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Abstract
Motivation: The combination of long-read sequencing technologies like Oxford Nanopore with single-cell RNA sequencing (scRNAseq) assays 
enables the detailed exploration of transcriptomic complexity, including isoform detection and quantification, by capturing full-length cDNAs. 
However, challenges remain, including the lack of advanced simulation tools that can effectively mimic the unique complexities of scRNAseq long- 
read datasets. Such tools are essential for the evaluation and optimization of isoform detection methods dedicated to single-cell long-read studies.
Results: We developed AsaruSim, a workflow that simulates synthetic single-cell long-read Nanopore datasets, closely mimicking real experimental 
data. AsaruSim employs a multi-step process that includes the creation of a synthetic count matrix, generation of perfect reads, optional PCR amplifi
cation, introduction of sequencing errors, and comprehensive quality control reporting. Applied to a dataset of human peripheral blood mononuclear 
cells, AsaruSim accurately reproduced experimental read characteristics.
Availability and implementation: The source code and full documentation are available at https://github.com/GenomiqueENS/AsaruSim.

1 Introduction
Single-cell RNA sequencing (scRNAseq) technologies have rev
olutionized our understanding of cell biology, providing high- 
resolution insights into Eukaryote cellular heterogeneity. Still, 
studying the heterogeneity at the level of isoforms and struc
tural variations is currently limited. Traditional short-read se
quencing coupled with single-cell technologies (commonly 
droplet-based scRNA-seq protocols such as 10X Genomics) 
are not suitable for studying full-length cDNAs, because they 
require RNA/cDNA fragmentation, often resulting in the loss 
of information regarding the complete exonic structure 
(Arzalluz-Luque and Conesa 2018). Combining long-read se
quencing, such as Oxford Nanopore or Pacbio, with single-cell 
technologies has enabled addressing this challenge (Arzalluz- 
Luque and Conesa 2018). Despite its advantages, the quality 
of Nanopore sequencing used to be impacted by higher error 
rates compared to short-read technologies, thus negatively 
impacting the detection of cell barcodes (CBs) and unique mo
lecular identifiers (UMIs) (Karst et al. 2021). Yet, these ele
ments are critical for attributing reads to their original cells, 
and for the accurate characterization and quantification of iso
forms. That is why a hybrid approach, coupling long-read and 
short-read technologies, used to be necessary for a reliable as
signment of CBs and UMIs (Lebrigand et al. 2020). Recently, 
the accuracy of Nanopore reads has been drastically improved 
[95%–99% with the R10.3 flow cells (Dippenaar et al. 2022)], 

paving the way to untie long-read from short-read approaches 
in single-cell studies. Recently released bioinformatics methods, 
including scNapBar (Wang et al. 2021), FLAMES (Tian et al. 
2021), BLAZE (You et al. 2023), Sicelore 2.1 (Lebrigand et al. 
2020), Sockeye (https://github.com/nanoporetech/sockeye), 
and scNanoGPS (Shiau et al. 2023), have been developed to 
detect CBs and/or UMIs without using companion short-read 
data (referred to as Nanopore-only methods). These advances 
have the potential to reduce both the cost and the amount of 
work traditionally associated with hybrid sequencing computa
tional workflows.

In the context of these developments, evaluating Nanopore- 
only methods for processing single-cell long-read datasets 
remains challenging. Most of the methods currently available 
are benchmarked against short-read datasets; this approach is 
not devoid of biases and is therefore considered to be an imper
fect gold standard (Ziegenhain et al. 2022, Sun et al. 2024). 
One solution lies in the use of simulated datasets, which can 
mimic real experimental outcomes without the same biases as 
empirical methods. Simulated data provide a known ground 
truth—true CBs and true UMIs. This ground truth can be 
exploited by method developers in various ways, such as tuning 
method parameters, validating results, benchmarking novel 
tools against existing methods, and highlighting their perfor
mance across a wide range of scenarios. Besides, the focus of 
most long-read scRNA-seq and spatial methods is to identify al
ternative splicing events and differentially expressed isoforms 
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(DEI) between cell types or cell states (Joglekar et al. 2023). 
Assessing the performance of these methods is also challenging 
because the ground truth is typically not known, and simulating 
random reads without any biological insight does not address 
this issue. One solution to this issue is to use instead simulated 
datasets, in which the ground truth (e.g. DEI, Fold change, 
batch effect) is known.

