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Abstract
The injection ofmonitoring code allows for real-time observation of the program, which has proven instrumental
in developing tools that assist developers with various programming tasks. In dynamic languages such as
Pharo, renowned for their rich meta-programming capabilities and dynamic method dispatch, such monitoring
capabilities are particularly valuable. Message-passing control techniques are commonly used to monitor
program execution at the method level, involving the execution of specific code before and after eachmethod
invocation. Implementing message-passing control techniques, however, poses many challenges, notably in
terms of instrumentation overhead. Additionally, it is crucial for the message-passing mechanism to be safe:
i.e., to accommodate recursive and reflective scenarios to ensure that it does not alter the execution of the
monitored program, which could potentially lead to infinite loops or other unintended consequences.

Over the years, numerous techniques have been proposed to optimize message-passing control. This paper
introduces MethodProxies, a message-passing instrumentation library that offers minimal overhead and is
safe. We conduct a comparison between MethodProxies and two commonly used techniques implemented
in the Pharo programming language: method substitution using the run:with:in:hook and source code
modification. Our results demonstrate that MethodProxies offers significantly lower overhead compared to the
other two techniques and is safe against infinite recursion.
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1. Introduction

In software development, a common challenge is understanding how a program behaves under
various conditions during its execution. Without detailed insights, developersmay struggle to pinpoint
inefficiencies, identify bugs, or optimize performance. Code instrumentation serves as a solution
to this problem by embedding additional code that allows for continuous tracking and analysis of
program behavior in run time. This method not only aids in troubleshooting and refining software
but also facilitates the creation of powerful development tools tailored to enhance overall software
quality and functionality.
In pure object-oriented languages, such as Pharo or Smalltalk [1], objects communicate exclusively

through message-passing: sending and receiving messages. Message-passing control involves manag-
ing this message-passing, typically by executing actions before or after a method’s execution. These
techniques are commonly utilized to monitor program execution at the method level, involving the
execution of specific code before and after each method invocation [2, 3]. By integrating these control
points, developers can seamlessly insert custom behaviors into the method execution cycle without
altering the core logic of the methods themselves. Such techniques enable the collection and anal-
ysis of metrics that shed light on the application’s execution flow and interactions, enhancing the
understanding of the program’s dynamic behavior.
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The implementation of message-passing control techniques, however, introduces many challenges,
particularly the overhead of instrumentation, which can potentially distort the collected data and
massively degrade the application’s performance. This creates a dilemmawhere themeasurement
process itself can impact the system behavior it aims to capture [4]. Additionally, it is crucial for the
message-passingmechanism to be safe: i.e., to accommodate recursive and reflective scenarios to
ensure that it does not alter the execution of the monitored program, which could potentially lead to
infinite loops or other unintended consequences [5, 6].
Over the years, numerous techniqueshavebeenproposed tooptimizemessage-passing control such

as source code modification, specialization of error handling, and exploitation of the virtual machine
lookup algorithm, among others [2]. This paper introducesMethodProxies1, amessage-passing control
instrumentation library that offers minimal overhead and is safe. This minimal overhead ensures that
the message-passing control technique remains practical to use. In addition, MethodProxies have
been designed to be safe and avoid falling in endless loops when controlling system features. It is
available under the MIT open-source license.
We conduct an empirical evaluation through benchmarks in the Pharo programming language.

We compare MethodProxies with two commonly used techniques: method substitution using the
run:with:in:hook and source codemodification. We describe how these techniques function and
the considerations they employ to ensure safe message-passing control. Our results demonstrate that
MethodProxies offers significantly lower overhead when compared to the other two techniques.

2. Safe Message Passing Control

Whenuserswant to control amethod’s execution, they typically desire to execute an action both before
and after the method’s execution. These actions are traditionally designated as the beforeMethod and
the afterMethod, respectively [7, 8, 9]. A Meta-safe library designed for controlling message sending
must meet the following requirements [5, 6].
We will explain each of them in detail below.

• Meta-safe recursion. The library should incorporate a meta-safe recursion mechanism to
prevent infinite recursions when the instrumentation calls an instrumentedmethod.

• Thread safety. There is a possibility of multiple threads calling the same instrumented method
concurrently. To address this scenario, the library must handle meta executions in a thread-safe
manner.

• Safe handling of unwinding for exceptions and non-local returns. Instrumented methods
may encounter exceptions or non-local returns. The library should ensure the execution of
the afterMethod irrespective of whether the instrumentedmethod encounters an exception or
initiates a non-local return.

• Uninstrumentation. Pharo is a live programming environment. For this reason, we need to
uninstrument the code after the analysis to maintain the system’s integrity. The library should
restore the original methods after instrumentation.

2.1. Meta-safe recursion

The library should incorporate amechanism to safeguard against infinite recursionwhen instrumented
methods recursively invoke each other [5, 6]. This situation arises when users define the beforeMethod
or afterMethod hooks and inadvertently include calls to other instrumentedmethods within these
definitions. Such recursive calls lead to infinite loops due to repeated invocation of instrumented
methods by the instrumentation itself.

