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Abstract
Monitoring population trends is pivotal to effective wildlife conservation and man-
agement. However, wildlife managers often face many challenges when analyzing 
time series of census data due to heterogeneities in sampling methodology, strategy, 
or frequency. We present a three-step method for modeling trends from time series 
of count data obtained through multiple census methods (aerial or ground census and 
expert estimates). First, we design a heuristic for constructing credible intervals for all 
types of animal counts including those which come with no precision measure. Then, 
we define conversion factors for rendering aerial and ground counts comparable and 
provide values for broad classes of animals from an extant series of parallel aerial and 
ground censuses. Lastly, we construct a Bayesian model that takes the reconciled 
counts as input and estimates the relative growth rates between successive dates 
while accounting for their precisions. Importantly, we bound the rate of increase to 
account for the demographic potential of a species. We propose a flow chart for con-
structing credible intervals for various types of animal counts. We provide estimates 
of conversion factors for 5 broad classes of species. We describe the Bayesian model 
for calculating trends, annual rates of population increase, and the associated cred-
ible intervals. We develop a bespoke R CRAN package, popbayes, for implementing 
all the calculations that take the raw counts as input. It produces consistent and reli-
able estimates of population trends and annual rates of increase. Several examples 
from real populations of large African mammals illustrate the different features of our 
method. The approach is well-suited for analyzing population trends for heterogene-
ous time series and allows a principled use of all the available historical census data. 
The method is general and flexible and applicable to various other animal species 
besides African large mammals. It can readily be adapted to test predictions of various 
hypotheses about drivers of rates of population increase.

K E Y W O R D S
Bayesian modeling, heterogeneous wildlife censuses, partial counts, popbayes R package, 
population rate of increase, population trend, relative growth rate, total counts, wildlife 
management and conservation
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1  |  INTRODUC TION

In the wake of the unfolding, unprecedented biodiversity loss 
(Ceballos et al., 2015), monitoring wild animals is crucial for building 
effective conservation and management strategies (Burton, 2012). 
The monitoring data must be appropriately analyzed to extract re-
liable insights into trends, rates of increase, changes in trajectories 
and other population characteristics to inform conservation deci-
sions. Much effort has been devoted to improving data collection 
and analysis methods (Hammond et al., 2021). Authors often empha-
size the necessity of collecting high-quality data using standardized 
protocols as a primary requirement (Infantes et al., 2022). Many con-
sider supplementing basic counts with additional information such 
as mark-recapture data (Boyd & Punt, 2021) or radio telemetry (Blum 
et al., 2024).

For analysis, Integrated Population Models (IPM) formulated as 
state space models (Blum et al., 2024; Mazzetta et al., 2007; Schaub 
& Kery, 2021) are currently favored (Boyd & Punt, 2021), along with 
generalized additive models (GAM) (e.g., Forney et al., 2021; Frankel 
et  al.,  2022), analyzed in a Bayesian framework (Wood,  2017). 
Methodologies for analyzing long-term survey data have been par-
ticularly well-studied in the context of nationwide bird censuses, 
showing a trend toward more flexibility (Generalized Linear Models 
(GLM): ter Braak et al., 1994, GAM: Fewster et al., 2000, Hierarchical 
models: smoothed hierarchical model: Amano et al., 2012).

At the data collection stage, many factors may hamper visibil-
ity, such as vegetation cover, topography (Blum et al., 2024), animal 
behavior, group size, and observer experience (Bristow et al., 2019). 
Studies in the United States have examined how the undercounting 
by aerial surveys of large mammals (bighorn Ovis canadensis nelsoni, 
Blum et al., 2024; Elk Cervus canadensis, Bristow et al., 2019; feral 
burro Equus asinus, Hennig & Schoenecker, 2023; bisons Bison bison, 
Terletzky & Koons, 2016) could be corrected. But the proposed solu-
tions are generally too expensive to implement on a wide scale or 
routinely.

Unlike research programs, monitoring programs of protected 
areas or populations (Arciszewski et  al., 2023) often operate with 
limited funding and must accommodate data typically characterized 
by heterogeneities in sampling techniques, effort, or frequency. This 
situation is typically encountered in low-income countries, but not 
exclusively. For example, wildlife agencies in North America face 
constraints when monitoring and managing wildlife (e.g., Caughlan & 
Oakley, 2001; Sands & Pope, 2010); which is especially true for many 
Tribal nations (Shamon et al., 2022).

Therefore, if estimating true population size is particularly 
elusive in this context, determining whether the population is de-
creasing, increasing, or stable should become the more reasonable 
target. Appropriate analytical approaches would therefore require 

reexamining existing methods for estimating population trends, 
which often demand homogeneous and larger datasets than typi-
cally available, besides statistical skills that often transcend those 
available to most conservation management teams. This deficiency 
can be partly alleviated by developing accessible off-the-shelf soft-
ware packages.

In this paper, we aim to address census data heterogeneity, 
paucity of data sources, and user-friendly methods for estimating 
wildlife trends. This work stems from a collaborative project aim-
ing at collating archived information to assess the status and trends 
of large herbivores in West and Central Africa. Census data from 
protected areas in these subregions of the continent typify the pre-
ceding challenges. The method and associated software package we 
present here are thus directly motivated by concrete challenges en-
countered while analyzing trends for these heterogeneous wildlife 
census data.

