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Abstract— This paper investigates the effectiveness and ef-
ficiency of incorporating pointing gestures as well as hand-
speech synchronization policies into instruction delivery, as
would be used in an industrial case with a cobot. Through
brick assembly tasks, our study explores the integration of
pointing gestures into human-robot interaction, extending prior
research on verbal instruction efficacy. Results show that
pointing gestures significantly reduce errors compared to verbal
instructions alone, especially for complex tasks. However, this
improvement comes at the cost of increased task completion
time. We also show that depending on this synchronization, the
user might delay its action until all information is presented
instead of exploiting the information as it arrived. This study
emphasizes the potential of pointing gestures and hand-speech
synchronization in improving human-robot interaction and
suggests further research for optimal integration.

I. INTRODUCTION

Verbal expression of plans finds application across a wide
spectrum of Human-Robot Interaction (HRI) scenarios. In
our prior study [28], we investigated various verbal styles
to determine their effectiveness in minimizing errors and
reducing assembly time in a one-on-one instruction-based
shared assembly task, where the robot acts as the primary
instructor and the human as the learner.

Today’s world features a wide range of robots, from in-
dustrial machines designed for specialized tasks to humanoid
robots that can interact with humans more naturally and
intuitively. Pointing gestures consist of closing all the fingers
except the index finger which will serve as the pointer [8],
[13]: such shape is easy to mimic by robots equipped with
fingers. Our work is with an industrial robot (as shown in
fig. 1), which uses grippers as the end effector. In this paper,
we extend our previous work to study the impact of adding
a non-verbal modality (pointing).

In addition to speech, gesturing is an efficient way of
providing information during an interaction. Gestures are
often categorized based on their role in communication (e.g.
deictic, iconic, symbolic/metaphorical, beat gestures) [22].
With the use of both pointing and verbal modalities, we
need to consider the coordination between hand movements
and speech, which presents its own set of challenges. Indeed
a robot producing gestures that do not match the rhythm
or meaning of its speech can break down its interaction
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Fig. 1. One-on-one human-robot interaction with YuMi ABB robot. In this
assembly task, the robot mainly acts as the master instructor.

with the human. It was shown in [26] that including ges-
tures along with speech in HRI rendered the robot more
anthropomorphic and likable, and the participants preferred
interacting with a robot using the two modalities instead of
communicating through speech alone. Moreover [5] shed
light on the challenge of the coordination between the
pointing and the verbalization (speech-hand coordination).
We will focus on the deictic gestures, to see how they can
affect the communication of the plan to the human agent,
as well as finding a good approach to the speech-hand
coordination challenge.

We start by questioning whether there is a need to in-
troduce the pointing modality, especially when the content
of the verbal instructions is unambiguous. Then, we aim to
compare different hand-speech synchronization policies.

We have formulated several hypotheses that we aim to test
in the context of a shared assembly task, where the primary
goal is task completion, focusing on both effectiveness and
efficiency. Our main concern lies in error reduction while
maintaining a reasonable time frame for task completion.

Hypotheses:
• H1: pointing reduces the number of errors.
• H1-bis: pointing reduces the number of errors, for more

difficult tasks.
• H2: pointing increases the time to complete.
• H2-bis: pointing helps reduce the time to complete more

difficult tasks.
• H3: pointing improves human acceptability.
• H4: Human participants will exploit the information as

soon as it is available.



To test these hypotheses, we designed an experiment
following the context of our previous web-based experi-
ment [28], featuring a shared LEGO™ assembly task where
the robot serves as the primary instructor and the human
as the learner (fig. 1). However, this experiment extends the
previous one by employing an industrial robot to perform
a sequence of continuous actions rather than independent
standalone actions with a virtual robot depicted on screen.

This paper is organized as follows: Section 2 contains re-
lated work on verbal and non-verbal communication, namely
pointing; Section 3 describes the overall architecture of our
control model, with a closer look at pointing and verbaliza-
tion; Section 4 introduces the setup of the experiment used
to validate our hypotheses; finally, Section 5 presents the
results of this multimodal interaction.