1https://github.com/pharo-contributions/MethodProxies



Consider the Listing 1: A user instruments the method AClass»foo, producing the instrumented
version outlined below:

Listing 1: Meta-recursive call example
AClass>>foo

handler beforeMethod .
"method code "
handler afterMethod .

Handler>>before
' foo method c a l l e d ' logMessage .
anInstanceOfAClass foo .

In the beforeMethod definition, the handler logs a message and subsequently calls the same instru-
mentedmethod AClass»foo. As a result, every execution of the instrumentedmethod triggers the
before action, which again invokes AClass»foo, leading to an infinite meta-recursion.

Requirement. The library should provide a meta-safe recursion prevention mechanism to man-
age recursions originating fromwithin the instrumentation code effectively.

2.2. Thread safety

There is a potential for multiple threads to invoke the same instrumentedmethod concurrently. This
scenario requires that the library handle meta-recursions appropriately, extending the considera-
tion to multi-threaded environments. Consider this example: If one execution thread invokes the
method AClass»foo, the beforeMethod will tag the execution as meta to prevent a recursive call to
AClass»foowithin the same thread. However, if another thread concurrently calls AClass»foo, the
original meta tag does not affect this new invocation.

Requirement. The library must manage meta-executions in a thread-specific manner. It should
ensure that meta-executions are marked uniquely for each thread, allowing each thread’s activi-
ties to be handled independently.

2.3. Safe handling of unwinding for exceptions and non-local returns

Instrumented methods may encounter exceptions or non-local returns, which can disrupt normal
execution flow. A non-local return is a return instruction within a block closure that forces the return
from the method where the block was defined. Non-local return instructions force an unwind of
the call stack because it jumps over all the stack frames in between the block frame and its defining
method frame. Non-local returns exist in programming languages such as Ruby, Scala, Kotlin, and
Pharo, among others.
It is important for the library to guarantee the execution of the afterMethod regardless of whether

the instrumentedmethod encounters an exception or initiates a non-local return. Indeed, methods
can experience non-local returns or raise exceptions that might abruptly terminate their execution,
potentially preventing the afterMethod from being executed. Consider the example in Listing 2: A user
instruments a method that includes a non-local return:

Listing 2: Non-local return
AClass>>foo

handler before .
condition ifAbsent : [ ^ s e l f ] .
hand le r after .

In this scenario, if the condition specified by ifAbsent: is met, the method will exit prematurely,
and the code following, including the afterMethod, will not execute. Therefore, it is essential for the



library to ensure the afterMethod is always executed, maintaining a consistent and reliable execution
flow, irrespective of exceptions or non-local returns.

Requirement. The library must ensure that the afterMethod executes under all circumstances,
whether an exception occurs or a non-local return is initiated.

2.4. Uninstrumentation

All Pharo applications and tools co-exist in the same run-time environment. This means that instru-
menting some code can affect other parts of the system that are not under analysis in unintended
ways. One way to ensure the system’s integrity is to remove the instrumentation after an analysis has
been performed.

Requirement. The library must uninstrument all themethods that were instrumented, restoring
them to their original state.

3. Current message passing control techniques

In this section, we will discuss two commonly used instrumentation techniques that users can employ
to control message passing in Pharo. Note that not all the solutions presented in [2] are available
today in Pharo.

3.1. Source codemodification

Acommon instrumentationapproach involvesmodifying themethods’ source code tobe instrumented.
Given Pharo’s fully reflective capabilities, users have the freedom to directly alter the source code of
anymethod theywish to instrument [10]. However, thismethod places significant responsibility on the
users to manage potential issues such as meta-recursions that may arise during the instrumentation
process.
For example, consider the method before and after a source code instrumentation in Listing 3:

Listing 3: Code before and after instrumentation
" Be fore In s t rumen ta t i on "
AClass>>foo

| temp1 |
temp1 : = s e l f doSomething .
^ temp1

" A f t e r I n s t rumen ta t i on "
AClass>>foo

s e l f isMetaForActiveProcess ifFalse : [
s e l f runInMetaLevel : [ #beforeHandler ] ] .
[ | temp1 |
temp1 : = s e l f doSomething .
^ temp1 ] ensure : [

s e l f isMetaForActiveProcess ifFalse : [
s e l f runInMetaLevel : [ #afterAction ] ] ]

This implementation encapsulates the method to be instrumented within an ensure: block. This
ensures that the afterMethod will be executed regardless of whether an exception occurs or a non-
local return is initiated [11]. Additionally, we encapsulate the before and after actions to prevent their
execution in the event of a meta-call.