Analyzing population trends using multi-taxa wildlife censuses 
faces many additional challenges. The first concerns accommodat-
ing unequal intervals between consecutive censuses in trend mod-
els. Very few protected areas have long-term monitoring programs 
that provide regular wildlife abundance estimates typically because 
of budgetary constraints. However, modeling trends for irregularly 
spaced time series of censuses is challenging. Gaps in time series 
can be mitigated when covariates are available at times where 
counts are missing (Fewster et  al., 2000). Unfortunately, such co-
variates are rarely available in most population time series (Humbert 
et al., 2009). Smoothing techniques, such as log-linear Poisson re-
gression (Fewster et al., 2000), dynamic GLM (Mazzetta et al., 2007), 
and hierarchical models (Amano et al., 2012), that is assuming some 
regularity in the way the population is changing in the intervals be-
tween available counts, remains an option.

The second challenge relates to accommodating data obtained 
with different census techniques and sampling strategies with vary-
ing accuracies in the same trend model. A comprehensive review of 
census techniques can be found, for example, in Sutherland (2006). 
As methodologies for counting wildlife have been increasingly im-
proved (Borchers et al., 2002), census techniques, sampling strate-
gies, and the accuracy of counts have strongly evolved through time. 
This evolution complicates integrating new and old wildlife counts, 
especially those obtained 5–6 decades earlier, in the same trend 
model. Old counts, although usually less accurate, are nevertheless 
crucial, as they often provide the only information on wildlife popu-
lation status at the early stage of establishment for most protected 
areas. The earlier estimates are sometimes provided by managers 
based merely on their expertise. Yet, resorting to expertise is in-
creasingly recognized as a valid practice in conservation (Kuhnert 
et al., 2010) and practitioners' expert knowledge and expertise are 
considered especially valuable (Drescher et al., 2013).

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation ecology
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In practice, due to cost constraints (Gaidet-Drapier et al., 2006), 
counting protocols are limited to four categories: whether they are 
census or sampling, that is total or partial counts, and carried out 
by air or ground. Additionally, changes in governance often lead 
to changes in methodology. Detection rate is a key component of 
the accuracy of abundance estimates (Jachmann,  2002; Ridpath 
et  al.,  1983; Van Hensbergen & White,  1995, for some examples) 
and differs between observations from the air or from the ground. 
Beyond vegetation cover, the main factors influencing the detect-
ability of wild mammals are body size and color (Jachmann, 2002). 
Therefore, when using multiple census techniques, an estimation 
bias is typically introduced as aerial counts usually give fairly accu-
rate estimates for large, dark-bodied animals but usually underesti-
mate small, light-bodied ones (Jachmann, 2002). Conversely, ground 
techniques tend to be less accurate for large-bodied and highly mo-
bile animals.

As no standardized conversion factors have been set for these 
known biases, practitioners tend to use only a subset of the avail-
able data obtained with the same census technique (see Redfern 
et al., 2002 for an attempt at correcting the probability detection 
bias on aerial counts). However, for some protected areas, ignoring 
some counts can considerably limit time series analysis and create 
gaps between counts. Unfortunately, methodologies for integrating 
heterogeneous wildlife censuses and modeling population trends 
are still crude (Humbert et al., 2009). Such methodologies need im-
provement to better suit practitioners' needs and enable reliable 
decision-making. In the absence of appropriate methods, standard 
statistical tools like linear regression are often used even though 
they are inappropriate for handling irregularly spaced counts, or 
variation in detectability among species due to body size, color, and 
census techniques (Krebs,  2006). Standard methods also do not 
impose an upper bound on population growth between successive 
counts implied by the demographic potential of surveyed species 
(Fisher, 1930).

Not surprisingly, most reports or publications use crude meth-
ods by simply comparing the first and last counts and calculating 
a percentage change in population size (see Barnes et  al.,  2016; 
Renaud, 2005; Renaud et al., 2006; Stalmans et al., 2019 for some 
recent examples in scientific papers or expert reports). More elabo-
rate attempts fit linear trends (Bart et al., 2003) or calculate an index 
of population change based on the first count in the time series 
(Barnes et  al.,  2016; Craigie et  al.,  2010; Tolimieri et  al.,  2017 for 
some examples). Therefore, many contemporary time series analy-
ses of wildlife censuses limit decision-making by simply deriving an 
index of change from the first available count, thereby ignoring the 
absolute amount and timing of changes (see Craigie et al., 2010 for 
some examples).

Therefore, we require analytical approaches able to incorporate 
salient features of wildlife populations and make the best use of all 
available count data. In particular, such approaches should consider 
the precision of each count and give more weight to the more pre-
cise counts in the series. They should also consider the demographic 
potential, usually measured by the “maximum instantaneous rate” 

of increase (Sinclair, 2003) or maximum relative growth rate, rmax. 
Values for rmax can be found in the literature for a number of species 
(see Table 3).

Many models analyzing population count series have at their 
core a population growth model (e.g., Dennis et al., 2006; Forney 
et al., 2021; Hostetler & Chandler, 2015; Kidwai et al., 2019; Yeiser 
et  al.,  2018), such as exponential, Ricker or Gompertz. Some of 
these models include rmax among their parameters. However, the 
role of rmax in these models differs from ours. These models make 
strict assumptions about the form of population growth and use 
data to estimate model parameters including rmax. In contrast, we 
do not make assumptions about the form of population growth 
and see rmax as external information useful for evaluating trends 
more realistically.

