first difficulty is that, although these metrics can be represented in image form, they
are not images, because the format of each pixel is either a real or an integer, but not a step in
the range. The solution is to use the Tiff format, which allows images to be stored with a
variable number of layers (which can go beyond 3, such as R, G, B) and, above all, to store
something other than integer values between 0 and 255.

Another problem concerns the format of DEM derivatives compared with the initial image:
the resolution, the number of pixels, is not the same, the resolution being higher for
orthophoto than for DEM and derivatives. In addition, the resolution of the orthophoto is not a
multiple of that of the derivatives. To reconstitute the DEM derivatives with the same
resolution as the orthophotos and given that we don't periodically come back to the initial
values, we interpolated all the points. This is what was programmed, and once the derivatives
had been interpolated, they were automatically cut so that they could be superimposed on the
sub-images derived from the orthophoto.

A total of 35 sub-images were obtained for each tank image. There are 50 tanks, making a
total of 1,750 sub-images of 512 x 512 pixels to be analyzed by the CNN.

CNN procedure
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learning rate of 0.001 and a weight decay of 0.0001 were used to train the model. The
training was done on 20 epochs with batches of 64 images. Several data augmentation
methods (i.e., Augmix (Hendrycks et al., 2020), RandAugment (Cubuk et al., 2020),
TrivialAugment (Müller and Hutter, 2021)) were tested but did not improve the generalization
ability of the model, most likely due to the well-controlled picture acquisition.

To explore features that drive the model decision, two visualization methods were chosen:
Grad-CAM++ (Chattopadhay et al., 2018) and FullGrad-CAM (Srinivas and Fleuret, 2019). Thus,
Guided Grad-CAM++ and Guided-FullGrad-CAM were implemented, consisting in a
combination of ReLU backpropagation with respect to DeconvNets (Zeiler and Fergus, 2014).

Model performances were evaluated in terms of global accuracy computed on the
summed errors of each class to predict.

MATERIAL & METHODS RESULTS & DISCUSSION
Ex situ observations

From the dried results of experiments carried out at the CRBE laboratory in Toulouse, we
have obtained mat cracks.

Observation levels

Example C1a: two distinct 
topographic levels

There are a first sandy topographic level (bottom)
and a second clay topographic level (top) with (C, D, G
and M) or without (A) the presence of a biofilm on the
latter. A network of primary cracks is observed,
corresponding to the widest separations between the
clay parts, where the sandy matrix below can be seen.
Networks of secondary cracks are visible on the sandy
(parallel to the primary cracks) and clayey (not parallel
to the primary cracks) levels.

These different levels of results are used to provide
an overall description in three parts: texture, shape,
and pattern of each bin. Texture corresponds to the
arrangement of sand and clay grains (sand/clay ratio
and cracks), and particular structures on biofilms (e.g.,
fungi, bubbles, filaments, detachment). Shape defines a
clay level distinct from other clay levels within the
same tray, apart from the primary cracking network,
but including a network of secondary cracks. Pattern
corresponds to the arrangement of the different
shapes around the primary crack network.

We were able to observe variability in texture,
shape, and pattern of the different strains among
themselves (C, D, G and M) and with the abiotic control
(A), but also between the different biomasses (1 and 2)
whether in similar or different strains.

Example C1a: full processing, 
texture, shape, and pattern
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Observed differences

Proportion between the sandy and clayey levels of a tank: A, G1 and D have a sandy level with
a lower proportion than that of the low topographical level corresponding to the clayey part.
Classes C, D and G have these two levels in equivalence. Shrinkage during the drying process is
therefore less significant in A, G1 and D than in C, G2 and M.

Cracks: The primary network of cracks is thin in A, thin and thick in D and G1, and thick in C, G2
and M. The secondary network of cracks on the clay level is not very present in A, C, G2 and M,
whereas it is in D and G1. A is affected regularly in both first order and second-order
desiccations. For strains, where a treatment will be impacted by the primary crack network, it
will be less affected by the secondary network, and vice versa.

Biofilms: A has no biofilms. All strains show fungal growth on their biofilms, which increases as
biomass increases. C2, G2 and M2 show large filaments between the torn parts of the biofilms.
C and M show biofilm detachment from the clay part. Strong biomasses are those with the
most advanced biotic development on their biofilms, and detachment occurs on the two most
concentrated treatments (C and M), so we can assume that the formation of marked biotic
structures increases with increasing biotic concentration in the environment.

Shape types: A, D1 and G1 have angular clay shapes. C, D2 and G2 have angular and irregular
clay shapes. M has irregular clay shapes. Desiccation may be disrupted by high biotic presence
(M and C have the highest biomass 1 and 2 and D2 and G2 also show irregular shapes).

