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Abstract Efforts to predict long‐term changes in continental runoff at both global and basin scales generally
remain ambiguous. Here we use a global runoff reconstruction and a Bayesian statistical method to narrow
uncertainties in runoff projections from the latest generation of global climate models. Three representative
tropical river basins are used to illustrate the application and showcase the potential for substantial reduction in
modeling uncertainty. Yet, results are fairly sensitive to the selected reconstruction thus highlighting the need
for reliable and homogeneized gridded runoff data sets or river discharge measurements. Moreover, climate
models do not account for water withdrawals, whose effect on observed runoff should also be removed in order
to detect and attribute the hydrological effect of climate change. Finally, and more importantly, most models fail
at capturing the observed recent decrease in runoff ratio, which may highlight either model deficiencies or
increasing water derivation over the selected river basins.

Plain Language Summary The response of river discharge under the effect of climate change
generally remains very uncertain. Bayesian statistical tools and global runoff reconstructions, constrained by
flow observations, can nevertheless be used to evaluate the capacity of climate models to simulate the historical
runoff and, thus, constrain its future changes at the basin scale. Three representative tropical river basins help
illustrate the method. The results are nevertheless sensitive to the choice of the runoff reconstruction, thus
emphasizing the need to have good quality flow data, if possible corrected for the direct effects of water
withdrawals from the rivers or the aquifers which supply them. Worryingly, the latest generation of global
climate models show a systematic underestimation of the downward evolution of the ratio between runoff and
precipitation, which could reflect the increasing importance of these withdrawals or the inability of models to
capture the rapidly increasing land surface evapotranspiration under climate change.

1. Introduction
Both precipitation (P) and surface evaporation (E) are projected to increase, globally averaged over land, in a
warming climate (Douville et al., 2021). Yet, changes in terrestrial water availability (P‐E) remain highly model,
season and region‐dependent, and cannot be simply constrained by narrowing uncertainty in the projection of
global mean surface air temperature (hereafter GSAT) (Elbaum et al., 2022). Observed trends in P‐E are also very
uncertain due to limited evapotranspiration in situ measurements and large inconsistencies across multiple sat-
ellite data sets (Robertson et al., 2016). Likewise, atmospheric reanalyzes do not close the water budget and even
the latest ERA5 reanalysis from the European Centre for Medium‐range Weather Forecasts (ECMWF) shows
non‐physical hydrological variations due to stepwise changes in the global observation system (Mayer
et al., 2021). This lack of reliable P‐E reconstructions limits our current understanding of the water cycle response
to human emissions of greenhouse gases (Allan et al., 2020).

Beyond P and E, basin‐scale runoff may however represent an easier component of the land surface water budget
to deal with. While the detection and attribution of global changes in continental runoff changes are also limited
by uncertainties in runoff reconstructions and contrasting influences from anthropogenic emissions of greenhouse
gases (GHG) and aerosols, basin‐scale runoff may be better documented and show stronger changes than its
global counterpart (Alkama et al., 2013; Dai et al., 2009). Yet, river discharge is also sensitive to regional changes
in land use and water management, which are still misrepresented or not accounted for in most global climate
models (GCMs) (Abbott et al., 2019).

Runoff projections are usually based either directly on GCMs or on off‐line hydrological models driven by bias‐
adjusted atmospheric forcings derived from these GCMs. As revealed by successive phases of the coupled model
intercomparison project (CMIP, Eyring et al., 2016), such projections remain highly uncertain for three reasons:
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scenario uncertainty, modeling uncertainty and internal climate variability. Yet, modeling uncertainty usually
plays a dominant role, except for near‐term changes and/or low‐mitigation scenarios where internal variability
has a stronger relative contribution (Douville et al., 2021; Lehner et al., 2020). The situation has not much evolved
since at least three generations of GCMs. A recent comparison of CMIP6 and CMIP5 model performance in
simulating present‐day runoff over the period 1981–2005 indicates for instance that CMIP6 models have not
made significant progress on the basin scale (Guo et al., 2022)

