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Abstract: Obtaining precise parameters of deformation modes remains a significant challenge in
materials science research. Critical resolved shear stresses (CRSS) and work hardening, particularly in
hexagonal metals, are crucial parameters for constitutive laws in crystal plasticity. This paper presents
a novel approach to determine CRSS and specific hardening matrix coefficients for commercially pure
zirconium (α-Zr) at room temperature. In situ methods are employed to measure displacement fields
using grids applied to the sample surface, while a comprehensive characterization of the activated
deformation systems is performed via SEM and TEM. The CRSS for prismatic ⟨a⟩, pyramidal ⟨a⟩,
and {101̄2} and {112̄1} twinning systems, as well as the self-hardening for prismatic slip and several
work-hardening coefficients (for prismatic/prismatic and prismatic/pyramidal interactions), are
reported in Zr single crystals. Finally, the results are compared with findings from the literature and
atomistic simulations.

Keywords: HCP metals; work hardening; in situ tensile test; CRSS; zirconium

1. Introduction

Zirconium is a strategic metal valued for its extremely low thermal neutron absorption,
satisfactory mechanical properties, and excellent resistance to corrosion in high-temperature
water—key attributes for its use in the nuclear industry. Zirconium (Zr) and its alloys are
commonly used as cladding and fuel-rod materials in nuclear reactor cores [1]. At the
crystal scale, α-Zr exhibits pronounced anisotropy in both its elastic and plastic proper-
ties [1–5]. A significant consequence of this anisotropy is the variation in thermal expansion
coefficients and Young’s moduli along the two principal direction (〈a〉 and 〈c〉), leading to
the development of internal stresses.

Due to its low symmetry, Zr exhibits more complex deformation mechanisms than
cubic metals, with deformation modes not symmetrically distributed. The anisotropy in
hexagonal close-packed (HCP) metals manifests in the following two ways:

• Intrinsic anisotropy: This arises from the atomic structure, resulting in different
critical resolved shear stresses (CRSSs) for deformation mechanisms and varying
strain-hardening values, as the interactions between systems are unequal.

• Extrinsic anisotropy: This comes from the pronounced texture of HCP metals, which
significantly affects their macroscopic properties. Current models better account for
this anisotropy through texture measurements [2,3,6].

The occurrence of slip on prismatic, pyramidal, or basal planes is typically linked to
the corresponding critical resolved shear stresses (CRSSs). In hexagonal close-packed (HCP)
metals, the relative ease of prismatic and basal slip is attributed to their low CRSS values
and electronic structure, as well as the c/a ratio [7,8]. In HCP zirconium (α-Zr), where the
c/a ratio is less than the ideal value, deformation occurs through a combination of slip and
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twinning. The primary slip systems observed are (1) prismatic (P⟨a⟩) and (2) pyramidal
(π1⟨c+ a⟩) [4,5] (refer to Table 1 for notation). To predict mechanical behavior after forming,
current crystal plasticity models require key data, including CRSS and the work-hardening
matrix. Prismatic slip (P⟨a⟩) can be observed at all temperatures [9–12]. However, when
stress is applied along the ⟨c⟩ axis, deformation is often accommodated by ⟨c + a⟩ slip,
which activates five independent slip systems. This leads to a general, homogeneous
strain without volume change [4,13–15]. Furthermore, the limited number of slip systems
in zirconium can result in twinning, particularly at low temperatures (77 K) [11]. The
following four types of twins are commonly observed in Zr at low temperatures: T1 and T2
tensile twins, as well as C1 and C2 compression twins, with the latter occurring at higher
temperatures [16,17] (refer to Table 1 for notation).

Twinning is frequently observed during the compression of Zr single crystals along
the ⟨c⟩ axis [2,18]. Tensile twins activate under tensile strain along the ⟨c⟩ axis, whereas
compression twins emerge when compression strain is applied along this axis. Experimen-
tal studies of prismatic slip in α-Zr single crystals [11] have revealed similarities to single
slip modes in face-centered cubic (FCC) crystals, particularly during the transition from
stage I to stage II strain hardening [9]. In α-Zr crystals, oriented for prismatic slip, this
behavior results from different velocities of edge and screw dislocation segments. Numer-
ous researchers have studied Zr’s plastic deformation. Akhtar [19] demonstrated that 〈a〉
dislocations on the prismatic plane dominate the deformation mechanism, with plasticity
primarily driven by the motion of ⟨a⟩ screw dislocations, as the friction force on edge
dislocations is minimal. These screw dislocations may deviate from their habit planes and
glide on first-order pyramidal planes (π1) or basal planes. Basal slip (B⟨a⟩) is more difficult
to activate, often requiring cross-slip of prismatic dislocations at room temperature [20,21],
under high-strain deformation [22], or at temperatures above 850 K [23]. Through micropil-
lar experiments and 3D dislocation modeling, Li [24,25] showed that cross-slip from P⟨a⟩
to B⟨a⟩ is controlled by long glissile segments on P⟨a⟩ and jogs on B⟨a⟩.

Table 1. Deformation modes considered in the present work. Planes and directions are expressed in
the Miller–Bravais coordinate system.