The relative growth rate, r, is related to the percentage change in 
population size per time unit R by r = ln(1 + R), making it, in our opin-
ion, the appropriate quantity to model. The relative growth rate also 
has the advantage of being chiefly influenced by prevailing condi-
tions (climate, food resources, predation, competition, governance). 
Thus, if these conditions change substantially and progressively, 
then the relative growth rate may also change. Incorporating a pos-
itive dependence between successive values of the relative growth 
rate is thus a natural way of smoothing the population trajectory. 
Ultimately, the choice of how to model r can open up the way to 
include environmental variables, and thus to the possibility of test-
ing potential functional relationships between environmental and 
demographic changes.

Here, we present a Bayesian approach for estimating popula-
tion trajectories from heterogeneous counts, including potentially 
large time gaps (>10 years in some examples in Section  3.3), and 
illustrate its application using several populations of large mam-
mals from African protected areas. This approach is programmed 
in a bespoke R package called “popbayes” (Casajus & Pradel, 2023), 
which includes routines for preprocessing counts and carrying out 
the proposed Bayesian analysis. Preprocessing is required because 
certain old censuses often lack the minimum information needed for 
statistical analysis, such as a measure of precision, or are not directly 
comparable among themselves due to changes in census methods 
over time.

We start by presenting the diverse types of data sets for which 
this type of analysis can be performed, highlighting the challenges 
they present and proposing how to overcome them and extract as 
much information as possible. We then derive conversion factors 
for harmonizing parallel pairs of aerial and ground counts. We ad-
vocate the use of 95% credible interval as a common measure of 
precision for all counts in a series and propose ways to construct it 
when no measure of precision is available (step 2 of Figure 1). Finally, 
the model accounts for the demographic potential of a species, ex-
pressed as its intrinsic population growth rate (Sibly & Hone, 2002). 
All the steps in the method are summarized in a flow chart (Figure 1).

We then illustrate the steps in data preparation and process-
ing with an example, showing how original raw counts are used 
to obtain the final population trajectory. The robustness of our 
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procedure is illustrated through several examples with increasing 
levels of managerial and analytical challenges. These examples cover 
a broad spectrum of real census data, ranging from relatively rich, 

method-homogeneous count series with changes in counts incom-
patible with the demographic potential of the species, to sparse and 
highly method-heterogeneous series (Table 1). Finally, we illustrate 

F I G U R E  1 Flowchart describing the process for conducting a trend analysis for a heterogeneous data set of wildlife counts.

TA B L E  1 Summary of the analytical and managerial challenges associated with the time series we considered in Section 3.2.

Site Species Origin
Analytical and managerial 
challenges

Kajiado County (Kenya) Impala (Aepyceros melampus) Joseph Ogutu All counts are aerial samples 
but some very heterogeneous 
population size estimates at 
close dates

Zakouma National Park (Chad) Tiang (Damaliscus lunatus tiang) Collated by us (multiple sources) All counts aerial but a shift 
from sampling to total counts 
occurred in the middle of the 
period

Nazinga Game Ranch (Burkina 
Faso)

Roan (Hippotragus equinus) Collated by us (multiple sources) Mainly sample ground counts 
with occasional changes in both 
sampling and field methods

Bamingui-Bangoran and Monovo 
Gounda Saint Floris National 
Parks complex (Central African 
Republic)

Giraffe (Giraffa camelopardalis 
antiquorum)

Collated by us (multiple sources) Method consistent but very few 
counts spread apart

W National Park (Burkina Faso) Buffalo (Syncerus caffer 
brachyceros)

Collated by us (multiple sources) Both few counts and high 
heterogeneity of methods
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    |  5 of 16PRADEL et al.

potential interpretations of the modeled trajectories, underscoring 
the central role of the relative growth rate.

2  |  MATERIAL S AND METHODS

2.1  |  The data sets and their challenges

A database of census data of large herbivores in several African pro-
tected areas was created during an earlier project, called Afrobiodrivers 
(https://​www.​fonda​tionb​iodiv​ersite.​fr/​en/​the-​frb-​in-​action/​progr​
ams-​and-​proje​cts/​le-​cesab/​​afrob​iodri​vers/​). The protected areas then 
considered are scattered across West and Central Africa where data 
on wildlife populations are often scarce and heterogeneous. Data 
were digitized from paper archives. In this article, we use a subset of 
the Afrobiodrivers collated data supplemented with data from East 
and Southern Africa from published references or accessible sources. 
To support inference on population trends, a data set must comprise a 
minimum number of counts; we settled on 4 as a rule of thumb. While 
a count series of 3 or less will not be accepted by our code, a more 
stringent rule may of course be adopted by the user. We illustrate the 
effect of the 4-count rule by subsampling a data set (see Figure B1 
of Appendix B). All counts in this paper are aerial or ground counts, 
although expert guesstimates could have been used as well. Each eli-
gible count was associated with its date (i.e., the year), site (e.g., pro-
tected area), species, and counting method separated into field and 
statistical methods (Eikelboom et al., 2019). The field method refers to 
the counting technique (aerial or ground count) whereas the statistical 
method refers to the sampling strategy (total or partial counts); expert 
estimates would be treated as a third statistical method. If a measure 
of precision (e.g., confidence interval) was available, it was retrieved 
together with the count. We treat the case where no measure of preci-
sion is provided in Section 2.3.

It has long been known that counting from the air or from the ground 
yields different estimates and that the discrepancy varies with the spe-
cies, notably its size and color (Greene et al., 2017; Jachmann, 2002). 
We adopt the approach of seeking to estimate a conversion factor 
between ground and aerial counts as in Greene et al. (2017), assum-
ing this factor depends primarily on a species' characteristics (but see 
Section 4). However, as our primary interest is in the estimation of 
population trend, we do not assume like Redfern et al. (2002) that one 
method provides true population size (Figure B2).