Wang et al. (2022) assessed the runoff (R) and runoff ratio (RR, as estimated from the ratio of annual R to annual
P) simulated by 23 CMIP6 models during the historical period and in two emission scenarios (SSP1‐2.6 and
SSP5‐8.5). Compared with observed river discharge data, the multi‐model median historical runoff was found to
have a comparable global mean magnitude (about 0.8 mm/day), and to display a similar spatial distribution over
the 1994–2015 period. During the twenty‐first century, the median global mean R is projected to increase while
the RR would slightly decrease except for the long‐term under the SSP5‐8.5 high‐emission scenario. The latter
finding provides further support to the nonlinearity of the runoff response to global mean temperature changes
(Cui et al., 2023; Zhang et al., 2018).

These findings are consistent with those derived from previous generations of GCMs. Tang and Lettenma-
ier (2012) showed for instance that the runoff sensitivity implied by CMIP3 simulations varied substantially
across both models and river basins. Although, the runoff response along the trajectory of global mean warming
was found to be approximately linear over many land areas, regional deviations from linearity were apparent
especially for small global warming increments. Such nonlinearities may partly arise from the timescale‐
dependence of runoff sensitivities to both temperature and precipitation changes, as emphasized by Dutot and
Douville (2023).

Another multi‐model study found a global mean runoff increase of 2.9% per 1°C of global warming in CMIP5
against only 1.9% in CMIP3 (Zhang et al., 2014). This difference may partly arise from the early development of
Earth System Models (ESMs), whose stomatal closure effect on evapotranspiration is not totally offset by an
enhanced plant photosynthesis. Among the CMIP5 models, the ESMs however did not show a reduced spread
compared to the other models. Similarly, no step change in model performance or model consensus was found
between CMIP5 and CMIP6 (Miao et al., 2023). Globally averaged, the multi‐model ensemble mean annual
runoff was found to increase by +16.1% under the SSP5‐8.5 CMIP6 scenario (against +10.8% under the RCP8.5
CMIP5 scenario), yet with large uncertainties dominated by modeling uncertainty (Wu et al., 2024).

In the present study, the focus is on annual changes in total (i.e., surface and subsurface) runoff, as simulated by a
subset of 35 CMIP6 models and spatially averaged over a few selected river basins representative of a variety of
regional climates. The main objective is to constrain the R and RR projections, using runoff reconstructions and
precipitation observations. Section 2 describes the data and summarizes the employed statistical method. Sec-
tion 3 illustrates the key results with further support provided in the Supplementary Information (SI). Section 4
highlights the key role of the observations and, beyond the development and evaluation of improved ESMs,
advocates for more reliable naturalized streamflow reconstructions.

2. Data and Methods
The two main observed 0.5° global gridded data sets used are monthly precipitation (P) from the Global Pre-
cipitation Climatology Centre (GPCC, Schneider et al., 2022), and monthly runoff (R) from the Global RUNoff
reconstruction (GRUN, Ghiggi et al., 2019). GRUN is based on a machine learning method that estimates R from
antecedent temperature and P observations. The algorithm was trained with monthly observations at the scale of
relatively small catchments (<2,500 km2) and was then applied to global temperature and P data from Phase 3 of
the Global Soil Wetness Project (GSWP3) covering the 1902–2014 period. Both GPCP and GRUN data have here
been aggregated at the basin scale using a suitable mask, at the same 0.5° resolution, from the Total Runoff
Integrated Pathway (TRIP, Oki & Sud, 1998). In addition, the 1850–2022 HadCRUT5 global mean surface
temperature (hereafter GMST)—a combination of near‐surface air T over land and sea ice and of sea surface
temperature over the ocean—was also used as a surrogate for observed GSAT.