3.2. run:with:in: method hook

In Pharo, the methods of a class are stored within a method dictionary. This dictionary forms an
association between themethod selector and the corresponding instance of the CompiledMethod
class. Notably, methods in Pharo are ordinary objects and are instances of this CompiledMethod class.
Each time a message is sent in the Pharo environment, the Virtual Machine (VM) performs a lookup

to find the compiledmethod corresponding to the selector. Once located, the VM executes thismethod
on the receiver, passing the necessary arguments. If the object found in the method dictionary is not
an instance of the CompiledMethod class, indicating an exceptional scenario, the Pharo VM addresses
this by sending the special message run:with:in:to the found object. The run:with:in:method
receives the method’s selector, the arguments, and the receiver as parameters, allowing any class to
implement it and thus manage method execution within the Pharo environment. This functionality is
available by default in the standard Pharo’s VM.
The run:with:in:technique replaces a compiled method instance in the method dictionary with

an object understanding a run:with:in:message, referred to here as ProxyObject. This method is
similar to the substitution technique described in [2], but with a critical distinction: the substituting
object is not confined to instances of CompiledMethod. Instead, it can be an instance of any class,
greatly expanding the possibilities for method substitution beyond traditional constraints. Typically,
theCompiledMethod is replacedbyaProxyObject that encapsulates andpreserves theoriginalmethod.
When run:with:in:is triggered, this ProxyObject may first execute a before action, then execute
the original method, followed by an after action. The following Listing 4 provides an example of a
run:with:in:method of a ProxyObject:

Listing 4: ProxyObject implementation of run:with:in:
ProxyObject >> run : selector with : args in : aReceiver

| v |
s e l f isMetaForActiveProcess ifFalse : [

s e l f runInMetaLevel : [ #beforeHandler ] ] .
[
v : = originalMethod valueWithReceiver : aReceiver arguments : args
] ensure : [

s e l f isMetaForActiveProcess ifFalse : [
s e l f runInMetaLevel : [ #afterHandler ] ] ]

^ v

Note that in our previous example, considerations for meta recursion, multi-threading, and local
returns are also essential. Upon uninstrumentation, the original method can be restored simply by
replacing it back into the method dictionary of the class. This procedure ensures that the integrity
and functionality of the original method are maintained, even after modification and subsequent
restoration.
It is important to note that this approach also involves at least two additional lookup execu-

tions: one for finding the implementor of run:with:in:and another for the implementor of
valueWithReceiver:arguments:. This technique is not optimal for the Just-In-Time (JIT) compiler,
as it should have an intermediate routine to box the arguments andmassage the calls. Additionally, it
is not favorable for inline caches because the methods stored in the methods dictionary are not actual
methods. As a result, this technique has a performance drawback.

4. MethodProxies

MethodProxies is a method-based instrumentation library written in Pharo inspired by MethodWrap-
pers [3] (see Section 7 for a comparison). It instruments Pharo code without specific virtual machine
support. It permits the dynamic instrumentation of Pharo methods, enabling the execution of user-
defined actions both before and after a method’s execution. This functionality is achieved through
twomethod hooks: beforeMethod and afterMethod, which users are required to implement. These
hooks are invoked whenever an instrumentedmethod is called.



Our new implementation differs from this original work by stratifying the proxies in two parts: the
trap and the handler. This design is meant to prevent user mistakes. The low-level concerns such as
the code instrumentation and patching are defined by the framework itself. Users only need to define
the beforeMethod and afterMethod hooks in a handler object. In addition, MethodProxies is safe:
MethodProxies has a robust architecture that enables method proxying without encountering infi-

nite loops. To mitigate meta-recursions —when a user calls an instrumentedmethod within another
instrumented method in the same execution thread—MethodProxies employs a mechanism to deter-
mine the current execution level: whether it is at the meta-level or the base level. If the execution is
identified as being at themeta-level, the beforeMethod and afterMethod hooks are bypassed, allowing
execution to proceed normally as if no instrumentation were installed.

4.1. MethodProxies in a nutshell

Figure 1 illustrates the process of instrumenting the method AClass»foo using MethodProxies. The
upper part of the figure shows the uninstrumented code. The class AClass has a method foowhich is
indirectly referred by a caller.
In the bottompart, the figure shows how the code lookswith the instrumentation. The caller, instead

of activating the original method foo, activates a trapMethod instead. This trapMethod activates
the beforeMethod, the original method foo, and the afterMethod, respectively. The method object of
the selector #foo, is replaced by this trap method, and the original method is hidden under a hidden
selector named __foo.

• MethodProxies puts the instance of the compiled method foo under a hidden selector within
the AClass method dictionary.

• It selects a prototype method with the same number of arguments as the method intended
for instrumentation. Using literal patching in the prototypemethod, it integrates a call to the
original method foo via the hidden selector. Furthermore, the prototype method incorporates
calls to the before and after actions, the meta-safe mechanism, and the method deactivators.

• The instance of the compiled method associated with the selector #foo is replaced with the in-
strumented prototype method. As a result, when AClass»foois called, it invokes the prototype
method instead.

• During uninstrumentation, it restores the originalmethodfoo, which is hidden under the hidden
selector.