Hence, if the expected count by method A (aerial) is CA, and the 
expected count by method G (ground) is CG, CA = β CG. Knowing 
β allows us to calculate what the count would have been if aerial 
counting had been used instead of the ground counting. To estimate 
the conversion factor β thus defined, we used 166 partial counts 
(83 pairs) carried out from the ground and from the air almost at 
the same time (at most within a month). The partial counts come 
from four protected areas, Hwange National Park, Nazinga Game 
Ranch, Maasai Mara National Park, Lupande Game Management 
Area, mainly hosting wooded savannas (data from Cornélis, 2000 for 

Nazinga, J. O. Ogutu for Mara, H. Fritz for Hwange, Jachmann 2002 
for Zambia).

As detection probability is influenced by species size and color 
(e.g., East, 1999), we relied on the expert knowledge of our team 
members with protected area management experience to define 
broad categories of species likely to share a similar bias. We re-
tained five species classes that can be used across sites: (1) elephant 
Loxodonta africana; (2) giraffe; (3) large dark species (buffalo and 
sable); (4) large light and brown species with female body weight 
above 150 kg (e.g., eland Tragelaphus derbianus, kudu Tragelaphus 
strepsiceros, Lichtenstein hartebeest Alcelaphus buselaphus lichten-
steinii, roan, waterbuck Kobus ellipsiprymnus, blue wildebeest 
Connochaetes taurinus taurinus, plain zebra Equus quagga); (5) me-
dium light and brown species with adult female body weight above 
10 kg but below 150 kg (e.g., gazelles Gazella spp., impala, kob Kobus 
kob kob, red hartebeest Alcelaphus buselaphus caama, topi Damaliscus 
lunatus topi, warthog Phacochoerus africanus). While these species 
are typically found in habitats suitable for ground and aerial surveys, 
the detection of smaller species, for example, duikers Cephalophus 
spp., dik-dik Madoqua spp. or even oribi Ourebia ourebi, by standard 
aerial surveys, in well-vegetated savanna landscape, is typically too 
variable and unreliable to analyze.

The conversion factors were computed from the pairs of parallel 
counts using a Bayesian model that gives more weight to the more 
precise estimates (see Appendix A for details). The results are con-
sistent with expectation, namely a higher count estimate for medium 
and large, light brown species from the ground, and a higher estimate 
from the air for elephants and dark species, sable and buffalo. Using 
these conversion factors allowed us to establish population trends 
with mixed census methods. This implies, for instance, that the esti-
mated number of elephants based on ground counts would have to 
be adjusted by a multiplicative factor to be comparable with an aerial 
count estimate obtained on another date (Table 2). We come back to 
this point in the Discussion section.

TA B L E  2 Multiplicative conversion factor to apply to an aerial 
count to obtain an equivalent ground count. The data used are 
available from the authors upon request.

Species class based on color and/or 
body massa Conversion factor [95% CI]

Medium-sized light and brown 
species (20–150 kg)

6.747 [6.701, 6.792]

Large light and brown species 
(>150 kg)

2.302 [2.244, 2.359]

Large dark species (>150 kg) 0.561 [0.545, 0.577]

Giraffe 3.011 [2.936, 3.083]

Elephant 0.659 [0.657, 0.662]

aMedium-sized light and brown species include impala and tiang, large 
light and brown species, roan, blue wildebeest and eland, and large dark 
species, buffalo.
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2.2  |  Associating a confidence interval to each 
individual count

A measure of precision is generally provided along with the counts 
in the literature, but not always. This measure may be a standard 
error, a variance, a coefficient of variation, or a confidence interval 
(CI). If the distribution is specified, a 95% CI can always be derived. 
If the distribution is not specified, we assume a normal distribution, 
as other distributions would likely be specified if used. Hence, we 
decided to use the 95% CI as our standard measure of precision.

Sometimes, the derivation of a CI leads to nonsensical results, 
such as a negative lower bound. Since negative values for counts 
are illogical and can cause problems in calculating trajectories (see 
below), we replaced any negative lower bound with 0.01. When a 
species becomes locally extinct during monitoring, confidence in-
tervals should be [0,0], which is not acceptable for the algorithm. In 
such cases, we set the CI at [0,0.01].

A measure of precision is often lacking when counts are reported 
as total counts or expert guesstimates. Several of our team mem-
bers with extensive practical experience in actual wildlife censuses 
and their use agreed that a reasonable rule for expert guesstimates 
of large savanna mammals is that the true population size would 
be within 20% more or less than the expert guesstimate in 95% of 
cases. For total counts, it is much less likely that the true population 
size is lower than the count, as this can only occur when some indi-
viduals are double-counted. Hence, we use asymmetric 95% CIs. The 
lower bound is set at 5% less than the count; while the upper bound 
remains 20% above the count.

2.3  |  Inferring population trajectory from counts

In modeling population trajectory, the basic parameter is the relative 
growth rate, defined as:

r = ln(Nt + 1/Nt) where Nt is the population size at time t. The de-
fault unit of time is the year.

Although changes in effective environmental conditions may 
sometimes be abrupt, most of the time, neighboring years tend to 

resemble each other. We therefore implemented a constraint be-
tween successive relative growth rates as follows:

This means that rt + 1 is drawn from a normal distribution with a 
mean rt and a standard deviation of 0.1. This forms the smoothing 
part of the algorithm. The reciprocal of the variance, called preci-
sion in statistics, thus has a default value of 100. Reducing this value 
would produce a rougher curve (see Section 3.1).

The first relative growth rate r1 is drawn from a very liberal distri-
bution with a 0 mean and unit variance, corresponding to no change 
in population size.

