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Abstract

We study subfields of surreal numbers, called hyperseries fields, that are suited to be
equipped with derivations and composition laws. We show how to define embeddings
on hyperseries fields that commute with transfinite sums and all hyperexponential
and hyperlogarithmic functions.

Introduction

Surreal numbers have many representations: Dedekind-like cuts in the set theoretic uni-
verse [14], ordinal indexed binary sequences [19], generalised power series [14, 19, 1] à la
Hahn [20], and generalised transseries [19, 12, 13] à la Schmeling-van der Hoeven [26, 21].
Perhaps their most indicative is their recent [9, 10] presentation as hyperseries f(!) in a
variable !. Here the hyperseries f is a formal series involving exponentials, logarithms,
and transfinite iterates thereof [16, 17] called hyperexponentials E and hyperlogarithms
L of strength , for arbitrary ordinals  (see [10, Section 7]).

A motivation for the search of representations of numbers as series in ! is the conjec-
tured identity [23, p 6] between surreal numbers and abstract germs at infinity with similar
features as germs lying in Hardy fields [25]. Those abstract germs are exactly hyperseries,
provided they can be seen as infinitely differentiable monotonous functions. That is, it class
for the definition of a derivation @ :No¡!No on the class No of surreal numbers and a
composition law No�No>R¡!No on the class of tuples (a; b) with b positive infinite,
such that any number a2No, seen as the function a~ : b 7!a� b, should behave like a germ
in a Hardy field, with derivative a~0= @(a~).

From the point of view of asymptotic differential algebra [3], this identity has been made
precise in a series of works [2, 4, 5], based on the definition by Berarducci and Mantova
[12] of a well-behaved derivation @BM :No¡!No, and culminating in the presentation of
(No;+; �; <; @BM) as an elementary extension of all maximal Hardy fields.

The matters of functional composition however, both on the side of germs [8] and
that of numbers, are more intricate. There is no definition of a surreal composition law
� :No�No>R¡!No which is compatible with the logarithm and exponential functions
defined by Gonshor [19], let alone with their transfinite iterators. The surreal derivation
@BM cannot be compatible with a surreal composition law [13, Theorem 8.4]. This negative
result can be interpreted as a consequence of the fact that @BM is in fact incompatible with
hyperexponentials and hyperlogarithms. In order to prove van der Hoeven's conjecture, it
is necessary to find another definition of a derivation on No that is compatible with those
functions, and then a composition law that enjoys similar compatibility properties. We
worked on a definition of these operations (see [7, Conclusion] for a precise statement of the
expected results), however our method to get there is highly technical and tedious. This
article serves as a compound of tools and results required for the definition of the right
derivation and composition on No, that are designed to make their future construction
easier. Our main result Theorem 2 can be seen as a partial definition of the composition.
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What makes the definition of a derivation and composition law on No difficult is the
existence of nesting in hyperserial representations of numbers, precluding simple definitions
by induction on the height of expansions. A number a is nested if its representation as a
hyperseries is a vertically infinite right-trailing expansion

a= '0+ "0 e 0 (L�0E�0('1+ "1 e
 1 (L�1E�1(� � �))�1))�0 (1)

for a sequence �=('i;  i; "i; �i;�i; �i)i2N of parameters satisfying some technical conditions
(see Section 4.2). We then say that � is a nested sequence and that a is �-nested. In [10,
Section 6], we showed that each nested sequence � gives rise to a proper class of �-nested
numbers a, which require a nested index z(a) 2No in order to be distinguished. This
profusion of nested numbers is not solely a complication on our way, it is also a consequence
of order saturation for the surreal line, and a necessary if one hopes that many equations
in first-order language of ordered differential rings with a composition law can be solved
over No. For instance, the existence of solutions to the functional equation

f = !
p

+ef�log!

around the approximate solution !
p

naturally entails the existence of nested numbers
with expansion

!
p

+e log!
p

+e
log log!

p
+e

� ��

: (2)

In the absence of nesting, i.e. for the field of finitely nested hyperseries of [6], we already
have a compatible derivation and composition law. However, the tools used to define them
become insufficient for No, and we must combine them with a careful and fine-grained
study of the hyperserial structure of the number, in particular in the nested case.

