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Abstract
Deterministic two-way transducers capture the class of regular functions. The efficiency of composing
two-way transducers has a direct implication in algorithmic problems related to reactive synthesis,
where transformation specifications are converted into equivalent transducers. These specifications
are presented in a modular way, and composing the resultant machines simulates the full specification.
An important result by Dartois et al. [8] shows that composition of two-way transducers enjoy
a polynomial composition when the underlying transducer is reversible, that is, if they are both
deterministic and co-deterministic. This is a major improvement over general deterministic two-way
transducers, for which composition causes a doubly exponential blow-up in the size of the inputs in
general. Moreover, they show that reversible two-way transducers have the same expressiveness as
deterministic two-way transducers. However, the question of expressiveness of reversible transducers
over infinite words is still open.

In this article, we introduce the class of reversible two-way transducers over infinite words and
show that they enjoy the same expressive power as deterministic two-way transducers over infinite
words. This is done through a non-trivial, effective construction inducing a single exponential blow-up
in the set of states. Further, we also prove that composing two reversible two-way transducers
over infinite words incurs only a polynomial complexity, thereby providing foundations for efficient
procedure for composition of transducers over infinite words.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases Transducers, Regular functions, Reversibility, Composition, SSTs

1 Introduction

Transducers extend finite state automata with outputs. While finite state automata are
computational models for regular languages, transducers are computational models for
transformations between languages. Finite state automata remain robust in their expres-
siveness accepting regular languages across various descriptions like allowing two-way-ness,
non-determinism and otherwise. However, this is not the case with transducers. Non-
deterministic transducers realize relations while deterministic transducers realize functions.
Likewise, two-way transducers are strictly more expressive than one-way transducers: for
instance, the function reverse which computes the reverse of all input words in its domain is
realizable by deterministic two-way transducers, but not by one-way transducers.

One of the cornerstone results of formal language theory is the beautiful connection
which establishes that the class of regular languages corresponds to those recognized by
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2 Reversible Transducers over Infinite Words

finite state automata, to the class of languages definable in MSO logic, and to the class
of languages whose syntactic monoid is finite. Engelfriet and Hoogeboom [14] generalized
this correspondence between machines, logics and algebra in the case of regular languages
to regular transformations. They showed that regular transformations are those which are
captured by two-way transducers and by Monadic second-order (MSO) transductions a la
Courcelle [7]. Inspired by this seminal work of Engelfriet and Hoogeboom, there has been
an increasing interest over recent years in characterizing the class of functions defined by
deterministic two-way transducers [2, 3, 13].

One such characterization is that of reversible two-way transducers [8] over finite words.
Reversible transducers are those which are deterministic and also co-deterministic. While
determinism says that any given state, on any given input symbol, does not transition to
two distinct states, co-determinism says that no two distinct states can transition to the
same state on any input symbol. Reversibility makes the composition operation in two-way
transducers very efficient : the composition of reversible transducers has polynomial state
complexity. This makes reversible transducers a very attractive formalism in synthesis where
specifications are given as relations of input-output pairs. [8] showed that reversible two-way
transducers capture the class of regular transformations. However, reversible transducers
over infinite words have not been studied.

In another line of work, [1] initiated the study of transformations on infinite words. They
considered functional, copy-less streaming string transducers (SST) with a Müller acceptance
condition. An SST is a one-way automaton with registers; the outputs of each transition
are stored in registers as words over the register names and the output alphabet. In a run,
the contents of the registers are composed. The Müller acceptance condition is defined as
follows: in any accepting run which settles down in a Müller set, the output is defined as
a concatenation x1, x2, . . . xn of registers where only xn is updated by appending words to
xn. [1] proved the equivalence of this class of SST to deterministic two-way transducers
with Müller acceptance and having an ω-regular look-ahead. They also showed that these
are equivalent to MSO transductions over infinite words. The ω-regular look-aheads were
necessary to obtain the expressiveness of MSO transductions on infinite words.

In this paper, we continue the study of two-way transducers over infinite words. We
introduce two-way transducers with the parity acceptance condition (2DPT). The main
result of our paper is a non-trivial generalization of [8], where we show that 2DPT’s can be
made reversible, obtaining 2RPT (two-way reversible transducers with parity acceptance).
Our conversion of 2DPT to 2RPT incurs a single exponential blow-up, and goes via a new
kind of SSTs that we introduce, namely, copyless SST with a parity acceptance condition
(cPSST). The parity condition used in both machines employs a finite set of coloring functions,
c1, . . . , ck, where each ci assigns to the transitions of the underlying machine, a natural
number. An infinite run ρ is accepting if the minimum number which appears infinitely often
is even in all the ci’s.

1. We first show that starting from a 2DPT, we can obtain an equivalent cPSST where
the number of states of the cPSST is exponential in the number of states and coloring
functions of the 2DPT. The proof of this is a fairly non-trivial generalization of the
classical Shepherdson construction [16] which goes from two-way automata to one-way
automata.

2. Then we show that, starting from a cPSST A, we can obtain an equivalent 2RPT B
which is polynomial in the number of states and registers of A. This construction is a
bit technical : we show that B is obtained as the composition of a deterministic one-way
parity transducer D and an 2RPT F . To complete the proof, we show that (i) D can be
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converted to an equivalent 2RPT with polynomial blow-up, and (ii) 2RPTs are closed
under composition with a polynomial complexity.

Thus, our results extend [8] to the setting of infinite words, retaining the expressivity of
deterministic machines and a polynomial complexity for composition. The main challenges
when going to the infinite word setting is in dealing with the acceptance conditions. Unlike
the finite word setting where acceptance is something to take care of at the end, here we
need to deal with it throughout the run. The difficulty in doing this comes from the fact that
we cannot compute the set of co-accessible states at a given input position. It must be noted
that in the proof [8] for finite words, the equivalent reversible transducer was constructed
by computing the set of accessible and co-accessible states at each position of the input
word. Indeed, computing the co-accessible states at each input position requires an infinite
computation or an oracle, and hence, the proof of [8] fails for infinite words. Instead, we
introduce the intermediate model of cPSST where we employ a dedicated “out” register that
serves as the output tape.

Our result of extending [8] can be seen as a positive contribution to reactive synthesis :
transforming specifications over infinite word transformations to an equivalent 2RPT can
give rise to efficient solutions to algorithmic problems on transformation specifications. To
the best of our knowledge, there is no such translation for infinite words; the closest result in
this direction, but for finite words, is [9], which gives an efficient procedure for converting
specifications given as RTE (regular transducer expressions) to reversible transducers.

Continuing with transformations on infinite words, [12] investigated a practical question on
functions over infinite words, namely, “given a function over infinite words, is it computable?”.
They established that the decidability of this question boils down to checking the continuity
of these functions. Further, they conjectured that any continuous regular function can
be computed by a deterministic two-way transducer over infinite words without ω-regular
look-ahead. [4] took up this conjecture and showed that any continuous rational function over
infinite words can be extended to a function which is computable by deterministic two-way
transducers over infinite words without ω-regular look-ahead. Most recently, [5] conjectured
that deterministic two-way transducers with the Büchi acceptance condition capture the
class of continuous, regular functions.

Apart from its application to synthesis, 2DPT also realize continuous functions. This
implies that the conjecture of [5] fails, since 2DPT are more expressive than the class of
deterministic two-way transducers with Büchi acceptance. A simple example illustrating
this is the function f : {a, b}ω → {a, b}ω such that f(u) = u if the number of a’s in u is
finite, and is undefined otherwise. f is continuous since it is continuous on its domain;
f cannot be realized by a deterministic transducer with Büchi acceptance, but it can be
realized by a 2DPT. Note however that the extension is only able to refine the domain,
and not the production. In particular, by simply dropping the accepting condition of an
2RPT, we obtain a function realized by a deterministic two-way transducer with a Büchi
condition. Moreover, our constructions (going from deterministic two-way to reversible) for
this class become simpler. And conversely, we show that two-way reversible transducers with
no acceptance condition have the same expressiveness as those with the Büchi acceptance
condition, which in turn have the same expressiveness as two-way deterministic transducers
with Büchi acceptance.
Organization of the Paper. Section 2 defines the two models we introduce in the paper,
namely, cPSST and 2DPT. Section 3 states our main result : starting from a 2DPT, we
can obtain an equivalent 2RPT. Most of the remaining sections are devoted to the proof
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of this result. In sections 4 and 5 respectively, we prove the closure under composition of
2RPTs with a polynomial complexity and the polynomial conversion from one-way parity
transducers to 2RPT. Section 6 uses both these results, where we describe the conversion
from cPSST to 2RPT with a polynomial complexity. Section 7 contains one of the most
non-trivial constructions of the paper, namely, going from 2DPT to cPSST with a single
exponential blow-up. Finally, Section 8 wraps up by discussing the connection between
continuity and the topological closure of 2DPTs.