To date, no existing workflow has been designed with the 
specific purpose of simulating single-cell or spatial RNAseq 
long-read data, especially with biological insights. A general 
workflow for long-read transcriptomic datasets, TKSM 
(Karao�glano�glu et al. 2024), comprises some modules that 
enable users to assemble a pipeline for scRNAseq, but it is 
not primarily intended for single-cell applications. Current 
scRNAseq counts simulation tools [such as SPARSim 
(Baruzzo et al. 2020) or ZINB-WaVE (Risso et al. 2018)] 
generate only a synthetic single-cell count matrix. The bottle
neck lies in the generation of simulated raw reads. It is nota
ble that some studies on single-cell long-read methods, such 
as those described in Wang et al. (2021) and You et al. 
(2023), have employed simulated data. As part of these stud
ies, individual tools (e.g. SLSim; https://github.com/youyupei/ 
SLSim) have been developed to generate artificial template 
sequences with random cDNA, and simulators such as 
Badread (Wick 2019) or NanoSim (Yang et al. 2017) are 
employed to introduce sequencing errors based on a prede
fined error model. While such tools can effectively be used to 
benchmark the accuracy of CB assignment algorithms, it does 
not account for the complexities of estimating a realistic com
plete single-cell long-read dataset. Such complexities include 
polymerase chain reaction (PCR) biases and artifacts, spar
sity, variability, and heterogeneity—characteristics intrinsic 
to single-cell and spatial data. Comprehensive simulation 
would allow for broader and more precise benchmarking of 
the performance of single-cell long-read bioinformatics tools.

To address this gap, we have developed AsaruSim, a work
flow that simulates single-cell long-read Nanopore data. This 
workflow aims to generate a gold standard dataset for the 
objective assessment and optimization of single-cell long-read 
methods. The development of such a simulator alleviates the 
bottleneck in generating diverse in silico datasets by leverag
ing parameters derived from real-world datasets. This capa
bility enables the assessment of method performance across 
different scenarios and refines pre-processing and analysis 
methods for handling the unique complexities of long-read 
data at the single-cell level.

2 Materials and methods
AsaruSim mimics real data by first generating realistic UMI 
counts using SPARSSim (Baruzzo et al. 2020), and then simu
lating realistic Nanopore reads using Badread (Wick 2019). 
Five major steps are implemented (Fig. 1).

2.1 Synthetic UMI count matrix
AsaruSim takes as input a feature-by-cell (gene/cell or iso
form/cell) UMI count matrix (.CSV), which may be derived 
from an existing single-cell short- or long-read preprocessed 
run, or from a count simulator tool. The R SPARSim library 
(Baruzzo et al. 2020) is used to estimate the count simulation 
parameters from the provided UMI count matrix and gener
ate the corresponding synthetic count matrices, taking advan
tage of its ability to support various input parameters. 

AsaruSim also enables the user to input their own count sim
ulation parameters, or alternatively, to select them from a 
predefined set of parameters stored in the SPARSim database.

2.2 Perfect raw reads generation
This step is an original Python script. AsaruSim generates 
synthetic reads based on the synthetic count matrix. The 
retro-engineering of reads is achieved by generating a corre
sponding number of random UMI sequences for each feature 
(gene or isoform). The final construction corresponds to a 
10X Genomics coupled with Nanopore sequencing library 
(Lebrigand et al. 2020): an adaptor sequence composed of 
10× and Nanopore adaptors, a CB, UMI sequences at the 
same frequencies as in the synthetic count matrix, a 20-bp 
oligo(dT), the feature-corresponding cDNA sequence from 
the reference transcriptome, and a template switch oligo 
(TSO) at the end. When a gene expression matrix is provided, 
a realistic read length distribution is achieved by selecting a 
random transcript of the corresponding gene, with a prior 
probability in favor of short-length cDNA (Supplementary 
Note Sa). An optional step can be performed to mimick 
unspliced reads by retaining introns (Supplementary Note 
Sb). In real data, reads are not always full-length as cDNA 
can be truncated. Here, each generated cDNA is thus trun
cated based on an empirically derived truncation probability 
distribution, estimated by mapping a random subset of real 
reads to the reference transcriptome using Minimap2 
(Supplementary Fig. S6a and b), as described in Prjibelski 
et al. (2023). At the end, generated reads are randomly ori
ented, with each synthetic read having an equal probability 
of being oriented in the original strand or the reverse strand. 
These final sequences are named “perfect reads” as they ex
actly correspond to the introduced elements (CB, UMI, 
cDNA … ) without the addition of sequencing errors.

2.3 Mimicking PCR amplification bias (optional)
The perfect reads are duplicated through artificial multiple 
PCR cycles by an original Python script reimplemented from 
Sarkar et al. (2019) and Orabi et al. (2019) with several opti
mizations to improve speed and memory usage. This enables 
us to take into account the bias of amplification introduced 
during library constructions (Bolisetty et al. 2015). At each 
cycle, a synthetic read has a certain probability of being suc
cessfully replicated. The efficiency rate of duplication is fixed 
by the user (default Pdup¼ 0.9). Then, each nucleotide in the 
duplicated read has a probability of being mutated during the 
process. The error rate is also fixed by the user (default 
Perror¼ 3.5e−05). From this resulting artificial PCR product, 
a random subset of reads is finally selected to mimic the ex
perimental protocol where only a subset of the sample is used 
for the sequencing step.