MethodProxies offers a straightforward API that is simple to understand and use. Listing 5 presents
a practical example demonstrating the API’s usage:

Listing 5: MethodProxies’s API usage
" De f ine the handler and the proxy method"
handler : = MpCountingHandler new .
proxy : = MpMethodProxy
onMethod : Object >> #error :
hand le r : hand le r .

" I n s t a l l the i n s t rumen ta t i on "
proxy install .
proxy enableInstrumentation .
" C a l l the inst rumented method"
1 error : ' foo ' .
" Uninstrument "
proxy uninstall .
" Program ' s a n a l y s i s "
hand le r methodInvocations .
>>> 1



caller

self foo

foo

"Original method"

AClass

foo
Before Instrumentation

After Instrumentation
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lookup foo
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self __foo
...
handler after.

activates
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__foo

"Original method"

caller

self foo

Figure 1: MethodProxies in a nutshell.

4.2. The trapmethod

For MethodProxies, we introduced an alternative approach to implement the instrumentation: the
trapmethod. During the instrumentation of the method, we copy a pre-compiledmethod template
called the trap method. This trap method encapsulates the method intended for instrumentation
alongside the beforeMethod and afterMethod hooks. Using literal patching, wemodify the bytecode of
our template trapmethod. Brant et al., [3] use the same technique. It features a meta-safe mechanism
to prevent the execution from entering into an infinite loop. Additionally, it incorporates deactivators
that are triggered if the method intended for instrumentation raises an exception or has a non-local
return. We hide the original method in themethod dictionary under a hidden selector, to be able to
restore it at a later stage.

Listing 6: Trap method
AClass>> foo : args

" Th i s i s not a p r im i t i v e , j u s t a marker "
<primitive : 198 >
"The unwind handler should be the f i r s t temp .
The complete f l a g should be the second temp . "
| deactivator complete result |
deactivator : = #deactivator .
#beforeHandler .
result : = s e l f ___foo : args .
#afterHandler .
"Mark the execu t ion as complete to avo id double
execu t ion o f the unwind handler "
complete : = t rue .
^ result

Listing 7: Hidden original source code
AClass>> ___foo : args

" O r i g i n a l source code hidden under the hidden s e l e c t o r "



Note that the after handler is not enclosedwithin an ensure block. This is unnecessary aswe leverage
the exception handling mechanism in Pharo to handle the eventual non-local returns and exceptions.
Further details on this will be provided in the subsequent section.

4.3. Stack unwinding

Amethodmay encounter non-local returns, causing the execution to jump to the frame where the
non-local return was defined. This disrupts the flow of the trapmethod. If an exception is raised, it
disrupts the execution in a similar manner.
To address this issue, one common approach is to utilize the ensure:method [12, 11]. The method

ensure: expects a block as an argument and ensures its execution regardless of whether an exception
or non-local return occurs. However, employing ensure: incurs a performance cost because it
requires wrapping the code of the method in a block closure. This drawback leads us to opt for a
different technique instead.
We introduced a technique that involves handling the stack unwinding within the trap method.

This approach operates similarly to the ensure:method, but instead of encapsulating the code we
want to ensure its execution, we embed the code directly within the trap method. To implement this,
we annotate the method with a special primitive designed to always fail, thus marking it for stack
unwinding. The first temporary variable is designated to store the unwind block that needs execution.
Despite being labeled a primitive, this construct is not an actual primitive because it is intended to
fail consistently. Its sole purpose is to indicate, during stack unwinding, the methods in which Pharo
must execute the unwind block, mirroring the functionality of the ensure: method. Additionally,
we implement a method deactivator, which is a specialized object responsible for executing the
afterMethod if an exception is raised.
In employing this technique, we initially execute the code as usual, presuming no exceptions will be

raised. If an exception or non-local return does occur, we activate the deactivators using the same
exception handling mechanism as the ensure:method.
By marking the trap method with a marker primitive, Pharo’s exception mechanism triggers the

execution of our deactivators if an exception occurs. This techniquemitigates the performance cost
because no block closures are created. To achieve this optimization, we made changes to the way
Pharo handles exceptions. These enhancements have been integrated into Pharo 12.
We will take the code snippet in Listing 6 as an example to explain the method deactivators. If,

during the execution of the trap method installed in AClass»foo, an exception or a non-local return
is encountered, then:

• Pharo’s exception mechanismwill treat the first temporary variable as the unwind block.

• Next, Pharo’s exception mechanism will check the second temporary variable. If its value is not
true, then it will execute the unwind block.

If there are no exceptions or non-local returns during execution, the deactivator will not be executed,
and the execution will proceed normally.

5. Experimental setup

Wedesigned an experiment to contrast MethodProxies against run:with:in:and source codemodifi-
cation techniques. Our goal is to understand the impact of MethodProxies in terms of instrumentation
time, overhead, and uninstrumentation time. All the experimentation code is available online2.

