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Abstract

Motivation: The combination of long-read sequencing technologies like Oxford Nanopore with single-cell RNA sequencing (scRNAseq) assays
enables the detailed exploration of transcriptomic complexity, including isoform detection and quantification, by capturing full-length cDNAs.
However, challenges remain, including the lack of advanced simulation tools that can effectively mimic the unique complexities of scRNAseq long-
read datasets. Such tools are essential for the evaluation and optimization of isoform detection methods dedicated to single-cell long-read studies.

Results: We developed AsaruSim, a workflow that simulates synthetic single-cell long-read Nanopore datasets, closely mimicking real experimental
data. AsaruSim employs a multi-step process that includes the creation of a synthetic count matrix, generation of perfect reads, optional PCR amplifi-
cation, introduction of sequencing errors, and comprehensive quality control reporting. Applied to a dataset of human peripheral blood mononuclear
cells, AsaruSim accurately reproduced experimental read characteristics.

Availability and implementation: The source code and full documentation are available at https://github.com/GenomiqueENS/AsaruSim.

1 Introduction

Single-cell RNA sequencing (scRNAseq) technologies have rev-
olutionized our understanding of cell biology, providing high-
resolution insights into Eukaryote cellular heterogeneity. Still,
studying the heterogeneity at the level of isoforms and struc-
tural variations is currently limited. Traditional short-read se-
quencing coupled with single-cell technologies (commonly
droplet-based scRNA-seq protocols such as 10X Genomics)
are not suitable for studying full-length cDNAs, because they
require RNA/cDNA fragmentation, often resulting in the loss
of information regarding the complete exonic structure
(Arzalluz-Luque and Conesa 2018). Combining long-read se-
quencing, such as Oxford Nanopore or Pacbio, with single-cell
technologies has enabled addressing this challenge (Arzalluz-
Luque and Conesa 2018). Despite its advantages, the quality
of Nanopore sequencing used to be impacted by higher error
rates compared to short-read technologies, thus negatively
impacting the detection of cell barcodes (CBs) and unique mo-
lecular identifiers (UMIs) (Karst et al. 2021). Yet, these ele-
ments are critical for attributing reads to their original cells,
and for the accurate characterization and quantification of iso-
forms. That is why a hybrid approach, coupling long-read and
short-read technologies, used to be necessary for a reliable as-
signment of CBs and UMIs (Lebrigand et al. 2020). Recently,
the accuracy of Nanopore reads has been drastically improved
[95%-99% with the R10.3 flow cells (Dippenaar et al. 2022)],

paving the way to untie long-read from short-read approaches
in single-cell studies. Recently released bioinformatics methods,
including scNapBar (Wang et al. 2021), FLAMES (Tian et al.
2021), BLAZE (You et al. 2023), Sicelore 2.1 (Lebrigand et al.
2020), Sockeye (https://github.com/nanoporetech/sockeye),
and scNanoGPS (Shiau ez al. 2023), have been developed to
detect CBs and/or UMIs without using companion short-read
data (referred to as Nanopore-only methods). These advances
have the potential to reduce both the cost and the amount of
work traditionally associated with hybrid sequencing computa-
tional workflows.

In the context of these developments, evaluating Nanopore-
only methods for processing single-cell long-read datasets
remains challenging. Most of the methods currently available
are benchmarked against short-read datasets; this approach is
not devoid of biases and is therefore considered to be an imper-
fect gold standard (Ziegenhain et al. 2022, Sun et al. 2024).
One solution lies in the use of simulated datasets, which can
mimic real experimental outcomes without the same biases as
empirical methods. Simulated data provide a known ground
truth—true CBs and true UMIs. This ground truth can be
exploited by method developers in various ways, such as tuning
method parameters, validating results, benchmarking novel
tools against existing methods, and highlighting their perfor-
mance across a wide range of scenarios. Besides, the focus of
most long-read scRNA-seq and spatial methods is to identify al-
ternative splicing events and differentially expressed isoforms
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(DEI) between cell types or cell states (Joglekar et al. 2023).
Assessing the performance of these methods is also challenging
because the ground truth is typically not known, and simulating
random reads without any biological insight does not address
this issue. One solution to this issue is to use instead simulated
datasets, in which the ground truth (e.g. DEI, Fold change,
batch effect) is known.