The first population size N1 is drawn from a uniform distribution 
between half and double the first count:

Additionally, if immigration can be ignored, the demographic 
potential of a species caps its relative growth rate (see Table  3). 
Whenever a higher value is drawn for r, it will be replaced by rmax:

The second part of the model describes the observational pro-
cess. It uses the provided confidence intervals as two series of 
counts corresponding to the lower (Cmin) and upper (Cmax) bounds 
of the 95% CIs. From each Cmin–Cmax pair, we derive a standard 
deviation assuming a normal distribution:

In turn, this standard deviation is used as the standard deviation 
of the normal distribution of the count around the unknown popu-
lation size (N).

rt+1 ∼ N
(

rt , 0.01
)

r1 ∼ N (0, 1)

N1 ∼ Unif
(

C1 ∕2, 2
∗ C1

)

r ≤ rmax

σ = (Cmax−Cmin)∕3.93

C ∼ N
(

N, σ2
)

TA B L E  3 The intrinsic rate of increase (rmax) of the population was assessed from the body mass of adult females in the studied species.

Species Body mass (W) of adult female (kg) rmax Reference (see footnote as well)

Impala 55 0.401a Kingdon and Hoffmann (2013)c

Tiang 127 0.299a Child et al. (1972)c adjusted from Sachs (1967)

Blue wildebeest 230 0.247a Kingdon and Hoffmann (2013)c

Roan 250 0.242a Kingdon and Hoffmann (2013)c

Buffalo 400 0.208a Cornélis et al. (2014)c

Eland 450 0.150b Sinclair (1996)b

Giraffe 702 0.175b Suraud et al. (2012)b

Elephant 2873 0.112b Foley and Faust (2010)b

Note: rmax is assessed using 1.375 W
−0.315 from Sinclair (1996) in a, and reported from the literature when a demographic analysis had been conducted 

in b. Reference for body mass is indicated in c.
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The model is implemented in a Bayesian framework using the 
program Jags (Plummer,  2003). The Jags code for the model is 
given in Appendix A. A flow chart summarizes all the above steps 
(Figure 1).

3  |  RESULTS

3.1  |  An example of how to transform raw data into 
a population trajectory: Roan antelope (Hippotragus 
equinus) in Nazinga game ranch (Burkina Faso)

In Nazinga, the predominant field method has been ground censuses. 
A total of 18 censuses were conducted between 1985 and 2009, two 
of which were aerial (in 2000 and 2003). Because, according to ex-
perts, ground counts are deemed more reliable for roan antelopes, the 
two aerial counts are first transformed to render them comparable 
to the ground counts (Figure 2a). Given that roan antelopes are large 
brown species, the conversion was achieved by multiplying the aerial 
counts by 2.302 (Table 2). After this conversion, the two aerial counts 
align more closely with the general trend, although the ground count 
from February 2000 appears somewhat outlying.

An interesting feature of this data set is that 3 counts were carried 
out in 2000: a sample ground count by car in February, a sample ae-
rial count in March, and a sample ground count by foot in April. The 
method can handle different counts obtained in the same year, but it 
is also possible to use fractional years. We opted for the latter option 
because it better matches the data. When accounting for count pre-
cisions, the curve excludes the count for February 2000 (Figure 2b), 
which lies outside the 95% credible envelope. A high rate of increase 
is observed for a very brief period in 2000. When the maximum rel-
ative growth rate rmax is factored in, this sharp increase disappears 
(Figure 2c).

However, assuming no sudden year-to-year changes during the 
period leads to the smoother curve in Figure 2d. This is achieved by 
changing the smoothing precision (see Section 2.3) from a very low 
value of 1 (Figure 2b,c) to 100. This last value of the smoothing preci-
sion and the maximum relative growth rate, which are the default op-
tions in the package popbayes, are used in the remainder of the paper.

3.2  |  Robustness of the approach to heterogeneity 
in field and statistical count methods

This section presents examples that showcase the model's ability 
to deal with increasing challenges. The counts of impalas in Kajiado 
(Figure 3a) represent an ideal situation: a single method (aerial sam-
pling) has been used consistently for 23 aerial counts carried over 
33 years (between 1977 and 2011) and all counts come with an as-
sociated precision (95% confidence interval). Yet, these counts are 
highly variable, even for close dates. For instance, a count of 6345 
(before conversion) in 1992 is surrounded by two counts of 1886 
and 1747 in the same year. Conflicting counts are also found in 1991 
(2 counts) and 1994 (2 counts).

Here, unlike with the roan antelope in Nazinga, we have kept the 
exact same date for the counts conducted in the same year for il-
lustration. The relatively higher precisions and the accumulated evi-
dence of the two consistent low counts of 1992 heavily influence the 
curve, drawing it away from the high count of the same year. In 1994, 
information from the following years mainly draws the curve toward 
the lower count. Overall, the model captures the temporal trend 
well, avoiding unrealistic ups and downs. The precision indicated by 
the credible envelope is better for periods with numerous counts.