Slip/Twin Slip Plane Normal nα Slip Direction bα Notation

Basal (0001) [12̄10] B⟨a⟩
Prismatic (101̄0) [12̄10] P⟨a⟩

Pyramidal π1 (101̄1) [1̄21̄0] π1⟨a⟩
Pyramidal π1 (101̄1) [21̄1̄3̄] or [112̄3̄] π1⟨c + a⟩
Pyramidal π2 (21̄1̄2) [21̄1̄3̄] π2⟨c + a⟩
Tension Twin {101̄2} ⟨101̄1⟩ T1
Tension Twin {112̄1} ⟨112̄6̄⟩ T2

Compression Twin {21̄1̄2} ⟨211̄3̄⟩ C1
Compression Twin {101̄1} ⟨101̄2⟩ C2

Long segments of screw dislocations are observed in many zirconium single crys-
tals, leading to the conclusion that edge dislocations move faster than screw dislocations.
The gliding of screw segments is hindered by significant lattice friction, which results in
dislocations that appear straight, indicating low mobility. It is well known that in hexag-
onal close-packed (HCP) metals, screw dislocations primarily dissociate in the prismatic
plane and extend into the basal planes. These dissociated dislocations cannot glide in the
prismatic planes, explaining the long screw dislocation segments observed in TEM. This
phenomenon is known as the lock–unlock mechanism [21].

Atomistic simulations of dislocations [26], which average 3D dislocation cores, confirm
the significant lattice frictional force acting on screw dislocations. Dislocation mobility
is highly influenced by interstitial impurities [27]; for instance, Ferrer [28] demonstrated
that the addition of just 25 ppm of sulfur reduces the creep rate of Zircaloy by a factor of
three. Some single crystals display a phenomenon known as “pinning”, where dislocation
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motion is impeded by precipitates or atoms in solid solution, forming zigzag patterns.
These findings highlight the strong interaction between mobile dislocations and impurities.
Based on the chemical composition of these single crystals, the primary impurity is likely
oxygen. These observations align with the work of Soo and Higgins, who demonstrated
the effect of oxygen on the CRSS of prismatic slip [27]. Cross-slip and dislocation climb
may serve as potential recovery mechanisms.

In this article, we describe a method for determining some hardening coefficients in
zirconium single crystals at room temperature. The method relies on the interaction of two
carefully selected slip systems. We perform in situ tensile testing inside a scanning electron
microscope (SEM), which allows for the coupling of the evolution of local crystallographic
orientation, as determined by electron backscattering diffraction (EBSD), with the evolution
of local strain fields obtained through microextensometry using microgrids deposited on
the tensile sample [29]. This technique enables the determination of local strain components
(
(
εT

11, εT
12, εT

21, εT
22
)
, where T denotes total strain). Activated systems are identified by SEM

(via trace analysis), and postmortem thin foils from each single crystal are examined via
transmission electron microscopy (TEM). With the aid of specialized software [30,31],
Burgers vectors of dislocations, their characters (screw, edge, or mixed), and their glide
planes are determined quickly and accurately. By knowing the deformation and the active
system, it is possible to calculate the shear and resolved shear stress, and if the number of
active systems is low, some coefficients of the hardening matrix can be obtained using the
method described in the following section.

2. Methodology
2.1. Slip/Twin Systems

Deformation modes considered in the present work are given in Table 1.

2.2. Calculation of the Coefficients of the Work-Hardening Matrix

The resolved shear stress (RSS; τα
r ) of a given slip system (α) is given by

τα
r = ∑ σij · mα

ij

τα
r = σ : mα,

(1)

where σ is the macroscopic true stress tensor and mα is the symmetric part of the Schmid tensor.

mα =
1
2
(nα × bα + bα × nα), (2)

with nα and bα representing the slip plane normal and the slip direction of the system (α),
respectively. The rate of plastic deformation (ε̇P

ij ) associated with the shear rate on the slip
system (α) (γ̇α) is given by

if

{
τα

r ≤ τα
0 then γ̇α = 0

τα
r = τα

0 then γ̇α ≥ 0
(3)

ε̇P =
N

∑
α=1

γ̇α mα

ε̇P =
N

∑
α=1

γ̇α

2
(nα × bα + bα × nα),

(4)
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where N is total number of activated slip systems. τα
0 is the CRSS of system α, and τα

r is its
resolved shear stress. For uniaxial tension along the X axis, the macroscopic stress tensor is
expressed as follows:

σij =

σ11 0 0
0 0 0
0 0 0

, (5)

where σ11 ̸= 0 and all other components are zero. At the onset of plasticity, τα
r corresponds

to τα
0 , which is noted as the CRSS.

The measurements of longitudinal deformation (εT
11) and transverse deformation (εT

22)
are obtained using microgrid analysis, as explained in detail in [29]. This allows the
total strain in both the longitudinal and transverse directions to be determined. Plastic
deformation is then calculated using the following formula:

εP
ij = εT

ij − εe
ij

with εe
ij = Sijklσkl

εP = εT − σ/E,

(6)

where E = 1
S1111

is the Young’s modulus, with Sijkl representing the compliance tensor and
εe and εT representing the elastic and total strain tensor, respectively.