II. RELATED WORK

In this section, we review several studies that explore the
role of gestures and speech in improving HRI effectiveness.

Bangerter et al [6] conducted a study comparing different
strategies for referring to objects within a shared visual
space. They found that both pointing and verbal location
description enhance accuracy, with pointing before speech
leading to reduced consideration of items. Building on this
notion of the importance of pointing, Holladay et al [17]
proposed a mathematical framework for robots to generate
pointing configurations optimizing the legibility of target ob-
jects. Their work emphasizes clarity over expense, enhancing
interpretability, especially for novice users. Similarly, Haring
et al [15] investigated the use of gaze and pointing gestures in
humans following humanoid robot instructions, revealing the
significance of pointing gestures in augmenting speech-based
instructions. Expanding the scope to real-time interaction,
Salem et al [27] developed a framework enabling robots
to produce synthetic speech and gestures. Their study high-
lights the positive perception of robots displaying hand and
arm gestures alongside speech. Alikhani et al [4] explored
how robotic arms communicate task information through
pointing actions, distinguishing between identifying objects
and locations, thus contributing to the understanding of
effective communication in collaborative robotics. Admoni
et al [2] modulated speech, head, and pointing behaviors
based on object identification ambiguity, demonstrating the
effectiveness of non-verbal cues in high ambiguity scenarios.
Further emphasizing the importance of non-verbal cues,
Ali et al [3] evaluated the effectiveness of robot-provided
directions, showing that non-verbal directions lead to quicker
task completion compared to verbal directions. Considering
human behavior, Liu et al [21] examined human pointing
behaviors in various contexts, anticipating differences in
precision based on the target and conversational openness.
Finally, Gleeson et al [12] focused on explicit and intuitive
gestural communication in industrial human-robot teams,
highlighting the significance of context in gesture interpre-
tation for accurate understanding.

When dealing with multiple modalities, a proper coordi-
nation is important. In terms of hand-speech coordination for

deictic gestures, several studies have examined the influence
of gesture production on the onset of associated verbal
referent [10], [20]. They conclude that speech onset is
delayed when a gesture is to be performed simultaneously
with speech. In [18], they investigated how manual pointing
gestures align with different aspects of speech, such as
vowels, consonants, or tones. Initial findings indicate that
pointing gestures tend to align more closely with tone
gestures. In his thesis [24], Roustan studies the coordination
between manual gestures and speech in the context of desig-
nation. Different types of gestures, including pointing, were
compared in his work. He explores coordination in a more
natural and interactive task and shows that when someone
gestures with their hands, it often synchronizes with what
they are referencing.

Our work builds on this work and focuses on advancing
proximate human-robot interaction in shared assembly tasks,
with an industrial robot assuming the role of an instructor.
We emphasize investigating the effectiveness of incorporat-
ing robot pointing gestures alongside speech, compared to
speech alone. Additionally, we explore different policies of
hand-speech coordination to better understand their impact
on interaction dynamics.

Fig. 2. Architecture of our HRI system. The components discussed in this
paper are highlighted in red.

III. ARCHITECTURE

This section follows the architecture from [28], focusing
on speech (modifications added to the verbalizer module) and
pointing modalities as well as their coordination (Fig. 2).

The current perception module is in charge of detecting the
participant’s pick and place gestures in the collaborative task.
Note that the experimenter will manually confirm that the
user has ended the execution of the instruction. And in case
of an error made by the participant (i.e. incorrectly placed
object), the experimenter here intervenes to fix the mistake
in order to proceed with the experiment.

