

Ru–modified graphitic carbon nitride for the solar light–driven photocatalytic H2O2 synthesis

Laura Valenzuela, Frael-Benjamin Yimbou, Antoine Ewin, Christophe

Lefèvre, Ramón Manzorro, Nicolas Keller

► To cite this version:

Laura Valenzuela, Frael-Benjamin Yimbou, Antoine Ewin, Christophe Lefèvre, Ramón Manzorro, et al.. Ru–modified graphitic carbon nitride for the solar light–driven photocatalytic H2O2 synthesis. Catalysis Today, 2024, 441, pp.114881. 10.1016/j.cattod.2024.114881. hal-04708644

HAL Id: hal-04708644 https://hal.science/hal-04708644v1

Submitted on 25 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Ru–modified graphitic carbon nitride for the solar light–driven
2	photocatalytic H ₂ O ₂ synthesis
3	
4	Laura Valenzuela, ^{a,*} Frael-Benjamin Yimbou, ^a Antoine Ewin, ^a Christophe
5	Lefèvre, ^b Ramón Manzorro, ^c Nicolas Keller ^a
6	
7	^a Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES),
8	CNRS, Strasbourg University, 25 rue Becquerel, 67087, Strasbourg, France.
9	^b Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS),
10	CNRS/Strasbourg University, 23 rue du Loess, Strasbourg, France.
11	^c Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química
12	Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Spain.
13	
14	*Corresponding author: valenzuelaavila@unistra.fr (L. Valenzuela)
15	
16	Abstract
17	
18	Hydrogen peroxide (H ₂ O ₂) is an efficient and environmentally friendly oxidant as well as
19	a promising energy-carrier alternative to hydrogen. Its solar light-driven photocatalytic
20	synthesis from H_2O and O_2 is a high-prospect sustainable alternative to the industrial
21	anthraquinone process. Hybrid Ru-modified graphitic carbon nitride (g-C ₃ N ₄) catalysts
22	were prepared by thermal polymerisation of melamine/Ru(III) acetylacetonate mixtures,
23	and subsequent thermal exfoliation. Simultaneous Ru incorporation and thermal
24	exfoliation impacted the morphology and the structure of the g-C ₃ N ₄ sheets, and low-
25	atomicity Ru species with small nanoclusters and single atoms were observed only in the
26	Ru-modified exfoliated g-C ₃ N ₄ photocatalysts. We demonstrated the potential of a joint

27 thermal exfoliation and modification with Ru to enhance the H₂O₂ synthesis efficiency of 28 the g-C₃N₄ photocatalyst under simulated sunlight. A volcano-type behavior was 29 observed with increasing the Ru content, and the best performance was obtained for 30 exfoliated g-C₃N₄ with an ultra-low Ru content of 0.019 wt.%, that outperformed both its 31 bulk counterpart and the pristine exfoliated reference in terms of initial H₂O₂ synthesis 32 rate and H₂O₂ formation rate constant. The enhanced performance was attributed to the 33 presence of highly dispersed low atomicity Ru as well as to more accessible active sites 34 and carrier migration channels. Quenching experiments revealed a mixed reactional pathway involving both two-step one-electron and one-step two-electron O₂ reduction in 35 36 the photocatalytic H₂O₂ production.

37

38 *Keywords:* Hydrogen peroxide; Photocatalysis; Graphitic carbon nitride; Ruthenium;

39 Thermal exfoliation

40

41 **1. Introduction**

42

43 Hydrogen peroxide (H₂O₂) is an efficient and environmentally friendly oxidant due 44 to its large active oxygen content (47 wt.%), relatively high oxidation potential 45 (E°=1.763V vs. NHE at pH 0), easy-handling and non-toxic oxidation by-products (water 46 and oxygen) [1, 2]. These properties make H_2O_2 suitable for varied applications like 47 wastewater treatment (eg., Fenton processes and disinfection), chemical manufacturing 48 or pulp bleaching, with an annual worldwide production over 5 Mt [2, 3]. Moreover, H₂O₂ is a promising energy-carrier alternative to hydrogen, since it can be used as fuel in single-49 50 compartment cells and can be conveniently transported and stored [4]. Currently, H₂O₂ is 51 produced industrially by the well-known high E-factor and low atom efficiency multistep anthraquinone process, which requires high energy input and generates large
amounts of wastes (*eg.* organics-containing wastewater, solid waste) [1, 2].

Therefore, it is worthwhile to develop cost-effective and sustainable approaches for H₂O₂ production. In this context, solar light-driven photocatalysis has emerged as it utilizes H₂O and molecular O₂ as raw materials, and solar light as energy supply [5, 6]. Photocatalysis is also a worth strategy for the safe and cost-efficient implementation of decentralized small-scale production units as well as for the *in-situ* synthesis of H₂O₂ for use as oxidant in high-efficiency chemical reactions [7].

60 Graphitic carbon nitride (g-C₃N₄) is a prominent candidate for H₂O₂ production 61 because of its relatively narrow band gap (ca. 2.7 eV), suitable electronic structure for O₂ 62 reduction and a high chemical stability [8]. g-C₃N₄ benefits also from easy, low-cost 63 preparation methods, as well as from its metal-free and non-toxic nature. Shiraishi et al. 64 [9] first reported the ability of $g-C_3N_4$ to selectively produce H_2O_2 (>90%) under visible 65 light in water/alcohol mixtures owing to the formation of 1,4-endoperoxide species as 66 surface intermediates. However, bulk g-C₃N₄ obtained by thermal polymerisation still 67 suffers from fast recombination of photogenerated electron/hole pairs, weak electrical 68 conductivity, low surface area and poor dispersion in water [8, 10].

69 Several methods have been explored to improve the photocatalytic activity of g-70 C₃N₄, including nanoarchitecture and defect engineering [11], metal or non-metal doping 71 [6, 12], decoration with metal nanoparticles [13], molecular engineering [14] or 72 heterojunction construction [15]. Thermal exfoliation of bulk g-C₃N₄ into two-73 dimensional nanosheets has been highlighted as a simple and effective strategy to increase 74 its specific surface area, provide more accessible active sites, enhance its dispersibility, 75 and facilitate charge carrier separation [16, 17]. In this regard, transition metal doping of 76 the g-C₃N₄ framework with simultaneous morphology engineering can promote the

77 synthesis of H_2O_2 [5, 6, 18]. As the synthesis of H_2O_2 can occur by partial oxidation of 78 water or O₂ reduction involving a hydrogenation step, and Ru being is a well-known 79 hydrogenation catalyst [19] that has demonstrated to promote water oxidation [20], it 80 worth investigating to which extent the photocatalytic synthesis of H₂O₂ can be enhanced 81 by modifying g-C₃N₄ with Ru. Among transition metals, the unique electronic 82 configuration of Ru as 4d⁷5s¹, allowing variable oxidation states and complex coordinate 83 geometries, has made it an outstanding catalyst in many reactions. Previous works 84 showed that anchoring RuP complexes at the surface of g-C₃N₄ and stabilizing Ru 85 nanoparticles on metal-organic-frameworks enhanced the photocatalytic production of 86 solar H₂ or the photodegradation of organic pollutants, respectively, owing to a lower 87 charge carrier recombination that results from their ability to capture electrons and from 88 the formation of intermediate energy levels [21, 22].

Thus, we aim hereby at reporting for the first time to which extent the activity of a g-C₃N₄ reference photocatalyst can be enhanced under simulated solar irradiation by incorporating Ru. Hybrid photocatalysts were prepared by thermal polymerisation of melamine/ruthenium(III) acetylacetonate mixtures. We demonstrated the potential of simultaneous thermal exfoliation and modification with ultra-low amounts of Ru to improve the photocatalytic H₂O₂ generation efficiency of the g-C₃N₄ materials under simulated solar irradiation.

96

97 2. Materials and methods

98

99 2.1. Chemicals

100 The chemicals used are described in SI1.

102 2.2. Synthesis of Ru-modified g-C₃N₄ catalysts

103 Bulk g-C₃N₄ (BCN) was synthesized by thermal polymerisation of melamine under 104 static air atmosphere in a muffle furnace. Briefly, 14 g of melamine was placed in a lidded 105 alumina crucible (60 mL) and heated at 550°C for 4 h (5°C/min). After naturally cooling 106 down to room temperature, the pale-yellow product obtained was ground into powder, 107 and further subjected to a typical thermal exfoliation procedure at 550°C for 4 h (5°C/min) 108 to yield $g-C_3N_4$ nanosheets (TCN). Ru-modified $g-C_3N_4$ catalysts were synthesized by a 109 similar two-step process, in which Ru(acac)₃ was first added to melamine with different 110 mass ratios by finely grinding in a mortar. The photocatalysts were denoted as xRu-BCN 111 and xRu-TCN for Ru-modified bulk and exfoliated $g-C_3N_4$, respectively, where x refers 112 to the final Ru content (wt.%) as determined by elemental chemical analysis.