The bias‐adjusted GSWP3 precipitation forcing used by Ghiggi et al. (2019) is slightly different from our
reference GPCC product. Yet, GRUN was carefully cross‐validated with monthly runoff observations from the
Global Streamflow Indices and Metadata Archive (GSIM). More than 8,000 stations worldwide were selected
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after screening for spurious observations. River discharge time series were also corrected for temporal changes in
instrumentation, recalibration of streamflow rating curves. Interestingly, the data were also automatically
adjusted to account for flow regulation (i.e., dam construction) and other human activities (i.e., irrigation), which
are generally ignored in GCMs.

It should be emphasized that the machine‐learning method allowed Ghiggi et al. (2019) to produce an ensemble of
50 gridded monthly runoff estimates over the 1902–2014 period. The use of different training observations has
indeed the potential to generate different outcomes if the model is not able to diagnose the relationship between
the response (R) and the predictors (P and temperature) consistently. The 50 runoff reconstructions were
generated using a Monte Carlo approach in which the random forest algorithm was trained using a random 60%
subset of the grid cells with observations. Unless specified hereafter, the GRUN reconstruction refers to the
ensemble mean of the 50 realizations, but the individual members have been also used to assess how the
reconstruction uncertainties may affect the range of constrained projections (cf. SI).

An alternative monthly reconstruction of P, R and RR has been also derived from the ECMWF ERA5‐Land
reanalysis over the 1950–2021 period (Muñoz‐Sabater et al., 2021a, 2021b). This global high‐resolution data
set for the land component of the fifth generation of European ReAnalysis (ERA5) describes the evolution of the
water and energy cycles over land in a consistent manner over the production period, and is potentially suitable for
trend analyses. It was achieved through global numerical integrations of the ECMWF land surface model driven
by downscaled meteorological forcings. Evaluation against independent in situ observations and satellite‐based
data sets has proven the added value of ERA5‐Land in the description of the hydrological cycle, including an
overall better agreement of river discharge estimations with available observations (Muñoz‐Sabater et al., 2021a,
2021b). Other river discharge observations (GRDC) or runoff reconstructions (Hobeichi et al., 2019) could have
been used, but include many missing data or may not be long or homogeneous enough for the purpose of our
study.

Moving to CMIP6 models, both historical (1850–2014) and 21st century (2015–2100) simulations providing
monthly outputs for precipitation and runoff have been downloaded from a data portal of the Earth System Grid
Federation (https://esgf‐index1.ceda.ac.uk/search/cmip6‐ceda/). The SSP5‐8.5 high emission scenario was
selected in order to maximize the signal‐to‐noise ratio. This choice enabled the use of only one realization for each
model (among a total number typically ranging from 1 to 25). While considering all available members can be
useful to improve the estimation of the forced model response, it has been shown in a previous study (Dutot &
Douville, 2023) that it only makes a slight difference when focusing on annual precipitation or runoff aggregated
over large river basins. Such a spatial aggregation has been completed after projecting the 0.5° TRIP mask on the
model‐dependent native grid. The simulated historical warming was also diagnosed from raw model outputs, but
using near‐surface air temperature only (GSAT) rather than combined with sea surface temperature over the ocean
(GMST).