2https://github.com/jordanmontt/pharo-instrumentation



5.1. Research questions

This paper studies the following research questions regarding instrumentation techniques in Pharo:

• RQ1 - Instrumentation and uninstrumentation overhead: Howdoes the instrumentation time
of MethodProxies compare to the run:with:in:and the source codemodification instrumenta-
tion techniques? This question aims to understand the impact of MethodProxies on instrumenta-
tion and uninstrumentation time.

• RQ2 - Execution overhead: How does the overhead of MethodProxies compare to the
run:with:in:and the source code modification instrumentation techniques? This question
aims to compare the overhead time of MethodProxies with that of run:with:in:and source
codemodification techniques. We aim to assess the impact of the improvements in terms of
execution time overhead.

5.2. Projects under analysis

Table 1 describes the four projects we used for our analysis. It also reports the number of methods
to instrument and the number of tests. To execute these projects, we run all its associated tests. We
define a benchmark as the execution of a project’s test suites.

Table 1
Projects under analysis

Project’s name Description #methods # tests

Compression Apackage that provides compressionutilities, including functionalities
for compressing and decompressing files using ZIP and GZIP formats.

387 29

File SystemManager This project encompasses Pharo’s file system, disk, path, and memory
files manager functionalities.

1426 450

Microdow Microdown[13] is a markup language based on Markdown, offering
flexible extensionmechanisms for creatingbooks, slides, andwebsites.

1041 472

AST This package contains the model for the abstract syntax tree (AST)
representation available in the Pharo image.

1591 641

5.3. Scenarios under study

Given that the overheadmay vary with the type of information collected during execution, we have
developed three analysis tools:

• Method call graph: This analysis tool instruments allmethodswithin an application to generate
a graph that illustrates the relationships and frequencies of method calls. The method call
graph is constructed with method-level granularity, with each method call being counted as an
execution. It reports the frequency of method calls and identifies the callers. Additionally, the
method call graph accommodates multi-threaded executions by distinguishing methods called
from threads other than the executing one. Each time an instrumentedmethod is called, the
analysis updates the method call graph.

• Method coverage: This tool instruments all methods within an application to record which
methods are invoked by a set of tests. It identifies methods that were invoked, as well as those
that were not, during the test execution. The coverage tool operates at method granularity,
considering a method executed if it is called during testing. Each time an instrumented method
is called, the tool marks the method as executed in a table.



• No-action instrumentation: This tool involves instrumenting allmethodswithin an application
without executing any actions. It utilizes empty method bodies for both the beforeMethod and
afterMethod hooks. This setup allows for the evaluation of the overhead associated with bare
instrumentation.

5.4. Techniques under analysis

We employed three distinct instrumentation techniques— (i) MethodProxies, (ii) run:with:in:hook,
and (iii) source code modification. Despite the variation in these techniques, we ensured uniform
implementation for both the method call graph andmethod coverage across all approaches. Each
analysis tool was implemented in a manner agnostic to the specific instrumentation techniques used.
This uniform approach allows us to deploy the same analysis tools across all instrumentation tech-
niques, such as MethodProxies, run:with:in:hook, and source code modification, thus introducing
consistent overhead across techniques. Additionally, we applied the samemeta-checking mechanism
across all instrumentation techniques to maintain consistent meta-safety overhead among them.
It is important to note that the analysis tools themselves introduce varying levels of overhead. For

instance, the method call graph tool requires additional calculations to determine the relationships
between callers and callees, while themethod coverage tool simplymarks the executedmethods. This
variation in computational workloadmay lead to different overhead impacts for the same projects.

5.5. Benchmark execution andmetrics

To ensure accurate measurement of execution times, we take the following considerations:

• We performed 30 VM iterations for each benchmark, with a single VM invocation per iteration,
consistent with recommendations from prior studies [14]. We utilized ReBench [15] to manage
our benchmark execution efficiently.

• The Pharo VM uses a non-optimizing baseline JIT compiler that compiles methods upon their
second invocation and does not apply further optimizations. Thus, we contend that limiting our
benchmarks to one iteration per VM invocation does not impact our results adversely.

• We calculated and reported both the mean and the standard deviation for each benchmark’s
measurements. To reduce system-related noise during benchmark executions, we terminated
all non-essential OS applications and disabled the internet connection.

We consider the execution of all tests within each project as benchmarks for our measurements.
For each analysis tool and project, we collected the following metrics:

• Overhead Time: This metric is calculated as the ratio between the execution time with instru-
mentation (I) and the execution time without instrumentation (NI).

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝐼 / 𝑁𝐼 (1)

• Instrumentation overhead: This represents the duration required by the analysis tools to
instrument all methods prior to executing the benchmarks. It is calculated as the ratio between
the instrumentation time (insTime) and the lowest instrumentation execution time (lowInsTime).

𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑖𝑛𝑠𝑇 𝑖𝑚𝑒 / 𝑙𝑜𝑤𝐼𝑛𝑠𝑇 𝑖𝑚𝑒. (2)

• Uninstrumentation overhead: This measures the time taken by the analysis tools to restore
the original compiled methods in the class. Similarly, it is calculated as the ratio between
the uninstrumentation time (uninsTime) and the lowest uninstrumentation execution time
(lowUninsTime).