113

114 2.3. Characterisation of Ru-modified g-C₃N₄ catalysts

115 The crystalline structure of the g-C₃N₄ materials was assessed by X-ray diffraction 116 (XRD, Bruker D8-Advance diffractometer) using Cu K α radiation (λ =1.54Å). Zero-shift 117 was determined by performing additional XRD analysis using mixtures of the 118 photocatalysts with 5 *wt*.% of highly-crystallized NaCl (space group Fm-3m with cell 119 parameter 5.64056Å). Fitting of the patterns was performed over the 21-36° 20 range of 120 interest using a pseudo-Voigt function for both the (002) plane of g-C3N4 and the (200) 121 plane of NaCl (COD 00-900-8678).

122 Their morphology was investigated by advanced scanning/transmission electron 123 microscopy (STEM) using a double aberration-corrected monochromated FEI Titan 124 Cubed Themis 60-300 working at 300 kV. High angle annular dark field (HAADF) 125 images were acquired. Analytical information at the atomic scale was provided by energydispersive X-ray spectroscopy (EDX), collecting the signal in the four-detectors Super XG2 capabilities, which allow to track the elemental distribution.
The Ru content in g-C₃N₄ was determined by inductively coupled plasma-atomic
emission spectroscopy (ICP-AES, Perkin Elmer Optima 7000DV) after acidic digestion
in microwave oven at 185°C.

Additionally, the photocatalysts were characterized by UV-vis diffuse reflectance spectroscopy (DRS) and N₂ adsorption-desorption isotherms. Experimental details are provided in SI2.

134

135 **2.4. Photocatalytic synthesis of H₂O₂**

136 Photocatalytic H₂O₂ production experiments were conducted in a beaker-type glass 137 reactor at a constant temperature of 20±5°C (using a cooling bath) under simulated solar 138 irradiation, provided by a Suntest XLS+ reaction chamber (Atlas Material Testing 139 Technology BV) equipped with a 1700W Xenon arc lamp providing an irradiance of 500 140 W.m⁻². 100 mg photocatalyst was dispersed in 100 mL aqueous solution containing 5% 141 v/v isopropyl alcohol (IPA) as hole (h⁺) scavenger. Prior to irradiation, the catalyst 142 suspension was stirred at 500 rpm for 15 min in the dark to ensure the establishment of 143 the adsorption-desorption equilibrium. The dispersion was bubbled with synthetic air at 144 10 mL.min⁻¹ for saturating the system with O₂. Samples of 4 mL were withdrawn at given 145 time intervals and immediately filtered (PES, 0.22 µm) to separate the catalyst and 146 measure the H_2O_2 concentration by iodometry, as described in SI3 [23].

Additional tests were performed under pure visible light irradiation using a 420 nm cut-off filter (GG420 Yellow Schott Optical Filters). The emission spectra of the light sources were measured with a portable wideband RPS900-W spectroradiometer (International Light Technology) (Fig. S1).

151	Quenching experiments were conducted to determine the main active species in the
152	reaction. To that end, 1 mM of <i>p</i> -BQ and AgNO ₃ were added separately to ultrapure water
153	to scavenge superoxide (O_2^{-}) and photogenerated electrons (e ⁻), respectively.
154	

155

157 **3.1.** Characterisation of the photocatalysts

3. Results and discussion

Table 1 shows the main physico-chemical properties derived from the XRD and the ICP-AES analyses. The g-C₃N₄ based photocatalysts displayed very low weight contents of Ru, namely within the 0.006-0.049 *wt*.% and 0.011-0.054 *wt*.% ranges for both *x*Ru-BCN and *x*Ru-TCN series, respectively.

162 The XRD patterns shown in Fig. 1a-b and Fig. S2 exhibited the characteristic peaks 163 of graphitic carbon nitride for all samples (JCPDS 87–1526). The intense diffraction peak at 27.6° was assigned to the (002) plane, attributed to the interlayer stacking of the 164 165 conjugated aromatic system with an inter-planar distance of 3.2 Å. The ill-defined low-166 intensity peak at 12.8° corresponded to the (100) plane, related to the in-plane structural 167 packing motif of the tris-s-triazine units with a period of 6.9 Å (Table 1) [17, 24, 25]. 168 Incorporating Ru did not modify the basic structure of g-C₃N₄, and no Ru-related 169 diffraction peaks were observed probably because of its low loading ($\leq 0.054 \text{ wt.\%}$).

After zero-shift correction, Fig. 1c-d and Table 1 show that both the exfoliation process and the presence of very low-content Ru influenced the crystallographic features of the $g-C_3N_4$. In the absence of Ru, exfoliation led to a slight shift of the (002) peak towards larger angles, indicating a reduced inter-planar distance and suggesting stronger interlayer interaction with a higher number of staked layers [26, 27]. The full width at half-maximum (FWHM) of the (002) peak decreased after thermal treatment, resulting in a higher number of stacked layers and an increased crystal thickness. A reduced FWHM also relates to a higher degree of crystallinity, what promotes the tighter packing of layers [27, 28]. Thus, it suggests higher crystallinity for TCN and exfoliated *x*Ru-TCN compared to the bulk *x*Ru-BCN series. Interestingly, very low-content Ru increased the inter-planar distance and decreased both crystal thickness and number of stacked layers compared to pristine materials, the effect being by far more pronounced for the exfoliated *x*Ru-TCN series with a clear volcano-curve centred around *x* = 0.011-0.019 *wt.*%.

183 Compared to the bulk xRu-BCN series, the (100) peak intensity of exfoliated g-184 C₃N₄ (TCN and *x*Ru-TCN) decreased to some extent, and more significantly as the Ru 185 content increased, indicating a reduction in the lateral size of the graphitic layers when 186 performing the exfoliation in the presence of Ru [16, 17, 24]. This might be related to the 187 lower yields to g-C₃N₄ obtained for the xRu-TCN samples when the Ru content increased, 188 that reflect the decomposition of g-C₃N₄ to gaseous products during the thermal treatment 189 (Table 1). Non-exhaustive explanations of the lower yields obtained rely on the presence 190 of Ru within the xRu-BCN samples that might favor the over-oxidation of the g-C₃N₄, as 191 it slightly lowers the crystallinity of bulk materials, might induce local increase in 192 temperature during exfoliation, or provide a higher amount of surface sites exposed for 193 reacting with molecular oxygen. However, the ill-defined nature and low-intensity of the 194 (100) diffraction peak prevented the assessment of whether the presence of Ru during the 195 exfoliation modified the in-plane periodicity of the tris-s-triazine units.

- 197
- 198

Figure 1. X-ray diffraction patterns of Ru-modified bulk $g-C_3N_4$ photocatalysts, (a) *x*Ru-BCN and (b) Ru-modified exfoliated $g-C_3N_4$, *x*Ru-TCN. Influence of the Ru content on the inter-planar distance and crystal thickness for (c) *x*Ru-BCN and (d) *x*Ru-TCN photocatalysts.

Table 1. Ru content, yield to $g-C_3N_4$, structural parameters obtained from XRD results (tris-*s*-triazine unit distance, inter-planar distance, crystal thickness, number of stacked layers), band gap energies, BET surface area and pore volume.

205

Catalysts	Ru content (wt. %) ^a	Yield to g-C ₃ N ₄ (%) ^b	I(100)/ I(002) ^c	Tris- <i>s</i> -triazine unit distance (Å) ^d	Inter- planar distance (Å) ^e	Crystal thickness (nm) ^f	Number of stacked layers ^g	Band gap energies (eV) ^h	BET surface area [<i>t</i> -plot micropore area] (m ² g ⁻¹)	Pore volume (m ³ g ⁻¹)
BCN	-	42	0.19	6.916	3.232	8.3	26	2.69	21 [16]	0.24
0.006Ru-BCN	0.006	43	0.18	6.917	3.236	7.5	23	2.73	24 [6]	0.17
0.012Ru-BCN	0.012	43	0.18	6.916	3.237	7.2	22	2.73	25 [9]	0.12
0.017Ru-BCN	0.017	42	0.22	6.915	3.236	7.6	23	2.73	28 [10]	0.14
0.027Ru-BCN	0.027	42	0.21	6.915	3.234	7.6	23	2.73	32 [5]	0.16
0.049Ru-BCN	0.049	41	0.21	6.916	3.234	7.5	23	2.73	26 [12]	0.14
TCN	-	23	0.13	6.917	3.208	11.6	36	2.73	51 [26]	0.42
0.011Ru-TCN	0.011	24	0.12	6.917	3.220	9.5	29	2.75	71 [14]	0.37
0.019Ru-TCN	0.019	21	0.12	6.915	3.218	9.0	28	2.76	76 [13]	0.41
0.023Ru-TCN	0.023	20	0.11	6.916	3.218	9.6	30	2.77	88 [17]	0.38
0.036Ru-TCN	0.036	16	0.10	6.915	3.213	10.6	33	2.77	100 [17]	0.43
0.054Ru-TCN	0.054	12	0.09	6.917	3.211	10.8	34	2.79	107 [21]	0.34

206

^a Ru content measured by ICP-AES analysis.