Regarding the statistical method, we have used the Kriging for Climate Change (hereafter KCC) toolbox
developed by Ribes et al. (2021) and Qasmi and Ribes (2022a, 2022b). It is based on Bayesian statistics where a
prior distribution, π(x), of the forced response to anthropogenic forcings is derived from raw model outputs and
constrained directly with observations (here both observed global mean surface temperature and basin‐wide
average runoff). In the present study, the x vector denotes the forced component of the basin‐scale and
water‐year average of precipitation or runoff, or of the ratio between these aggregated variables, as estimated
from the model outputs on their native grids. The prior (i.e., the unconstrained forced response) is estimated
using a Generalized Additive Model (assuming the additivity of the model responses to individual forcings) and
a simple Energy Budget Model (allowing us to diagnose the runoff response to volcanic eruptions; for more
details, see supplementary materials from Ribes et al., 2021). For the sake of simplicity and given the limited
number of independent models, this prior is assumed to follow a normal distribution and thus only needs an
estimate of the ensemble mean and spread. Next, observations y (here the entire record of global mean surface
temperature and basin‐scale precipitation, runoff or runoff ratio reconstructions) are used to derive a posterior
distribution (after constraint). We assume that observations can be described as: y = Hx + ε, where H is a
pseudo‐observation operator allowing to extract the part of x observed in y, and ε represents both internal
variability and observational errors (if available). Since π(x) and ε are supposed to follow normal distributions,
the posterior can be easily derived using the Gaussian conditioning theorem (see supplementary materials from
Ribes et al., 2021).
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The KCC method has previously been used to constrain CMIP6 runoff projections over the Arctic (Dutot &
Douville, 2023). It was then also compared to an alternative statistical method assuming similar runoff sensi-
tivities, to precipitation and temperature, at interannual and climate change timescales (Lehner et al., 2019). This
assumption was shown to be incorrect and a “pseudo‐observation” framework (in which independent model
outputs are used as a surrogate for both historical and future climate observations) was used to demonstrate the
higher skill of KCC compared to this more empirical approach. The Bayesian method also proved to be not much
sensitive to the choice of the prior distribution (CMIP6 vs. CMIP5 models). Yet, it did not lead to a substantial
narrowing of runoff uncertainties over the Arctic given the strong observed interannual variability and the limited
signal‐to‐noise ratio in the GRUN runoff reconstructions.

3. Results
Figure 1 illustrates both the ensemble mean and inter‐model spread of projected changes in total runoff at the end
of the 21st century. Not surprisingly given the corresponding changes in total precipitation (Figure S1 in Sup-
porting Information S1, the ensemble mean runoff (Figure 1a) shows an increase over the wet tropics and in the
high‐latitudes. In contrast, absolute runoff changes show an ensemble mean decrease over Amazonia as well as,
though to a lesser extent, in some mid‐latitude regions and in the subtropics. Note that relative rather than absolute
changes in runoff may show quite different regional and seasonal patterns (cf. Figure 8.18 in Douville et al., 2021)
given corresponding variations in baseline (1995–2014) runoff. For the sake of simplicity, the focus is here only
on absolute and water‐year changes and, thus, on the tropics where the largest anomalies are found but are also
strongly model‐dependent (cf. Figure 1b). As shown by 10th and 90th local percentiles of the model distribution

Figure 1. Projected changes in total runoff (mm/day) under the SSP5‐8.5 high‐emission scenario. All CMIP6 ensemble statistics are derived from the differences
between the 2081–2100 and 1995–2014 water‐year climatologies. To highlight the inter‐model spread, we not only show (a) the multi‐model ensemble mean anomalies,
but also (b) their local standard deviation and (c), (d) their 10% and 90% local percentiles, respectively. Only one realization is used for each model.

Geophysical Research Letters 10.1029/2024GL108824
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(Figures 1c–1d), even the sign of the runoff response remains uncertain in
most regions, except the robust increase found in the northern high latitudes
and a very limited fraction of the tropical monsoon regions.

Figure 2 shows scatterplots of basin‐scale aggregated runoff versus precipi-
tation climatological anomalies, again averaged along the water year that is
mostly relevant for the northern high latitudes (due to the snow influence) but
is also suitable for the boreal monsoon regions (with maximum precipitation
from June to September). Three illustrative river basins are shown, Ganges,
Niger and Orinoco. Not surprisingly, they all show a statistically significant
linear relationship (as highlighted by the regression lines in Figure 2) between
runoff and precipitation anomalies across the CMIP6 ensemble. Yet, this
relationship is basin‐dependent (as indicated by the slope of the regression
line) and suggests a less‐than‐one runoff amplification, thereby also indi-
cating changes in land surface evapotranspiration.