Size of shapes: A, C, G and M show slight variations in the size of their shapes, but these sizes
remain roughly in the same range. Size differences are much more pronounced within the
shapes of D. Desiccation could be non-homogeneous across the whole of a single tray in
treatment D.

Colors: A is light gray. C and M have biomasses 1 and 2 that are dark brown and brown
respectively. D1 is white and D2 is dark gray. G is green. C could be the source of M's color
among the mixture of C, D and V that make up the latter.

Pattern variations with the different treatments (A, C1, C2, D1, D2, G1, G2, M1, 
M2) with different biotic concentrations

Overview

Abiotic control A stands out from all the strains in that it has no biofilms and homogeneous
shapes. Treatments C and M have similar characteristics (sand/clay ratio, desiccation, shape
range, color). D is visually closer to A, with a more angular, clean-cut appearance, as in the
abiotic control. G is a little closer to the C and M consensus, although G1 will tend slightly
towards D (sand/clay ratio, desiccation, biofilms, shape range), while G2 is closer to C2 and M2
(sand/clay ratio, desiccation, shape range).

RESULTS & DISCUSSION
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Statistical analyses
Using various statistical tools, we sought to understand the variability observed within the

different treatments of this experiment.

Continuous geomorphometric rasters

Kruskal-Wallis

No significant differences were observed for Aspect, Curvature and TPI. For DEM, significant
differences are shown on the graph, indicating variability in the reliefs and morphologies of the
different treatments A, C, D, G, and M. For Slope, there is a significant decrease in biofilm-
induced slope values, especially for diatoms. The biotic treatments maintain a smoother
topography, while the abiotic control has steeper slopes. The Sky view factor (SVF) is
significantly higher for diatoms, as the relief of this class is concentrated higher up than that of
the others (including abiotic control). Roughness (TRI & VRM) is significantly lower for diatoms.

PCA

We can see that SVF, Curvature, Slope and VRM are well represented on the graph, unlike
Aspect, TPI and DEM. Aspect and Curvature are well correlated with each other, TPI with DEM,
and Slope with VRM and TRI. SVF is independent of the other rasters and inversely correlated
with the first axis. Aspect and Curvature are well represented by the second axis and poorly by
the first, and vice versa for Slope, VRM and TRI. We can therefore deduce that the first axis
corresponds to the slopes of the various reliefs and the second to the curvatures.

With the representation of individuals in classes A, C, D, G and M, we can begin to see
trends emerging. Abiotic control is distinct from biotic treatments in the upper right of the
graph. This class is correlated with the slopes of the different landforms. Classes C and M in
particular, but also G, merge in the center of the graph. D is distinct from A and the other three
biotic classes, and correlates more with SVF.

Graphs of Kruskal-Wallis 
tests, one-way ANOVA, for 
the different continuous 
geomorphometric rasters: 
Digital elevation model 
(DEM), Aspect, Curvature 
(CURV), Slope, Sky view 
factor (SVF), Multi-scale 
topographic position index 
(TPI), Terrain ruggedness 
(TRI), and Vector 
ruggedness measure 
(VRM) 

RESULTS & DISCUSSION

PCA: continuous geomorphometric rasters and A, C, D, G, and M classes

- 13 -



Geomorphons

Within the entire dataset, the geomorphons represented are depression, flat, hollow, ridge,
slope, spur, peak, and valley. Flat, footslope and shoulder geomorphons are present at
negligible levels.

Count percent of geomorphons in the 
entire dataset

Boxplots of the geomorphons distribution in the 
different treatments

RESULTS & DISCUSSION

Treatments C, M and A don't show much intra-group variation for the different tanks. On
the other hand, D and G have high intra-group variability for summit, which explains the extent
of the boxplots seen above for this geomorphon.

Variability of geomorphons between treatment tanks

Well-represented geomorphons vary according to different biomasses. At zero biomass,
geomorphons are less pronounced. Between biomass 1 and 2, geomorphons depression and
spur do not vary. As biomass 1 increases to 2, hollow, valley and slope increase, while ridge
and peak decrease. For biomasses 0 and 2, slope is in the majority and for biomass 1, ridge is
in the majority (and slope is not far off).

Representation of 
geomorphons as a 
function of biomass 
(0 = no biomass, 1 
= low biomass, 2 = 
high biomass)
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Topographic levels

From the hypsometric curves of DEM obtained for the different treatments, we can see that
there is significant intra-group variance, whether for abiotic control (A), strain type (C, D, G and
M) or biomass (1 and 2). We can therefore assume that there is a difference evaluated on an
accentuated bimodality criterion, with a first modality at low altitude (areas where the sandy
matrix can be seen) and a second modality at high altitude (upper clay plateaus with or without
the presence of biofilms).

