Decoding Attack Behaviors by
Analyzing Patterns in
Instruction-Based Attacks using
Gem5

Muhammad Awais*, Maria Mushtaq®,
Lirida Naviner*, Florent Bruguier*,
Jawad Haj Yahyat

* IMT, Telecom-Paris, 19 Pl. Marguerite Perey, 91120 Palaiseau, France
T LIRMM, CNRS - University of Montpellier, 34090 Montpellier, France
¥ Rivos Inc, 3315 Scott Boulevard, Santa Clara, USA

ABSTRACT

The diversity of Instruction Set Architectures (ISAs), each with unique limitations and optimiza-
tion strategies, presents both opportunities and challenges in processor design. Modern processor
vendors leverage these ISAs to enhance security, reliability, and performance. Recent security vul-
nerabilities, notably Spectre and Meltdown, have underscored the importance of robust hardware
security measures. The recent discovery of attacks such as Specter and Meltdown had a high im-
pact on the vendors regarding hardware security. Processor micro-architectures are susceptible to
side-channel attacks, which exploit information leakage to identify vulnerabilities. Techniques
such as speculative execution and branch prediction, commonly employed by processors from
AMD, Intel, and ARM, while beneficial for performance optimization, inadvertently create av-
enues for such attacks. Additionally, the practice of out-of-order execution, designed to maximize
efficiency, can be manipulated to form side channels, further compromising security. Additionally,
shared memory resources, particularly cache memory, are another vector for attack. By analyzing
access patterns to shared caches, attackers can construct cache-based side channels, facilitating
sophisticated attacks like FLUSH+Reload and Prime+Probe.

In response to these threats, this work proposes a comprehensive mechanism for securing pro-
cessor micro-architectures against side-channel attacks. Our methodology comprises five stages:
(1) identifying and developing attack vectors, (2) compiling these attacks across various architec-
tures, (3) scripting simulations using the Gem5 tool, (4) running these simulations, and (5) analyz-
ing the resultant attack traces to understand and mitigate vulnerabilities. These stages are detailed
in the next paragraphs.

KEYWORDS: ACACES; Security and privacy; Hardware attacks and countermeasures; Hardware
Security implementations and Micro-architecture security

'E-mail: {muhammmad.awais,maria.mushtagqlirida.naviner} @telecom-paris.fr
2E-mail: {florent.bruguier} @lirmm.fr

1 Introduction

To analyze the behavior of these attacks, we run these attacks using the state-of-the-art tool
named Gemb5 [LPAAT20]. It is a cycle-accurate simulator, which means that it simulates
each cycle of the hardware. There are two types of simulation modes that are offered by
Gemb5: System Emulation (SE) mode, and Full-System (FS) mode. FS mode simulates the
entire hardware and software stack like the Operating System (OS). On the other hand, the
System-Emulation (SE) mode uses only the hardware components such as processors, cache
memory, etc., it operates at the application level, not requiring any OS to boot up.

Our methodology involves five stages. Fig[l| shows all the stages that involve decoding
the behaviors of the attacks. Stage (D we analyze the attacks, in stage) we compile them
for different architectures by using the cross-compilers, in stage 3 we make the simulation
scripts and in stage @ involves the simulation. At last, we analyze the traces of the attacks

in stage ©.

Gemb is the state-of-the-art tool for architectural research [LPAAT20]. In the first stage
(D, we reproduce the attack vector, which includes the Spectre attack for x86 and ARM ar-
chitectures in SE mode and FS Mode. Additionally, we reproduce attacks involving cache-
based timing attacks such as Flush+Reload [YF14]. For this, we reproduced it for the x86 ISA
[Dom17], and for ARM, we use Aarch64 for cross-compiling [GS05].

Trace.out

#)-

Fetch!

FS101SE 01 SE 'Exemcut?
[Attack Vector | Cross Complhng Script Generation Simulation Trace Analysis

Figure 1: Methodology: Reproducing attack library, cross-compile for Aarch64 ARM, gener-
ate Python scripts, run Gem5 simulation, and analyze traces.

In stage @), we use the (aarch64-1inux-gnu-gcc) cross-compilers for the attack vec-
tor to make a binary executable file. After the compiling stage, we make the configura-
tion scripts in stage), this script in Python is for Gem5 to set the interconnects between
the cache and appropriate processors, use out-of-order (O3) processors [LTST08] with the
branch-predictor [WX22](LTAGE). To see the behavior of the attacks, we also set two levels
of the cache hierarchy; Level-one data-cache of size 256kb with level-one instruction-cache
of size 128kb and level-two cache size of 512kb.

In stage @ we simulate setting up all the scripts with the appropriate binaries. We first
simulate SE mode, in the simulation mode, we only simulate x86 ISA and ARM as for the
transient execution attacks, we use the O3 processors with the branch predictor, our simula-
tion takes 34178552000 ticks for the successful completion of the Specter attack, and we also
run the attack in FS mode [LPAAT20].

In the last stage ©). off our methodology, we dump the traces of the simulation into a
separate file named trace.out file, which includes all the details of what is happening on each

tick and also gives the details about the cache hits, cache misses, which cache line is accessed,
and when it is flushed from the cache. Analyzing these traces, we analyze the behavior of the
attacks and their patterns. We also use a tool named Konata for the graphical visualization
of each trace entry in the trace file that gives us the pipeline visualization. By using this tool
we can decode the behavior of the cache-based side channel attacks[YF14] and the transient
execution attacks[KHF20]. For further work, we will use this decoded pattern and analysis
of attack traces to make the tool for detecting these attacks automatically.

References

[Dom17] Christopher Domas. Breaking the x86 isa. Black Hat, 1:1-6, 2017.

[GS05] John Goodacre and Andrew N Sloss. Parallelism and the arm instruction set
architecture. Computer, 38(7):42-50, 2005.

[KHF*20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. Communications of the ACM,
63(7):93-101, 2020.

[LPAA*20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,

[LTS*08]

[WX22]

[YF14]

Rico Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Brad
Beckmann, Srikant Bharadwaj, et al. The gem5 simulator: Version 20.0+. arXiv
preprint arXiv:2007.03152, 2020.

Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. Out-of-order processing: a new architecture for high-
performance stream systems. Proceedings of the VLDB Endowment, 1(1):274-288,
2008.

Nan Wu and Yuan Xie. A survey of machine learning for computer architecture
and systems. ACM Computing Surveys (CSUR), 55(3):1-39, 2022.

Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high resolution,
low noise, 13 cache {Side-Channel} attack. In 23rd USENIX security symposium
(USENIX security 14), pages 719-732, 2014.

	Introduction