This is what we do here, by investigating the hyperserial structure of subfields T of
No, called hyperseries subfields (see Definition 3.1), that are closed under hyperexponen-
tials and hyperlogarithms of uniformly bounded strength. An embedding of a hyperseries
subfield T into No is an R-linear map T¡!No that commutes with infinite sums,
products, and hyperexponentials and hyperlogarithms, and sends monomials to monomials.
In Section 4, we give relevant properties of nested numbers. In particular, we recall prop-
erties of nested sequences. Our first main result here is the definition in Section 4.3 of
a fundamental tool for proving results on hyperseries subfields by induction. This is the
hyperserial complexity function & :No¡!On, an ordinal measure of the complexity of
numbers seen as hyperseries:

Theorem 1. [consequence of Theorem 4.13] There is a unique function & :No¡!On
such that for all a2No, we have

a) &(!)=! and &(r) is the length of r as a sign sequence [19] if r 2R.

b) &(a) is the ordinal sum of ordinals &(� ) where a is the sum of its terms �.

c) If a monomial m has hyperserial expansion m=e (L�E�u)� and there is no nested
sequence � such that m is �-nested, then &(m)= &( )+ &(u)+ �+1:

d) If �=('i;  i;:::)i2N is a nested sequence and a is �-nested, then &(a) is the ordinal
sum of ordinals &('i)+ &( i) for i2N.

Thus & allows one to treat !, real constants and nested numbers as elementary blocks
upon which all other numbers are constructed.
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In Section 5, we define nested extensions of hyperseries subfields T of No, which are
hyperseries subfields TP�T obtained by adjoining to T a class P of �-nested numbers
for nested sequences � with parameters in T. We prove (Proposition 5.9) that embeddings
T¡!No can be extended into embeddings TP¡!No. We also show (Proposition 6.2)
that each hyperseries subfield is an increasing union of hyperseries subfields indexed by
ordinals, where successor stages are nested and hyperexponential extensions.

Section 6 is where we prove our main general theorem (Theorem 6.3) that shows how
to extend partial functions defined on hyperseries subfields T into embeddings T¡!No.
We then apply Theorem 6.3 to the case of fields No� of �-bounded numbers. Given an
infinite additively indecomposable ordinal �, the hyperseries subfield No� is the class of
numbers whose hyperserial representation only involves ordinals below �. For instance,
No! should be thought as the ultimate field of generalised transseries, i.e. the field of all
cogent formal expressions involving exponentials and logarithms of a variable (including
for instance numbers expanding as (2)). Our main concrete application is the following:

Theorem 2. [consequence of ] Let a be a number such that L(a) is a series of length 1
for all  <�. Then there is a unique embedding No�¡!No that sends ! to a and fixes
nested indexes of nested numbers in No�.

Defining the composition law on No entails proving a similar result for any number
a >R, without the assumption on its hyperlogarithms. This is much more complicated.
In a forthcoming work, we will do so in the simpler case of generalised transseries, relying
the following Corollary of Theorem 2:

Corollary 3. There are well-defined right compositions with log(!) and exp(!) on and
onto the field No! of generalised transseries.

Section 7 also contains results characterising hyperexponential and nested extensions
of hyperseries subfields by properties of branches in hyperserial representations of their
elements. In particular, we extend to surreal numbers (Theorem 7.4) a key part of our
method [6, Section 5] for constructing derivations and composition laws on finitely nested
hyperseries. Indeed this is a crucial step in the definition of the composition law on No.

1 Ordinals and well-based series

1.1 Ordinal notations
We will frequently use ordinal notations to simplify our proofs. We write On for the
class of all ordinals and On> for the class of non-zero ordinals. We write � +  and � 
respectively for the ordinal sum and ordinal product of �;  2On. We write ! for the
ordinal exponentiation of ! with exponent .

Recall that an ordinal � is said additively indecomposable if we have �+ <� whenever
�;  <�. Equivalently, there is 6� with �=!.

It is sometimes practical to consider On itself as a generalised ordinal. Accordingly we
write �6On to say that � is either an ordinal or the class of all ordinals. The bold font
indicates to the reader that we may allow �=On. We use the convention that !On :=On.

For �2On, we write �¡ for the unique ordinal with �= �¡+1 if � is a successor. If
� is a limit, then we set �¡ := �. Similarly, for � :=!�, we write �/! :=!�¡. So �=�/!!
if � is a successor, and �=�/! if � is a limit.

Ordinals and well-based series 3



For each ordinal , there is a unique family (�)�2On2NOn with such that �=0 for
all but finitely many ordinals �, and that =

P
�2On!