2.4 Introduction of sequencing errors in the reads
The perfect reads or post-PCR reads are used as a template 
for Badread error simulation, which simulates Nanopore se
quencing errors and assigns per-base quality scores based on 
pre-trained error models and sequence identity with the refer
ence genome. AsaruSim allows the user to (i) provide a per
sonal pre-trained model, (ii) provide a real FASTQ read file 
to internally train a new model, or (iii) choose a pre-trained 
model within the Badread database. To approximate the ob
served sequence identity distribution in the experimental 
data, we align the real FASTQ read to the reference genome 
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using Minimap2 (Li 2018), then calculate a sequence identity 
for each alignment from the Minimap2 output, with three 
possible identity models including or excluding gaps. A beta 
distribution is then fitted to the identity value to estimate the 
distribution parameters (Supplementary Note Sc).

2.5 Report
Finally, AsaruSim generates an HTML report presenting quality 
control plots obtained by analyzing the final FASTQ read files 
with ToulligQC (https://github.com/GenomiqueENS/toulligQC). 
This report aims to make sure the simulated data correspond to 
the expectations of the user before using them with tools dedi
cated to analyze scRNAseq long-read data.

AsaruSim is implemented in Nextflow (Di Tommaso et al. 
2017) under GPL 3 license to allow a flexible and easily cus
tomizable workflow execution, computational reproducibil
ity, and traceability (Supplementary Note Sd). To ensure 
numerical stability and easier installation, it also uses Docker 
(Merkel 2014) containerization technology.

3 Results
We developed AsaruSim to produce artificial Nanopore 
scRNAseq data that resembles a real experiment in terms of 
biological insights.

As a use case, we used a public dataset of human peripheral 
blood mononuclear cells (https://www.10xgenomics.com/ 

datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1- 
standard) as reference data. We downloaded the count ma
trix and used it as input to AsaruSim. From the 5000 cells ini
tially present in the original matrix, we selected three cell types 
(CD8þT, CD4þT, and B cells) resulting in 1090 cells then 
used as a template to simulate the synthetic UMI count matrix 
(Step 1). Next, we simulated 20 million perfect reads (FASTA) 
(Step 2) with 10 PCR cycles (Step 3). We downloaded a subset 
of 1 million original FASTQ raw reads to generate the error 
model for Badread and then introduced errors to generate the 
synthetic reads (FASTQ) (Step 4). The quality control report is 
finally generated (Step 5, Supplementary Note Se).

We compared the properties of the simulated data to the 
experimental data. Both datasets showed similar (i) read 
length distribution and transcript coverage, (ii) number of 
mismatches and insertions/deletions in reads aligned to the 
10× adapter sequence using VSEARCH (Rognes et al. 2016) 
(Supplementary Note Se).

Next, we pre-processed the simulated raw reads using the 
Sockeye pipeline (https://github.com/nanoporetech/sockeye), 
and both experimental and simulated matrices were processed 
using Seurat v5 (Hao et al. 2024). The correlation of the average 
log fold change for cell type markers between real and simulated 
data shows a Pearson’s correlation coefficient r¼0.84 and the 
integration of both datasets shows a miLISI¼ 1.6, demonstrat
ing a good agreement in gene expression between the real and 
simulated datasets (Supplementary Note Se).

Figure 1. Summary of the AsaruSim workflow. It takes as input a real UMI count matrix and (1) trains the count simulator SPARSim to generate the 
corresponding synthetic UMI count matrix, serving as ground truth. It then (2) generates perfect reads (FASTA file) based on this synthetic UMI count 
matrix and a reference transcriptome. (3) It can optionally simulate bias introduced by PCR cycles. (4) It generates more realistic synthetic reads from the 
previous read templates (perfect or post-PCR) using a Badread simulator with a pre-trained error model on real Nanopore reads. (5) It outputs an HTML 
report presenting quality control plots that enable the user to assess the simulated reads, before using them to evaluate tools dedicated to analyze 
scRNAseq long-read data.
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When compared with TKSM (Karao�glano�glu et al. 2024), 
AsaruSim outperforms TKSM in terms of features specific to 
single-cell applications, similarity between real and simulated 
data, and computing efficiency (Supplementary Note Sf).

4 Conclusion
We presented a comprehensive workflow for simulating 
single-cell Nanopore data from the matrix to the sequence 
level, to create custom gold standard datasets. Potential 
applications include generating reads with differential gene 
expression or DEI between cell groups, as well as simulating 
known fold changes or batch effects, to assess and optimize 
single-cell long-read methods. AsaruSim offers a variety of 
configuration options to allow for flexible input and design.

Currently, AsaruSim generates data compatible with the 
10X Genomics 30 and spatial protocols. We plan to expand 
AsaruSim to accommodate additional single-cell techniques 
and protocols and support for PacBio sequencing.
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