The tiang counts in Zakouma exemplify a change of methodology. 
All counts are aerial, but before 2005, they were sample counts; af-
terwards, except for 2008, they were total counts. Total counts are 
considered reliable, particularly regarding the minimum number of in-
dividuals in an area: a 95% confidence interval is built with a lower limit 
of 5% below the actual count and an upper limit of 20% above. Here, 
we have a high count of 2450 in 1995 that follows a previously low 
count of 400 in 1991 and precedes a count of 1310 in 2002. However, 
the precision of this point is low. Moreover, the species' demographic 
potential limits the multiplication of the population size over 4 years by 
a factor of 3.32. Despite the degraded precision from 1991 to 2002, 
the model avoids the high 1995 count (estimate for this year is 856) 
and fits a more reasonable temporal trend (Figure 3b). The Nazinga 
roan count series has 2 aerial counts interspersed among 17 ground 
counts, requiring the ground counts to be rescaled to be comparable 
with the aerial counts. The large imprecision of the ground counts is 
conspicuous in 2000 when two counts were carried out, yielding point 

F I G U R E  2 Successive steps in 
modeling counts of roan antelope in 
Nazinga: Each panel compares the 
preceding (black) to the next (red) 
situation: (a) from raw (open black 
circles) to converted data (full red circles) 
according to the field method used; (b) 
from converted data (open black circles) 
to a fitted curve accounting for the 
count precisions (red curve); (c) curve 
adjusted to account for demographic 
potential (rmax); (d) smoothing by assuming 
that the relative growth rate r changes 
progressively.
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8 of 16  |     PRADEL et al.

estimates of 2929 and 1192, respectively (before rescaling). The ae-
rial count of 2003 is very influential as it is a total count. The model 
predicts a population low in 1995, with the subsequent upward trend 
limited by the species' demographic potential (Figure 3).

Some series have very few points. For example, only five giraffe 
counts are available for the northern Central African Republic from 1970 
to 2010. However, the sampling method has consistently been aerial 
surveys. The model closely follows the counts, which are too far apart 
to influence each other, except for the last two counts, where the more 
precise last count draws the curve below the less precise second last 
one (Figure 3d). The precision expressed by the credible envelope sug-
gests a phase of population increase in the late 1970s and early 1980s, 
corresponding to a lapse in the continuous decline. The buffalo counts in 
W Burkina exemplify high heterogeneity with a mixture of field and sta-
tistical methods. They are also few and widely spaced (Figure 3e). After 
converting the only ground count to its equivalent aerial count (the pre-
ferred method for this species) and constructing confidence intervals for 
the two total counts, it appears that this population collapsed during the 

1980s, which corresponds to the last episode of rinderpest (Agriculture 
Ministers' Conference, 2010; Tounkara et al., 2017) before the disease 
was definitively eradicated from the region by the end of the 1980s (see 
for instance Kouba, 2013). The later years suggest a modest recovery 
toward the end of 2000 followed by another dramatic decrease. Again, 
the counts are too far apart for a refined interpretation, but the precision 
is sufficient to portray the successive tendencies.

3.3  |  Interpreting trajectories in terms of the 
relative growth rate

In addition to modeling the trend, the method estimates the relative 
growth rate (r). This provides complementary insights into the popula-
tion trend as it highlights periods that may deviate from the overall 
trend. For instance, the mean r is negative for both the eland in Northern 
CAR (1970–2010) and the Wildebeest in Ngorongoro (1964–2005) 
(Figure 4). However, while the annual r series is consistently negative 

F I G U R E  3 Deriving trajectories for 
very heterogeneous wildlife survey 
data sets: An illustration with five case 
studies portraying various analytical and 
managerial challenges (see Table 1). The 
gray areas represent the 95% credible 
band.
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    |  9 of 16PRADEL et al.

for the eland over the entire survey period, the wildebeest population 
size increased during 5 intermediate periods (1966–1971, 1977–1980, 
1988–1991, 1998–2000, 2004–2005). Similarly, whereas the mean 
r over the entire period is positive for both the buffalo in Zakouma 
(1986–2016) and the elephant in Matebeleland North (1981–2014), 
the buffalo population size increased continuously, while the elephant 
population decreased on two occasions, between 1983 and 1986, and 
again between 2001 and 2007 (Figure 4).

4  |  DISCUSSION

In our methodological approach, we first established criteria for 
including data from different census methods to minimize the loss 
of historical information for a given protected area. We then de-
veloped a general and flexible model for modeling trends in heter-
ogeneous wildlife counts and estimating associated uncertainties. 

To draw realistic population trends, we accounted for the demo-
graphic potential of a species. We illustrated the model using data 
from west, central, and eastern Africa. The trends we estimated 
are consistent with known historical events in these regions. For 
instance, the dramatic drop in Burkina Faso's W National Park buf-
falo population during the 1980s corresponds to a severe episode 
of rinderpest, to which buffalo is particularly susceptible. Similarly, 
the documented dramatic decline of giraffe's and eland's popula-
tions in Northern Central African Republic during the 1970s align 
with our findings (see for instance Bouché et  al., 2009; Scholte 
et al., 2022). We also verified that the results remained consistent 
when only a subsample of the time series was used (see Figure  B1 
and B2 of Appendix B), demonstrating that the method is robust 
and relies on the entire set of counts rather than individual data 
points. In the following sections, we emphasize the novelty, ben-
efits, and limitations of the proposed method and associated pack-
age, popbayes.

F I G U R E  4 Illustrations of the relative 
growth rate: the mean r over the study 
period indicates the overall trend while 
the yearly rate of increase may help 
identify periods with an opposite trend.
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The maximum annual population growth rate rmax is a critical 
parameter for population management models (Hone et al., 2010). 
Even though it is rarely reached, it indicates a population's poten-
tial to bounce back after a perturbation. Integrating rmax into trend 
modeling is therefore crucial to ensure realistic prediction of popu-
lation recovery. Surprisingly, this has not been commonly done when 
analyzing real data. Models that focus on population growth often 
include trend models, but they typically do not set a cap on rmax (see 
for instance Dennis et  al., 2006; Forney et  al.,  2021; Hostetler & 
Chandler, 2015; Kidwai et al., 2019; Yeiser et al., 2018). The use of 
rmax is optional in our approach and should be omitted if immigration 
is suspected. We plan to allow rmax to be used at specific dates in 
future versions of the model.