A brief look at other river basins in the northern hemisphere (Figures S3 and
S4 in Supporting Information S1) suggests that the drivers of mid‐ and high‐
latitude runoff anomalies are generally more complex than in the tropics,
where the concentration of annual precipitation over a few months (e.g.,
during the monsoon season over India and West Africa) may lead to a
stronger relationship between runoff and precipitation anomalies across the
CMIP6 ensemble (e.g., Chang et al., 2014). A more even distribution of
monthly precipitation across the water year has also the potential to give more
weight to model‐dependent changes in evapotranspiration in the basin‐scale
water budget. The relationship between R and P anomalies is even weaker
in the high latitudes where potential changes in the ratio between liquid and
solid precipitation and, thus, in snowfall and snowmelt, represent another
potential modeling source of uncertainty.

The regression slopes shown inFigure2 shouldnot be confusedwith changes in
RR which are computed as the difference of two R/P ratios rather than as the
ratio of R and P anomalies. Figure S2 in Supporting Information S1 shows
similar scatterplots as inFigure2but for changes inRRversusprecipitation.All
basins show a weak positive relationship, albeit only significant over Ganges,
which suggests that enhanced precipitation favors an increase in RR (i.e., soil
moisture saturation or precipitation rate exceeding the infiltration capacity),
whose response is however also influenced by other factors. Looking for them
is beyond the scope of the present study, but several potential candidates can
contribute such as land use change (as considered by some but not all CMIP6
models), changes in precipitation seasonality (Douville et al., 2021) and
changes in daily precipitation intensity (Douville & John, 2021).

As explained in the method section, KCC has been used to constrain the
simulated evolution of the water‐year runoff at the basin scale, from 1850 to
the end of the 21st century (water year 2099 extends from October 2099 to
September 2100). Figures S5 to S7 in Supporting Information S1 illustrate the

results obtained over three representative tropical basins—Ganges, Niger and Orinoco— using either the GMST
(panel b) or the GRUN (panel c) observational constraint only. Also shown are the results for GSAT projections
constrained with GMST (panel a, not basin‐dependent), as well as the results for runoff projections constrained
with both GMST and GRUN (panel d). Only one realization of each of the 35 CMIP6 model is used to produce the
prior distribution, but all available members of the GMST (200) and GRUN (50) reconstructions are used to
constrain, separately or simultaneously, the posterior distribution. For all river basins, GMST observations exert a
weak constraint on the projected runoff, as revealed by the limited narrowing of the 5–95% confidence interval of
the posterior versus prior distribution at the end of the 21st century. The GRUN and combined GMST‐GRUN

Figure 2. Scatterplots of future absolute changes in runoff (y‐axis) versus
precipitation (x‐axis). All basin‐scale changes (in mm/day) are estimated as
the difference between the 2081–2100 and 1995–2014 climatologies, as
averaged across three representative river basins: (a) Ganges, (b) Niger and
(c) Orinoco, respectively. The black solid line refers to the linear regression
fit and the black dashed line refers to the 1:1 bisector.

Geophysical Research Letters 10.1029/2024GL108824

DOUVILLE 5 of 11

 19448007, 2024, 13, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
108824 by C

ochrane France, W
iley O

nline L
ibrary on [26/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



constraints are however stronger, especially over Ganges where they narrow the late 21st century confidence
interval by up to 30%.

The KCC method was applied successively to R, P and RR time series, using consistently both a global (GMST)
and basin‐scale (from GRUN, GPCC or GRUN/GPCC) observational constraint. The results are shown in
Figure 3 for the same three tropical rivers. Here, only the ensemble mean GRUN reconstruction was used, in line
with the single GPCC estimate for observed precipitation and, thus, also leading to a single observational estimate
of RR (ratio between R and P after spatial and annual aggregation using the water year definition).