2 Preliminaries

Let A be an alphabet, i.e., a finite set of letters. A finite or infinite word w over A is a
(possibly empty) sequence w = a0a1a2 · · · of letters ai ∈ A. The set of all finite (resp. infinite)
words is denoted by A∗ (resp. Aω), with ε denoting the empty word. We let A∞ = A∗ ∪ Aω.
A language is a subset of the set of all words.

Two-way Parity Automata and Transducers
Let A be a finite alphabet and let ⊢ /∈ A be a left delimiter symbol. We write A⊢ = A ∪ {⊢}.

A two-way parity automaton (2PA) is a tuple A = (Q, A, ∆, q0, χ), where the finite set
of states Q is partitioned into a set of forward states Q+ and a set of backward states Q−.
The initial states is q0 ∈ Q+, ∆ ⊆ Q × A⊢ × Q is the transition relation and χ is a finite
set of coloring functions c : ∆ → N which are used to define the acceptance condition. We
assume that if (p, ⊢, q) ∈ ∆, then p ∈ Q− and q ∈ Q+: on reading ⊢, the reading head does
not move.

A configuration of a 2PA over an input word w ∈ Aω is some ⊢ u p v where p ∈ Q is the
current state and u ∈ A∗, v ∈ Aω with w = uv. The configuration admits several successor
configurations as defined below.

1. If p ∈ Q+, then the input head reads the first symbol a ∈ A of the suffix v = av′ ∈ Aω.
Let (p, a, q) ∈ ∆ be a transition. If q ∈ Q+, then the successor configuration is ⊢ ua q v′.
Likewise, if q ∈ Q−, then the successor configuration is ⊢ u q av′. Thus, if the current
and target states are both in Q+, then the reading head moves right. If the current state
is forward and the target state is backward, then the reading head does not move.

2. If p ∈ Q−, then the input head reads the last symbol a ∈ A⊢ of the prefix ⊢u. Let
(p, a, q) ∈ ∆ be a transition. If q ∈ Q+, the successor configuration is ⊢ u q v. If q ∈ Q−

then a ̸= ⊢, we write u = u′a with u′ ∈ A∗ and the successor configuration is ⊢ u′ q av.
Thus, if the current state is backward and the target state is forward, the reading head
does not move. If both states are backward, then the reading head moves left.

A run ρ of A is a finite or infinite sequence of configurations starting from an initial
configuration ⊢ ε q0 w where w ∈ Aω is the input word:

⊢q0w = ⊢u0q0v0 −→ ⊢u1q1v1 −→ ⊢u2q2v2 −→ ⊢u3q3v3 −→ ⊢u4q4v4 · · ·

We say that ρ reads the whole word w ∈ Aω if sup{|un| | n > 0} = ∞. The set of
transitions used by ρ infinitely often is denoted inf(ρ) ⊆ ∆. The word w is accepted by A, i.e.,
w ∈ dom(A) if ρ reads the whole word w and min(c(inf(ρ))) is even for all c ∈ χ. Note that,
even though we call our machine parity, we in fact consider a conjunction of parity conditions.
This allows to easily describe intersection of automata or composition of transducers.

The parity automaton A is called
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+ − +

a|a : 0 a|a : 1 a|ε : 1
#|# : 1 #, ⊢ |ε : 1

#|# : 0

a

{
out = out a

X = aX
#

{
out = out#X#
X = ε

Figure 1 An example of 2RPT (left) and cPSST (right) defining the function map-copy-reverse
(mcr) defined on (A ⊎ {#})ω → (A ⊎ {#})ω by: mcr(u1#u2#...) = u1#ũ1#u2#ũ2#... for words
with an infinite number of letter #, and mcr(u1# . . . #un#u) = u1#ũ1# . . . un#ũn#u if u ∈ Aω,
where ṽ denotes the mirror image of v. There is only one coloring function, denoted on the transitions
after the colon. The color of all transitions of the cPSST is 0.

one-way if Q− = ∅,
deterministic if for all pairs (p, a) ∈ Q × A⊢, there is at most one state q = δ(p, a) such
that (p, a, q) ∈ ∆, in this case we identify the transition relation ∆ with the partial
function δ : Q × A → Q,
co-deterministic if for all pairs (q, a) ∈ Q × A⊢, there is at most one state p such that
(p, a, q) ∈ ∆,
reversible if it is both deterministic and co-deterministic.
A two-way parity transducer 2PT is a tuple T = (Q, A, ∆, q0, χ, B, λ) where A =

(Q, A, ∆, q0, χ) is a deterministic 2PA, called the underlying parity automaton of T , B

is a finite output alphabet, and λ : ∆ → B∗ is the output function. As in the case of 2PA,
a 2PT is one-way/co-deterministic/reversible if so is the underlying parity automaton. Let
2DPT (resp. 2RPT) denote two-way (deterministic) (resp. reversible) parity transducers. The
notion of run and accepting run is inherited from the underlying 2PA. For w ∈ Aω such that
w ∈ dom(A), let the accepting run ρ of w be

⊢q0w = ⊢u0q0v0
t1−→ ⊢u1q1v1

t2−→ ⊢u2q2v2
t3−→ ⊢u3q3v3

t4−→ ⊢u4q4v4 · · ·

where ti ∈ ∆ is the i-th transition taken during the run, i.e., from ⊢ui−1qi−1vi−1 to
⊢uiqivi. For i > 0, let γi = λ(ti) be the output produced by the i-th transition of ρ. If
γ1γ2γ3γ4 · · · ∈ Bω, then w ∈ dom(T ) and we let [[T ]](w) = γ1γ2γ3γ4 · · · be the output word
computed by T . Hence, the semantics of a 2PT is a partial function [[T ]] : Aω → Bω with
dom(T ) ⊆ dom(A).

Parity Streaming String Transducers
Let R be a finite set of variables called registers. A substitution of R into an alphabet B is
a mapping σ : R → (R ⊎ B)∗. It is called copyless if for all r ∈ R, r appears at most once
in the concatenation of all the σ(r′) for r′ ∈ R. We denote by ΛB

R the set of all copyless
substitutions of R into B.

A copyless parity Streaming String Transducers (cPSST) is given by a tuple T =
(Q, A, ∆, q0, χ, B, R, out, λ) where A = (Q, A, ∆, q0, χ) is a deterministic one-way parity
automaton called the underlying parity automaton of T , R is a finite set of registers, out ∈ R
is a distinguished register, called the output register, λ : ∆ → ΛB

R is the update function
satisfying additionally λ(t)(out) ∈ out · (R ⊎ B)∗ for all t ∈ ∆.

A configuration of a copyless parity SST T is a tuple (q, ν) where q ∈ Q and ν : R → B∗

is an assignment. The initial configuration is (q0, ν0) where ν0(r) = ε for all r ∈ R. Since the
automaton A is deterministic, we simply describe a run on an input word w = a0a1a2 · · ·
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as a sequence a sequence of transitions applying the corresponding substitutions to the
assignments:

(q0, ν0) a0−→ (q1, ν1) a1−→ (q2, ν2) a2−→ (q3, ν3) · · ·

where (q0, ν0) is the initial configuration and for all i ≥ 0 we have ti = (qi, ai, qi+1) ∈ ∆ and
νi+1 = νi ◦ λ(ti)1. Notice that, from the restriction of the update function, we deduce that
ν0(out), ν1(out), ν2(out), . . . is a (weakly) increasing sequence of output words in B∗. If this
sequence is unbounded then w ∈ dom(T ) and we let [[T ]](w) =

⊔
i≥0 νi(out) ∈ Bω be the

limit (least upper-bound) of this sequence. Hence, the semantics of a cPSST is a partial
function [[T ]] : Aω → Bω with dom(T ) ⊆ dom(A).