Identifying the determinants of a population's rate of increase 
using field data is central to gaining a better understanding and 
managing wildlife populations (Sibly & Hone, 2002). Therefore, com-
bining the analysis of trends in population numbers (often used to 
assess critical conservation status, e.g., IUCN red listing) with trends 
in growth rates, provides a much better indicator of whether man-
agement, social, or ecological conditions are conducive to popula-
tion growth. The average rate of increase, we suggest and calculate 
in the “popbayes” package, effectively quantifies overall trends be-
cause over long periods, populations fluctuating naturally in their 
environment are expected to have an average rate of increase close 
to 0 (Hone, 1999).

For biodiversity conservationists and managers, the added value 
of the “popbayes” package lies in its flexibility in building population 
trends from highly heterogeneous datasets. The tool offers built-in 
solutions for integrating wildlife population estimates from different 
census techniques, allowing users to make full use of all the available 
data types for an area. It accounts for biases in census methods by 
considering species' body size and color and managers' expertise on 
the most appropriate techniques for particular species. The applied 
conversion factors enable the use of many censuses to model pop-
ulation trajectories. These proposed factors may be substituted by 
more appropriate values if known. Furthermore, the package allows 
the use of expert guesstimates. If a guesstimate is deemed reliable, 
the user can specify its nature, and the package will automatically 
treat it as such, constructing the default confidence interval as 
shown in Figure 1. For many protected areas, such expert guessti-
mates are the only available data on the wildlife population status in 
the early stages of their official gazettement. Experienced managers 
are likely to have a thorough understanding or accurate information 
on species' traits (weight, color) and appropriate census methods for 
their specific areas. The package allows changes in the reference ta-
bles used to calculate conversion factors and rmax values. The flow 
diagram may need to be modified accordingly, in particular, if ground 
methods become the standard reference for a particular area.

The use of the annual population growth rate as an output of the 
model is a critical asset of the package. Following Hone et al.'s (2010) 
insights, calculating the annual population growth rate r opens the 
door to a wide range of interpretative perspectives for managers. 
While many previous approaches have centered their models on log 

population size (Amano et al., 2012; Fewster et al., 2000; ter Braak 
et al., 1994), we believe that the population growth rate r is a more 
natural parameter because it directly measures current population 
dynamics. Hence, the relationship between successive r values pro-
vides a natural way of smoothing, reflecting the continuity of en-
vironmental conditions in successive years. Conversely, a lack of 
continuity would indicate a dramatic change in conditions. Currently, 
the package does not allow changes in the degree of smoothing over 
the time series, but this is a feature we are considering for future 
versions.

The “popbayes” model is built primarily to maximize the output 
from heterogeneous time series of count data to facilitate and en-
hance their use in conservation management. Although the package 
was motivated by counts of African large mammals, it is general and 
can be used in other contexts. For example, counts of marine mam-
mals share many similarities (Hammond et al., 2021). More broadly, 
the package can be applied to monitoring data characterized by 
varying methods, inconsistent effort levels or frequencies. The 
package is flexible and can readily be extended to investigate pu-
tative drivers of population change. If environmental covariates are 
available, regression models can be used to link population changes 
to their putative drivers. Comparison of trends for the same species 
across different protected areas or of different species in the same 
area can also be easily implemented. Additionally, if a known per-
turbation causes a sudden change in environmental conditions, the 
model can allow for a corresponding sudden change in r.
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APPENDIX A

A.1 | BUGS code for trends
 model { 

 # precision is derived from the Confidence 

Intervals provided in entry

 for (i in 1:k) {

 sd[i] <- (h[i]-l[i])/3.93 # normal distribution 
assumed

 prec[i] <- pow(sd[i],-2)
 }

 lability <- 100 # mild constraint of resemblance 
between successive r (intrinsic rate of increase)

 minN1 <- c[1]/2
 maxN1 <- c[1]*2
 # Priors and constraints

 N[1] ~ dunif(minN1, maxN1) # initial population 
size bounded between half and two times the count

 

 # Likelihood

 # State process

 logN[1]<-log(N[1])
 rcand[1] ~ dnorm(0, 1) # candidate rate of 
increase

 r[1] <- min(rcand[1], rmax) # true rate cannot 
exceed rmax

 logN[2] <- logN[1]+(t[2]-t[1])*r[1] # r is per 
unit of time, hence the (t[2]-t[1]) factor to ac-

count for the interval duration

 N[2] <- exp(logN[2])
 for (i in 2:(k-1)){

 rcand[i] ~ dnorm(r[i-1], lability) # conditions 
in year i should roughly resemble those in year 

i-1

 r[i] <- min(rcand[i], rmax) # but rate of in-
crease cannot exceed rmax

 logN[i+1] <- logN[i]+(t[i+1]-t[i])*r[i] # r is 
per unit of time, hence the (t[i+1]-t[i]) factor 
to account for the interval duration

 N[i+1] <- exp(logN[i+1])
 }

 # Observation process

 for (i in 1:k) {

 c[i] ~ dnorm(N[i], prec[i]) # observed count is 
distributed around the true count with the appro-

priate precision for the date

 }

 

 

# other interesting quantities

 meanr <- mean(r[])
 sdr <- sd(r[])

 }

A.2 | BUGS CODE FOR DERIVING CONVERSION FACTORS
The basic data (at our disposal) for deriving conversion factors are 
pairs of counts carried out in parallel on the same species and at 
the same time (pair i), one from the air CAi, and one from the ground 
CGi, along with their associated 95% confidence intervals: CminAi 
et CmaxAi, CminGi et CmaxGi. The pairs of counts for each of the five 
classes of species retained in section 2.1 are analyzed together in 
order to estimate the conversion factor for each class.