^b Yield to g-C₃N₄ determined as the mass ratio of the g-C₃N₄ material (bulk or exfoliated) to the melamine reactant.

 $^{\circ}$ I(100)/I(002) determined as the intensity ratio of the (100) to the (002) planes.

^d Tris-*s*-triazine unit distance calculated through Bragg equation using the (100) plane.

^e Inter-planar distance determined through Bragg equation using the (002) plane.

^f Crystal thickness calculated by the Debye-Scherrer equation using the (002) plane.

^gNumber of stacked layers determined as the ratio of the crystal thickness to the inter-planar distance.

^h Band gap energies estimated through Kubelka-Munk function combined with Tauc's relation and baseline method.

215 The optical properties of the g-C₃N₄-based photocatalysts were studied by UV-vis 216 DRS (Fig. S3). All photocatalysts exhibited the characteristic absorption edge of $g-C_3N_4$ 217 [25], with indirect band gaps being estimated at ca. 2.7 (Table 1) in agreement with 218 reported values [6, 29] and not significantly influenced by the exfoliation process and the 219 addition of Ru (Table 1). Thermally exfoliated materials displayed reduced absorption 220 intensity in both the UV range and the visible region, what has been ascribed to a quantum 221 confinement within the stacked layers [30, 31]. By contrast, the incorporation of Ru to 222 bulk and exfoliated g-C₃N₄ increased the absorption features. This aligns with previous 223 reports on metallic nanoparticles or metal complexes (e.g., Ni or triphenylphosphine 224 ruthenium, RuP) on g-C₃N₄, that indicated the strengthening of light absorption without 225 shifting the absorption edge [5, 21]. No significant difference was observed as regards 226 the valence band edge derived from XPS measurements between the BCN reference and 227 the 0.019Ru-TCN photocatalyst (data not shown).

228 The specific surface area and porous structure of g-C₃N₄ were analysed through N₂ 229 sorption isotherms (Fig. S4 and Table 1). The isotherms can be classified as type IV with 230 H3 hysteresis loops in the high-pressure region, suggesting the presence of mesopores 231 [30]. Compared to BCN (21 m²/g), the BET surface area of xRu-BCN followed a volcano-232 type trend with increasing Ru content, reaching a maximum of $32 \text{ m}^2/\text{g}$ for 0.027Ru-BCN. 233 The BET surface area of TCN at 51 m^2/g strongly overcame that of BCN, and further 234 gradually increased with increasing Ru content up to the high value of $107 \text{ m}^2/\text{g}$ for 235 0.054Ru-TCN. This confirmed that both thermal exfoliation and Ru influenced the 236 morphology of g-C₃N₄ materials. While *t*-plot method reflected the presence of 237 microporosity in all samples, the pore size distribution curves derived from BJH method 238 (Fig. S4 c-d) showed slight modifications due to Ru presence and exfoliation. Both 239 pristine g-C₃N₄ catalysts showed a broad monomodal distribution centred at around 50

240 and 80 nm for BCN and TCN, respectively. The incorporation of Ru slightly narrowed 241 the pore size distribution for both bulk and exfoliated photocatalyst series. Interestingly, 242 in the presence of Ru, the xRu-TCN photocatalysts developed a slightly bimodal 243 distribution during exfoliation, with the appearance of an additional low-intensity 244 contribution at *ca.* 3 nm of pore size, that is particularly visible for the highest Ru 245 contents. The exfoliated xRu-TCN owned by far larger pore volumes compared to xRu-246 BCN counterparts (Table 1), probably due to their layered structure. Furthermore, the 247 pore volume of BCN decreased to some extent after Ru modification, while this trend 248 was not observed for the exfoliated materials, for which it remained almost constant 249 except for the 0.054Ru-TCN photocatalyst.

250 The morphology and elemental distribution of the 0.012Ru-BCN and 0.019Ru-TCN 251 photocatalysts, as representative of both Ru-based g-C₃N₄ series, were investigated by 252 HAADF-STEM and STEM-EDX elemental mapping and compared to the Ru-free TCN 253 reference (Fig. 2 and Fig. S5). A visual inspection of TCN, based on low magnification 254 HAADF images, revealed a more graphitic structure compared to BCN, consistent with 255 the higher crystallinity observed by XRD. Notably, 0.019Ru-TCN exhibited a more 256 porous structure with folds than its bulk g-C₃N₄ counterpart (0.012Ru-BCN), but similar 257 to that of pristine TCN, in agreement with the pore volume analysis. Regarding metal 258 dispersion, low-magnification HAADF-STEM images in combination with STEM-EDX 259 maps of both Ru-modified g-C₃N₄ catalysts (Fig. 2a-b and Fig. 2d-e) indicated the 260 presence of Ru aggregates (> 10 nm), accumulating in some regions of the carbon nitride 261 matrix.

When decreasing in Ru size, exfoliated 0.019Ru-TCN sample presented a higher fraction of Ru nanoparticles with dimensions of *ca*. 5 nm, as illustrated in Fig. S5. However, more interestingly, the most important difference between the two Ru-modified

265 samples laid in the existence of bright spots uniformly distributed at the surface of TCN 266 (Fig. 2f) as opposed to the bare surface in 0.012Ru-BCN material (Fig. 2c). The heavier 267 nature of metallic Ru may suggest the correspondence of bright intensities with highly 268 dispersed Ru species in the form of clusters and even single atoms (< 0.2 nm). Despite its 269 ultra-low content (0.019 wt.%), the presence of low-atomicity Ru species in 0.019Ru-TCN (and not in 0.012Ru-BCN) was confirmed by EDX analysis. Given the low 270 271 dimension of these Ru-based entities, its spatial distribution in an elemental map is not 272 reliable and may be corrupted by noise. However, the integrated spectra over a region of 273 5x5 nm, Fig. 2g, captured the presence of Ru-L peak in the case of 0.019Ru-TCN (black) 274 vs. the lack of Ru EDX signal on the 0.012Ru-BCN sample (blue), demonstrating 275 analytically the existence of low-atomicity Ru in the exfoliated sample. In order to better 276 understand the distribution of the Ru species, the HAADF images of the 0.019Ru-TCN 277 photocatalyst have been processed with a tailored protocol based on segmentation 278 methods [32], focusing on the identification of single atoms and low-atomicity species 279 (Fig. 3). The cluster size distribution, with a mean cluster size of 0.20 nm, showed a 280 marked positive skew, this indicating the high population of Ru single atoms.

Figure 2. Low and high-magnification HAADF-STEM images, STEM–EDX elemental mappings (C ■, N ■, Ru ■) on both (a-c) 0.012Ru-BCN

and (d-f) 0.019Ru-TCN photocatalysts. (g) The corresponding EDX spectra.

Figure 3. (a) Representative HAADF image of the 0.019Ru-TCN sample, (b) HAADF image after segmentation procedure to detect Ru

286 clusters, (c) cluster size histogram derived from more than 250 Ru species. The scale bar corresponds to 2 nm.