� �. The family (�)�2On is called
the Cantor normal form of . The numbers �2On with �=/ 0 are called the exponents of
. For ; �2On, we write ��!� (resp. �!�) if �=0 for all �> � (resp. �> �), that
is, if each exponent � of  is > � (resp. > �). For instance !2+! 2��! and !2+! 2� 1
but !2+! 2�/ !. For ; �2On, there is a unique ordered pair ( 0;  00) with  =  0+  00

and  0�!� and  00<!�+1. We have

 0=
X
�>�

!� � and  00=
X
�6�

!� �:

1.2 Fields of well-based series over the reals
Let (M; �; 1;�) be a linearly ordered Abelian group. We let S :=R[[M]] denote the class
of functions f :M¡!R whose support

supp f := fm2M : f(m)=/ 0g

is a well-based set, i.e. a set which is well-ordered in the reverse order (M;�). The elements
of M are called monomials, whereas those in R�M are called terms. We also write

term f := ffmm :m2 supp f g;

and we say that a term � is a term in f if � 2 term f .
We see elements f of S as formal well-based series f =

P
mfmm where for m2M, the

term fm denotes f(m) 2R. If supp f =/ ?, then we define df :=max supp f 2M as the
dominant monomial of f . For m2M, we let f�m :=

P
n�mfnn and we write f� := f�1.

For f ; g2S, we sometimes write f + g= f ++ g if supp f � g. We say that a series g 2S is
a truncation of f and we write gP f if supp (f ¡ g)� g. The relation P is a well-founded
large partial ordering on S with minimum 0.

By [20], the class S is an ordered field under the pointwise sum

(f + g) :=
X
m

(fm+ gm)m;

and the Cauchy product
f g :=

X
m

� X
uv=m

fu gv

�
m;

(where each sum
P

uv=mfugv has finite support). The positive cone S
>=ff 2S : f >0g is

S> := ff 2S : f =/ 0^ fdf > 0g.

The identification f �
P

mfmm induces an embedding (M; �; 1;�)¡! (S>; �; 1;<).
The ordering � on M extends into an ordering � on S defined by f � g if and only if

R> jf j< jg j. We also write f 4 g if g� f is false, i.e. if there is r 2R> with jf j6 r jg j,
and we write f � g if f 4 g and g4 f , i.e. if there is r2R> with r jf j> jg j and r jg j> f .
When f ; g are non-zero, we have f � g (resp. f 4 g, resp f� g) if and only if df �dg (resp.
df 4 dg, resp. df = dg). We write

S� := ff 2S : supp f �M�g
S� := ff 2S : supp f �M�g= ff 2S : f � 1g; and

S>;� := ff 2S : f >Rg= ff 2S : f > 0^ f � 1g:
Series in S�, S� and S>;� are called purely large, infinitesimal , and positive infinite
respectively.

If (fi)i2I is a family in S, then we say that (fi)i2I is summable if

i.
S
i2I supp fi is well-based, and
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ii. fi2 I :m2 supp fig is finite for all m2M.

Then we may define the sum
P

i2I fi of (fi)i2I as the seriesX
i2I

fi :=
X
m

 X
i2I

(fi)m

!
m:

If U=R[[N]] is another field of well-based series and 	 :S¡!U is R-linear, then we say
that 	 is strongly linear if for every summable family (fi)i2I in S, the family (	(fi))i2I
in U is summable, with

	
 X
i2I

fi

!
=
X
i2I

	(fi):

A map � :M¡!U is said well-based if it extends into a strongly linear map S¡!U.
Equivalently [22, Proposition 3.5], the family (�(m))m2S is summable whenever S�M is
a well-based subset.

1.3 Logarithmic hyperseries
The field L of logarithmic hyperseries is a field of well-based series over R, introduced in
[15], which has a structure of differential field with composition. More precisely, we have
a strongly linear derivation @ :L¡!L ; f 7! f 0 and a composition law � :L�L>;�¡!L
with the properties listed in [15, Theorem 1.3]. We will recall here and in Remark 2.2 those
w will use in this paper.

The group L of monomials for L is the class of functions l :�¡!R where � ranges in
On, extended with zeroes on Onn [0; �). The group operation is the pointwise sum and L
is ordered lexicographically (see [15, p 2]). We represent monomials l2L as formal products
l=
Q
<�`

l(), where each symbol `=`1 ; 2On accordingly denotes the indicator function
of fg�On. Important features of @ and � are that for all ; � 2On, we have

`
0 = 1Q

�< `�
;

`!�+ = ` � `!� if  <!�+1, and
`!�+1 � `!� = `!�+1¡ 1: (1.1)

2 The hyperserial field of surreal numbers
We first introduce elementary properties of the class of surreal numbers. For all intents
and purposes, we will consider No as a hyperserial field with certain properties. We pur-
posefully omit the notions of simplicity, or birth day, which were central in previous work
on surreal numbers. Thus the notions of Conway brackets, genetic definitions, equations,
surreal substructures, sign sequences and so on will not appear explicitely.