At this stage, it is crucial to determine the activated slip systems, either through TEM or
SEM, as detailed in the following section. At the onset of deformation, only one slip system
is active. In our approach, we halt the process once two active systems, denoted as α and β,
are identified. The resolved shear stresses (RSS; τα and τβ) are calculated using Equation (1),
while the shear strains (γα and γβ) are determined according to Equation (4). Curves of τ
vs. γ are then plotted. This allows for the resolved shear stress of each active slip system
to be known, and solving the system of equations obtained from various experimental
curves [(τα, γα), (τα, γβ), (τβ, γα), and (τβ, γβ)] yields the interaction coefficients between
the slip systems.

The increase in the threshold stress of a system due to shear activity (∆γβ) in the
system is calculated as follows:

∆τα
r =

N

∑
β=1

(
∂τα

r
∂γβ

)
∆γβ =

N

∑
β=1

hαβ∆γβ (7)

where ∆τα
r is the increment of shear stress on the slip system (α) and hαβ is the work-

hardening matrix.
This matrix expresses the work hardening caused in any system (α) by the plastic

activity of a system (β). It can be interpreted by anisotropy of the interactions between
slip systems.

At the first stage of the deformation (just α), one deduces hαα (self -hardening) thanks
to the slope from the following curve (τα, γα)): ∆τα

r = hαα · ∆γα.
At the second stage (activation of β), we obtain the following:

ε̇P
11 = mα

11 · γ̇α + mβ
11 · γ̇β

ε̇P
22 = mα

22 · γ̇α + mβ
22 · γ̇β

(8)

and
τ̇α

r = hαα · γ̇α + hαβ · γ̇β

τ̇
β
r = hβα · γ̇α + hββ · γ̇β

(9)

The average of the slope allows for estimation of the coefficient values (hαβ and hβα)
corresponding to work hardening between two slip systems. In Figure 1, the curves [(τi, γi),
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i = α, β] are schematized. Obtaining these graphs requires the resolution of a system of four
equations with two unknown γα and γβ values (Equations (8) and (9)).

The values of the s hαβ and hβα coefficients result directly from the slopes of these
curves (see Figure 1). One can write the following:

dτα
r = A · dγα if dγβ = 0

dτα
r = B · dγα if dγβ > 0

dτα
r = C · dγβ if dγβ > 0

dτ
β
r = D · dγα

dτ
β
r = E · dγβ

(10)

which yields the following (see detailed calculation in Appendix A):

hαβ =
(B − A) · C

B
and hβα =

(D − A) · E
D

(11)

Moreover hαα = A, and if α = β, then hαα = hββ.

(a)

(c)

(b)

(d)

𝜏𝛼

𝛾𝛼

𝜏𝛼

𝛾𝛼

𝛾𝛽

𝛾𝛽

𝜏𝛽 𝜏𝛽

A

B
C

D E

I II

Figure 1. Schematic diagram of 4 different curves (τi, γi) with i = α, β. (a) (τα, γα) HCP metals
always exhibit low self-hardening (which is why A is represented as a low value) at stage I. From
dγβ > 0, it is stage II with the second active system and a higher slope (B). (b) (τα, γβ) curve and
dτα

r = C · dγβ. (c) (τβ, γα) with dτ
β
r = D · dγα. (d) (τβ, γβ) curve: dτ

β
r = E · dγβ.

3. Experimental

High-purity Zr (99.95%) was obtained in the form of polycrystalline parallelepipeds
(120 × 5 × 1 mm) with the chemical composition provided in Table 2. These bars underwent
heat treatment at 850 °C for 5 days, followed by annealing at 700 °C for 24 h under secondary
vacuum. This process resulted in centimetric grains.

Table 2. Chemical composition (weighted percent).

Zr O2 Fe Hf

Balance 400 to 500 ppm 20 ppm 50 ppm

Single crystals with the appropriate crystallographic orientation were selected from
within these parallelepipeds. The Euler angles of these single crystals, as measured by
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EBSD, are provided in Table 3. The sample geometry consists of uniform parallelepipeds
approximately 40 mm in length, with a gauge length of about 15 mm (see Figure 2).
Additionally, the heads of the tensile samples were chosen from grains expected to maintain
elastic behavior (smaller grain size and lower Schmid factor).

The experimental setup involves the use of an in situ tensile testing machine compati-
ble with a SEM Jeol 845 (Akishima, Japan) (Figure 2). This setup allows for simultaneous
coupling of the overall mechanical response of the samples (uniaxial stress measurement,
deformation using traditional extensometry and microgrids [29], and crystallographic
rotation through EBSD), with the observation of various mechanisms (identified via optical
and electron images and EBSD).

(a)

(b) (c)

10 mm

Figure 2. Micro tensile specimen (thickness = 1 mm) for EBSD and microgrid measurements. (a) Opti-
cal view; (b) sampling scheme; (c) specimens dimensions.