A. Verbalizer

A verbalizer is used for the generation of verbal instruc-
tions. We use the one described in [28] with the addition
of certain tags. These tags help us identify certain parts
(slices) in the instructions. In our tasks, we require three



Fig. 3. Decomposition of an instruction

essential elements: context, objectives, and methodology to
complete the task. Since we will recruit multiple modalities,
such as the robot’s arm movements, it’s crucial to include
information about them. In this case, in tandem with the
robot’s arm movements, we can easily insert tags for other
use cases, gaze for instance. The tags we have used serve to
categorize different aspects of the instructions, and they are
as follows:

• ⟨Context⟩. . . ⟨/Context⟩ As the name suggests, this tag
provides the context, explaining the higher-level task we
are working on.

• ⟨What⟩. . . ⟨/What⟩ This tag references the object we are
addressing.

• ⟨Where⟩. . . ⟨/Where⟩ This tag contains information
about the placement of the reference object that needs
to be relocated.

• ⟨RETN⟩ This tag indicates a definitive retraction of the
robot arm at the end of the instruction, returning the
arm to its usual idle position.

• ⟨Rdv⟩ In some cases, we decided to tag keywords to
facilitate hand-speech coordination (discussed in detail
in section III-C).

Here is an example of a tagged instruction, in French:
‘⟨Context⟩Pour terminer le puits,⟨/Context⟩ ⟨What⟩mets
une ⟨Rdv⟩brique rouge orientée Nord-Sud,⟨/What⟩
⟨Where⟩collée à l’Est. Son côté Sud doit être aligné
avec celui de la ⟨Rdv⟩brique précédente.⟨/Where⟩⟨RETN⟩’.

Figure 3 shows the English translation and an example of
this slice decomposition, where we have 3 different slices of
the audio instructions along with the corresponding robot
gesture. The first slice is the context and the robot arm
does not move – ‘To finish the well,’. The second slice is
what to pick and place – ‘place a red brick oriented North-
South’. Finally, the third is the location detailing where to
place the object – ‘glued to the East. Its South side must
be aligned with that of the previous brick’. We can also
see how the robot’s movements are linked with each part of
the instruction. In the second and third slices, the robot arm
moves in order to point at the reference and target positions.
Note that other slices and keywords could have been added to
associate gestures and verbal content, in particular for cueing
parts or properties of objects (e.g. ‘côté Sud’ South side with
a flat hand).

Finally, for instruction synthesis, among multiple voices
provided in [19], we chose the female voice of Nadine
Eckert-Boulet (NEB). We use a synthesizer that is able to
handle most - if not all - problematic mispronunciations in
French (in particular handling homographs, liaisons, etc) as

well as mixed text/phonetic input. It allows to add emphasis,
pauses, and most importantly provides the duration of all
phones of the utterances. The emphasis helps to focus the
intonation or key parts of the instruction, in our case the
object and/or target location. The pauses along with the
computed time for each utterance allow us to slice an
instruction according to synchronization requirements.

Combining our tagged-generated instructions with the
features of our synthesizer is what allows us to coordinate
verbal instructions with gestures.

B. Pointing gestures

Gesture generation

In the experimental procedure concerning robot gestures,
we first position the robot arm at the designated location
within the environment. Next, we utilize ABB’s Robot
Web Services to capture and record this precise position.
Subsequently, using the MoveIt ROS node, we generate and
store the trajectory for the robot’s movement [7]. Afterward,
adjustments are made to the trajectory file to ensure rea-
sonable duration. Finally, the trajectory is executed through
External Guided Motion (EGM), facilitated by a separate
license [1]. The positions of the gestures were chosen to
appear as human-like as possible to enhance the robot
arm’s ability to interact naturally with people. For the pick-
and-place actions, a similar approach is adopted, involving
positioning the robot arm and recording its location, followed
by utilization of the RAPID interface for controlling the robot
arms. The architecture allows for real-time gesture generation
instead of storing them. Note that the time-consuming HTTP
requests for acquiring the generated gestures pose challenges
in maintaining a seamless, uninterrupted interaction.