Looking first at the first column in Figures 3a–3g (in red), the constrained runoff projections are quite consistent
with the results previously shown in Figure 2 and Figures S5 and S6 in Supporting Information S1. Assuming no

Figure 3. Constrained (i.e., posterior) versus unconstrained (i.e., prior) hydrological anomalies under the SSP5‐8.5 high‐emission scenario. Constrained versus
unconstrained changes in precipitation (mm/day), runoff (mm/day) and runoff ratio (%) over three tropical river basins: (a), (d), (g) Ganges; (b), (e), (h) Niger; and (c),
(f), (i) Orinoco. Black dots correspond to the GRUN water‐year runoff anomalies. All projections are constrained by the entire record of both HadCRUT5 GSAT
observations (1850–2022) and of the corresponding basin‐scale averaged variable using GPCP and/or GRUN observations (1901–2014). The thick lines denote the best
estimate of each distribution (i.e., the ensemble mean) while shadings denote the corresponding 5–95% confidence intervals.

Geophysical Research Letters 10.1029/2024GL108824
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observational uncertainty thus only makes a marginal difference when using the GRUN runoff reconstruction.
This can be simply explained by the fact that the machine learning algorithm provides robust reconstructions
when using 60% of the observed river discharge measurements. The GRUN ensemble spread is thus weak
compared to the runoff interannual variability (also considered in KCC, Ribes et al., 2021). Yet, it does not
account for instrumental and measurement uncertainties (Ghigghi et al., 2019) and may thus represent a low
estimate of total uncertainties in runoff reconstructions.

Interestingly, the three selected basins show contrasted ensemble mean runoff projections with increased values
over Ganges, limited changes over Niger, and decreased values over Orinoco. Yet, the prior (i.e., unconstrained)
ensemble distribution of the simulations, as derived from a normal distribution assumption, highlights large
modeling uncertainties, including about the sign of the response. Constraining the projections with both GMST
and GRUN leads to a moderate narrowing of modeling uncertainties, but can shift the whole distribution and the
ensemble mean, especially over Ganges where the increase in future runoff is much less in the posterior compared
to the prior distribution.

Looking at precipitation projections in Figures 3b–3h (in blue), the combined GMST‐GPCC observational
constraint again leads to a limited narrowing of modeling uncertainty, but a possible shift of the ensemble mean
from the prior to the posterior distribution. In line with the constrained runoff projections, the constrained
ensemble mean precipitation changes are lower than unconstrained anomalies over Ganges and Niger, but higher
over Orinoco despite no significant change in ensemble mean runoff. This paradox may have several reasons,
including the GSWP3 rather than GPCC precipitation predictor used to produce GRUN or a possible over-
estimated decrease in evapotranspiration that may offset the overestimated decrease in precipitation.

The results shown in Figures 3c–3i (in green) for the annual RR are probably the most interesting. The observed
signal‐to‐noise ratio is indeed stronger, and allows KCC to narrow model uncertainties more efficiently, than for
R and P separately. This is particularly clear over Ganges where the projected ensemble mean RR increase is
much weaker after constraint and the 5–95% confidence interval is reduced by about one third (typically the same
order of magnitude than when constraining GSAT with GMST in the top left panel of Figures S5–S7 in Sup-
porting Information S1) at the end of the 21st century. A significant reduction of the constrained versus un-
constrained RR is obtained for the three tropical rivers, regardless of the sign of the associated runoff and
precipitation changes. This behavior is also found, though to a lesser extent, in the northern mid‐and‐high lati-
tudes (Figures S8 and S9 in Supporting Information S1).