3 Main Result

We are now ready to state our main result, which is an effective procedure to construct
a reversible two-way transducer for a deterministic machine. Our result is stated using a
conjunction of parity conditions.

The proof relies on constructions that go through cPSST, and are presented in the
subsequent sections.

▶ Theorem 1. Given a deterministic 2DPT T with n states, k color conditions and ℓ colors,
we can construct a 2RPT S with O(ℓ2kn(2n)4n+1)) states, k color conditions and ℓ colors
such that [[T ]] = [[S]].

Proof. Let T be a 2DPT with n states, k color conditions and ℓ colors. Using Theorem 7,
we can construct an equivalent cPSST T ′ with O(n(ℓk)n(2n + 1)2n−1) states, 2n variables, k

color conditions and ℓ colors. Then by Theorem 5, we can construct a 2RPT S equivalent to
T ′ whose size is quadratic in the number of states and linear in the number of variables. More
precisely, S has O((n(ℓk)n(2n + 1)2n−1)2(2n)) = O(ℓ2kn(2n)4n+1)) states, k color conditions
and ℓ colors, concluding the proof. ◀

4 Composition of 2RPT

The main reason to use reversible two-way machines is that they are easily composable.
Given two composable reversible transducers, we can construct one whose size is linear in
both machines, and whose transition function is rather straight-forward. It is explicited in
the following theorem and proof.

▶ Theorem 2. Given two 2RPT S and T , of size n and m respectively, and such that the
output alphabet of S is the input alphabet of T , we can construct a 2RPT U , also denoted by
T ◦ S, of size O(nm) such that [[U ]] = [[T ]] ◦ [[S]].

Sketch of proof. The set of states of the machine U is the cartesian product of the sets of
states of S and T . Given an input word u of S, U simulates S until some transition produces
a nonempty output word v ∈ B+. Then, it stops the simulation of S to simulate the run
ρT of T over v. If ρT exits v on the right, then U resumes the simulation of S up to the
next transition producing a nonempty word. Otherwise, it rewinds the run of S to get its
previous production, and simulates T on it, starting from the right.

1 An assignment ν : R → B∗ is extended to a morphism ν : (R ⊎ B)∗ → B∗ by ν(b) = b for all b ∈ B.
Hence, if σ ∈ ΛB

R is a substitution then ν′ = ν ◦ σ is an assignment defined by ν′(r) = ν(σ(r)) for all
r ∈ R. For instance, if σ(r) = br′cbr then ν′(r) = bν(r′)cbν(r).
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The conjunction of parity conditions allows to an easy construction for intersection, which
is similar to what is expected here. A word u should be accepted if u belongs to the domain
of S and [[S]](u) belongs to the domain of T . By doing the conjunction of both acceptance,
we are able to recognize the domain of U = T ◦ S. ◀

Proof. Let S = (Q, A, δ, q0, χ, B, λ) and T = (P, B, α, p0, χ′, C, β). We define the composi-
tion U = T ◦ S = (R, A, µ, r0, χ′′, C, ν) where R = Q × P is splitted as

R+ = Q+ × P + ∪ Q− × P − R− = Q− × P + ∪ Q+ × P − .

The initial state is r0 = (q0, p0) and µ, ν and χ′′ are defined below.
To properly define µ and ν, we extend α and β to finite words, and more precisely to the

productions of S. Given a word v = λ(q, a) ∈ B∗ for some (q, a) ∈ Q × A, and a state p of T ,
we define ρp(v) to be the maximal run of T over v starting in state p on the left (resp. right)
of v if p ∈ P + (resp. p ∈ P −). Then we define α∗(p, v) as the state reached by ρp(v) when
exiting v. It is undefined if ρp(v) loops within v. Note that if α∗(p, v) belongs to P + (resp.
P −), then T exits v on the right (resp. on the left). We define β∗(p, v) as the concatenation
of the productions of ρp(v). If α∗(p, v) is defined, then β∗(p, v) is finite. Note that ρp(ε) is
an empty run, so we have α∗(p, ε) = p and β∗(p, ε) = ε.

For the parity conditions, we let χ′′ = {c | c ∈ χ ∪ χ′} and we extend the functions c ∈ χ′

to finite runs ρp(v). More precisely, we let c∗(p, v) be the minimum c-value taken by the
transitions of ρp(v). When v = ε then ρp(v) is an empty run and we set c∗(p, v) to the largest
odd value in all values taken by c on transitions of T . Then, given a state (q, p) of U ,

If p ∈ P + then we let v = λ(q, a). We set ν((q, p), a) = β∗(p, v) and, with q′ = δ(q, a)
and p′ = α∗(p, v) we define

µ((q, p), a) =
{

(q′, p′) if p′ ∈ P +,

(q, p′) if p′ ∈ P −
and c((q, p), a) =

{
c(q, a) if c ∈ χ,

c∗(p, v) if c ∈ χ′.

If p ∈ P − then we let q′ be such that q = δ(q′, a) and v = λ(q′, a). Note that q′ is unique
by co-determinism of S. We set ν((q, p), a) = β∗(p, v) and, with p′ = α∗(p, v) we define

µ((q, p), a) =
{

(q, p′) if p′ ∈ P +,

(q′, p′) if p′ ∈ P −.
and c((q, p), a) =

{
c(q′, a) if c ∈ χ,

c∗(p, v) if c ∈ χ′.

The intuition behind the transition function is that U simulates S to feed a simulation of T .
If T moves forward on its input, then U simulates S forward. If T moves backward on its
input, then U backtracks the computation of S. During a switch of direction, S stays put.

The acceptance condition of conjunctive parity was chosen specifically to allow for smooth
composition. By using both sets of parities, the transducer U ensures that the input word is
accepted by S, and that its production is accepted by T . It is worth noting that since U can
rewind the run of S, it can take a transition (and consequently its colors) multiple times
on a given input position. This increases the multiplicity of the transitions taken during a
non-looping run by a constant factor since a deterministic transducer never visits twice a
given position in the same state. Hence, the set of colors of S that U sees infinitely often on
a non-looping run is the same as the ones seen by S. ◀

5 1DPT to 2RPT

Similarly to the finite words, given a deterministic one-way machine, one can construct a
reversible one realizing the same function.
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⊢ b a a b · · ·

1 2 3 3 3

3 3

1 2

1

(a) A run tree of automaton A

1

2

3

b : 1

a : 1

a : 1
a : 0, b : 0

(b) Automaton A

Figure 2 The automaton A depicted in Figure 2b recognizes all infinite words over alphabet
{a, b} having an a in first or second position (it has only one coloring function, represented after the
colons in the transitions). Figure 2a is the part of the tree corresponding to the run of A on the
prefix baab of an accepted word. Each node of the tree is a configuration of A, represented here by
a control state. Its horizontal position allows to deduce the position in the input word, depicted
above the tree. The horizontal straight path represents the accepting run. Notice that when the
top reading head needs to go backward to go around a branch, the bottom ones follows and goes
backward on the accepting run.

▶ Theorem 3. Let T be a 1DPT with n states, we can construct a 2RPT T ′ of size O(n2)
such that [[T ]] = [[T ′]].

Proof. The construction is reminiscent of the tree-outline construction for co-deterministic
transducers of [8]. The difference is that here, we begin with a deterministic transducer with
an infinite input word, so instead of starting from the root of the tree, which is at the end of
a finite input word, our outline has to start from a leaf at the beginning of the input word,
corresponding to the initial configuration. We also generalize the construction by allowing
any degree of non (co-)determinism: while in [8], at most two branches could merge on any
vertex, here we allow any number.