Table 3. Initial orientation of the studied single crystals of Zr. The Schmid factors in the case of
uniaxial traction on the X axis are given for prismatic slip and for T1 twinning.

Name φ1 (°) ϕ (°) φ2 (°) SF P⟨a⟩ SF (101̄2)

Zr1 336.00 86.13 315.08 0.4188 0.3451
Zr2 57.90 44.48 169.87 0.3156 0.1744
Zr3 98.21 85.85 111.51 0.0120 0.4878
Zr4 68.21 96.24 127.09 0.0719 0.4253
Zr5 42.27 74.58 141.26 0.2718 0.2109
Zr6 51.22 61.45 131.81 0.2646 0.2302
Zr8 5.44 56.95 91.47 0.4635 0.4058

Zr11 0.50 44.70 191.00 0.4959 0.4794

TEM investigations were performed with a CM200 Philips microscope (Cambridge,
MA, USA) operating at 200 kV accelerating voltage and equipped with a CCD Slow Scan
Gatan 791 camera (Pleasanton, CA, USA) for image and diffraction pattern acquisition.

Orientation measurements, as well as online help for the determination of the Burgers
vectors and dislocations glide plane were performed by indexing Kikuchi patterns using
homemade software named Euclid’s Phantasies [30,31] (https://www.imim.pl/personal/
adam.morawiec/A_Morawiec_Web_Page/downloads.html). The φ1, ϕ, and φ2 Euler an-
gles correspond to the definition given by Bunge [32], and the crystal coordinate system is
(a1 ∥ x) (see explanations in Appendix B).

Single crystals were metallographically prepared by mechanical polishing until a mir-
ror polish was obtained, followed by electrochemical etching. Microgrids were deposited
all along the useful surface area of the tensile sample [29]. The TEM samples were thinned
by electropolishing using a Struers apparatus (TenuPol-5, Ballerup, Danemark) with an
electropolishing solution containing 70% methanol, 20% monobutyl ether of ethylene gly-
col, and 10% perchloric acid (polishing conditions: 20 V at −30 °C). The thinned specimens

https://www.imim.pl/personal/adam.morawiec/A_Morawiec_Web_Page/downloads.html
https://www.imim.pl/personal/adam.morawiec/A_Morawiec_Web_Page/downloads.html
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were quickly rinsed in methanol baths. The plane trace of a system (α) on the surface was
calculated as the scalar product of the slip plane (nα) and surface-normal Tα (nα · Tα = 0;
see Figure 3). The trace of the crystallographic plane in the observation plane, which
satisfies the condition of Tα

3 = 0, is expressed as follows:

nα
1 · Tα

1 + nα
2 · Tα

2 = 0 ⇒
Tα

1
Tα

2
= −

nα
2

nα
1

. (12)

𝒏𝜶

Glide Plane

𝜽

𝑻α

𝐗 ∥ 𝐑𝐃

𝐘 ∥ 𝐓𝐃

𝐙 ∥ 𝐍𝐃

Figure 3. Determination of the glide system according to the angle of its trace.

Thus, the slip trace has an angle of tan(θ) =
(

Tα
1

Tα
2

)
=
(
− nα

2
nα

1

)
with nα

1 corresponding
to not zero. A negative angle corresponds to the complementary quarter of the plane (left
zone of the axis). This step can be conducted almost unambiguously, since there are only a
few symmetries in a hexagonal lattice (in comparison to cubic lattice) and since a very few
local crystal rotations were observed. The identification of dislocations by transmission
electron microscopy (TEM) is based on the g · b invisibility criterion [33]. The image of a
dislocation becomes invisible when it lies in the reflecting plane. The scalar product of the
diffraction vector (g) and the Burgers vector (b) are then zero (for more details, the reader
can refer to [34]). Twinning activity was analyzed with EBSD measurements using the
MTEX v5.10 toolbox for MATLAB® [35] (https://mtex-toolbox.github.io/). Orientations
were represented in pole figures on the RD-TD plane of the initial reference system and
plotted with ATEX software [36] (http://www.atex-software.eu/).

4. Results
4.1. Stage I: Determination of Some CRSSs

In Figure 4a, the orientations of each single crystal are displayed in an inverse pole

figure. By assuming equal CRSS for P⟨a⟩ and T1 (τP⟨a⟩
0 ≈ τ

{101̄2}
0 ), the active system

between T1 and P⟨a⟩ can be predicted. Figure 4b,c present the Schmid factors for P⟨a⟩ and
T1 individually. Different samples were deformed to Stage I (only one active slip system).
The slip trace angle was measured in SEM, and each system was checked by TEM (Figure 5).
The discrete measurements of crystal rotation (via EBSD) permits the calculation of the
evolution of the Schmid factor to draw all the curves (τα, γα).

In Figure 6 the stress–strain (σ, ε) curves of eight Zr single crystals are shown. Two
categories of mechanisms appeared. Prismatic slip was observed on the Zr1, Zr2, Zr5, Zr6,
Zr8, and Zr11 samples, and T1 twinning was observed on the Zr3 and Zr4 samples (see
Figure 5).