4. Discussion and Conclusion
There are multiple evidence that the water cycle will further intensify with continuing global warming (Douville
et al., 2021). Yet, and despite a robust increase of total precipitable water by around 7%/°C (e.g., Douville, Ribes,
& Bock, 2022), projected changes in P‐E patterns cannot be simply interpreted as a typical “wet gets wetter, dry
gets drier” response (Allan et al., 2020). Future changes in energy and/or soil‐moisture limited surface evapo-
transpiration, but also in runoff efficiency (e.g., here defined as the RR ratio between annual runoff and annual
precipitation), can contribute to more complex P‐E responses than simply due to the expected enhancement of the
climatological horizontal moisture transport. Regional changes in P‐E may also arise from changes in large‐scale
atmospheric circulation and, thus, cannot be simply scaled with the increase in GSAT (Elbaum et al., 2022). In
some way, water therefore remains a blind spot in climate change policies and, thus, needs more accurate
quantitative assessments to build more resilient adaptation and mitigation strategies (Douville, Allan,
et al., 2022).

The present study provides further evidence of large modeling uncertainty in runoff projections at the basin scale,
even in a high‐emission scenario where such changes are less obscured by the influence of internal climate
variability (Lehner et al., 2020; Wu et al., 2024). Constraining such projections is thus urgently needed but will
not rapidly arise from model development, as highlighted by the limited progress between successive CMIP
generations of GCMs. The KCC Bayesian statistical method may thus represent an alternative, top‐down rather
than bottom‐up approach, to take advantage of the available projections and observations by constraining the
former by the latter and, thus, provide more reliable climate information (i.e., reduced confidence intervals) for
the purpose of adaptation.

Geophysical Research Letters 10.1029/2024GL108824
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The results of KCC, however, may be sensitive to the quality of the observations, even more than to the choice
of the prior distribution (Dutot & Douville, 2023). This obvious limitation can be exemplified by using the
1950–2022 monthly data from ERA5‐Land (Muñoz‐Sabater et al., 2021a, 2021b) rather than GPCC and GRUN
as an alternative observational constraint for precipitation and runoff, respectively. The posterior distributions
(Figure 4) are then quite different from those obtained in Section 3 (Figure 3). Such differences do not only
arise from the shorter ERA5‐Land record, but also from obvious discrepancies with GRUN and/or GPCC over
the 1950–2014 overlapping period. In particular, ERA5‐Land shows a much stronger multidecadal variability
of tropical precipitation, which is not found in GPCC but has obvious consequences on the corresponding
runoff.

Assessing the relative performance of ERA5‐Land and GRUN in capturing the observed basin‐averaged runoff
(evaluated from streamflow measurements at the basin outlets) is beyond the scope of the present study. It has
been however shown that the state‐of‐the‐art ERA5 reanalysis still suffers from inhomegeneities in water budget
quantities, including precipitation and evaporation, especially in the late 1990 s (Mayer et al., 2021). Since the

Figure 4. Same as Figure 3 but using ERA5‐Land instead of the GPCC precipitation observations and the GRUN runoff reconstruction.

Geophysical Research Letters 10.1029/2024GL108824
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ERA5‐Land reanalysis was itself driven by ERA5 precipitation, it is not surprising to see a strong multidecadal
contrast between the late 20th and early 21st century observations in Figure 4. Our results thus suggest that
ERA5‐Land may not be suitable for constraining hydrological changes. They also highlights the importance of
on‐going efforts to provide longer and more homogeneous data sets than generally available (Ghiggi
et al., 2019).

Despite strong observational uncertainties, both GRUN and ERA5‐Land suggest a recent decrease in the observed
RR which is not captured by most historical simulations. This mismatch can arise from multiple non‐exclusive
reasons: (a) internal climate variability which could be better sampled by using all available members of all
available models; (b) model deficiency to capture what may be a forced runoff response to radiative anthropo-
genic forcings (including emissions of greenhouse gases and aerosols); (c) model inadequacy to account for water
withdrawals (for irrigation or other purposes) not entirely removed from our reference GRUN reconstruction.
Further investigation will be needed to discriminate between these confounding factors, potentially using larger
ensembles of model simulations driven by individual rather than all external radiative forcings.