We begin with the underlying automaton: from a one-way deterministic parity automaton
(1DPA) A, we build a two-way reversible parity automaton (2RPA) A′ simulating the behavior
of A. For any accepted input word w, we consider the infinite acyclic graph (simply called
a tree) representing all the partial runs of A merging with the accepting run of A on w

(note that because A is deterministic, there is only one accepting run for a given word).
Automaton A′ will simulate two synchronized reading heads going along the outline of this
tree, as illustrated in Figure 2.

The two heads are required to make A′ equivalent to A: we need to be able to discriminate
configurations of a run of A′ occurring in the accepting run of A from the ones added to
account for the non-initial runs. One reading head follows the outline of the run tree from
above, and the other one from below. The configurations where the two reading heads point
to the same state of A correspond to those occurring in the accepting run of this automaton.

The reading heads are placed above and below the initial state, and they move together
to the right, until one of them encounters a branching in the tree. When this happens, the
2RPA moves backwards to go around the branch. When the branch dies (which necessarily
happens because from each position, the prefix of a word is finite), the exploration continues
to the right. As the two heads are synchronized, and because branches may not all be of the
same length, when one head needs going left the other one may impose right moves in order
to reach another branch, on which it will be able to go left far enough to follow the first head.

A run of A′ can be seen as a straightforward journey along the flattened outline of the
tree, hence the reversibility.
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Once A′ is defined, we define T ′: it is the 2RPT having A′ as underlying automaton, and
whose output function is that of T from states where the two reading heads point to the
same state, and ε otherwise.
Formal construction of A′. Let T = (Q, A, δ, q0, χ, B, λ) be a 1DPT.

Fix an arbitrary total order ⪯ over Q. For q ∈ Q and a ∈ A we let δ−1
a (q) = {p ∈

Q | δ(p, a) = q}, and we also set δ−1
⊢ (q) = ∅, except if q ̸= q0 (it is undefined otherwise).

Let Sa (q, q′) be a predicate, true if q′ is minimal with respect to ≺ such that q ≺ q′ and
δ(q, a) = δ(q′, a). Let Q = {q | q ∈ Q} and Q = {q | q ∈ Q} be two copies of Q. Define
A′ = (Q′, A, δ, q′

0, χ′) by
Q′ = Q′+ ⊎ Q′− = ((Q ∩ Q) × (Q ∩ Q)) \ {(q, q), (q, q) | q ∈ Q} with q′

0 = (q0, q0) and
Q′+ = Q × Q ∪ Q × Q,
Q′− =

(
Q × Q ∪ Q × Q

)
\

{
(q, q) ,

(
q, q

)
| q ∈ Q

}
.

In a state (r, s) ∈ Q′, the first (resp. second) component is for the head which is “above”
(orange line) (resp. “below” (blue line)) the accepting run (black straight line) in Figure 2a.
In both cases, a state q ∈ Q (resp. q ∈ Q) means that the corresponding head (colored
line) is above (resp. below) the state.
Transitions: first two cases for Q′+ states and then for Q′− states

1. δ′((p, q), a) =


(p′, q) if Sa (p, p′) for some p′ ∈ Q

(p, q′) elseif Sa (q′, q) for some q′ ∈ Q

(δ(p, a), δ(q, a)) otherwise.

2. δ′((p, q), a) =


(p′, q) if Sa (p′, p) for some p′ ∈ Q

(p, q′) elseif Sa (q, q′) for some q′ ∈ Q

(δ(p, a), δ(q, a)) otherwise.

3. δ′((p, q), a) =


(p, q) if δ−1

a (p) = ∅
(p, q) elseif δ−1

a (q) = ∅
(min δ−1

a (p), min δ−1
a (q)) otherwise.

4. δ′((p, q), a) =


(p, q) if δ−1

a (p) = ∅
(p, q) elseif δ−1

a (q) = ∅
(max δ−1

a (p), max δ−1
a (q)) otherwise.

χ′ = {c′ | c ∈ χ} with c′((r, s), a) =
{

c(q, a) if (r, s) = (q, q)
max{c(p, a) | p ∈ Q, a ∈ A} otherwise.

Reversibility of A′. From the definition of δ′, A′ is clearly deterministic.
We show that A′ is also codeterministic. There are three potential transitions leading to

a given state in Q′ by reading a given letter, only one of which can be part of δ′.
The following case analysis shows this:

δ′−1
a ((p, q)) =


(p, q) if δ−1

a (p) = ∅(
p, q

)
elseif δ−1

a (q) = ∅(
max δ−1

a (p), min δ−1
a (q)

)
otherwise

δ′−1
a ((p, q)) =


(
p, q

)
if δ−1

a (p) = ∅ (so p ̸= q0)
(p, q) elseif δ−1

a (q) = ∅(
min δ−1

a (p′), max δ−1
a (q′)

)
otherwise
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δ′−1
a ((p′, q′)) =


(p, q′) if Sa (p, p′) for some p ∈ Q

(p′, q) elseif Sa (q, q′) for some q ∈ Q

(δ(p′, a), δ(q′, a)) otherwise.

δ′−1
a ((p′, q′)) =


(
p, q′) if Sa (p′, p) for some p ∈ Q(
p′, q

)
elseif Sa (q′, q)(

δ(p′, a), δ(q′, a)
)

otherwise.

We conclude that A′ is codeterministic, and therefore reversible.
Intuitively, automaton A′ will follow the run of A, adding extra steps to deal with the

states that are co-reachable from states of this run. States of A′ of the form
(
q, q

)
correspond

to states q in the run of A. The key idea behind the construction of A′ is that in a run of
this automaton, configurations of the form ⊢u

(
q, q

)
v will occur in the same order as the

configurations ⊢uqv in the run of A. This is the point of the following claim.

▷ Claim 4. Let ρ = ⊢u0q0v0 −→ ⊢u1q1v1 −→ ⊢u2q2v2 −→ · · · be an accepting run of A on
w ∈ Aω (we have w = uivi for all i ≥ 0 where ui is the prefix of length i of w). There is an
accepting run ρ′ of A′ on w such that the projection of ρ′ on the configurations with states
of the form

(
p, p

)
is ⊢(q0, q0)w +−→ ⊢u1(q1, q1)v1

+−→ ⊢u2(q2, q2)v2
+−→ · · · .

Proof of claim. Let G be the configuration graph of A on the input word w ∈ Aω. The
vertices of G are all configurations ⊢uqv with w = uv, u ∈ A∗ and q ∈ Q. Edges correspond
to transitions: we have an edge ⊢upav → ⊢uaqv if δ(p, a) = q. Since A is deterministic, there
is at most one outgoing edge from each configuration and since A is one-way, thus the graph
G is acyclic.

Let T be the connected component of G that contains the initial configuration ⊢q0w.
Note that the run ρ corresponds to the only infinite path in G starting from ⊢q0w. Any
configuration ⊢uipivi of T which is not on ρ (pi ≠ qi) will eventually merge with ρ: ⊢uipivi

∗−→
⊢uj−1pj−1vj−1 → ⊢ujqjvj with i < j and pj−1 ̸= qj−1. We say that ⊢uipivi is below (resp.
above) ρ if pj−1 ≺ qj−1 (resp. qj−1 ≺ pj−1).

Let us consider the run ρ′ of A′ on w. Due to the definition of the transition function
of A′, the run ρ′ only moves along T . Indeed a configuration ⊢u(r, s)v of ρ′ encodes the
position of two tokens, each placed either above or below a configuration of T . Moreover,
the first token is always above the branch ρ while the second token is always below. This
can be shown by case analysis of δ′. The two transitions where the upper token goes from
above a branch to below are the following:

δ′ ((
p, q

)
, a

)
=

((
p′, q

))
if (Sa (p, p′)) : there, we know that p ≺ p′, so the token ends up

on a branch that is above where it was;
δ′ ((

p, q
)

, a
)

= (p, q) if δ−1
a (p) = ∅ and a ̸= ⊢, so p must have reached the end of the

branch it was placed on, and we know it was not placed on ρ, because when this branch
ends, a = ⊢.