287 **3.2.** Photocatalytic synthesis of H₂O₂

288

289 **3.2.1. Synthesis under solar light**

290 The photocatalytic performance for H₂O₂ production of the Ru-modified g-C₃N₄ 291 materials was evaluated with 5% v/v IPA under simulated solar light irradiation and 292 continuous air supply at controlled temperature ($20\pm5^{\circ}$ C). As shown in Fig. 4, the pristine 293 BCN and TCN catalysts displayed low photocatalytic activity, with an apparent initial 294 H_2O_2 production rate of 132 ± 5 and $137 \pm 14 \mu mol/g/h$, respectively, commonly assessed 295 by a zero-order rate law. Modification of bulk g-C₃N₄ with Ru at ultra-low concentrations 296 (*x*Ru-BCN with $x \le 0.012$ wt.%) slightly improved the catalytic performance, with an 297 increase in the initial H₂O₂ synthesis up to 155 ± 18 and $156 \pm 12 \mu mol/g/h$ for 0.006Ru-298 BCN and 0.012Ru-BCN, respectively. Further increase in Ru concentration lowered the 299 initial H₂O₂ production rate. By contrast, the initial H₂O₂ production rate obtained with 300 the exfoliated xRu-TCN followed a strongly pronounced volcano curve as Ru content 301 increased, with a maximum initial rate of $296 \pm 8 \mu mol/g/h$ for the 0.019Ru-TCN 302 photocatalyst, namely 2.2 times higher than those achieved with pristine BCN and TCN. However, the overall H₂O₂ production must consider that the H₂O₂ formed can 303 304 decompose either by absorbing UV light ($\lambda \leq 400$ nm) (1) [33], or by reacting with 305 photogenerated electrons and holes at the catalyst surface [34] (2-5):

$$307 \quad H_2O_2 \xrightarrow{h\upsilon} 2HO^{\bullet}$$
(1)

- $308 \qquad H_2O_2 + H^+ + e^- \rightarrow H_2O + HO^{\bullet}$ ⁽²⁾
- $309 H_2O_2 + 2H^+ + 2e^- \to 2H_2O (3)$
- $310 \quad H_2O_2 + h^+ \rightarrow H^+ + HO_2^{\bullet} \tag{4}$
- 311 $H_2O_2 + 2h^+ \rightarrow O_2 + 2H^+$ (5)

312

Figure 4. Photocatalytic synthesis of H_2O_2 with kinetic fitting (**a**, **b**), initial apparent H_2O_2 production rates (**c**, **d**), and formation (*kf*) and decomposition (*kd*) rate constants as a function of the Ru content (**e**, **f**) over Ru-modified bulk g-C₃N₄, *x*Ru-BCN (**a**, **c**, **e**), and Ru-modified exfoliated g-C₃N₄, *x*Ru-TCN (**b**, **d**, **f**), catalysts. Experiments performed with 5% *v/v* IPA under simulated solar light irradiation (500 W.m⁻²).

The H₂O₂ production rate gradually diminishes over time because both generation and decomposition occur simultaneously. Consequently, assessing the apparent kinetic constants for both formation (*kf*, μ M.min⁻¹) and decomposition (*kd*, min⁻¹) is necessary to understand this dynamic process. The accumulated H₂O₂ is commonly evaluated by a zero-order rate law for H₂O₂ formation and a first-order rate law for H₂O₂ decomposition (6) [35]:

325

326
$$[H_2O_2] = kf/kd \times \{1 - \exp(-kd \times t)\}$$
 (6)

where $[H_2O_2]$ denotes the concentration of H_2O_2 (µmol/L) and *t* is the reaction time (min). The *kf* and *kd* values are obtained by fitting the experimental data into Eqn. 6. The kinetic fits are shown in Fig. 4a,b (dashed lines), while the apparent rate constants *kf* and *kd* are plotted in Fig. 4e,f as a function of Ru content in the g-C₃N₄ catalysts.

331

332 Considering both kinetics, the results in Fig. 4e,f evidenced that thermal exfoliation 333 promoted both H₂O₂ formation and decomposition rate constants, and in a more pronounced way for kd that increased from $0.54 \pm 0.01 \times 10^{-2}$ to $0.88 \pm 0.02 \times 10^{-2}$ min⁻¹, 334 335 while kf only slightly increased from 2.34 ± 0.12 to $2.53 \pm 0.30 \,\mu\text{M.min}^{-1}$. As a result, 336 although the initial H₂O₂ production rate was slightly higher for TCN than for BCN, the 337 concentration of H₂O₂ accumulated after 2 h of reaction with TCN remained lower than 338 that with BCN, *ie*. $185 \pm 6 \mu mol/g/h vs. 208 \pm 3 \mu mol/g/h$. Concerning the Ru-modified 339 g-C₃N₄ photocatalysts, the incorporation of Ru notably improved the H₂O₂ formation rate 340 (*kf*) with increasing Ru content up to a maximum at x = 0.012 wt.% and x = 0.019 wt.% 341 for xRu-BCN and xRu-TCN, respectively, while it further decreased for higher Ru 342 contents. Thus, the 0.012Ru-BCN and 0.019Ru-TCN catalysts displayed the highest kf in 343 their respective series, namely 3.19 ± 0.06 and $5.61 \pm 0.16 \ \mu M.min^{-1}$, representing 344 increases of 1.4 and 2.4 times, respectively, compared to the pristine BCN reference. 345 However, the presence of Ru in bulk or exfoliated g-C₃N₄ also favoured H₂O₂ 346 decomposition, with higher Ru content leading to higher kd values. This negative effect 347 strongly impacted the efficiency of bulk xRu-BCN catalysts, compensating for the 348 positive influence of Ru presence and not allowing any bulk Ru-modified photocatalyst 349 to outperform the BCN reference in terms of amount of H₂O₂ produced (Fig. 4a). By 350 contrast, at ultra-low Ru content (x $\leq 0.0019 \text{ wt.\%}$), the exfoliated g-C₃N₄ catalyst 351 enhanced significantly H₂O₂ synthesis efficiency more than it accelerated decomposition. 352 Indeed, for the most efficient system, the 0.0019Ru-TCN photocatalyst, kd and kf 353 increased by a factor x 1.3 and x 2.2, respectively, compared to the TCN reference, 354 leading to the highest H₂O₂ accumulation after 2 h of reaction at $363 \pm 9 \,\mu mol/g$.

355 A denser layer stacking, a more porous structure and a larger surface area are reported 356 to reduce the charge carrier recombination and to provide more active sites accessible for 357 the reactants [12, 16, 30]. However, while exfoliated g-C₃N₄ displays those features, 358 higher H₂O₂ yields were not obtained on TCN, probably due to a lower light absorption 359 capacity (visible and UV) and the promotion of H₂O₂ decomposition. The modest 360 increase in photocatalytic activity for the xRu-BCN samples suggests that the superior 361 H₂O₂ production efficiency of xRu-TCN photocatalysts arises from the combined effects 362 of exfoliation and Ru incorporation. This may be linked to the presence of low-atomicity 363 Ru species detected by HAADF-STEM only on xRu-TCN. Ru, known for trapping 364 electrons easily, may serve as active sites for O₂ reduction to H₂O₂. The effect is favoured 365 by highly dispersed small Ru clusters and single atoms, lowering the electron-hole pair 366 recombination and thus enhancing the H₂O₂ synthesis yield [36, 37]. However, Ru 367 loadings above 0.036 wt.% negatively affected the overall activity of *x*Ru-TCN, which 368 could be explained by the formation of recombination centres.

369 Single atom catalysts have shown to exhibit higher activity and selectivity than 370 nanoparticles, mainly due to the high dispersion of active sites. Single atom-doped g-371 C_3N_4 catalysts have recently been investigated for the photocatalytic synthesis of H_2O_2 372 [18, 38-44]. The adsorption of O₂ on dispersed single atoms has been found to be typically 373 of an end-on type, potentially inhibiting O-O bond dissociation, restricting four-electron 374 O₂ reduction and promoting two-electron O₂ reduction [40, 42-44]. Ohno and co-workers observed that In³⁺ and Sn⁴⁺ atomically inserted into g-C₃N₄ accumulated electrons during 375 376 excitation, inhibiting electron-hole pair recombination and promoting the adsorption of 377 the electrophilic O_2 and its subsequent reduction [18]. Single Sb atoms on g-C₃N₄ 378 enhanced both O₂ reduction (to H₂O₂) and H₂O oxidation (evolving O₂) by concentrating 379 electrons and holes at the Sb sites and melem units, respectively [40]. Single Ti atoms 380 doping improved the photocatalytic H₂O₂ production while an optimum in Ti content was 381 observed, favoring charge transfer and separation, and modulating the conduction band 382 potential [41]. Also single Ni atoms increased visible light absorption, restrained charge 383 carrier recombination, and enhanced O₂ adsorption capacity owing to the unique 384 electronic characteristic of Ni-N_x coordination sites [43, 44]. Fe atomic sites coordinated 385 to N and O atoms improved O₂ adsorption and activation of g-C₃N₄, as well as charge carrier separation and transfer [42]. Chu et al. anchored Co single atoms and 386 387 anthraquinone on g-C₃N₄, that serve as H₂O oxidation and O₂ reduction centers, 388 respectively [38]. Co as single atoms promoted electron/hole pair separation through hole 389 accumulation, enhancing H₂O₂ synthesis efficiency by 4.0-fold. However, when loaded 390 as nanoparticles, Co acted as a charge recombination center, what resulted only in a minor

improvement. These findings align with the present work, explaining the improvementobserved with *x*Ru-TCN compared to *x*Ru-BCN catalysts.