Between instructions, we instruct the robot arms to retract
(i.e. move away from the environment to an idle position).
Thus giving a clear message that the instruction is over as
well as giving the opportunity to the participant to perform
the instruction.

Our gesture control policy includes two other features: (a)
the robot points at the target objects/positions at a moderate
distance (≈ 14 cm); (b) when the robot arms retract, the
grippers open up to signal an idle state. The grippers then
close back as soon as the arm is ready to point. We believe
that this will help the human agent anticipate that the robot
is about to move without explicit verbal statements.

Balancing Speed and Precision in 3D Object Pointing

Among the key aspects that define the efficacy of robot
movements, speed and accuracy stand out as paramount
considerations, particularly when it comes to pointing and



interacting with three-dimensional objects. Each movement
of the robot arm, whether it is reaching for an object,
executing a task, or repositioning itself, is executed within
a specific time frame [23]. This temporal aspect is critical
as it directly influences the efficiency, safety, and overall
effectiveness of the robot’s actions. We take advantage of
Fitts’s law which predicts the time T required for a user to
point to a target based on its distance D and target width W
(in mm):

T = a+ b.log2(1 +
D

W
) (1)

In their paper [23], the authors extend this law to three-
dimensional pointing tasks. In our work, we set a = 166
and b = 230 (ms); b being the slope where with each unit
increase in ID, the movement time goes up by about b ms,
and a being the estimated minimum time needed for the
simplest task (ID = 0).

In scenarios where rapid and somewhat precise object
manipulation is required, shorter movement durations might
be preferred to enhance productivity. On the other hand,
longer movement durations may be more appropriate for
tasks demanding extreme precision, minimizing errors, and
ensuring safety.

Fig. 4. Fitts duration (ms) wrt distance (mm) per target.

Fig. 5. LEGO™ dimensions

Decomposing all the actions of our scenarios, we identify
five distinct classes per target (cube, ramp, brick, bar, retract):
Fitts’ Law is applied to these movements, revealing that
greater distances result in shorter travel durations, while
precise pointing for smaller objects leads to slower speeds
and longer durations as presented in Fig. 4. The LEGO™
objects’ dimensions are as shown in Fig. 5 (W = 15.8mm
for a LEGO™ cube), along with a larger target size (W =
75mm) for the retraction. The width W of the target
(LEGO™ object) corresponds to the length (in mm) of its
longer side.

C. Hand-speech coordination

Having gestures with verbal instructions alone is insuffi-
cient; a seamless and comprehensible interaction demands
a synchronization of both modalities. Figure 3 illustrated
the auditory slices we use. With our synthesizer, we know
their durations. We also master the corresponding robot
movements and their respective durations. We will exploit
these to build two different synchronizing policies:

• ASAP “As Soon As Possible” policy is a basic auto-play
of both the speech and the corresponding gesture.

• JIT “Just In Time” policy involves synchronizing the
two modalities to reach simultaneously a predefined
target in the interaction. As humans, we synchronize the
gesture apex with the onset of the accented syllable of
the verbal referent [14], [25]. The JIT approach involves
delaying the initiation of either the pointing trajectory
or speech to ensure that both modalities align precisely
at the intended moment.

Fig. 6. Showing the difference between ASAP and JIT synchronization
policies

Fig. 6 exemplifies the difference between the two policies.
Following the example in Fig. 3, which comprises three
verbal slices (context, object target, and location target),
where context involves no pointing gesture. Consequently, in
both ASAP and JIT conditions, the robot utters contextual
information without an accompanying gesture. The ASAP
policy dictates that both pointing gestures and verbal slices
start simultaneously, disregarding the temporal target infor-
mation in the speech.

Conversely, under the JIT policy, we delay either the
speech (by adding silence) or gesture for the second slice,
ensuring that the pointing of the targeted object synchronizes
with the onset of the verbal reference. Similarly, for the third
slice, the referencing of the relative positioning object is
synced with the location pointing target. For a comparison
of the two policies, please play the accompanying video1.
Ultimately, in both policies, the decision is made to allow
the modality that completes first to wait for the other,
constraining a minimum hold time of 250 ms for pointing
gestures.