A similar observation can be made for transitions where the lower token goes from below
a branch to above.

We denote by Ti the subtree of T containing all configurations having a path to ⊢uiqivi.
We aim to prove that ρ′ reaches the position i, and the first time it does is in state (qi, qi).
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We remark that for every cases 1 to 4 of the transition function, as long as the transition
function is defined the run ρ′ can continue. As we only visit configurations of T , as long as ρ

is infinite, as assumed by Claim 4, so is ρ′.
Next, as A′ is reversible, it cannot loop, as it would require two different configuration

to go to the same one to enter the loop, which would break codeterminism. So ρ′ starts in
Ti, does not stop nor loops, so since Ti is finite, ρ′ has to end up leaving Ti. So ρ′ reaches
position i, while only moving along Ti. As (qi, qi) is the only possible state where ρ′ follows
Ti while having its first token above ρ and the second below ρ, ρ′ first reaches i in state
(qi, qi).

As this is true for any position i, and since Ti contains Ti−1, we can conclude the proof
of Claim 4. ◀

Based on this claim, we show that L(A) = L(A′). Let w be an infinite word accepted by A,
and ρ be the accepting run of A on w. We showed that the configurations ⊢uqv happen in the
same order in ρ as configurations of the form ⊢u

(
q, q

)
v in ρ′, the run on w of A′. Moreover

c′ ((
p, p

)
, a

)
< c′ (s, a) for all a ∈ A and for all s of another form, and as |inf (ρ)| > 0 (because

w is infinite and A has a finite number of states), min {t|t ∈ inf (ρ)} = min {t|t ∈ inf (ρ′)}.
So L(A′) = L(A).
Construction of T ′. Let T ′ = (Q′, A, δ′, q′

0, χ′, B, λ′) be the 2RPT having A′ as underlying
automaton, with

λ′(s, a) =
{

λ(q, a) if s =
(
q, q

)
ε if s is of another form.

Because we showed that states of the form
(
q, q

)
are met in the run of A′ on a given word in

the same order as states q in the run of A on the same word, the output of T ′ is the same as
the output of T . So we have that [[T ]] = [[T ′]].

Finally, |Q′| = 4 |Q|2, justifying the complexity. ◀

6 From cPSST to 2RPT

We extend another result from [8] about constructing a reversible two-way transducer from a
Streaming String Transducer. The prodcedure and the complexity are similar. The main
difference is that the procedure only works thanks to the distinguished register out of cPSST.
Without it, production could depend on an infinite property of the input word, which is not
realizable by a deterministic (and hence reversible) machine.

▶ Theorem 5. Let T be a cPSST with n states and m registers. Then we can construct a
2RPT S with O(n2m) states such that [[T ]] = [[S]].

Proof. We prove that [[T ]] = [[F ]] ◦ [[D]] where D is a 1DPT and F is a 2RPT. The transducer
D has the same underlying automaton as T , but instead of applying a substitution σ to
the registers, D enriches the input letter with σ. Then, the transducer F uses the flow of
registers output by D to output the contents of the relevant registers in a reversible fashion.
Finally, we construct a 2RPT D′ equivalent to D by Theorem 3 and we obtain the desired
2RPT S = F ◦ D′ by Theorem 2.
Formal Construction. Let T = (Q, A, δ, q0, χ, B, R, out, λ) be a cPSST.

We define the 1DPT by D = (Q, A, δ, q0, χ, ΛB
R , γ) where γ(q, a) = λ(q, a). The reversible

transducer is F = (Q′, ΛB
R , α, q′

0, ∅, B, β) where:
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Q′ = R × {i, o} with Q+ = R × {o} and Q− = R × {i}. We will denote by ri (resp. ro)
the state (r, i) (resp. (r, o)). Informally, being in state ri means that we need to compute
the content of r, while state ro means we have just finished computing it.
The initial state is q′

0 = outo.
There is no accepting condition;
α and β both read a state in Q′ and a substitution σ ∈ ΛB

R , or the leftmarker ⊢, which is
treated as a substitution σ⊢ associating ε to every register. We define α and β as follow:

If the state is ri for some r ∈ R.
∗ If σ(r) = v ∈ B∗ contains no register, then α(ri, σ) = ro and β(ri, σ) = v.
∗ If σ(r) = vsγ with v ∈ B∗ and s ∈ R is the first register appearing in σ(r), then

α(ri, σ) = si and β(ri, σ) = v.
If the state is ro for some r ∈ R. Recall that from the definition of copyless SSTs, for
any register r, there exists at most one register t, such that r occurs in σ(t), and in
this case r occurs exactly once in σ(t).
∗ Suppose that for some register s we have σ(s) = γrv with v ∈ B∗. Then α(ro, σ) = so

and β(ro, σ) = v.
∗ Suppose that for some register t we have σ(t) = γrvsγ′ with v ∈ B∗ and s ∈ R.

Then α(ro, σ) = si and β(ro, σ) = v.
∗ If r does not appear in any σ(s), then the computation stops and rejects. This

somehow means that we are computing the contents of a register that is dropped in
the original SST. This will not happen if what is fed to F is produced by D.

Reversibility of F . The transducer F is clearly deterministic by construction. Let us prove
that it is codeterministic. To this end, let si be a state and σ a substitution. Looking at the
transition function, its antecedent α−1(si, σ) is either ri if σ(r) starts with vs for some word
v ∈ B∗, or ro if there is some register t that contains rvs for some word v ∈ B∗. Since we
only consider copyless substitutions, there is at most one register that contains s. The two
options are then mutually exclusive, as one requires that s be the first register to appear,
and the second requires that there is a register before s.

The proof for a state so is similar. The antecedent α−1(so, σ) is either si if σ(s) contains
no register, or ro if r is the last register appearing in σ(s). Since these two are mutually
exclusive, we get that F is reversible.
Correctness of the construction. First, let us remark that the domain of D is the set of
input words u such that T has an infinite accepting run over u since they share the same
underlying automaton. So the domain of T is the set of words in the domain of D on which
T produces an infinite word.

Let (q0, ν0) a0−→ (q1, ν1) a1−→ (q2, ν2) a2−→ (q3, ν3) · · · be the accepting run of some input
word u = a0a1a2 · · · ∈ Aω in the domain of the cPSST T . For j ≥ 0, let σj = λ(qj , aj) so
that [[D]](u) = σ0σ1σ2 · · · .

We prove by induction that for every position j ≥ 0 of u, the run of the transducer F on
[[D]](u) reaches the state outo in position j having produced the content νj(out) of the run of
T on u up to position j. For j = 0, there is nothing to prove as the registers are initially
empty and outo is the initial state of F .

Now suppose that the run of F on [[D]](u) reaches some position j in state outo, having
produced νj(out). Recall that, by definition of λ, the substitution σj = λ(qj , aj) used by
T at position j is such that σj(out) = out · γ. Then if there is no other register, i.e., if
γ = v ∈ B∗, by definition of α, F moves to j + 1 in state outo and produces v, so that its
cumulated production is νj(out) · v = νj+1(out).
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The interesting case is of course when some registers are flown to out. Let r be the second
register of σj(out), i.e., σj(out) starts with out · vr with v ∈ B∗. Then, by definition of α

and β, F stays at position j switching to state ri and producing v. Then, using Claim 6, F
reaches ro at position j producing the content of νj(r). We repeat this process to exhaust all
registers appearing in σ(out), reaching finally state outo at position j + 1 with cumulated
production νj(σj(out)) = νj+1(out), proving the induction.

▷ Claim 6. For all positions j ≥ 0 and registers r ∈ R, there exists a right-to-right run
(ri, ro) of F starting and ending at position j and which produces the content of νj(r).

Proof of Claim 6. The proof is by induction on j. If j = 0 then ν0(r) = ε and the run of
F starting at position 0 in state ri reads σ⊢. By definition of α and β the run produces
σ⊢(r) = ε and switches from ri to ro, proving the claim for j = 0.