393

394 **3.2.2.** Synthesis under visible light ($\lambda > 420$ nm)

395 Fig. 5 shows to which extent the activity of the photocatalyst under visible light ($\lambda >$ 396 420 nm) contributes to its overall activity obtained using the full solar spectrum. 397 Experiments were conducted with the most efficient xRu-BCN and xRu-TCN 398 photocatalysts, and with both reference pristine photocatalysts. Although the activity 399 decreased compared to the values achieved under solar light, all tested catalysts produced 400 H₂O₂ under visible light irradiation. Interestingly, despite their higher visible light 401 absorption, the removal of the UV-A light fraction had a more significant impact for bulk 402 g-C₃N₄ photocatalysts than for exfoliated ones. Specifically, visible light contributed for 403 12% to both the initial H₂O₂ production rate and kf values obtained using full-spectrum 404 light for BCN and 0.012Ru-BCN, and 18% for TCN and 0.019Ru-TCN. Similarly, visible 405 light wavelengths accounted for 35% of the H₂O₂ decomposition rate constants for BCN 406 and 0.012Ru-BCN, and 55% for their exfoliated counterparts. These data suggest that UV 407 irradiation contributed to H₂O₂ formation rather than to its decomposition, and promoted 408 especially a higher generation of electron-hole pairs in the case of bulk g-C₃N₄ catalysts, 409 involved in both H₂O₂ formation and decomposition. Furthermore, the presence of Ru led 410 to the same improvement in H_2O_2 production efficiency, regardless of whether the 411 catalysts were photoexcited by irradiation with light containing UV wavelengths or not. 412

413

414 **Figure 5.** Photocatalytic synthesis of H₂O₂ with kinetic fitting (a) and initial apparent 415 H₂O₂ production rates (b) over BCN (\blacklozenge), 0.012Ru-BCN (\blacklozenge), TCN (\blacklozenge) and 0.019Ru-416 TCN (\blacklozenge) catalysts. Experiments performed with 5% *v/v* IPA under pure visible light 417 irradiation ($\lambda > 420$ nm). H₂O₂ production rates obtained under solar light irradiation are 418 shown for comparison.

420 **3.2.3. Reaction pathways**

421 Concerning the reaction pathways, the photocatalytic synthesis of H_2O_2 is known to 422 take place *via* reductive (reduction of O_2) and/or oxidative processes (partial oxidation of 423 H_2O). The production of H_2O_2 through the oxidation of H_2O is a two-electron transfer 424 process (7) competing with the oxidation of H_2O to HO^{\bullet} (8), which might further react to 425 some extent to form H_2O_2 (9), and with its complete oxidation to O_2 (10) [2].

427
$$2H_2O + 2h^+ \rightarrow H_2O_2 + 2H^+$$
 (7)

$$428 \qquad H_2O + h^+ \rightarrow HO^{\bullet} + H^+ \tag{8}$$

$$429 \qquad 2HO \rightarrow H_2O_2 \tag{9}$$

$$430 2H_2O + 4h^+ \to O_2 + 4H^+ (10)$$

Regarding the generation of H_2O_2 by direct O_2 reduction, there are two main pathways, either a sequential two-step one-electron reaction (11-12), or a direct one-step two-electron process (13) [6, 34]. Although the H_2O_2 formation has not been observed on g-C₃N₄ in the absence of oxygen (*via* the water oxidation route) due to the low oxidation potential of the photogenerated holes relative to water oxidation potential, compared to other semiconductors (*e.g.*, TiO₂ or ZnO), its conduction band (-1.3 V *vs.* NHE) is suitably positioned to promote the reduction of O₂ to H_2O_2 [5, 45].

439

440	$O_2 + e^- \rightarrow O_2^{-\bullet}$	$E^\circ = -0.33 \text{ V} vs. \text{ NHE}$	(11)
-----	--	---	------

441	$O_2^{-\bullet} + 2H^+ + e^- \rightarrow H_2O_2$	$E^\circ = +1.44 \text{ V} vs. \text{ NHE}$	(12)
442	$O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$	E° = +0.68 V <i>vs</i> . NHE	(13)

443

444 To confirm the photocatalytic pathway of H₂O₂ synthesis over BCN, TCN, 0.012Ru-445 BCN and 0.019Ru-TCN, quenching experiments were conducted using AgNO₃ and p-446 BQ as electron and O₂^{-•} scavengers, respectively, and pure water as a control (Fig. 6). In 447 the absence of IPA (hole scavenger), the initial H_2O_2 production rate substantially 448 decreased to less than 25 µmol/g/h, regardless of the photocatalyst tested, indicating that 449 photogenerated holes played an important role in the mechanism of H_2O_2 production. The 450 holes in the valence band of g-C₃N₄ oxidize IPA to acetone (14), providing protons that 451 are essential to form H_2O_2 [9, 12, 16]. In pure water system, protons are obtained by H_2O_2 452 oxidation, for which g-C₃N₄ exhibits very low activity [46]. Moreover, IPA suppresses 453 charge carrier recombination by scavenging photogenerated holes and increases O₂ 454 solubility [47].

456
$$R-CH_2OH + 2h^+ \rightarrow R-CHO + 2H^+$$
 (14)

457

458 The addition of AgNO₃ as electron-trapping agent completely inhibited the reaction 459 over the catalysts, demonstrating that H₂O₂ was only produced through the O₂ reduction 460 by the photogenerated electrons and that no direct oxidation of H₂O into H₂O₂ occurred, 461 which is in agreement with the literature [5, 45]. By contrast, with the addition of *p*-BQ, 462 the initial H₂O₂ production rate was not completely inhibited and dropped down by 43, 463 54, 65 and 74% for BCN, 0.012Ru-BCN, TCN and 0.019Ru-TCN, respectively, 464 compared to the same catalysts in pure water. This suggests that the H₂O₂ production followed partially a sequential two-step one-electron O₂ reduction route via the O₂^{-•} 465 466 intermediate, as well as a one-step two-electron O₂ reduction route [6, 48]. Further, while 467 both pathways for the reduction of O₂ into H₂O₂ occurred simultaneously on all the 468 studied catalysts, the sequential two-step single-electron route was dominating over the 469 one-step two-electron reaction after both thermal exfoliation and Ru incorporation into g-470 C_3N_4 . Additionally, we cannot exclude that a small fraction of the O_2 reduced into H_2O_2 471 is produced by direct H₂O oxidation.

474 **Figure 6**. Initial apparent H_2O_2 production rates over BCN (\blacklozenge), 0.012Ru-BCN (\diamondsuit), TCN

475 (\blacklozenge) and 0.019Ru-TCN (\diamondsuit) catalysts in the presence of different radical scavenger 476 species. Inset: zoom on the low H₂O₂ production rate range (< 25 µmol/g/h). Experiments 477 performed under simulated solar light irradiation (500 W.m⁻²). Scavenger concentration: 478 [IPA]₀ = 5% v/v, [p-BQ]₀ = 1 mM, [AgNO₃]₀ = 1 mM.

479

480 **4.** Conclusions

481

This study points out a novel method to improve the activity of $g-C_3N_4$ photocatalysts in the synthesis of H_2O_2 from H_2O and molecular O_2 , consisting in modifying $g-C_3N_4$ with ultra-low amounts of Ru. Ru-modified $g-C_3N_4$ photocatalysts were synthesized by thermal polymerisation of the melamine precursor in the presence of ruthenium (III) acetylacetonate, followed by thermal exfoliation. Simultaneous Ru incorporation and 487 thermal exfoliation impacted the morphology and the structure of the g-C₃N₄ sheets, and 488 low-atomicity Ru species were observed only in the Ru-modified exfoliated g-C₃N₄ 489 photocatalysts. Exfoliated g-C₃N₄ with ultra-low Ru loading (0.019 wt.%) displayed the 490 highest initial H₂O₂ production rate (296 \pm 8 µmol/g/h) and the highest H₂O₂ formation 491 rate constant (5.61 \pm 0.16 μ M/min) under simulated solar irradiation using 5% v/v 2-492 propanol as sacrificial agent and continuous air bubbling, thereby outperforming both the 493 pristine exfoliated reference and the bulk counterpart (0.012 wt.% Ru). The enhanced 494 photocatalytic efficiency was ascribed to the presence of highly dispersed small Ru 495 nanoclusters and single atoms, reducing electron-hole pair recombination, as well as to 496 more accessible active sites and channels for carrier migration. Quenching experiments 497 revealed that the reaction proceeds via O₂ reduction following a sequential two-step 498 single-electron route, with O_2^{-} radical as an intermediate, and a one-step two-electrons 499 pathway.

500

501 Author Contributions

502 The manuscript was written through the contributions of all authors. All authors have503 given approval to the final version of the manuscript.