To date, no existing workflow has been designed with the
specific purpose of simulating single-cell or spatial RNAseq
long-read data, especially with biological insights. A general
workflow for long-read transcriptomic datasets, TKSM
(Karaoglanoglu et al. 2024), comprises some modules that
enable users to assemble a pipeline for scRNAseq, but it is
not primarily intended for single-cell applications. Current
scRNAseq counts simulation tools [such as SPARSim
(Baruzzo et al. 2020) or ZINB-WaVE (Risso et al. 2018)]
generate only a synthetic single-cell count matrix. The bottle-
neck lies in the generation of simulated raw reads. It is nota-
ble that some studies on single-cell long-read methods, such
as those described in Wang et al. (2021) and You et al.
(2023), have employed simulated data. As part of these stud-
ies, individual tools (e.g. SLSim; https://github.com/youyupei/
SLSim) have been developed to generate artificial template
sequences with random c¢DNA, and simulators such as
Badread (Wick 2019) or NanoSim (Yang et al. 2017) are
employed to introduce sequencing errors based on a prede-
fined error model. While such tools can effectively be used to
benchmark the accuracy of CB assignment algorithms, it does
not account for the complexities of estimating a realistic com-
plete single-cell long-read dataset. Such complexities include
polymerase chain reaction (PCR) biases and artifacts, spar-
sity, variability, and heterogeneity—characteristics intrinsic
to single-cell and spatial data. Comprehensive simulation
would allow for broader and more precise benchmarking of
the performance of single-cell long-read bioinformatics tools.

To address this gap, we have developed AsaruSim, a work-
flow that simulates single-cell long-read Nanopore data. This
workflow aims to generate a gold standard dataset for the
objective assessment and optimization of single-cell long-read
methods. The development of such a simulator alleviates the
bottleneck in generating diverse in silico datasets by leverag-
ing parameters derived from real-world datasets. This capa-
bility enables the assessment of method performance across
different scenarios and refines pre-processing and analysis
methods for handling the unique complexities of long-read
data at the single-cell level.

2 Materials and methods

AsaruSim mimics real data by first generating realistic UMI
counts using SPARSSim (Baruzzo et al. 2020), and then simu-
lating realistic Nanopore reads using Badread (Wick 2019).
Five major steps are implemented (Fig. 1).

2.1 Synthetic UMI count matrix

AsaruSim takes as input a feature-by-cell (gene/cell or iso-
form/cell) UMI count matrix (.CSV), which may be derived
from an existing single-cell short- or long-read preprocessed
run, or from a count simulator tool. The R SPARSim library
(Baruzzo et al. 2020) is used to estimate the count simulation
parameters from the provided UMI count matrix and gener-
ate the corresponding synthetic count matrices, taking advan-
tage of its ability to support various input parameters.

Hamraoui et al.

AsaruSim also enables the user to input their own count sim-
ulation parameters, or alternatively, to select them from a
predefined set of parameters stored in the SPARSim database.

2.2 Perfect raw reads generation

This step is an original Python script. AsaruSim generates
synthetic reads based on the synthetic count matrix. The
retro-engineering of reads is achieved by generating a corre-
sponding number of random UMI sequences for each feature
(gene or isoform). The final construction corresponds to a
10X Genomics coupled with Nanopore sequencing library
(Lebrigand et al. 2020): an adaptor sequence composed of
10x and Nanopore adaptors, a CB, UMI sequences at the
same frequencies as in the synthetic count matrix, a 20-bp
oligo(dT), the feature-corresponding cDNA sequence from
the reference transcriptome, and a template switch oligo
(TSO) at the end. When a gene expression matrix is provided,
a realistic read length distribution is achieved by selecting a
random transcript of the corresponding gene, with a prior
probability in favor of short-length cDNA (Supplementary
Note Sa). An optional step can be performed to mimick
unspliced reads by retaining introns (Supplementary Note
Sb). In real data, reads are not always full-length as cDNA
can be truncated. Here, each generated cDNA is thus trun-
cated based on an empirically derived truncation probability
distribution, estimated by mapping a random subset of real
reads to the reference transcriptome using Minimap2
(Supplementary Fig. S6a and b), as described in Prjibelski
et al. (2023). At the end, generated reads are randomly ori-
ented, with each synthetic read having an equal probability
of being oriented in the original strand or the reverse strand.
These final sequences are named “perfect reads” as they ex-
actly correspond to the introduced elements (CB, UMI,
c¢DNA ...) without the addition of sequencing errors.

2.3 Mimicking PCR amplification bias (optional)

The perfect reads are duplicated through artificial multiple
PCR cycles by an original Python script reimplemented from
Sarkar et al. (2019) and Orabi et al. (2019) with several opti-
mizations to improve speed and memory usage. This enables
us to take into account the bias of amplification introduced
during library constructions (Bolisetty et al. 2015). At each
cycle, a synthetic read has a certain probability of being suc-
cessfully replicated. The efficiency rate of duplication is fixed
by the user (default Py,,=0.9). Then, each nucleotide in the
duplicated read has a probability of being mutated during the
process. The error rate is also fixed by the user (default
Perror = 3.5e—035). From this resulting artificial PCR product,
a random subset of reads is finally selected to mimic the ex-
perimental protocol where only a subset of the sample is used
for the sequencing step.