𝑈𝑛𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑢𝑛𝑖𝑛𝑠𝑇 𝑖𝑚𝑒 / 𝑙𝑜𝑤𝑈𝑛𝑖𝑛𝑠𝑇 𝑖𝑚𝑒. (3)



6. Results

In this section, we present the results of our experiments. For each execution time, we report themean
value with the standard deviation over 30 runs.

6.1. RQ1 - Instrumentation and uninstrumentation overhead

For the first research question, we analyze howmuch time instrumenting and uninstrumenting the
methods takes.
Table 2 presents the results of the benchmarks for the instrumentation overhead. Results

are presented relative to the shortest time: lower values indicate better performance. The
run:with:in:technique exhibits the lowest instrumentation overhead, with the fastest time be-
ing 140 milliseconds for the Compression benchmark, which has 387 methods to be instrumented.
The shortest execution time by scenario among all analysis tools is in bold.
The run:with:in:hook exhibits the least instrumentation overhead, ranging from 1.0 to 1.57×.

This is expected since this technique involves replacing the instance of CompiledMethod with self.
The source codemodification technique incurs themost overhead for instrumentation, ranging from

6.36 to 282.37×. This is due to the requirement of string concatenation for creating the newmethods’
source code and recompiling all methods The overhead introduced by MethodProxies ranges from
1.16 to 2.38×. MethodProxies takes an instance of a pre-compiled method and replaces its references.

Table 2
Instrumentation overhead in milliseconds

MethodProxies run:with:in: Source codemodification

No-action tool

FileSystem 2.13× ±0.03 1.43× ±0.01 20.78× ±0.07
Microdown 1.64× ±0.02 1.15× ±0.01 12.46× ±0.06
Compression 1.17× ±0.03 1.0× ±0.0 6.36× ±0.0
AST 2.37× ±0.03 1.53× ±0.04 148.92× ±2.02

Call graph tool

FileSystem 2.14× ±0.0 1.43× ±0.01 25.5× ±0.12
Microdown 1.63× ±0.02 1.16× ±0.03 13.3× ±0.08
Compression 1.17× ±0.04 1.0× ±0.0 6.65× ±0.03
AST 2.38× ±0.03 1.57× ±0.0 282.37× ±8.68

Method coverage tool

FileSystem 2.14× ±0.0 1.43× ±0.0 22.81× ±0.1
Microdown 1.65× ±0.01 1.16× ±0.03 13.04× ±0.08
Compression 1.16× ±0.03 1.0× ±0.0 6.57× ±0.02
AST 2.36× ±0.01 1.56× ±0.02 199.28× ±3.67

Table 3 presents the benchmark results for the uninstrumentation overhead. The shortest execution
is 140.0 ±0.0 milliseconds for the Compression benchmark. The largest uninstrumentation time for
uninstrumenting all the methods is 280.0 ±0.0 milliseconds for the AST benchmark. We use the same
uninstrumentation mechanisms across all different analysis tools: we restore the compiled method
object into the method dictionary. We will also present the numbers relative to the shortest execution
time.



Table 3
Uninstrumentation overhead in milliseconds

MethodProxies run:with:in: Source codemodification

No-action tool

FileSystem 1.78× ±0.01 1.14× ±0.0 1.65× ±0.02
Microdown 1.17× ±0.04 1.08× ±0.02 1.3× ±0.03
Compression 1.0× ±0.0 1.07× ±0.0 1.07× ±0.0
AST 1.92× ±0.02 1.21× ±0.0 1.93× ±0.01

Call graph tool

FileSystem 1.86× ±0.02 1.21× ±0.0 1.58× ±0.02
Microdown 1.29× ±0.0 1.21× ±0.0 1.35× ±0.02
Compression 1.07× ±0.0 1.15× ±0.01 1.14× ±0.02
AST 2.0× ±0.0 1.29× ±0.02 1.92× ±0.02

Method coverage tool

FileSystem 1.85× ±0.01 1.21× ±0.0 1.5× ±0.0
Microdown 1.24× ±0.03 1.15× ±0.02 1.27× ±0.03
Compression 1.07× ±0.0 1.14× ±0.0 1.12× ±0.03
AST 1.94× ±0.02 1.29× ±0.0 1.79× ±0.01

RQ.1 How does the instrumentation time MethodProxies compare to other instrumenta-
tion techniques?
MethodProxies incurs an instrumentation overhead ranging from 1.16 to 2.38 × compared
to the fastest time of run:with:in:. While MethodProxies has a higher overhead than
run:with:in:, it is significantly lower than the source code modification technique. For
uninstrumentation, MethodProxies exhibits the lowest overhead, with values ranging from 1.07
to 2.0× across all analysis tools.

6.2. RQ2 - Execution overhead

For this research question, we first run the benchmarks without the instrumentation to calculate their
baseline execution time. Then, we present the execution overhead relative to this baseline execution
time.