Hypsometric curves for the 
different treatments according 
to their strain type (or absence 
for A) and their different 
biomasses (except for A, which 
has a zero biomass by 
definition)

RESULTS & DISCUSSION
C and G have similar variations, which induce an equivalence in the flat/valley distribution.

D has a variation that accentuates the abiotic trend, increasing the representation and the
flat/valley distinction. M reverses the trend of the abiotic control: for the abiotic control, the
"summit" modality is more important than the "valley" modality, and the opposite is true in the
case of M.

In the 4 strain types, the flat/valley distribution is more differentiated.

These variations make it possible to distinguish three types of modification of abiotic
control by biotic strains: equivalence of relief (C and G), increase in relief (D) and inversion of
relief distribution (M). The presence of biotic strains will increase the contrast between the
distribution of different reliefs.

To better distinguish the variation of this bimodality between the different biotic strains, we
compared the distribution of heights according to treatments by comparing the position of the
modes (summit vs. valleys) to the abiotic reference.

For the biotic treatments, the "valley" modality increases in relation to the abiotic control.
On the other hand, compared to the abiotic control, the "summit" modality decreases in the
case of cyanobacteria (C), green algae (G) and mixed algae (M), and increases in the case of
diatoms (D).

Height distribution by treatment (flats vs. valleys)
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Color

The three components R, G, B (R: red, G: green, B: blue) of the orthophotos are very close
to each other, resulting in the absence of a dominant color. Color is therefore not a
discriminating criterion between treatments of the experiments.

Example of D1a processing 
with R, G, B orthophoto 
components

RESULTS & DISCUSSION

CNN results
Initial classification results obtained by CNN show correct predictions of between 85% and

99%.

To visualize the neural network output of the 1750 sub-images, we use confusion matrices
indicating the classifications made by the AI of the 9 different classes under study: A, C1, C2,
D1, D2, G1, G2, M1, and M2. The rows of the matrix, labelled "Actual", correspond to the
actual classes, and the columns of the matrix, labelled "Predictions", correspond to the AI's
choice of classes.

For biotic strains (C, D, G, M) with different biomasses (1 and 2), we have multiplied the
experiments 5 times, corresponding to batches a, b, c, d and e. The abiotic controls (A) were
repeated 10 times (a, b, c, d, e, f, g, h, i and j), as they do not have different biomasses. It is
then possible to look at the batches of strains separately in confusion matrices, including two
abiotic control batches for each, making 350 sub-images to analyze. These different sets are
then merged to produce a confusion matrix with 1750 sub-images.

Confusion matrices for the different batches a, b, c, d, e, 
and the 5 batches together

Different treatments

Between the different
versions, prediction confusion is
between 10 and 15%, or 12.5%
for all versions combined. It
should be noted that some
confusion occurs with A and
different classes, especially G1.
For biotic strains, confusions are
mainly observed for C2,
confused with G2, M1 and M2.
Classes G1 and G2 are also
confused with each other.
Classes C1 and D1 are not much
confused, except with their
respective high biomass versions
(C2 and D2). Class D2 is
confused with D1, but also
mainly with C2 and G1. Mixed
(M) can be confused with other
classes but are well
distinguished between their
weak biomass (1) and their
strong biomass (2).

The neural networks are 87.5% correct in their predictions between the different types of
treatment (A, C1, C2, D1, D2, G1, G2, M1, M2), which is very encouraging. On the other hand,
some classes were more difficult to define than others, such as C2 (101 correct predictions
out of 175 images). The distinct strains (C, D and G) saw their low biomass (C1, D1 and G1)
mostly confused with their high biomass (C2, D2 and G2), whereas the latter had more
disparate confusions with the other classes. Mixed strains (M) may be confused with each
other, but especially with class C2.

- 16 -



Different characteristics

From the confusion matrices, we can then
isolate the characteristics (biomasses, strain
types, biogenicity) for better visualization.

Similar biomasses and abiotic control: for low
biomasses between them, confusion is almost
zero (0.9%) and is mainly concentrated on G1
with A. For high biomasses between them,
confusion is higher (8%) and is mainly
concentrated on C2 and M2 (also a little G2
where C2 is confused with). This raises the
question of whether increasing biomass tends
towards a clear and similar distinction of biotic
substrate for the different strains.