The next section outlines the experimental protocol used
in this study. We detail the specific steps taken to conduct
the experiment.

1Video: https://youtu.be/QoNLrh6qixk

https://youtu.be/QoNLrh6qixk
https://youtu.be/QoNLrh6qixk


IV. EXPERIMENT

In order to study how pointing and hand-speech co-
ordination affect human-robot collaboration, we create an
experiment with an ABB industrial robot and a LEGO™
table as the working environment (see fig. 1). The robot is
ambidextrous The robot is ambidextrous, and each arm is
chosen based on the shortest distance to the target.

Participants are asked to observe the robot as it positioned
the first LEGO™ piece on the game board. They will place
all the other pieces, as instructed by the robot. A total of
11 scenes are utilized, comprising 2 example scenes and
9 test scenes with randomized order and conditions. Fig. 7
shows the scenes used, featuring diverse colors, types, struc-
tures, and positions, generating ambiguity and challenges to
evaluate human-robot collaboration. The number of LEGO™
pieces to be placed falls between 4 and 13.

Descriptions of verbal instructions and scenes can be
found here.

Fig. 7. Scenes (objects) to be assembled (a-b for familiarisation)

30 French speakers were recruited from the University of
Grenoble Alpes. 90% are right-handed, and 23.33% identify
as men. None of whom had previously participated in an
HRI experiment. They were required to accurately place
the correct element as instructed, with the least amount of
mistakes, and as fast as possible. (see video2).

We compared 3 instruction methods :
• AUDIO: no pointing i.e. verbal instructions only
• ASAP: As Soon As Possible speech/hand triggering
• JIT Just In Time coordination
In the study described, each participant went through a

familiarization phase consisting of two scenes with gestur-
ing. This phase was randomized per participant to get a
balanced distribution between the order and the choice of
instruction method (ASAP, JIT) for the two scenes. After
the familiarization phase, the 9 testing scenes are randomly
divided into three blocks, with each block corresponding to

2Video: https://youtu.be/hduHFnn_njw

one instruction method: AUDIO, ASAP, and JIT. The order
of the familiarization scenes and testing scenes was evenly
distributed among the participants. This distribution allowed
each scene to be tested 10 times per instruction method,
resulting in a total of 30 tests overall.

A. Measurements

The subjective evaluation is done with 5 questionnaires,
each on a 5-point Likert scale (modified version from [11]).
The same questionnaire is given before the beginning and
at the end of the experiment to collect participant profile
data and to assess how the experiment influences their
initial responses. This assessment is made by comparing
the responses to identical starting and concluding questions.
Each of the remaining three questionnaires is filled at the end
of each condition block, to gather data on each instruction
method. This includes the NASA Task Load Index (NASA-
TLX) [16], which is the most common, subjective, multi-
dimensional framework [9] to measure the cognitive load.
The objective is to assess and compare the difficulty and
efficiency of the three models.

For the objective evaluation, we measure (a) the number
of errors during the interaction (i.e. choosing the wrong
object, pick-up place or placement); (b) different durations
between multimodal time marks. Fig. 8 shows the different
time-marks for a standard instruction and table I defines the
durations based on these marks. For our measurements, we
consider that the human pick-up occurs when they make
contact with the last object they pick up, while the put-down
happens when they confidently place the object and remove
their contact from it. Robot retraction occurs the moment
its arm is retracted from the workspace, and robot pointing
is when the end effector reaches the target. Finally, object
mention refers to the moment the object to be picked up is
verbally referred to.

Fig. 8. time-marks for a standard instruction

It is important to note that the positions of the human
pick-up and put-down time marks as presented in figure 8
are illustrative. Looking at the instruction in figure 3, it is
possible that the human anticipates the object and/or location,
or even decides to wait until the end of the instruction before
manipulating the environment.