In Table 4, the different mechanical properties are listed for each of the eight sin-
gle crystals, including the Young’s modulus (E), the yield stress (YS), and the ultimate
tensile strength (UTS) .

https://mtex-toolbox.github.io/
http://www.atex-software.eu/
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Table 4. Summary table of the mechanical properties (experimental and theoretical Young’s Modulus
(Eexp and Etheo, respectively), Yield Stress (YS), strain rate (ε̇), and ultimate tensile strength (UTS)).

Sample Eexp [GPa] 1 Etheo [GPa] YS [MPa] 1 ε̇ [s−1] UTS [MPa] 1

Zr1 101 81 60–82 2 × 10−4 145.4
Zr2 80 111 80–85 2.5 × 10−4 186.4
Zr3 72 94 277 8 × 10−5 277.9
Zr4 77 110 234 4 × 10−5 231.3
Zr5 58 82 78–110 3 × 10−4 119.2
Zr6 132 81 125 4 × 10−5 126.9
Zr8 108 84 181 2 × 10−4 107.7

Zr11 144 110 134 8 × 10−5 116
1 These values were determined graphically.

T1-Twinning

Prismatic <a>

T1-Twinning

(a)

(b)
(c)

0.05
0.1 0.15

0.20

0.25
0.30

0.35
0.40

0.45

0.45

0.45

0.40

0.40

0.35

0.35

0.30

0.30

0.25

0.25
0.20

0001

0001

ത1100
ത1100

ത12ത10 ത12ത10

Prismatic <a> 
T1-Twinning

Figure 4. (a) Each orientation is localized in IPF linked with Table 3. The plot of the regions of the
active systems (dotted line) of P⟨a⟩ or the T1 twinning with the assumption that the CRSSs of the
two systems are almost identical. (b,c) Schmid factor for prismatic P⟨a⟩ and T1 twinning.

(a) (b)

100 μm 50 μm

Figure 5. Some typical images of the observed mechanism. (a) Slip traces of P⟨a⟩ (Zr1); (b) T1
twinning (in Zr3).
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0.00 0.01 0.02
true strain  [ ]

0

100

200

300

tru
e 

st
re

ss
 

 [M
Pa

]

Stage I

Zr1
Zr2

Zr3
Zr4

Zr5
Zr6

Zr8
Zr11

Figure 6. Curves (σ, ε) of 8 Zr singles crystals. Six samples exhibit a prismatic glide, except Zr3 and
Zr4, which exhibit T1 twinning. The dashed lines are the slopes of the curves.

The elastic moduli and UTS and YS values were obtained graphically. The elastic
modulus varies depending on the crystallographic orientation. We calculated the elastic
moduli using the elastic constants provided by Fisher and Renken [37] and represented
them on the IPF (Figure 7, along with the eight orientations of our single crystals. The high
values of Zr8 and Zr11 can be explained by their orientations. The obtained results are in
good agreement with the calculations.

Yo
u
n
g
’s
M
o
d
u
lu
s
[G
p
a]

𝐶𝑖𝑗𝑘𝑙 =

157.3 67.4 74.5 0 0 0
74.5 157.3 67.4 0 0 0
67.4 67.4 162.0 0 0 0
0 0 0 26.6 0 0
0 0 0 0 26.6 0
0 0 0 0 0 44.95

Figure 7. IPF of elastic moduli for Zr samples. Constants are taken from reference [37].

Every CRSS is compiled in Table 5. It can be seen from Figure 5a that slip lines are not ho-
mogeneously distributed; there are large areas without slip lines. Stage I is not homogeneous.

Table 5. Some values of CRSSs in Zr determined during this study.

P⟨a⟩ T1 T2 π1⟨a⟩ B⟨a⟩

40–45 MPa 1 43 MPa 1 110 MPa 2 70 MPa 2 ≥130 MPa 2

1 Determined with Stage I. 2 Determined with Stage II.

To illustrate the methodology explained above more clearly, Figure 8 presents the
determination of parameters A, B, C, D, and E on the Zr2 single crystal.

4.2. Stage II: Interaction with Two or More Systems

The presence of two distinct hardening regimes, along with the fact that the change
in slope coincides with the activation of the second prismatic slip system, suggests a
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strong interaction between the two prismatic systems. This results in significant hardening.
With increased deformation, the onset of double slip is observed (Figure 9a).
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]

𝛾1 [ ]

B

A

Figure 8. Example of hardening coefficients determined from the Zr2 sample. Here, A = 45.935,
B = 17.459 (a), C = 24.582 (b), D = 18.616 (c), and E = 34.138 (d). hαα = 40.1 MPa, and hαβ = 50.1 MPa.

g = 01ത1ത1

(b)
𝑃 𝑎

𝜋1 𝑎

(a)

𝑧 = 0002

0000

01ത10

10ത10ത1010

0ത110

ത1100

1ത100

0.2 µm

Figure 9. (a) TEM observations of the Zr2 sample (zone axis = [0002]; dark field on g = [101̄0]) (stage
II): Two prismatic system are observed. (b) Zr5 sample: Two slips are determined (π1⟨a⟩ and P⟨a⟩),
with an oriented unit cell.