The estimating model, represented diagrammatically in 
Figure A1, assumes that the actual count, denoted by C, follows 
a normal distribution centered on the unknown expected count, 
μ. Specifically,

CAi ~ N (μA,i, τA,i) where τA,i = (μA,i cvA)
−2 is the precision following 

the convention of BUGS languages

𝖢𝖦𝗂 ∼ N
(

𝖦,𝗂𝖦,𝗂
)
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The model ensures that the count distribution covers 95% of the 
interval [CminA,i, CmaxA,i] or [CminG,i, CmaxG,i].

The coefficients of variation, cvA and cvG, are specific to the field 
method but independent of the population size, meaning the error 
on a count is proportional to the population size.
A key element of the model is that the expected aerial and ground 

counts are proportionally related within a class:

Here, β is the class conversion factor, the multiplicative factor ap-
plied to a ground count to obtain the equivalent aerial count.
The model is implemented in a Bayesian framework where the 

root nodes β, cvA, cvG, and the μA,i are given the following priors:

We used the program JAGS (Plummer, 2003) called from R (v4.2.3; 
R Core Team, 2023) with package R2jags (Su & Yajima, 2021). The 
actual code follows:

 # count series method m: c[m,i]

 # count upper boundary: cmax[m,i]

 # count lower boundary: cmin[m,i]

data {

 # initializations of level of Confidence 

Intervals 

 for (m in 1:2) {

 for (i in 1: k) {

 ICcoverage[m,i] <- 0.95
 ccopy[m,i] <- c[m,i]
 }

 }

}

model {

 # Priors and constraints

 # assuming proportional counts for methods 1 and 

2 (i.e. a fixed percentage of method 2 relative to 

method 1)

 ratio2over1 ~ dnorm(1,0.01)
 # expected count using method 1

# weak prior loosely based on corresponding count

 for (i in 1:k) {

 muc[1,i] ~ dnorm(ccopy[1,i],0.01) # expected mean 
of count using method 1

 }

 # we assume a constant coefficient of variation 

for both methods

 cv[1] ~ dunif(0,100) # coefficient of variation 
of counts in method 1

 cv[2] ~ dunif(0,100) # coefficient of variation 
of counts in method 2

 # likelihood

 for (i in 1:k) {

 muc[2,i] <- muc[1,i]*ratio2over1
 for (m in 1:2) {

 tau[m,i] <- pow(muc[m,i]*cv[m],-2)
# the actual count is assumed to follow a normal 

distribution centered around the expected count 

muc[m,i]

 c[m,i] ~ dnorm(muc[m,i],tau[m,i])
# coverage of confidence interval

 deltaprob[m,i] <- pnorm(cmax-
[m,i],muc[m,i],tau[m,i])-pnorm(c-

min[m,i],muc[m,i],tau[m,i])

𝖠,𝗂 =  𝖦,𝗂

𝖠,𝗂 ∼ N
(

𝖢𝖠𝗂, 𝟢.𝟢𝟣
)

 ∼ N (𝟣, 𝟢.𝟢𝟣)

��� ∼ ����(�, ���)

��� ∼ ����(�, ���)

F I G U R E  A 1 A schematic diagram illustrating the Bayesian model used to estimate the multiplicative conversion factor needed to 
transform a ground count into an equivalent aerial count. The model estimates the posterior distribution of the conversion factor, β. Data are 
represented in red; root nodes of the model are shown in green. cvA and cvG are the coefficients of variation associated with the aerial and 
ground census methods respectively. The model is applied separately to each of the 5 classes of animals defined above.
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# As the observed node must be stochastic, the 

calculated coverage, deltaprob, is assumed to be 

normally distributed 

# around its nominal 95% value, but with very high 

precision (10000)

 ICcoverage[m,i]~ dnorm(deltaprob[m,i],10000)
}

}

}

APPENDIX B

F I G U R E  B 1 Analyses of all possible 
subseries of 4 counts out of the 6 counts 
available for the Buffalo at W Burkina are 
presented. In each subpanel, the red curve 
represents the results using all 6 counts 
(see Section 3.2), while the blue shows the 
results with the 4 retained counts. There 
is minimal difference for the overlapping 
parts. The main loss is the total lack of 
information when the series is shortened 
at the beginning or the end. Missing an 
intermediate point can obscure the timing 
of changes. For instance, the population 
drop between 1980 and 2000 occurred 
entirely before 1990, but this detail is lost 
when the two 1990 counts are missing 
(subfigure 4,1). Dot colors are as shown in 
Figure 3.
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F I G U R E  B 2 To further illustrate the 
robustness of the method, we present the 
results from a significantly reduced data 
set (<50% counts retained). We analyze 
10 random subsamples of 12 points 
(out of 25) from the impala count series 
at Kajiado analyzed in Section 3.2 and 
Figure 3. The results from the complete 
data set are represented by the red curve. 
The general pattern remains consistent: 
An initial decrease prior to 1980, followed 
by stabilization or a slow recovery during 
the 1980s, and a new decline starting in 
the early 1990s. However, the absolute 
numbers are less reliable.
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