RESULTS & DISCUSSION

The various CAMs help us to
understand how the image was classified
by the CNN. Their analysis will enable us
to understand, on a case-by-case basis,
which zone of interest was used to
classify the image. From the orthophoto
sub-image, pixels will be activated to a
greater or lesser extent. This activation
can be visualized in the FullGrad-CAM
section, with the most activated pixels in
red and the least activated in blue. Note
that red is not synonymous with a zone
of interest, but rather with the area that
has been analyzed the most. Guided Back
Propagation-CAM and Guided-FullGrad-
CAM show highly iridescent zones, which
correspond to areas of interest. It's in
Guided-FullGrad-CAM where the filter is
the strongest, with few parts of the sub-
image remaining. Areas of interest are
highly iridescent, and relief can even be
retraced.

Visualization of confusion matrices as a 
function of biomass, strain type and biogenicity

Different biomasses: Low biomass is 8.7% confused with high biomass. Strong biomasses are
confused at 7.7% with weak biomasses, which is equivalent to the reverse. Biomass confusions
are mainly located (in both directions) on G1 with G2 and M1 with C2.

All biomasses and abiotic control: Confusion between the two different biomasses and their
absence in the abiotic control is 7.5% and is mainly located between 1 with 2 and 2 with 1,
which remain equivalent.

Different strain types and abiotic control: Between A, C, D, G, and M, the confusion is 9.1%.
This confusion is mainly concentrated on C and M in both directions. We can therefore ask
whether, within M, cyanobacteria (C) will exert a greater influence than diatoms (D) and green
algae (G) in shaping the biogeomorphological structure and/or whether C had a selective
advantage when growing M in the phytotron. Note that in M, C accounts for 62.8% of dry mass,

while D and G represent 20.9% and 16.3% of dry mass respectively. Also, C is often classified
in G, while G is less confused with C. We can therefore ask whether some types of strains (C,
D and G) are closer than others. From the matrices here, we can assume that C and G are
closer in terms of induced sedimentary structures than D.

Abiotic and biotic: Confusion between abiotic control and biotic treatments combined is 1%,
which is very encouraging for this rock biosignature detection project.

Class Activation Maps (CAMs)

Orthophoto and Class Activation Maps (C1e 
sub-image 1)
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Under controlled conditions, the laboratory experiment highlighted the variability between
abiotic and biotic treatments, as well as within biotic treatments themselves, with or without
different biomass scales. These initial observations showed that diatoms can be distinguished
from other biotic treatments. What's more, the geomorphological modifications induced by the
presence of biofilms are clearly visible to the naked eye when comparing abiotic controls.

Statistical analysis revealed trends in inter- and intra-group variability. Abiotic structures were
clearly different, confirming initial observations. Diatoms again showed different relief trends,
with plateaus being very present and reliefs less so, in contrast to the other treatments. PCA
and distribution analyses showed a strong correlation between C and M. G is the class with the
greatest intragroup variability, where G with low biomass will approach the characteristics of
D, while G with high biomass will approach the characteristics of C and M. The presence of
biomass causes landforms to vary in comparison with an abiotic control. As biomass increases,
the hollows and slopes become more pronounced. These trends are reflected in the first
outputs from neural networks.

The prediction results of CNN are very encouraging, showing a success rate of between 85%
and 99%. Only 1% of abiotic structures are confused with biotic structures. Confusion is mainly
observed between biotic classes. The classes with the greatest increase in confusion are
between high biomass and C with M. C and M have higher basic concentrations than
treatments D and G for both low and high biomass.

(i) Observations can be correlated on several scales: primary observations, statistical studies,
deep learning.

(ii) Different or similar morphological trends can be highlighted using statistical tools and
neural networks.

(iii) An increase in biomass can accentuate a trend towards convergence or morphological
distinction, which can lead to confusion when classifying images.

CONCLUSION & PERSPECTIVES
To continue…

Success in distinguishing variability in abiotic and biotic structures under controlled laboratory
conditions has prompted us to extend the field study to the ponds of Bages and Thau for the
recent record, and to the Montagne Noire for the fossil record. These expeditions will provide
a lot of data for AI and we will also add sedimentary and biofilms samples to do geochemical
analysis.

Nevertheless, the development of new laboratory experiments will be necessary to explore
new variabilities or deepen some already seen by increasing biomass (or reducing it) or varying
the types of microorganisms and sediments used.

Large confusions are shown between C and M, and a CAM analysis is underway to try to
understand which zones of interest are considered and whether they correlate with the
statistical analyses.

Finally, the clear distinction between abiotic and biotic structures, as well as the possibility of
intra-group classification (e.g., here between biotic treatments and/or biomass) are
encouraging for the possible application of this study to the Martian question. Reflections on
research angles and the application of the terrestrial protocol to Martian issues are underway.

Fields, a. Pond of Thau 
(South of France), b. 
Salagou Lake (Montagne 
Noire, South of France)
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