Pyramidal slip was observed on the Zr5 specimen (Figure 9b), and at the end of
the deformation of the Zr8 specimen, it was characterized as being cross-slipped off the
principal prismatic system towards the pyramidal system. T1 twinning was observed on
the Zr3 and Zr4 samples (Figure 5b). T2 twinning was observed in Zr3. No C2 twining was
observed in Zr because of the higher CRSS. Many researchers have reported that C2 twins
can only form at elevated temperatures in Zr [38,39].

Determination of the work-hardening coefficient (hαβ) requires the resolution of a
set of two equations with two unknowns (α and β) and the measurement of ε11 and ε22.
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Uncertainty in ε11 measurement does not provide accurate values. In Table 6, the self-
hardening component (h11) and other components calculated in this study are given.

Figure 10c shows the distribution of the ε11 deformation to highlight the evolution
of the heterogeneity of deformation. Indeed, at the first step, the value (equal to 1) does
not have a physical direction, and the spectrum is extremely broad. There is, indeed, a
factor of approximately 4 between the different areas (areas with and without slip traces,
respectively). This means that the beginning of the deformation is highly heterogeneous at
the local level. This heterogeneity may be due to a difference in distribution of interstitial
atmospheres such as oxygen, which generates micro-variations in the CRSS. The histogram
becomes more Gaussian with increasing deformation. The appearance of the Gaussian
centered on the value of 1 means that the deformation is more homogeneous, reflecting
the work-hardening effect. These observations are correlated with the TEM observation
(Figure 5).

Table 6. Work-hardening values between the different prismatic systems.

hαβ P⟨a1⟩ P⟨a2⟩ P⟨a3⟩

P⟨a1⟩ 13–123 180–238 180–238
P⟨a2⟩ 180–238 13–123 180–238
P⟨a3⟩ 180–238 180–238 13–123
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Figure 10. (a) Stress–strain curves of Zr2 with 8 steps. (b) ε11 strain field mapping according to the
different steps (of Zr2). (c) Evolution of heterogeneity of the deformation ( ε11

⟨ε11⟩ ) with ⟨ε11⟩ the mean
deformation of ε11.

For the Zr5 sample, the interaction between P⟨a⟩ and π1⟨a⟩ was calculated, and the
following values were found: hαα = 38 MPa, hαβ = 27.66 MPa, and hβα = 4.57 MPa.

4.3. Influence of the Deformation Rate

The influence of the deformation rate on the CRSS of P⟨a⟩ was studied. In Table 7,
different orientations of single crystals are listed (Euler angles), as well as the inverse pole
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figure of the studied single crystals. The orientations of single crystals dedicated to the
velocity sensitivity tests for prismatic slip are illustrated on an inverse pole Figure 11.

Table 7. Orientation of the studied single crystals of Zr.

Name φ1 (°) ϕ (°) φ2 (°)

Zr20 4.78 74.76 197.98
ZR21 121.26 105.52 337.23
Zr22 136.06 84.36 141.88
Zr23 173.93 71.96 248.96
Zr24 173.01 72.76 69.59

X-Direction

Zr23

Zr24

Figure 11. IPF from the Zr single crystals listed in Table 7.

The range of strain rate of our study extends from ε̇ = 10−2–10−6 s−1, so it is consid-
ered quasi-static. In this range, the CRSS does not vary, as can be seen in Figure 12. In
Table 8 the results obtained have been listed.

10 5 10 4 10 3 10 2

[s 1]

0

20

40

60

80

100

0 
[M

Pa
]

P a

(1012)

Figure 12. Evolution of the CRSS of P⟨a⟩ vs. deformation rate (semi-logarithmic scale).
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Table 8. Summary table of the mechanical properties of the 5 Zr-single crystals tested with different
strain rates. Here, γ̇ = ∆γ

∆t .

Sample Strain Rate [s−1] γ̇ Yield Strength [MPa] CRSS [MPa]

Zr20 1 × 10−3 87 43
Zr21 3 × 10−5 120 44.4
Zr22 5 × 10−6 173 45
Zr23 1 × 10−5 74 37
Zr24 5 × 10−5 93 43

5. Discussion
5.1. Voce Law and Prismatic Glide

In Figure 13, we plot all the curves (τ − Γ).

0.000 0.005 0.010 0.015 0.020
 [ ]

0

20

40

60

 
 [M

Pa
]

= 0 + ( 1 + 1 * ) * (1 exp( * 0
1 ))

with 0=42.7 MPa; 1=8.2 MPa; 0=-3362 MPa; 1=48 MPa

Stage I

P < a >
Voce

Figure 13. Adjustment of the τ(Γ) curves of the different P⟨a⟩ systems with a Voce law, Adapted
from Ref. [6].

The prismatic glide system curves (τ − Γ) were fitted using the Voce law. In this case, Γ
represents the accumulated shear strain (Γ = ∑N

i γi, where N is the total number of active
systems; see [6]). However, for the purpose of this study, we focus solely on Stage I, where
only one slip system is active. Thus, Γ = γ.