V. RESULTS

We test our hypotheses from section I for two main
comparisons; (1) AUDIO vs. {ASAP, JIT} (i.e. with/without

https://github.com/ryounes/robot_lego_expe
https://youtu.be/hduHFnn_njw
https://youtu.be/hduHFnn_njw


TABLE I
DURATIONS BASED ON TIME-MARKS FROM FIG. 8

Duration Value
Pick-up ∆1,2

Time to complete ∆1,3

Instruction ∆1,4

Object anticipation ∆2

Pick and place ∆3

Pick up after robot retraction ∆3,4

Location anticipation ∆4,5

*∆i,j =
∑j

k=i ∆k

pointing) and (2) ASAP vs. JIT (i.e. comparing synchroniza-
tion policies).

We categorize instructions by difficulty. It varies based
on factors like object attributes and task requirements. We
first define “stud shift”, representing the cumulative count
of studs needed for spatial manipulation, such as ”4 down
and 2 to the right” for a stud shift of 6. An easy instruc-
tion involves no changes in the object’s type or color and
requires no stud shift, meaning no counting of studs is
needed. Conversely, a complex instruction includes additional
information or a stud shift greater than 2, indicating the need
to count multiple studs in different directions. By additional
information, we mean the use of complementary details
required by a more complex instruction. Normal difficulty
falls between these extremes.

Fig. 9. Error %: AUDIO vs. {ASAP, JIT} (p-value < 0.001: ***)

A. Error analysis

Fig. 9 confirms H1: ASAP and JIT reduce the number of
errors compared to AUDIO. Both statistical tests conducted,
namely the Student’s t-test and the Mann-Whitney U test,
yielded extremely small p-values (< 10−7).

Fig. 10. Error %: AUDIO vs. ASAP vs. JIT per task difficulty

Fig. 10 confirms H1-bis: including pointing reduces the
number of errors for complex tasks, but only JIT compared to
Audio. ASAP and JIT reduce the number of errors compared

to Audio. However, only the statistical tests (the Student’s
t-test and the Mann-Whitney U test) conducted on AUDIO
vs. JIT yielded small p-values (0.002). This also confirms
that JIT, compared to ASAP, reduces the number of errors
for more complex tasks. Thus we establish that the Audio
instruction method produces the highest number of errors
overall compared to ASAP and JIT and that JIT reduces
a more significant number of errors compared to ASAP,
especially for more complex tasks.

TABLE II
ERROR RATIO ON TABLE VS. ON STRUCTURE ACTIONS PER CONDITION

Audio ASAP JIT
on table (3 x 190) 28.95% 17.37% 13.16%

on structure (3 x 580) 13.79% 8.28% 7.07%

Finally, we point out that error ratios decrease progres-
sively from Audio to ASAP to JIT for ‘on table’ and ‘on
structure’ action types (tab. II). Specifically, actions ‘on
table’ have higher error ratios compared to actions ‘on
structure’. This indicates that JIT is the most effective,
yielding the lowest error ratios, followed by ASAP and
then Audio. Additionally, performing ‘on structure’ actions
significantly reduces error ratios compared to ‘on table’,
suggesting a notable improvement in accuracy when actions
are structured.

Fig. 11. Time to complete: AUDIO vs. ASAP vs. JIT (Left: for all actions
— Right: for complex actions)

B. Timing analysis

Fig. 11 confirms H2: ASAP and JIT increase the time to
complete compared to AUDIO. And JIT increases the time to
complete compared to ASAP. Both the Student’s t-test and
the Mann-Whitney U test yielded small p-values, ranging
from 10−5 to 10−24

Fig. 11 refutes H2-bis: ASAP and JIT increase the time
to complete compared to AUDIO for complex tasks and
similarly for JIT compared to ASAP. Both the Student’s t-
test and the Mann-Whitney U test yielded small p-values.
(≈ 10−2 and ≈ 10−4).