Now assume that the claim is true for j. Consider the run ρ of F starting in state ri at
position j + 1. The run ρ starts by reading σj . If σj(r) = v ∈ B∗ then the run produces
v = νj+1(r) and switches from ri to ro, proving the claim. The second case is when σj(r)
starts with some vs with v ∈ B∗ and s ∈ R. Then, the first transition of ρ produces v and
moves to position j in state sj . By induction hypothesis, there is a right-right (si, so)-run
starting at j and producing νj(s). Then, the run reads σj in state so and, either goes ro in
position j + 1 producing v′ ∈ B∗ if σj(r) ends with sv′ (s is the last register flown to r),
or goes to ti in position j producing v′ ∈ B∗ if σj(r) contains the factor sv′t (t is the next
register flown to r). By iterating this process again, we exhaust the registers flown to r,
produces their content meanwhile. Finally, the run ρ ends in position j + 1 with state ro and
has produced νj+1(r) = νj(σj)(r), proving the claim. ◀

Coming back to the proof of correctness, we have shown that for all positions j ≥ 0, F has
an initial run on [[D]](u) reaching position j in state outo and producing νj(out). This proves
that [[D]](u) is in the domain of F (the maximal initial run of F on [[D]](u) reads the whole word
and F accepts only if T produces infinitely often) and [[F ]]([[D]](u)) =

⊔
j≥0 νj(out) = [[T ]](u).

Therefore, [[T ]] = [[F ]] ◦ [[D]].
Finally, we construct a 2RPT D′ equivalent to D by Theorem 3 and we obtain the desired

2RPT S = F ◦ D′ by Theorem 2. ◀

7 From 2DPT to cPSST

The construction presented in this section is the most involved of the paper. It is adapted
from [11]. Given a deterministic two-way transducer, we construct a cPSST that realizes the
same function. Here again, the main complications from infinite words are dealing with the
acceptance condition and the impossibility to get the final configuration of the run.

▶ Theorem 7. Given a 2DPT T with n > 0 states and k coloring functions over ℓ colors, we
can construct a cPSST S with O(ℓkn(2n)2n) states, 2n − 1 registers and k coloring functions
over ℓ colors such that [[T ]] = [[S]].

Sketch of proof. We improve on the classical Shepherdson construction [16] from two-way
machines to one-way. In this construction, the one-way machine computes information about
the runs of the two-way machine on the prefix read up to the current position. More precisely,
it stores the state reached on reading the prefix starting at the initial state, as well as a
succinct representation of the information about all right-right runs. Further, by associating
a register to each run in this representation, we can construct an SST equivalent to the
two-way machine.
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Upon reading some letter a ∈ A, the prefix w we are interested in grows to wa, and
consequently, we have to update the information about the right-right runs. While some
right-right runs on the prefix w may be extended to right-right runs on wa, some runs
(which cannot be extended) may die, and hence needs to be removed. A third possiblity
is that, upon reading a letter a, some right-right runs may merge. This implies that the
construction would not be copyless, as if two right-right runs over ua are the extension of a
same right-right run over u, the register storing the production of the run over u needs to be
copied in both runs over ua.

In order to compute a copyless SST, we improve this construction by refining the
information stored by the one-way machine: it stores not only the set of right-right runs,
but also whether they merge and the respective order of the merges. Essentially, the latter
representation keeps track of the structure of the right-right runs on the prefix read up to the
current position, as well as the output generated by these runs. The resulting information
can be represented as a forest, which is a (possibly empty) set of trees. Then we associate a
register to each edge of the forest, so that the update function can be made copyless. The
number of registers required is still linear in the number of states. ◀

Figure 3 Example of a merging
forest (on the left) corresponding
to right-right runs (on the right) of
a two-way machine for some prefix
u of an input word.

Formally, we call the structure used to model the right-
right runs merging forests, which we define as follow:

▶ Definition 8. Given a set of states Q = Q+ ⊎ Q−, a set
of coloring functions χ and an integer ℓ > 0, we define the
merging forests on (Q, χ, ℓ), denoted MF , as the set of
forests F such that:

the leaves of all trees of F are labeled by distinct ele-
ments of Q−,
the roots of all trees of F are labeled by distinct elements
of Q+,
all unary nodes (exactly one child) are roots.

The leaves are also labeled by a χ-tuple of integers less
than ℓ.

Informally, an element F ∈ MF describes a set of
right-right runs, such that if q is the root of a tree and p

is one of its leaves, then (p, q) is a right-right run. Notice
that, if two leaves x and y belong to the same tree, then
the right-right runs starting in x and y will merge. The structure of the tree reflects the
order in which the runs sharing the same root merge. The integer labels of leaves serve as
coloring for the parity acceptance condition. An example of a merging forest is depicted in
Figure 3.

Note that in Figure 3, the states in Q− are depicted in purple, while the states in Q+

are depicted in green. The forest comprises of 3 trees - one with root q1 and leaves q0, q2
and q3, the second with root q5 and leaf q4, and the third with root q8 and leaves q6 and q7.
For each tree, there are right-right runs from its leaves to the root. For instance, from the
merging forest in Figure 3, we can infer that there are three right-right runs entering u on
the right in states q0, q2 and q3 respectively, and emerging out of u in state q1, moreover
the run starting from q0 first merges with the run starting from q2 and these two runs then
merge with the one starting from q3. The figure also depicts the register corresponding to the
edges of the forest. Further, the output generated by the part of the run labeled o1 is stored
in the register r1, the output for the part labeled o2 is stored in r2, o3 in r3 and o5 in r5.
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We are now ready to give the formal construction of Theorem 7. We defer the proof of
correctness to later in this section.

Proof of Theorem 7. Given a 2DPT T = (Q, A, δ, q0, χ, B, λ), we construct a cPSST S =
(Q′, A, α, q′

0, χ′, B, R, out, β) such that:
Q′ = Q × MF ,
q′

0 = (q0, F0) where F0 is the forest having only leaves and roots and edges from a leaf u

labeled p ∈ Q− to a root v labeled q ∈ Q+ if δ(p, ⊢) = q.
R is a set of registers of size 2|Q| − 1 with a distinguished register out.
the coloring functions χ′ = {c′ | c ∈ χ} are described below.
the definitions of α and β are more involved and given below.
For each merging forest F ∈ MF , we fix a map ξF associating distinct registers from

R \ {out} to edges of F . This is possible since the number of edges in F is at most 2|Q| − 2
(see Lemma 9).

For simplicity sake, we assume that for each edge (u, v) of F0 corresponding to transition
δ(p, ⊢) = q, the register ξF0(u, v) is initialized with the production λ(p, ⊢). Note that
considering initialized registers does not add expressiveness, as it could be simulated using a
new unreachable initial state. Other registers are initially empty.

The definitions of the transition function α and the update function β are intertwined.
Let (q, F ) ∈ Q × MF be a state of S and a a letter of A. We describe the state (p, F ′) =
α((q, F ), a). First we construct an intermediate graph G that does not satisfy the criteria
of the merging forests, then explain how G is transformed into a merging forest F ′ ∈ MF .
The steps of the construction are depicted in Figure 4.
Construction of G. The graph G is built from F as follows. First, we add new isolated
nodes Qc = {qc | q ∈ Q} to the forest F . These nodes will serve as the roots and leaves of F ′.
For each transition δ(p, a) = q, we will add an edge connecting these new nodes and the roots
and leaves of F . We also extend the labelling ξF to a labelling ξG by adding productions
λ(p, a) to the new edges of G.