504

505 **CRediT author statement**

506 Laura Valenzuela: Methodology, Investigation, Formal analysis, Funding acquisition,

507 Writing – original draft, Supervision.

508 Frael-Benjamin Yimbou: Investigation.

509 Antoine Ewin: Investigation.

510 Christophe Lefèvre: Investigation.

511 Ramon Manzorro: Investigation.

512	Nicolas Keller: Conceptualization, Funding acquisition, Investigation, Formal analysis,
513	Writing – original draft, Project administration, Supervision, Resources.
514	
515	Declaration of Competing Interest
516	The authors declare no competing financial interest.
517	
518	Data availability
519	Data will be made available on request.
520	
521	Acknowledgements
522	Laura Valenzuela thanks the MOPGA program for her fellowship. R. Manzorro gratefully
523	acknowledges financial support from Cádiz University (Young Researchers, Project
524	PR2022-046) and National Project PID2022-142312NB-I00 funded by
525	MCIN/AEI/10.13039/501100011033 and by "ERDF- A way of making Europe".
526	Electron microscopy studies were performed at the DME-UCA node of the Spanish
527	Unique Infrastructure (ICTS) on Electron Microscopy of Materials ELECMI.
528	
529	References
530	
531	[1] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen Peroxide Synthesis:
532	An Outlook beyond the Anthraquinone Process, Angew. Chem., Int. Ed., 45 (2006) 6962-
533	6984. https://doi.org/10.1002/anie.200503779
534	[2] P. Garcia-Munoz, L. Valenzuela, D. Wegstein, T. Schanz, G.E. Lopez, A.M. Ruppert,
535	H. Remita, J.Z. Bloh, N. Keller, Photocatalytic Synthesis of Hydrogen Peroxide from

- 536 Molecular Oxygen and Water, Top. Curr. Chem., 381 (2023) 15.
- 537 <u>https://doi.org/10.1007/s41061-023-00423-y</u>

- 538 [3] Y. Liu, Y. Zhao, J. Wang, Fenton/Fenton-like processes with in-situ production of
 539 hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances
 540 and prospects, J. Hazard. Mater., 404 (2021) 124191.
 541 https://doi.org/10.1016/j.jhazmat.2020.124191
- 542 [4] T.S. Andrade, B.A.C. Sá, I.C. Sena, A.R.S. Neto, F.G.E. Nogueira, P. Lianos, M.C.
- 543 Pereira, A photoassisted hydrogen peroxide fuel cell using dual photoelectrodes under
- tandem illumination for electricity generation, J. Electroanal. Chem., 881 (2021) 114948.
- 545 https://doi.org/10.1016/j.jelechem.2020.114948
- 546 [5] R. Du, K. Xiao, B. Li, X. Han, C. Zhang, X. Wang, Y. Zuo, P. Guardia, J. Li, J. Chen,
- 547 J. Arbiol, A. Cabot, Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4
- 548 nanotubes for efficient photocatalytic H2O2 production, Chem. Eng. J., 441 (2022)
- 549 135999. https://doi.org/10.1016/j.cej.2022.135999
- 550 [6] S. Hu, X. Qu, P. Li, F. Wang, Q. Li, L. Song, Y. Zhao, X. Kang, Photocatalytic oxygen
- 551 reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow
- 552 microsphere: The effect of Cu(I)-N active sites, Chem. Eng. J., 334 (2018) 410-418.
- 553 <u>https://doi.org/10.1016/j.cej.2017.10.016</u>
- 554 [7] Y. Wang, Y. He, Y. Chi, P. Yin, L. Wei, W. Liu, X. Wang, H. Zhang, H. Song, 555 Construction of S-scheme p-n heterojunction between protonated g-C3N4 and α-MnS 556 nanosphere for photocatalytic H2O2 production and in situ degradation of 557 J. 109968. oxytetracycline, Environ. Chem. Eng., 11 (2023)558 https://doi.org/10.1016/j.jece.2023.109968
- 559 [8] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic Carbon Nitride (g-
- 560 C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental

- 561 Remediation: Are We a Step Closer To Achieving Sustainability?, Chem. Rev., 116
- 562 (2016) 7159-7329. <u>https://doi.org/10.1021/acs.chemrev.6b00075</u>
- 563 [9] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T.
- 564 Hirai, Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride
- 565 (g-C3N4) Photocatalyst Activated by Visible Light, ACS Catal., 4 (2014) 774-780.
- 566 <u>https://doi.org/10.1021/cs401208c</u>
- 567 [10] W. Wang, C. Zhou, Y. Yang, G. Zeng, C. Zhang, Y. Zhou, J. Yang, D. Huang, H.
- 568 Wang, W. Xiong, X. Li, Y. Fu, Z. Wang, Q. He, M. Jia, H. Luo, Carbon nitride based
- 569 photocatalysts for solar photocatalytic disinfection, can we go further?, Chem. Eng. J.,
- 570 404 (2021) 126540. <u>https://doi.org/10.1016/j.cej.2020.126540</u>
- 571 [11] Z. Zhang, Y. Zheng, H. Xie, J. Zhao, X. Guo, W. Zhang, Q. Fu, S. Wang, Q. Xu, Y.
- 572 Huang, Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced
- 573 photocatalytic organic pollutant removal and H2O2 production, J. Alloys Compd., 904
- 574 (2022) 164028. <u>https://doi.org/10.1016/j.jallcom.2022.164028</u>
- 575 [12] Y. Liu, Y. Zheng, W. Zhang, Z. Peng, H. Xie, Y. Wang, X. Guo, M. Zhang, R. Li,
- 576 Y. Huang, Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with
- 577 enhanced photocatalytic H2O2 generation, J. Mater. Sci. Technol., 95 (2021) 127-135.
- 578 <u>https://doi.org/10.1016/j.jmst.2021.03.025</u>
- 579 [13] S. Kang, X. Liu, Z. Wang, Y. Wu, M. Dou, H. Yang, H. Zhu, D. Li, J. Dou,
- 580 Functionalized 2D defect g-C3N4 for artificial photosynthesis of H2O2 and
- 581 synchronizing tetracycline fluorescence detection and degradation, Environ. Res., 232
- 582 (2023) 116345. <u>https://doi.org/10.1016/j.envres.2023.116345</u>

- [14] H.-i. Kim, Y. Choi, S. Hu, W. Choi, J.-H. Kim, Photocatalytic hydrogen peroxide
 production by anthraquinone-augmented polymeric carbon nitride, Appl. Catal. B:
 Environ., 229 (2018) 121-129. <u>https://doi.org/10.1016/j.apcatb.2018.01.060</u>
- 586 [15] H. Zhang, X. Bai, Protonated g-C3N4 coated Co9S8 heterojunction for 587 photocatalytic H2O2 production, J. Colloid Interface Sci., 627 (2022) 541-553.
- 588 <u>https://doi.org/10.1016/j.jcis.2022.07.077</u>
- 589 [16] S. Tong, X. Zhang, P. Yang, G-C3N4 sheet nanoarchitectonics with island-like
- 590 crystalline/amorphous homojunctions towards efficient H2 and H2O2 evolution,
- 591 Environ. Res., 236 (2023) 116805. <u>https://doi.org/10.1016/j.envres.2023.116805</u>
- 592 [17] M. Zhang, Y. Yang, X. An, J. Zhao, Y. Bao, L.-a. Hou, Exfoliation method matters:
- 593 The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification,
- 594 J. Hazard. Mater., 424 (2022) 127424. <u>https://doi.org/10.1016/j.jhazmat.2021.127424</u>
- 595 [18] Z. Teng, W. Cai, W. Sim, Q. Zhang, C. Wang, C. Su, T. Ohno, Photoexcited single
- 596 metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic
- 597 guidelines for predicting charge separation, Appl. Catal. B: Environ., 282 (2021) 119589.
- 598 https://doi.org/10.1016/j.apcatb.2020.119589
- 599 [19] B. Cai, Y. Zhang, J. Feng, C. Huang, T. Ma, H. Pan, Highly efficient g-C3N4
- 600 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to
- 601 liquid fuel γ-valerolactone, Renew. Energ., 177 (2021) 652-662.
 602 https://doi.org/10.1016/j.renene.2021.05.159
- 603 [20] K.P.J. Gustafson, A. Shatskiy, O. Verho, M.D. Kärkäs, B. Schluschass, C.-W. Tai,
- B. Åkermark, J.-E. Bäckvall, E.V. Johnston, Water oxidation mediated by ruthenium
- oxide nanoparticles supported on siliceous mesocellular foam, Catal. Sci. Technol., 7
- 606 (2017) 293-299. https://doi.org/10.1039/C6CY02121B

607 [21] M. Tahir, Triphenylphosphine ruthenium (RuP) complex anchored with exfoliated 608 g-C3N4 (ECN) with an externally reflected solar photoreactor system for highly efficient 609 solar H2 production, Chem. Eng. J., 471 (2023)144511. 610 https://doi.org/10.1016/j.cej.2023.144511