We see that regardless of the task difficulty, including
pointing will increase the time to complete compared to
standalone verbal instructions.

Finally, we compare the durations of object placement
after clearing the assembly zone, i.e. ∆5 in Table I. Both



ASAP and JIT were affected by the robot arm being held in
the assembly zone. Participants decided to pick up the object
as soon as the arm starts to retract, JIT being faster than
ASAP. The data from the experiment reveals that participants
did not anticipate object nor location for most actions.
This disconfirms H4: human participants waited for all the
information before exploiting it. This could also be related
to why we are not able to confirm H2-bis.

TABLE III
SIGNIFICANT DIFFERENCES IN QUESTIONNAIRE

Affirmation Method1 Method2 p-value
A1. Vous avez été gêné(e) lorsque le robot a pointé les objets

You were bothered when the robot pointed to the objects
JIT

(1.60)
ASAP
(1.80) <.0001

A2. Le pointage était bien synchronisé avec la parole
The pointing was well synchronized with the speech

ASAP
(4.60)

JIT
(4.67) <.0001

A3. Le pointage des objets par le robot était précis
The robot’s pointing at the objects was precise

ASAP
(3.87)

JIT
(4.20) .0444

A4. Vous avez réussi à accomplir ce qu’on vous a demandé de faire
You managed to accomplish what you were asked to do

Audio
(3.17)

JIT
(3.73) .0296

A5. La tâche vous a demandé beaucoup de concentration
The task required a lot of concentration from you

ASAP (3.73)
JIT (3.77) Audio (4.13) .0363

.0380
A6. Le rythme des instructions était trop rapide

The pace of the instructions was too fast
JIT

(2.53)
Audio
(3.20) .0042

A7. L’interaction avec le robot vous a paru fluide et prévisible
The interaction with the robot seemed smooth and predictable to you

Audio
(3.40)

JIT
(3.97) .0265

A8. Vous étiez stressé
You were stressed

JIT
(2.23)

Audio
(2.67) .0376

A9. La tâche vous a demandé beaucoup d’effort
The task required a lot of effort from you

ASAP (3.13)
JIT (2.90) Audio (3.53) .0462

.0016

C. Qualitative evaluation

In this analysis, we employed ordinal logistic regression to
examine the relationship between various response variables
and experimental conditions. For each response variable,
we fitted a cumulative link mixed model (CLMM) using
the clmm function, which accommodates the ordinal na-
ture of the data and includes a random intercept for the
participant id variable to account for subject-specific
variability. Multiple comparisons between conditions were
performed using the emmeans package to obtain pairwise
contrasts. We only present the results for the affirmations
holding significant pairwise comparisons in table III. Partic-
ipants experienced significantly less discomfort and stress,
better synchronization and precision in the robot’s actions,
and an overall smoother and more predictable interaction
with JIT. JIT also required less concentration and effort
from participants, indicating higher efficiency and user-
friendliness. Hands-on experience with the collaborative
robot (cobot) during the experiment notably increased partic-
ipants’ confidence and trust in the cobot’s information and
reliability. These findings highlight the benefits of JIT in
improving user comfort, efficiency, and trust in human-robot
interactions.

With these affirmations, not only do we confirm H3 that
including pointing improves human acceptability, but also
that the JIT method consistently outperforms both the ASAP
and Audio policies in different aspects.

VI. DISCUSSION

In this section, we address the limitations of our experi-
ment and suggest areas for improvement.

Maximum hold duration

As previously discussed, participants waited for the robot
to retract its arm before manipulating the environment (pick

and place). While a minimum hold was introduced to ensure
a minimum 250 ms pointing hold even when speech was
too short, no maximum hold was set. We believe that the
absence of a maximum hold for the robot arm may have
contributed to the observed lack of object/location anticipa-
tion. Currently, the implemented hold keeps the robot arm
engaged until the speech ends. This raises several issues,
particularly for longer audio inputs (such as sentences).
Firstly, the prolonged presence of the robot arm can obstruct
the working environment. Secondly, it disrupts the flow of
interaction, as it may force the human to wait unnecessarily,
especially when actions can be anticipated.