Let p ∈ Q and let q = δ(p, a). If p ∈ Q+ is the label of the root u of some tree in F , we
add an edge from u to either qc if q ∈ Q+, or to v if q ∈ Q− and there exists a leaf v labeled
q in F . If p ∈ Q−, we add an edge from pc to either qc if q ∈ Q+, or to v if q ∈ Q− and there
exists a leaf v labeled q in F . The added edge is labeled λ(p, a) by ξG. The construction is
illustrated in the first two steps of Figure 4. Note that G may now have cycles.
The new state p. To compute the first component of the new state of S, let r = δ(q, a). If r

belongs to Q+, then p = r and λ(q, a) is appended to the output register: β((q, F ), a)(out) =
out · λ(q, a). Moreover, the colors are directly inherited: c̄((q, F ), a) = c(q, a) for all c ∈ χ.
Otherwise, assume that there is a leaf u in F labeled r ∈ Q− (if not, the transition is
undefined). We consider the maximal path in G starting from u. If this path is looping or if
it ends in a root of F then the transition is undefined. Otherwise, it ends in a new node v of
G. Let p ∈ Q+ be the state such that v = pc. We append to the out register first λ(q, a) and
then the ξG labels of the edges of the path from u to v in G, in the order of the path. These
ξG labels are either registers given by ξF for edges of F , or local outputs of the form λ(x, a)
for the new edges, i.e., those in G \ F . Moreover, for each c ∈ χ, we let c′((q, F ), a) be the
minimum of (1) the c-values of the labels of leaves of F appearing in the path from u to v in
G, and (2) the c-values of the transitions used to create the new edges of G in this path.

The third figure of Figure 4 illustrates the case where δ(q, a) = q4 ∈ Q−. We then look
at the path starting in q4, which leads to the state (q8)c after reading a.
Construction of F ′ and the update of registers other than out. This is illustrated by
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Figure 4 Illustration of the procedure to calculate F ′ from F and a letter a.
The first figure is F , the second is the graph G built from F and the transition occuring at a. The
third figure illustrates the trimming done from G to obtain a forest depicted in the fourth figure.
Finally, we merge unary internal nodes to obtain the merging forest of the last figure.

the third and fourth figures of Figure 4. We erase all nodes (and adjacent edges) that are
on a cycle of G since such cycles cannot be part of an accepting run of T (see the part of
G boxed in blue). The resulting graph is now a acyclic. We also erase all nodes and edges
which are not on a path from a leaf in Q−

c to a root in Q+
c since they cannot be part of a

right-right run on ua (see the parts boxed in yellow). Finally, we erase the tree with root
v = pc in the second case of the definition of p above. Indeed, should any right-right run
simulated by this tree appear later, the resulting run would loop on a finite prefix of the
input (see the part boxed in green).

The resulting forest has leaves in Q−
c and roots in Q+

c . Each remaining new leaf or root
qc ∈ Qc is labeled q, i.e., by dropping the c index. A new leaf qc ∈ Q− is labeled by a χ-tuple
(mc)c∈χ of integers less than ℓ where mc is the minimum of (1) the c-component of the labels
of leaves of F appearing in the branch in G from qc to its root, and (2) the values c(p, a)
of the transitions used to create the new edges of G in this branch. We forget the initial
labeling of leaves and roots of F .

To obtain a merging forest, it remains to remove unary internal nodes. This is shown
between the fourth and fifth figures of Figure 4. We replace each maximal path π =
u0, u1, u2, · · · , un−1, un (n ≥ 1) with u1, . . . , un−1 unary nodes by a single edge e = (u0, un).
We obtain the merging forest F ′. The update function is simultaneously defined by

β((q, F ), a)(ξF ′(e)) = ξG(u0, u1)ξG(u1, u2) · · · ξG(un−1, un) .

Notice that for each remaining edge f of G we have either f ∈ F and β((q, F ), a)(ξF ′(f)) =
ξG(f) = ξF (f) or f is a new edge and β((q, F ), a)(ξF ′(f)) is set to some λ(s, a). Since each
edge f of F contributes to at most one edge e of F ′, or to the path from u to v = pc which
flows into the out register (but not both), it implies that the substitution β((q, F ), a) is
copyless. ◀
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To prove correctness of Theorem 5, we need the following lemma, relying on Cayley’s
Formula to count the number of merging forests.

▶ Lemma 9. Let Q = Q+ ⊎ Q− be of size n > 0 with Q+ ̸= ∅, χ of size k ≥ 0 and ℓ > 0.
Then each element F of MF has at most 2n − 2 nodes, 2n − 2 edges; and MF itself is of
size at most ℓk(n−1)(2n − 1)2n−3.

Proof. We first compute the maximal number of nodes and edges in a nonempty forest
F of MF . Note that, since F is nonempty, both Q+ and Q− must be nonempty. Let
nbe(t) and nbl(t) be the number of edges and leaves of the tree t. If t has no unary nodes,
then nbe(t) ≤ 2nbl(t) − 2. Since in a forest F ∈ MF , all unary nodes are roots, it follows
that nbe(t) ≤ 2nbl(t) − 1 for all trees t ∈ F . Also, the number of nodes of a tree is
nbn(t) = 1 + nbe(t). We deduce that

nbe(F ) =
∑
t∈F

nbe(t) ≤
∑
t∈F

2nbl(t) − 1 ≤ 2|Q−| − 1 ≤ 2n − 3

nbn(F ) =
∑
t∈F

nbn(t) ≤
∑
t∈F

2nbl(t) ≤ 2|Q−| ≤ 2n − 2 .

Now we compute the size of the set MF . Cayley’s formula [6] states that the number
of non oriented trees with m differently labeled nodes is mm−2. The difference here is that
first we deal with forests with at most 2n − 2 nodes, and secondly only the leaves and roots
are labeled. The first point can be dealt with by adding a new node as the root of all trees
of the forest,and new nodes if needed to get exactly m = 2n − 1 nodes in the tree. For the
second point, we can label arbitrarily the remaining nodes. Finally, as each leaf is labeled by
a χ-tuple of integers less than ℓ, each tree can appear in MF up to (ℓk)|Q−| many times.
The size of MF is then smaller than ℓk(n−1)(2n − 1)2n−3. ◀

We can now prove correctness for Theorem 7.

Proof of Correctness for Theorem 7. We begin with the size of S. Using Lemma 9, we get
that |Q′| ≤ n(ℓk(n−1)(2n − 1)2n−3 = O(ℓkn(2n)2n). Using carefully the registers, we only
ever need at most 2n − 1 registers.
Proof of correctness. First given a finite word w, we say that a right-right run (x, y) ∈
Q− × Q+ of the 2DPT T on w is useful if there exists an infinite word w′ such that the run
of T on ww′ is accepting and reaches x on position |w|.

We first prove that the state of the cPSST contains all the needed information, then
prove that the registers can be used to produce the output. We prove by induction on the
size of a word w that the state (q, F ) of the constructed cPSST reached after reading w is
such that (q0, q) is a left-right run on w and F contains information about all useful runs
on w. Moreover, the out register contains the production of the left-right run (q0, q) on w

and, given a path π = u0, . . . , un in F from a leaf u0 labeled by x to a root un labeled by
y, the production of the right-right run (x, y) is given by the concatenation of the registers
ξF ((u0, u1)) . . . ξF ((un−1, un)).

First, if w is empty, then the initial state is (q0, F0) where F0 describes the set of all
right-right runs on ⊢. The register out is empty and each tree in the forest F0 is reduced to
a single edge containing the associated production, hence proving the initial case.

Now suppose that the statement holds for some word w and some state (q, F ) and let a ∈ A

be a letter. We prove the statement for wa. Let (p, F ′) = α((q, F ), a). If p = δ(q, a) ∈ Q+,
then (q0, p) is a left-right run on wa and β((q, F ), a)(out) = out · λ(q, a), corresponding to the
claim for the left-right run. Otherwise, let r = δ(q, a) ∈ Q−. The state p is then described in



18 Reversible Transducers over Infinite Words

G as the state reached by the maximal path in G from the leaf u of F labeled by r, to the
new node pc. Using the induction hypothesis, F describes the useful right-right runs on w.
Then, following the maximal path from u in G, we see the sequence of right-right runs on w

and left-left runs on a, up to the last left-right transition on a leading to state p. This means
that we have computed p such that (q0, p) is the left-right run on wa. We also append to the
register out all ξG(e) for edges e in the path. By induction hypothesis, the registers contain
the production of the useful right-right runs on w, and the added edges contains the local
production, proving the claim for the left-right run.