- [22] I. Rabani, M.S. Tahir, F. Afzal, H.B. Truong, M. Kim, Y.-S. Seo, High-efficient
 mineralization performance of photocatalysis activity towards organic pollutants over
- 613 ruthenium nanoparticles stabilized by metal organic framework, J. Environ. Chem. Eng.,
- 614 11 (2023) 109235. <u>https://doi.org/10.1016/j.jece.2022.109235</u>
- 615 [23] Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Efficient visible-light-driven
- 616 selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon
- 617 nitride polymers, Energ. Environ. Sci., 11 (2018) 2581-2589.
 618 <u>https://doi.org/10.1039/C8EE01316K</u>
- 619 [24] I. Papailias, N. Todorova, T. Giannakopoulou, N. Ioannidis, N. Boukos, C.P.
- 620 Athanasekou, D. Dimotikali, C. Trapalis, Chemical vs thermal exfoliation of g-C3N4 for
- 621 NOx removal under visible light irradiation, Appl. Catal. B: Environ., 239 (2018) 16-26.
- 622 <u>https://doi.org/10.1016/j.apcatb.2018.07.078</u>
- 623 [25] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen,
- 624 M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water
- 625 under visible light, Nat. Mater., 8 (2009) 76-80. <u>https://doi.org/10.1038/nmat2317</u>
- 626 [26] Y.-Y. Li, B.-X. Zhou, H.-W. Zhang, S.-F. Ma, W.-Q. Huang, W. Peng, W. Hu, G.-
- 627 F. Huang, Doping-induced enhancement of crystallinity in polymeric carbon nitride
- 628 nanosheets to improve their visible-light photocatalytic activity, Nanoscale, 11 (2019)
- 629 6876-6885. <u>https://doi.org/10.1039/C9NR00229D</u>

- [27] H. Sun, Y. Shi, W. Shi, F. Guo, High-crystalline/amorphous g-C3N4 S-scheme
 homojunction for boosted photocatalytic H2 production in water/simulated seawater:
 Interfacial charge transfer and mechanism insight, Appl. Surf. Sci., 593 (2022) 153281.
- 633 <u>https://doi.org/10.1016/j.apsusc.2022.153281</u>
- [28] L. Lin, W. Ren, C. Wang, A.M. Asiri, J. Zhang, X. Wang, Crystalline carbon nitride
 semiconductors prepared at different temperatures for photocatalytic hydrogen
 production, Appl. Catal. B: Environ., 231 (2018) 234-241.
 https://doi.org/10.1016/j.apcatb.2018.03.009
- 638 [29] A. Balakrishnan, E.S. Kunnel, R. Sasidharan, M. Chinthala, A. Kumar, 3D black g-
- 639 C3N4 isotype heterojunction hydrogels as a sustainable photocatalyst for tetracycline
- 640 degradation and H2O2 production, Chem. Eng. J., 475 (2023) 146163.
 641 <u>https://doi.org/10.1016/j.cej.2023.146163</u>
- 642 [30] G. Li, Z. Xie, S. Chai, X. Chen, X. Wang, A facile one-step fabrication of holey
- 643 carbon nitride nanosheets for visible-light-driven hydrogen evolution, Appl. Catal. B:
- 644 Environ., 283 (2021) 119637. https://doi.org/10.1016/j.apcatb.2020.119637
- 645 [31] X. Yuan, C. Zhou, Y. Jin, Q. Jing, Y. Yang, X. Shen, Q. Tang, Y. Mu, A.-K. Du,
- 646 Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced
- 647 photocatalytic degradation of organic dye, J. Colloid Interface Sci., 468 (2016) 211-219.
- 648 <u>https://doi.org/10.1016/j.jcis.2016.01.048</u>
- 649 [32] J.J. Calvino, M. López-Haro, J.M. Muñoz-Ocaña, J. Puerto, A.M. Rodríguez-Chía,
- 650 Segmentation of scanning-transmission electron microscopy images using the ordered
- 651 median problem, Eur. J. Oper. Res., 302 (2022) 671-687.
- 652 <u>https://doi.org/10.1016/j.ejor.2022.01.022</u>

- [33] S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Photolysis of Aqueous H2O2:
- 654 Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors,
- 655 Environ. Sci. Technol., 41 (2007) 7486-7490. https://doi.org/10.1021/es071379t
- 656 [34] Y. Pan, X. Liu, W. Zhang, B. Shao, Z. Liu, Q. Liang, T. Wu, Q. He, J. Huang, Z.
- 657 Peng, Y. Liu, C. Zhao, Bifunctional template-mediated synthesis of porous ordered g-
- 658 C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2
- evolution from dual-electron O2 reduction, Chem. Eng. J., 427 (2022) 132032.
- 660 https://doi.org/10.1016/j.cej.2021.132032
- 661 [35] M. Teranishi, S.-i. Naya, H. Tada, In Situ Liquid Phase Synthesis of Hydrogen
- 662 Peroxide from Molecular Oxygen Using Gold Nanoparticle-Loaded Titanium(IV)
- 663 Dioxide Photocatalyst, J. Am. Chem. Soc., 132 (2010) 7850-7851.
 664 <u>https://doi.org/10.1021/ja102651g</u>
- 665 [36] L. Li, Y. Yu, S. Lin, W. Chu, D. Sun, Q. Su, S. Ma, G. Du, B. Xu, Single ruthenium
- atom supported on g-C3N4 as an efficient photocatalyst for nitrogen fixation in ultra-pure
- 667 water, Catal. Comm., 153 (2021) 106294. <u>https://doi.org/10.1016/j.catcom.2021.106294</u>
- 668 [37] E.N. Ntainjua, S.J. Freakley, G.J. Hutchings, Direct Synthesis of Hydrogen Peroxide
- 669 Using Ruthenium Catalysts, Top. Catal., 55 (2012) 718-722.
 670 https://doi.org/10.1007/s11244-012-9866-3
- [38] C. Chu, Q. Zhu, Z. Pan, S. Gupta, D. Huang, Y. Du, S. Weon, Y. Wu, C. Muhich, E.
- 672 Stavitski, K. Domen, J.-H. Kim, Spatially separating redox centers on 2D carbon nitride
- 673 with cobalt single atom for photocatalytic H2O2 production, Proc. Natl. Acad. Sci., 117
- 674 (2020) 6376-6382. <u>https://doi.org/10.1073/pnas.1913403117</u>
- 675 [39] Q. He, J. Ding, H.-J. Tsai, Y. Liu, M. Wei, Q. Zhang, Z. Wei, Z. Chen, J. Huang, S.-
- 676 F. Hung, H. Yang, Y. Zhai, Boosting photocatalytic hydrogen peroxide production by

- regulating electronic configuration of single Sb atoms via carbon vacancies in carbon
 nitrides, J. Colloid Interface Sci., 651 (2023) 18-26.
 https://doi.org/10.1016/j.jcis.2023.07.168
- 680 [40] Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y.-R. Lu, S. Liu, C. Wang, A.
- 681 Yamakata, C. Su, B. Liu, T. Ohno, Atomically dispersed antimony on carbon nitride for
- the artificial photosynthesis of hydrogen peroxide, Nat. Catal., 4 (2021) 374-384.
- 683 <u>https://doi.org/10.1038/s41929-021-00605-1</u>
- [41] T. Wang, J. Xin, Z. Li, Y. Fan, Y. Wang, Application of single-atom Ti-doped g-
- 685 C3N4 in photocatalytic H2O2 production, Mater. Adv., 4 (2023) 5585-5593.
 686 <u>https://doi.org/10.1039/D3MA00606A</u>
- 687 [42] M. Zhang, C. Lai, F. Xu, D. Huang, T. Hu, B. Li, D. Ma, S. Liu, Y. Fu, L. Li, L.
- 688 Tang, L. Chen, Ultrahigh Performance H2O2 Generation by Single-Atom Fe Catalysts
- 689 with N/O Bidentate Ligand via Oxalic Acid and Oxygen Molecules Activation, Small, 19
- 690 (2023) 2301817. <u>https://doi.org/10.1002/smll.202301817</u>
- 691 [43] X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J.
- Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang, K.
- Zheng, Developing Ni single-atom sites in carbon nitride for efficient photocatalytic
 H2O2 production, Nat. Comm., 14 (2023) 7115. <u>https://doi.org/10.1038/s41467-023-</u>
 42887-y
- [44] Y.-Z. Zhang, C. Liang, H.-P. Feng, W. Liu, Nickel single atoms anchored on
 ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced
 photocatalytic activity, Chem. Eng. J., 446 (2022) 137379.
 <u>https://doi.org/10.1016/j.cej.2022.137379</u>