Error correction guidance
When errors occur during human-agent interaction, made

by the human participant, it’s essential to consider the impli-
cations and limitations of the robot’s ability to address them.
While the robot may possess some capacity to rectify errors,
it’s not feasible for now to cope with all situations. Relying
solely on the robot to physically correct errors introduces
several challenges.

Firstly, involving external human intervention, often in the
role of a corrector to rectify errors, may disrupt the flow of
interaction for the human participant. This interruption can
lead to disengagement from the working environment and
may adversely affect the participant’s mind (such as arising
from social judgment). Furthermore, the reliance on external
intervention to rectify errors can introduce inefficiencies and
delays in the task execution process.

To mitigate these challenges and ensure smoother interac-
tion dynamics, it may be beneficial to include a correction
policy to guide the human agent – specific to AUDIO, ASAP,
or JIT conditions – on how they can correct the mistake.

Updating verbal instructions for use with pointing
We use identical verbal instructions across all three con-

ditions (Audio, ASAP, JIT). This decision was motivated
by the desire to avoid the risk of changing behavior due to
the verbal content and to minimize differences in duration.
For instance, in the Audio condition, an example instruction
would be “Take a red brick oriented East-West”

However, we made minor adjustments during the genera-
tion step for the pointing conditions (ASAP and JIT), such as
using “this” instead of “a” to better align with the pointing
gesture. Consequently, the instruction used in the ASAP/JIT
conditions was, “Take this red brick oriented East-West”

It is possible to further streamline the speech time, par-
ticularly in the pointing conditions, without compromising
clarity or effectiveness. Therefore, to minimize the overall
time added by the pointing methods and aim to match the
duration of the faster AUDIO condition, we propose to
reduce redundancy wherein the verbal instruction for the
ASAP/JIT conditions; e.g. simplifying to “Take this brick”
omitting unnecessary details that can be inferred through
the pointing gesture. This adjustment not only reduces the
duration of speech but also enhances the efficiency and
fluidity of the interaction process when coupled with the
pointing gestures.



VII. CONCLUSION AND PERSPECTIVES

In this paper, we explore the integration of non-verbal
pointing gestures in an HRI scenario, building upon our
previous work on verbal instruction styles’ efficacy. We
hypothesize that including pointing gestures will lead to
error reduction, albeit potentially increasing task completion
time. Furthermore, we anticipate that participants will ex-
ploit available information promptly and that the inclusion
of pointing will enhance overall human acceptability. The
inclusion of pointing gestures significantly reduces errors
compared to verbal instructions alone, particularly for more
challenging tasks. However, this reduction in errors is ac-
companied by an increase in task completion time, regard-
less of task complexity. The qualitative analysis found that
the JIT method consistently outperforms both ASAP and
Audio methods across various dimensions. To our surprise,
participants did not exploit available information promptly,
waiting until all information was presented, and the robot
arm was retracted before taking action. Future work may
focus on integrating gaze into our HRI, which could signifi-
cantly enhance interaction dynamics. By incorporating gaze
information, we introduce the need to coordinate the gaze
with the current modalities However, this addition will allow
robots to establish joint attention with human participants,
leading to more effective communication and collaboration.
Additionally, integrating obstacle avoidance capabilities into
motion planning algorithms holds promise for improving
HRI performance. However, achieving a balance between
obstacle avoidance and maintaining natural arm movements
would still need to be addressed. Finally, interactions could
extend involving multiple users. This entails addressing
the complexities associated with planning and coordinating
interactions between the robot and multiple users, including
managing competing instructions, individual preferences, and
collaborative decision-making processes.
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