τα = τ0 + (τ1 + θ1 ∗ Γα) ∗
(

1 − exp
(
−Γα θ0

τ1

))
, (13)

where τ0 = 42.7 MPa, τ1 = 8.2 MPa, θ0 = −3362 MPa, and θ1 = 48 MPa.

5.2. Deformation Rate

As can be seen in Figure 12, the effect of the deformation rate on the critical resolved
shear stress (CRSS) for prismatic ⟨a⟩ slip is minimal, contrary to the findings of Pujol [40].
Soo and Higgins [27] observed that oxygen additions significantly increase the temperature
dependence of the yield stress in zirconium, especially at low temperatures, and noted a
Cottrell–Stokes phenomenon when O2 ≥ 2000 ppm. In this study, the Zr samples contained
approximately 400 ppm of oxygen.

Research on zirconium is limited and primarily focuses on the CRSS for prismatic ⟨a⟩
slip; we compiled these studies in Figure 14. We observe that the CRSS for P⟨a⟩ with 400 ppm
of O2 is in excellent agreement with the results reported by other researchers [11,18,27,41,42].
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In Figure 15, a TEM image of Zr5 is compared with a simulation conducted by Mon-
net [43]. Monnet’s dislocation dynamics simulations, based on several key assumptions—
(1) a microstructure dominated by ⟨a⟩ screw dislocations, (2) the predominance of prismatic
slip systems, (3) high sensitivity to oxygen, and (4) a yield strength strongly dependent on
temperature—are consistent with our TEM observations.

TEM observations (see Figure 16) revealed cross-slip from the prismatic to the basal
plane at room temperature, involving straight screw dislocations moving via a kink-
pair mechanism.

0 250 500 750 1000 1250 1500 1750 2000
O2 [ppm]

0

20

40

60

80

100

120

140

160

 [M
Pa

]

Akhtar (1973)
Soo & Higgings (1968)
Rapperport (1959)
Skippon (2012)
Gong (2015)
Our Work

Figure 14. Effect of oxygen equivalent concentration on CRSS value for P⟨a⟩ slip in commercially
pure Zr and zircaloy-2, Adapted from Refs. [11,18,27,41,42]. The higher value obtained by Gong [42]
micro-beams is probably due to FIB damage.

Figure 15. (a) TEM image obtained of Zr5 g = [21̄1̄0]. (b) Same area but with g = [101̄0]. (c) Simulation
under the same diffraction conditions, Reprinted with permission from Ref. [43]. Copyright 2004,
Copyright Elsevier.
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20 nm(a) (b)
1 µm

Figure 16. (a) TEM bright-field image of Zr5 sample (g = [1̄101]). (b) White arrows indicate cross-slip.
⟨a⟩ dislocations in the prismatic plane cross on the basal plane.

6. Conclusions

A method was developed herein to calculate certain coefficients of the hardening
matrix. This approach combines in situ SEM-EBSD tests to track crystal rotations with
microgrids to obtain displacement fields. Postmortem observations of slip traces in SEM,
along with detailed identification of dislocation types using TEM, were also conducted.

At room temperature, critical resolved shear stresses (CRSSs) for various deformation
modes in zirconium (with 400 ppm O2) were evaluated as follows:

τ
P⟨a⟩
0 = 40 MPa; τ

{101̄2}
0 = 43 MPa; τ

{112̄1}
0 = 110 MPa;

τ
π1⟨a⟩
0 = 70 MPa; and τ

B⟨a⟩
0 > 130 MPa

In the tested strain-rate range, no noticeable change in CRSS for prismatic P⟨a⟩ slip was
observed. This serves as indirect evidence that a higher oxygen content is required to detect
such changes. Testing zirconium with higher oxygen content (>2000 ppm O2) is necessary,
as oxygen atoms act as pinning points for dislocation movement. A sufficient amount is needed
to significantly increase lattice friction. This is the first study to focus on the strain-hardening
coefficient. Previously, we shared some of our results with a French research team, and they
successfully modeled our experimental data [43] (see Figure 15a,c). The developed method is
applicable to all hexagonal metals (such as titanium, zinc, and magnesium) and, more broadly,
to all metals, as long as no more than two active slip systems are considered at the same time.
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Appendix A. Calculation of Slopes A, B, C, D, and E

The increase in the threshold stress (∆τr) of a system (α) due to shear activity (∆γβ) is
calculated as follows [6]:

∆τα
r =

N

∑
β=1

(
∂τα

r
∂γβ

)
∆γβ =

N

∑
β=1

hαβ∆γβ (A1)

where ∆τα
r is the increment of shear stress on the slip system (α) and hαβ is the work-

hardening matrix.
∆τα

r = hαα · ∆γα + hαβ · ∆γβ (A2)

∆τ
β
r = hβα · ∆γα + hββ · ∆γβ (A3)

Referring to Figure 1,

∆τα
r = A · ∆γα if ∆γβ = 0 (A4)

∆τα
r = B · ∆γα if ∆γβ > 0 (A5)

∆τα
r = C · ∆γβ if ∆γβ > 0 (A6)