6.2.1. Baseline execution time

To compare the overhead added by the instrumentation, we initially calculated the execution time
of the benchmarks, which we call the baseline execution time. Table 4 presents the results for the
execution time of the benchmarks without instrumentation. FileSystem tests are the ones that take
the longest to execute, while the Microdown tests are the fastest.

Table 4
Baseline execution time in milliseconds (no instrumentation)

FileSystem Microdown Compression AST

Execution time 10788 ±27.21 1330 ±128.3 2575 ±11.37 4733 ±44.73



6.2.2. Execution overhead

Table 5 illustrates the execution overhead relative to the baseline execution time. We highlighted in
bold the shortest execution time across all instrumentation techniques. MethodProxies has the lowest
overhead among all benchmarks and all analysis tools. For the no-action tool, aimed at analyzing the
cost of bare instrumentation, MethodProxies exhibits overheads between 0.91 and 5.15× compared
to the baseline execution. Interestingly, in the no-action tool with the Microdown benchmark, the
execution was faster with MethodProxies than without instrumentation (0.91 ×), and we did not
investigate further this.
On the contrary, run:with:in:demonstrates the highest execution overhead across all bench-

marks and analysis tools. One of the reasons for this can be the additional lookup required by the VM to
locate where run:with:in:is implemented, as well as its lack of compatibility with inline caches and
the JIT compiler. Additionally, the AST benchmark displays a significant overhead across all analysis
tools, which warrants further investigation.
The source code modification overheads are in the middle, between MethodProxies and

run:with:in:. We inline the code of the beforeMethod and afterMethod but we wrap the after-
Method inside an ensure: block.

Table 5
Overhead for executing the instrumented code

MethodProxies run:with:in: Source codemodification

No-action tool

FileSystem 1.03× ±0.0 1.17× ±0.0 1.08× ±0.0
Microdown 0.91× ±0.1 17.98× ±1.05 6.14× ±0.16
Compression 1.05× ±0.0 9.33× ±0.22 3.31× ±0.01
AST 5.15× ±0.05 47.92× ±2.75 23.33× ±0.06

Call graph tool

FileSystem 1.07× ±0.0 1.22× ±0.0 1.11× ±0.0
Microdown 4.35× ±0.2 20.87× ±1.13 8.7× ±0.16
Compression 2.49× ±0.01 10.56× ±0.13 4.35× ±0.01
AST 25.48× ±0.23 49.87× ±0.77 37.62× ±0.15

Method coverage tool

FileSystem 1.05× ±0.0 1.19× ±0.0 1.09× ±0.0
Microdown 2.22× ±0.11 19.18× ±0.8 6.82× ±0.15
Compression 1.58× ±0.01 9.73× ±0.23 3.59× ±0.01
AST 11.61× ±0.13 44.08× ±0.62 28.89× ±0.09

RQ.2 How does the overhead of MethodProxies compare to the run:with:in:and the
source codemodification tools?
Among all benchmarks and analysis tools, MethodProxies exhibits the lowest execution over-
head.

7. RelatedWork

In this section, we present the related work on instrumentation techniques and message-passing
control.

Analysis tools. Bergel et al., [16, 17] developed Spy, a profiling framework that allows developers to
build custom profilers. Spy instruments the desired methods to execute actions before and after a



method’s execution. It uses the run:with:in:technique to instrument the code and controlmessage
passing. Spy has been used to build various tools, includingmethod coverage tools [18], among others.
In our work, we study different instrumentation techniques, such as MethodProxies, run:with:in:,
and source codemodification, comparing the overhead of these techniques. Unlike Bergel et al.,which
focus on the tools built using these instrumentation techniques, our focus is on the instrumentation
techniques themselves and their associated overhead.

MethodWrappers. Brant et al., [3] introduced Method Wrappers, a mechanism for introducing new
behavior to be executed before or after a method. The authors explore several implementations of
wrappers in Smalltalk and compare their performance with various program analysis tools, making
this work the most similar to ours.
In their approach, they replace the instance of the CompiledMethod with an instance of a Method-

Wrapper. This new method includes the before action, the original method, and the after action,
executing the original method using the valueWithReceiver:arguments: method. This tech-
nique does not add a new entry to themethod dictionary and it does not hide the original method
under a hidden selector. However, the MethodWrapper implementation lacks safety, requiring users
to subclass MethodWrappers to handle the instrumentation themselves. This leaves the responsibility
of managing safety mechanisms, such as meta-recursions, to the user.
In contrast, we implemented MethodProxies by replacing the instance of the compiled method with

a pre-compiled trapmethod, which we then patch using literal patching. This approach is similar to
MethodWrappers but offers a more robust and stratified architecture. With MethodProxies, users can
define before and after methods without worrying about safety concerns such as meta-recursions.
The user only needs to define the before and after methods, as the safety-ensuring mechanisms are
handled automatically.