2.4 Introduction of sequencing errors in the reads

The perfect reads or post-PCR reads are used as a template
for Badread error simulation, which simulates Nanopore se-
quencing errors and assigns per-base quality scores based on
pre-trained error models and sequence identity with the refer-
ence genome. AsaruSim allows the user to (i) provide a per-
sonal pre-trained model, (ii) provide a real FASTQ read file
to internally train a new model, or (iii) choose a pre-trained
model within the Badread database. To approximate the ob-
served sequence identity distribution in the experimental
data, we align the real FASTQ read to the reference genome
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Figure 1. Summary of the AsaruSim workflow. It takes as input a real UMI count matrix and (1) trains the count simulator SPARSIm to generate the
corresponding synthetic UMI count matrix, serving as ground truth. It then (2) generates perfect reads (FASTA file) based on this synthetic UMI count
matrix and a reference transcriptome. (3) It can optionally simulate bias introduced by PCR cycles. (4) It generates more realistic synthetic reads from the
previous read templates (perfect or post-PCR) using a Badread simulator with a pre-trained error model on real Nanopore reads. (5) It outputs an HTML
report presenting quality control plots that enable the user to assess the simulated reads, before using them to evaluate tools dedicated to analyze

scRNAseq long-read data.

using Minimap2 (Li 2018), then calculate a sequence identity
for each alignment from the Minimap2 output, with three
possible identity models including or excluding gaps. A beta
distribution is then fitted to the identity value to estimate the
distribution parameters (Supplementary Note Sc).

2.5 Report

Finally, AsaruSim generates an HTML report presenting quality
control plots obtained by analyzing the final FASTQ read files
with ToulligQC (https:/github.com/GenomiqueENS/toulligQC).
This report aims to make sure the simulated data correspond to
the expectations of the user before using them with tools dedi-
cated to analyze scRNAseq long-read data.

AsaruSim is implemented in Nextflow (Di Tommaso et al.
2017) under GPL 3 license to allow a flexible and easily cus-
tomizable workflow execution, computational reproducibil-
ity, and traceability (Supplementary Note Sd). To ensure
numerical stability and easier installation, it also uses Docker
(Merkel 2014) containerization technology.

3 Results

We developed AsaruSim to produce artificial Nanopore
scRNAseq data that resembles a real experiment in terms of
biological insights.

As a use case, we used a public dataset of human peripheral
blood mononuclear cells (https:/www.10xgenomics.com/

datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-
standard) as reference data. We downloaded the count ma-
trix and used it as input to AsaruSim. From the 5000 cells ini-
tially present in the original matrix, we selected three cell types
(CD8+T, CD4+T, and B cells) resulting in 1090 cells then
used as a template to simulate the synthetic UMI count matrix
(Step 1). Next, we simulated 20 million perfect reads (FASTA)
(Step 2) with 10 PCR cycles (Step 3). We downloaded a subset
of 1 million original FASTQ raw reads to generate the error
model for Badread and then introduced errors to generate the
synthetic reads (FASTQ) (Step 4). The quality control report is
finally generated (Step 5, Supplementary Note Se).

We compared the properties of the simulated data to the
experimental data. Both datasets showed similar (i) read
length distribution and transcript coverage, (ii) number of
mismatches and insertions/deletions in reads aligned to the
10x adapter sequence using VSEARCH (Rognes et al. 2016)
(Supplementary Note Se).

Next, we pre-processed the simulated raw reads using the
Sockeye pipeline  (https:/github.com/nanoporetech/sockeye),
and both experimental and simulated matrices were processed
using Seurat v5 (Hao et al. 2024). The correlation of the average
log fold change for cell type markers between real and simulated
data shows a Pearson’s correlation coefficient = 0.84 and the
integration of both datasets shows a miLISI = 1.6, demonstrat-
ing a good agreement in gene expression between the real and
simulated datasets (Supplementary Note Se).
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When compared with TKSM (Karaoglanoglu et al. 2024),
AsaruSim outperforms TKSM in terms of features specific to
single-cell applications, similarity between real and simulated
data, and computing efficiency (Supplementary Note Sf).

4 Conclusion

We presented a comprehensive workflow for simulating
single-cell Nanopore data from the matrix to the sequence
level, to create custom gold standard datasets. Potential
applications include generating reads with differential gene
expression or DEI between cell groups, as well as simulating
known fold changes or batch effects, to assess and optimize
single-cell long-read methods. AsaruSim offers a variety of
configuration options to allow for flexible input and design.

Currently, AsaruSim generates data compatible with the
10X Genomics 3’ and spatial protocols. We plan to expand
AsaruSim to accommodate additional single-cell techniques
and protocols and support for PacBio sequencing.
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