- [45] A. Torres-Pinto, M.J. Sampaio, C.G. Silva, J.L. Faria, A.M.T. Silva, Metal-free
 carbon nitride photocatalysis with in situ hydrogen peroxide generation for the
 degradation of aromatic compounds, Appl. Catal. B: Environ., 252 (2019) 128-137.
 https://doi.org/10.1016/j.apcatb.2019.03.040
- 704 [46] Y. Zhao, P. Zhang, Z. Yang, L. Li, J. Gao, S. Chen, T. Xie, C. Diao, S. Xi, B. Xiao,
- 705 C. Hu, W. Choi, Mechanistic analysis of multiple processes controlling solar-driven
- H2O2 synthesis using engineered polymeric carbon nitride, Nat. Comm., 12 (2021) 3701.
- 707 <u>https://doi.org/10.1038/s41467-021-24048-1</u>
- 708 [47] A. Torres-Pinto, H. Boumeriame, C.G. Silva, J.L. Faria, A.M.T. Silva, Boosting
- 709 Carbon Nitride Photoactivity by Metal-Free Functionalization for Selective H2O2
- 710 Synthesis under Visible Light, ACS Sustain. Chem. Eng., 11 (2023) 894-909.
- 711 https://doi.org/10.1021/acssuschemeng.2c04512
- 712 [48] H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y.
- 713 Asakura, Z. Yuan, H. Xiao, Controlled synthesis of hollow carbon ring incorporated g-
- 714 C3N4 tubes for boosting photocatalytic H2O2 production, Appl. Catal. B: Environ., 337
- 715 (2023) 122933. https://doi.org/10.1016/j.apcatb.2023.122933

Supporting Information

Ru-modified graphitic carbon nitride for the solar light-driven photocatalytic H₂O₂ synthesis

Laura Valenzuela,^{a,*} Frael-Benjamin Yimbou,^a Antoine Ewin,^a Christophe Lefèvre,^b Ramón Manzorro,^c Nicolas Keller ^a

^a Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS, Strasbourg University, 25 rue Becquerel, 67087, Strasbourg, France.

^b Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS/ Strasbourg University, 23 rue du Loess, Strasbourg, France.

^c Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Spain.

**Corresponding author:* valenzuelaavila@unistra.fr (L. Valenzuela)

Contents:

SI 1. Chemicals used.

SI 2. Characterisation of Ru-modified g-C₃N₄ catalysts.

SI 3. Determination of H_2O_2 concentration.

Figure S1. Emission spectra of the simulated solar (blue) and visible (red) light irradiation, and the transmittance curve of the 420 nm cut-off filter (black).

Figure S2. X-ray diffraction patterns of Ru-modified bulk $g-C_3N_4$, *x*Ru-BCN (a), and Ru-modified exfoliated $g-C_3N_4$, *x*Ru-TCN (b), photocatalysts.

Figure S3. Kubelka-Munk curves obtained from UV-vis DRS and Tauc plots combined with the baseline method of the Kubelka-Munk function for Ru-modified bulk g-C₃N₄ (*x*Ru-BCN, $x = 0 \Leftrightarrow$, 0.006 \blacklozenge , 0.012 \diamondsuit , 0.017 \diamondsuit , 0.027 \diamondsuit , 0.049 \diamondsuit *wt*.%) and Ru-modified exfoliated g-C₃N₄ (*x*Ru-TCN, $x = 0 \diamondsuit$, 0.011 \diamondsuit , 0.019 \diamondsuit , 0.023 \diamondsuit , 0.036 \diamondsuit , 0.054 \bigstar *wt*.%) catalysts.

Figure S4. N₂ adsorption-desorption isotherms (**a**,**b**) and pore size distribution (**c**,**d**) of Ru-modified bulk $g-C_3N_4$, *x*Ru-BCN (**a**,**c**), and Ru-modified exfoliated $g-C_3N_4$, *x*Ru-TCN (**b**,**d**).

Figure S5. Low and high-magnification HAADF-STEM images, STEM–EDX elemental mapping on pristine TCN (a-c), 0.012Ru-BCN (d) and 0.019Ru-TCN (e,f) photocatalysts.

SI 1 - Chemicals used

Melamine (99 *wt*.%) and hydrogen peroxide solution (30 *wt*. % in H₂O; contains inhibitor) were supplied by Sigma-Aldrich. Ruthenium (III) acetylacetonate [Ru(acac)₃; Ru(C₅H₇O₂)₃; 24 % Ru min. content] was provided by Alfa Aesar. Isopropyl alcohol (IPA; C₃H₈O; \geq 99.5 *wt*.%) was acquired from VWR. Potassium hydrogen phthalate (C₈H₅KO₄; 99 *wt*.%), potassium iodide (KI; 99 *wt*.%), silver nitrate (AgNO₃; 99.9 *wt*.%) and 1,4-Benzoquinone (*p*-BQ; C₆H₄O₂; 99 *wt*.%) were obtained from ThermoFisher Scientific. All chemicals were used as received without any further purification. Ultrapure water (18.2 MΩ•cm) was used throughout the experiments.

SI 2 - Characterisation of Ru-modified g-C₃N₄ catalysts

The optical properties of the photocatalysts were analysed by UV-vis diffuse reflectance spectroscopy (DRS) in the wavelength range of 200-800 nm using a Perkin Elmer Lambda 950 Scan spectrophotometer equipped with an integrating sphere. The corresponding indirect band gaps were determined through Kubelka-Munk function combined with Tauc's relation and baseline method [1, 2].

 N_2 adsorption-desorption isotherms were recorded on a Micromeritics ASAP 2420 analyser at -196 °C. Prior to measurement, the samples were degassed at 150 °C under vacuum for 5 h. Surface areas were calculated according to the Brunauer- Emmett-Teller (BET) method using adsorption data in the 0.07-0.25 relative pressure range. The microporous contribution was estimated using the *t*-plot method. Pore size distributions were determined through the Barrett-Joyner-Halenda (BJH) method with Harkins-Jura curve between 1.7 and 300 nm diameter. Pore volumes were estimated from the volume of N_2 adsorbed at P/P_0 =0.99.

SI 3 - Determination of H₂O₂ concentration

The H₂O₂ concentration was measured by iodometry. In this method, 1 mL of 0.1 M C₈H₅KO₄ and 1 mL of 0.4 M KI (aqueous solutions) were added to 3 mL sample, and then kept for 30 min under stirring. H₂O₂ molecules reacted with iodide anions under acidic conditions to form triiodide anions (H₂O₂ + 3I⁻ + 2H⁺ \rightarrow I₃⁻ + 2H₂O), which display strong absorption at 350 nm. The absorbance at 350 nm was determined using a UV-1600 PC spectrophotometer (VWR). Absolute calibration of the method was achieved using standard H₂O₂ solutions.

Figure S1. Emission spectra of the simulated solar (blue) and visible (red) light irradiation, and the transmittance curve of the 420 nm cut-off filter (black).

Figure S2. X-ray diffraction patterns of Ru-modified bulk $g-C_3N_4$, *x*Ru-BCN (a), and Ru-modified exfoliated $g-C_3N_4$, *x*Ru-TCN (b), photocatalysts.

Figure S3. Kubelka-Munk curves obtained from UV-vis DRS and Tauc plots combined with the baseline method of the Kubelka-Munk function for Ru-modified bulk g-C₃N₄ (*x*Ru-BCN, $x = 0 \Leftrightarrow$, 0.006 \blacklozenge , 0.012 \diamondsuit , 0.017 \diamondsuit , 0.027 \diamondsuit , 0.049 \diamondsuit *wt*.%) and Ru-modified exfoliated g-C₃N₄ (*x*Ru-TCN, $x = 0 \Leftrightarrow$, 0.011 \diamondsuit , 0.019 \diamondsuit , 0.023 \diamondsuit , 0.036 \diamondsuit , 0.054 \bigstar *wt*.%) catalysts.

Figure S4. N₂ adsorption-desorption isotherms (**a**,**b**) and pore size distribution (**c**,**d**) of Ru-modified bulk g-C₃N₄, *x*Ru-BCN (**a**,**c**), and Ru-modified exfoliated g-C₃N₄, *x*Ru-TCN (**b**,**d**).

Figure S5. Low and high-magnification HAADF-STEM images, STEM–EDX elemental mapping on pristine TCN (a-c), 0.012Ru-BCN (d) and 0.019Ru-TCN (e,f) photocatalysts.

References

[1] A. Escobedo-Morales, I.I. Ruiz-López, M.d. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J.E. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy, Heliyon, 5 (2019) e01505. https://doi.org/10.1016/j.heliyon.2019.e01505

[2] P. Makuła, M. Pacia, W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra, J. Phys. Chem. Lett., 9 (2018) 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892