Sub-method Reflection. Reflectivity [19, 20, 21, 22] is a framework that allows developers to an-
notate abstract syntax tree (AST) nodes with meta-behavior, influencing the compiler to produce
behavioral variations. These annotations are dynamically applied to AST nodes, which are then
expanded, compiled, and executed. Notably, in Pharo, the AST is accessible at the language level,
facilitating its modification. Reflectivity provides the essential infrastructure to support these capabili-
ties. The front end of Reflectivity is designed to operate at AST level. We excluded Reflectivity from
our comparison because is conceptually equivalent to the source codemodification, as it needs to
recompile the method with the ASTmodifications.

Infinite meta-recursions. Denker et al., [6] worked on the problem of infinite meta-recursions in
reflective languages. Mainstream languages use a reflective architecture to enable reflection. In this
architecture, meta-objects control the different aspects of reflection offered by the language. The
authors extended the meta-object-based reflective systems with a first-class notion of meta-level
execution and the possibility to query at any point in the execution whether we are executing at the
meta-level or not.
In CLOS, Kiczales et al., [23] introduced an approach to programming language design, focusing

on the evolution and principles of the Common Lisp Object System (CLOS) metaobject protocol. The
work emphasizes that metaobject protocols enable users to customize programming languages to
better meet their needs. The authors usedmemoization to speed upmethod lookup and dispatch.
Chiba et al., [5] presented a new architecture, called the meta-helix, for systems that use the meta-

object protocol. A common element of meta-object protocol design is the use of metacircularity to
allow extensions to be implemented in terms of the original non-extended functionality. However, this
design can lead to recursion due to the conflation of the extended and non-extended functionalities.
Meta-helix architecture retains the benefits of metacircularity while addressing its problems.
We used these definitions of infinite meta-recursions as the foundation for building MethodProxies.



8. Discussion and future work

In this section, we will discuss the threats to validity and outline our future work.

Pharo’sunsafe threads InPharo, it is possible to terminatea threadat anypoint during its execution,
even if the thread is being executed in a critical section. This capability contrastswithmanymainstream
languages, such as Java 3, which do not allow thread termination. This feature in Pharo can lead to
significant issues. For instance, if a thread is executing code that marks the execution as being at the
meta-level and another thread terminates it, the execution state will become inconsistent or corrupted.
This situation falls outside the control of MethodProxies, as it is inherent to Pharo’s threading model.

Special methods used by the instrumentation. MethodProxies employs some special methods to
instrument the code. These special methods cannot be instrumented, as they are essential for the
instrumentation process. To prevent their instrumentation, wemark these methods with the pragma
<noInstrumentation>. These methods are specific to MethodProxies, so users typically will not need to
instrument them.

Other instrumentation techniques. Our study compared MethodProxies against two commonly
utilizedmessage-passing control techniques: run:with:in:and source codemodification. Although
these techniques have provided valuable insights into instrumentation overheads, it is important
to acknowledge the existence of other possible techniques outlined in the literature [2] that were
not included in this comparison. As part of our future work, we plan to explore and analyze addi-
tional instrumentation techniques to deliver a more comprehensive comparison and deepen our
understanding of their associated overheads.

Benchmarks choice. For our experiments, we opted to execute all tests within the selected bench-
marks. While this approach ensures comprehensive coverage, it may not accurately represent these
benchmarks’ most typical use cases. In future research, we aim to select a set of benchmarks that do
not rely solely on test execution, thereby providing a more representative evaluation of the instrumen-
tation techniques.

Safe vs. unsafe profiling. Our experiments focused on comparing different techniques of safe
message-passing control for developing analysis tools. However, we did not investigate the impact of
the safe mechanism itself or the additional overhead it introduces. In some scenarios, users might
not require the safe-checking mechanism. In future work, we plan to include a comparison of safe
vs. unsafe profiling to gain a deeper understanding of the overhead introduced by the safe-checking
mechanism.

9. Conclusion

This paper introduces MethodProxies, a new, safe, and fast message-passing instrumentation library
tailored for the Pharo programming language. We demonstrate howMethodProxies efficiently handles
multithreading, meta-recursions, exceptions, and local return scenarios. Furthermore, we present
an experiment in which MethodProxies was assessed alongside two widely used techniques: the
run:with:in:hook and source codemodification, across a variety of profiling scenarios and projects.
Our findings indicate that MethodProxies consistently exhibits the lowest execution overhead, signif-
icantly outperforming both the run:with:in:hook and source codemodification in all evaluated

3https://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html



benchmarks and analysis tools. By leveraging the exception mechanism in Pharo and avoiding block
closures, MethodProxies delivers optimized performance.
The development of MethodProxies marks a significant advancement over traditional message-

passing techniques. Looking ahead, future research will focus on further optimizations of Method-
Proxies, comparing it with additional instrumentation techniques, investigating various types of
benchmarks, exploring the impact of safe vs. unsafe profiling, and extending its applicability to other
dynamic programming languages and runtime environments.
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