We now prove that all useful runs of wa are in F ′. Let (x, y) ∈ Q− × Q+ be such a run.
Then either δ(x, a) = y and this edge is added in G and remains in F ′, or (x, y) is a sequence
starting with a rigth-left transition over a, then useful right-right runs over w and left-left
transitions over a, and finally a left-right transition over a. In the first case, the register
ξF ′((x, y)) takes the label of G, i.e. the local production λ(x, a), satisfying the claim as the
path is reduced to a single edge. In the second case, let u0, . . . , un be the path from x to y

in G. Each edge (ui, ui+1) is either a new edge whose label is a local production, or a single
edge of F . The associated sequence of registers contains then all the output information of
the (x, y) run. When reducing G to F ′, as only non branching paths of G can be reduced to
a single edge, there is no loss of information. Finally, notice that the edges deleted from G

to obtain F ′ are the ones that are not part of a usuful right-right run on wa, or are merging
with the left-right run. These latter right-right runs are not useful for wa: they cannot occur
anymore in an accepting run of T since they would induce a loop on a finite prefix of the
input. Hence all edges required for the path from x to y appear in F ′. Consequently, there is
no loss of run nor information, the path from x to y in F ′ exists and the associated sequence
of registers contains the production of the run.

Finally, to prove that both transducers have the same domain, we remark that given
the previous induction, if (q, F ) is the state reached by S after reading an input w, then
upon reading a letter a, the color of the transition α((q, F ), a) = (p, F ′) is the minimum of
the color of all transitions used when extending the left-right run (q0, q) of T on w to the
left-right run (q0, p) on wa. Then given an infinite word u, S has an infinite run on u if and
only if T does, and the minimum of all colors appearing infinitely often is the same on both
runs. ◀

8 Continuity and topological closure of a 2DPT

The classical topology on infinite words (see e.g. [15]) defines the distance between two
infinite words u and v as d(u, v) = 2−|u∧v|, where u ∧ v is the longest common prefix of u

and v. Then a function f : Aω → Bω is continuous at x ∈ dom(f) if

∀i ≥ 0, ∃j ≥ 0∀y ∈ dom(f), |x ∧ y| ≥ j =⇒ |f(x) ∧ f(y)| ≥ i

A function f is continuous if it is continuous at every x ∈ dom(f). We refer to [12] for
more details.

Since a 2DPT is in particular deterministic, it realizes a continuous function. Indeed, the
longer two input words share a common prefix, the longer their output will also do.

By comparison, a non-deterministic transducer can make choices depending on an infinite
property of the input, e.g. whether there is an infinite number of as, and thus realize a
noncontinuous function.

The question of characterizing the continuous functions realizable by transducers was
studied in [4, 5]. In [4], it was proved that for any continuous function realized by a non-
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deterministic one-way transducer T , there exists a deterministic two-way transducer S such
that for any u ∈ dom(T ), [[T ]] = [[S]]. This means that if a non-deterministic one-way
transducer realizes a continuous function, although it can uses the non-determinism to refine
its domain, the continuity property forbids it from producing non-deterministically.

In [5], it was conjectured that the class of deterministic regular functions, i.e. functions
defined by deterministic two-way transducers with a Büchi acceptance condition, corresponds
to the class of functions realized by a non-deterministic two-way transducer, called regular
functions, that are continuous.

Since the class of 2DPT is strictly more expressive than the class of deterministic regular
functions of [5], but still realize continuous functions, the conjecture of [5] fails. One can
for example consider the function f such that f(u) = u if u has a finite number of as and is
undefined otherwise. Then f is continuous, as it is continuous on its domain, but it cannot
be realized by a deterministic two-way transducer with a Büchi condition.

However, the refinement here only acts on the domain of the function, and not the
production. Indeed, let T be a 2DPT which realizes a function f . We can define the
topological closure of dom(T ), which we denote ̂dom(T ) as the words u such that there exists
a sequence (ui)i≥1 where for all i, ui ∈ dom(T ) and

∀n, ∃i∀j ≥ i, |u ∧ uj | ≥ n

We say that the sequence (ui)i≥1 converges to u. Note that if two sequences (ui)i≥1 and
(vj)j≥1 belong to dom(T ) and converge to the same word w, then the elements will share
longer and longer prefixes. Since T is deterministic, both sequences will then also produce
words that share longer and longer prefixes. Thus we can define f̂ , whose domain is ̂dom(T ),
where f̂(u) is the limit of the images of any sequence (ui)i≥1 that belong to dom(T ) and
which converges to u. The function f̂ is in fact realized by the transducer T where the
accepting condition is dropped. The domain of its underlying automaton is then a closed
set in the classical topology over infinite words, as it is recognized by a deterministic Büchi
automaton where all transitions are final (see [15, Proposition 3.7, p. 147]). Note however
that since the semantics of our transducers requires an input to produce an infinite word to
be in the domain of the transducer, the domain of f̂ might not be a closed set.

Reversible two-way transducers with no accepting condition.

Following this, let us consider the class of reversible transducers with no accepting condition
(2RT), which is equivalent to saying all transitions are final within a Büchi condition.

The constructions presented in this article get simpler, with a better complexity:

▶ Theorem 10. Given a deterministic two-way transducer T with n states and no accepting
condition, we can construct a 2RT S with O(n4n+1) states such that [[T ]] = [[S]].

Proof. Let T be a deterministic two-way transducer with n states. Since there is no accepting
condition, the construction from the proof of Theorem 7 drops the arrays of integers from the
merging forest. Then the number of merging forests is in O(n2n), and applying Theorem 7
results in an SST T ′ with O(n2n) states and 2n variables. Hence, by applying Theorem 5 to
T ′, we get an equivalent 2RT S with O(n4n+1) states. ◀

Surprisingly, the class of 2RT has the expressive power of deterministic Büchi two-way
transducers. This is due to the fact that for an input to be accepted, it requires the
corresponding output to be infinite. We can hide the Büchi acceptance condition in this
restriction.
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The following theorem proves that starting from a reversible Büchi transducer, we can
construct one which does not use any acceptance condition. To notice that reversible
and deterministic Büchi transducers have the same expressive power, one can rely on our
main theorem, specializing it to a Büchi condition. Indeed, a Büchi acceptance condition
corresponds to a unique coloring function associating 0 to accepting transitions and 1
otherwise. Then if we are given a deterministic Büchi two-way transducer, we are able to
produce a reversible one using a coloring function on the same domain, hence a reversible
Büchi two-way transducer.

▶ Theorem 11. Let T be a reversible Büchi two-way transducer with n states. We can
construct an equivalent 2RT S with 3n states such that [[T ]] = [[S]].

Proof. Let T be a reversible Büchi two-way transducer with n states. We define the 2RT S

similarly to T , but with three modes of operation (and hence thrice the states): simulation,
rewind and production. The transducer S starts by simulating T without producing anything.
Upon reaching an accepting transition t, it switches to rewind mode to and unfolds the run
of T back to the previous accepting transition (or the start of the run). It finally follows the
run of T and produces the corresponding output up to seeing the accepting transition t, at
which point it restarts the simulation.

Then for a given word u, if u belongs to the domain of T , the run of T over u will see
accepting transitions infinitely often, and hence S will go to production mode infinitely often
too. Conversely, if u does not belong to the domain of T , it means that either the run of T

over u only sees a finite number of accepting transitions, or does not produce an infinite word.
In the latter case, S will also produce a non finite word. In the former case, S will remain in
simulation mode and never produce anything, and thus u will not be in the domain of S.

We can remark that S is reversible if T is since:
within modes, transitions of S are transitions of T ,
The transitions from one mode to another happen on every accepting transition. Hence
transitions that come to a given mode from another are exactly the ones that exit it, so
two transitions cannot go to a same state upon reading the same letter.

◀

9 Conclusion

The main contribution of this paper is the result which shows that deterministic two-
way transducers over infinite words with a generalized parity acceptance condition are
reversible. We also show that reversible two-way transducers over infinite words are closed
under composition. Our results can help in an efficient construction of two-way reversible
transducers from specifications presented as RTE [13] or SDRTE [10] over infinite words.
Earlier work [9] in this direction on finite words relied on an efficient translation from
non-deterministic transducers used in parsing specifications to reversible ones; our results
can hopefully help extend these to infinite words.
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