Regarding the second hypothesis, it should be however noticed that our KCC results are somehow consistent with
potential model deficiencies noticed in previous studies. Yang et al. (2018) assessed runoff simulations from
CMIP5 (rather than CMIP6) and, surprisingly, found that runoff is projected to increase over the majority of the
globe despite a drying atmosphere (as diagnosed by the aridity index). This apparent disconnection between the
trends in atmospheric drying and in continental runoff may be due to the fact that the observed recent near‐surface
atmospheric drying is itself underestimated by most CMIP5 and CMIP6 models (Allan & Douville, 2024;
Douville &Willett, 2023; Simpson et al., 2023). This model deficiency may then explain why runoff is increasing
faster than ET over most river catchments and, thus, why RR is increasing with global warming unlike in the
GRUN reconstruction. Other model deficiencies can also contribute to the contrasted trends in RR between
CMIP6 simulations and GRUN/GPCC observations, such as the evapotranspiration partitioning due to plant
physiological effects (e.g., Yang et al., 2023) or the representation of precipitation intermittency in coarse res-
olution climate models (e.g., Scheff et al., 2022).

Compared to previous attempts to constrain runoff projections (e.g., Lehner et al., 2019; Yang et al., 2017), our
study is based on a more recent generation (CMIP6 rather than CMIP5) of climate models, including a greater
proportion of ESMs accounting for the physiological effect of atmospheric CO2 on plant transpiration. More
importantly, the KCC method was proven to be more robust than a multiple regression fitted on interannual
variability given the timescale‐dependent runoff sensitivity to both temperature and precipitation (Dutot &
Douville, 2023). The Bayesian Model Averaging (BMA) method proposed by Yang et al. (2017) is in principle
much closer to KCC, but the projected runoff was then only contrained by runoff data over the 10‐year 1986 to
1995 period so that the model weights were calculated based on the capability to capture the recent climatology
rather than the full 1902–2014 historical evolution as in the present study.

To sum up, we do not only need improved ESMs that may, more or less rapidly, lead to more robust hydrological
projections for a given GHG scenario and/or global warming level, but also— andmore urgently—more reliable
multidecadal observations and reconstructions to constrain the projections and, thus, make the best possible use of
available climate data to guide adaptation strategies and define relevant mitigation targets. Our preliminary results
may provide further motivations for developing and improving long‐term homogeneous observational products,
including for instance the extension of the available VASClimO data set (1951–2000, Beck et al., 2005) as a
variance adjusted version of GPCC, more suitable for trend analysis. Naturalized river flow measurements are
also urgently needed and may represent a useful alternative to the introduction of more or less sophisticated
irrigation schemes in current ESMs. Beyond the evaluation of the historical simulated runoff, they could also be
used to adjust the observed precipitation products in data sparse regions (Beck et al., 2020). Given the ubiquituous
climate change signals that are expected to emerge at the regional scale (Hawkins et al., 2020), more attention
should be paid to this fundamental monitoring and related research activities. Model intercomparison projects
such as CMIP are still needed for understanding, interpreting and attributing observed changes. Yet, they are not
expected to predict the forced hydrological responses to anthropogenic climate change (and corresponding un-
forced variations) with accuracy, unless partially constrained with reliable observations and rapidly improving
statistical methods (Hegerl et al., 2021).
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Data Availability Statement
All model outputs from the CMIP6 historical and scenario experiments are freely accessible at https://pcmdi.llnl.
gov/CMIP6/ or at https://esgf‐node.llnl.gov/projects/esgf‐llnl/. The GPCC, GRUN and ERA5‐Land data sets are
available from Schneider et al. (2022), Ghiggi et al. (2019), andMuñoz‐Sabater et al. (2021a, 2021b) respectively.
The KCC software from Qasmi and Ribes (2022a, 2022b) is freely accessible. All graphics have been produced
using the R or NCL software freely accessible at https://cran.r‐project.org/ and https://www.ncl.ucar.edu/
respectively.
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