∆τ
β
r = D · dγα (A7)

∆τ
β
r = E · ∆γβ (A8)

From Equations (A2) and (A4),

∆τα
r = A · ∆γα ⇒ A =

∆τα

∆γα
= hαα (A9)

From Equation (A5),

∆τα
r = B · ∆γα ⇒ ∆γα =

∆τα
r

B
(A10)

From Equation (A6),

∆τα
r = C · ∆γβ ⇒ ∆γβ =

∆τα
r

C
(A11)

Replacing Equations (A9)–(A11) in Equation (A2) yields the following:

∆τα
r = A · ∆τα

r
B

+ hαβ · ∆τα
r

C
(A12)

Simplifying Equation (A12) with ∆τα
r yields the following:

1 =
A
B
+

hαβ

C
⇒ hαβ = C

(
1 − A

B

)
(A13)

Assumption A1. Same glide systems ⇒ hββ = hαα = A.

From Equations (A3) and (A7),

∆τ
β
r = D · ∆γα ⇒ ∆γα =

∆τ
β
r

D
(A14)
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From Equation (A8),

∆τ
β
r = E · ∆γβ ⇒ ∆γβ =

∆τ
β
r

E
(A15)

Replacing Equations (A3), (A14), and (A15) in Equation (A12) yields the following:

∆τ
β
r = hβα · ∆τ

β
r

D
+ A · ∆τ

β
r

E
(A16)

Simplifying Equation (A16) with ∆τ
β
r yields the following:

1 =
hβα

D
+

A
E

⇒ hβα = D
(

1 − A
E

)
(A17)

Assumption A2. The glide systems are not the same, but hαβ = hβα.

Replacing Equations (A14) and (A15) in Equation (A3) yields the following:

∆τ
β
r = hαβ ·

(
∆τ

β
r

D

)
+ hββ ·

(
∆τ

β
r

E

)
(A18)

Simplifying Equation (A18) with ∆τ
β
r yields the following:

1 =
hαβ

D
+

hββ

E
⇒ hββ = E

(
1 − hαβ

D

)
(A19)

Replacing hαβ with Equation (A17) in Equation (A19) yields the following:

hββ =
E
D

(
D − C

(
1 − A

B

))
(A20)

Appendix B. Geometry of HCP Crystal

The primitive hexagonal unit cell has axes of a1 = a2 ̸= c and corresponding angles of
α = β = 90◦, γ = 120◦. Hexagonal basis H (a1, a2, a3, c) is based on four crystallographic
axes and four indices (Weber symbols), one of which is redundant (Figure A1).

a1 + a2 + a3 = 0 (A21)

Let (HKL)⟨UVW⟩ represent Miller indices. In the HCP structure, we have the fol-
lowing notation: (hkil)⟨uvtw⟩ with i = −(h + k) and u = 2U−V

3 ; v = 2V−U
3 ; w = W so

U = 2u + v; V = u + 2v and W = w.

Figure A1. Three possibilities of the basis for the hexagonal structure. (a) International orthonormal
basis with (a1 ∥ X). (b) Orthonormal basis with (a2 ∥ Y). (c) Hexagonal basis (a1, a2, a3, c).
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Let r be a vector in hexagonal basis H (a1, a2, a3, c) and v be the same vector but
expressed in an orthonormal basis (E) (X, Y, Z) (the notation is as follows: the change in
basis matrix, which changes the indices of the planes and directions of basis E to those
of basis H, is denoted as (ET H); a vector (r) expressed in basis H is denoted as [H, r]).
For more details, see [44].

v = [E, v] = (ET H)[H, r]

r = U · a1 + V · a2 + W · c

v = x · X + y · Y + z · Z

(A22)

Several conventions are used with regard to reference bases associated with hexagonal
lattice; either the international basis (a1 ∥ X) or the reference system is usually used in
textures (a2 ∥ Y), which implies a rotation of 30° on the c axis.

The coordinate transformations (E T H) are given in the cases of both (a1 ∥ X) and
(a2 ∥ Y).

Case 1: (a1 ∥ X)

A′
4 = (E T H) =

1 −1/2 0
0

√
3/2 0

0 0 c/a


Case 2 : (a2 ∥ Y)

A4 = (E T H) =


√

3/2 0 0
−1/2 1 0

0 0 c/a


Passing from the hexagonal basis (4 indices) to the orthonormal basis (with (a2 ∥ Y) )

is expressed by the following equations (indices are explained in Table 1). Table A1 uses
notations for a plane and a direction in HCP.U

V
W

 =


√

3
√

3/2 0
0 3/2 0
0 0 c/a

u
v
w

 (A23)

H
K
L

 =

2/
√

3 1/
√

3 0
0 1 0
0 0 a/c

h
k
l

 (A24)

where a and c are the parameters of the hexagonal unit cells.

Table A1. 4-Index (Miller-Bravais) and 3-Index (Miller) for directions and planes.

System Orthonormal Basis E Hexagonal Basis H (4 Indices)

Direction

 U
V
W




u
v
t
w



Plane

 H
K
L




h
k
i
l
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