2.1 Cuts
The linearly ordered class (No; <) is a class-sized saturated structure [14, 19, 18]. This
means that for sets L and R of numbers with L<R, (i.e. with 8l8r((l; r)2L�R=) l<r)),
there is a2No with L<a<R (i.e. with 8l2L; l <a and 8r2R; r >a). For all subsets L;
R�No, we write (L j R) for the class of numbers a with L<a<R, and we call (L j R)
a cut in No. So (L j R) is non-empty if and only if L<R.

The hyperserial field of surreal numbers 5



Lemma 2.1. Let A;B;C;D be sets of numbers with A<B, C<D, and (A j B)\ (C jD)=
?. We have (A j B)< (C j D) if and only if B �C.

Proof. Suppose that B �C. So there are b2B and c2C with b6 c. Then for x2 (A j B),
we have x < b so x < c so c < (C j D). Conversely, suppose that (A j B)< (C j D). So
A <D. If B >C, then the number a := fA [ C j B [Dg is well-defined and we have
a2 (A j B)\ (C j D): a contradiction. So B �C. �

See [14, Chapter 1] to understand the fundamental role which cuts play in the original
definition of surreal numbers.

2.2 Numbers as well-based series
We recall that (No;+; �;<) is a real-closed ordered field which canonically contains the field
R of real numbers [14, Chapters 1 and 4]. By [14, Theorem 21], there is a subgroup Mo
of (No>;�) such thatNo is naturally isomorphic to the field of well-based series R[[Mo]],
with which it is identified. Thus the content of Subsection 1.2 applies to No.

2.3 Hyperserial structure on No
By [9, Theorem 1], there is a function � :L�No>;�¡!No which satisfies:

C1. For f 2L, g 2L>;� and a2No>;�, we have g � a2No>;� and

f � (g � a)= (f � g) � a:

C2. For a2No>;�, the function L¡!No ; f 7! f �a is a strongly linear morphism of
ordered rings.

C3. For f 2L, a2No>;� and � 2No with �� a, we have

f � (a+ �)=
X
k2N

f (k) � a
k!

�k:

C4. For  2On and a; b2No>;� with a<b, we have ` � a<` � b.
C5. For  2On and a2No>;�, there is b2No>;� with a= ` � b.

Remark 2.2. By [11, Theorems 3.1 and 4.16], the function �:L�L>;�¡!L satisfies the
same properties C1�C5 relativised to L.

For  2On, we write L for the function No>;�¡!No>;� ; a 7! ` � a. By C4 and C5,
this is a strictly increasing bijection. We sometimes write La :=L(a) for a2No>;�. We
write E for the functional inverse of L.

For ; � with ��� , the relation `+�= `� � ` in L, combined with C3, yields

8a2No>;�; L+� a=LL� a; (2.1)

For �2On, the relation (1.1) in L, combined with C3, yields

8a2No>;�; L!�+1(L!�(a))=L!�+1(a)¡ 1: (2.2)

For a2No>, writing ra for the coefficient of da in a, we have ra>0, and there is a unique
infinitesimal number "a with a= ra da (1+ "a). Writing logR for the natural logarithm on
R>�No. The function defined by

log a :=L1(da)+ logRra+
X
k2N

(¡1)k
k+1

"a
k+1; (2.3)
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is called the logarithm on No>. This is an isomorphism (No>; �; 1; <)¡! (No;+; 0; <)
which extends L1.

2.4 Atomicity
Given �6On, we write Mo!� for the class of numbers a2No>;� with L a2Mo� for
all  <!�. Those numbers are called L<!�-atomic and they will play an important role in
this paper. Indeed many properties of hyperseries can be deduced from their specialisation
to L<!�-atomic numbers for various � 2On. If �=1, then we say that those numbers are
log-atomic. We have Mo1=Mo� By [9, Proposition 3.21], there is a unique L<On-atomic
number which is denoted !.

Let � 2On. The class Mo!� is a proper subclass of No [9, Proposition 3.18]. Note
that by (2.1), we have L!�Mo!�+1=Mo!�+1. Suppose that � > 0. For a2No>;�, there
are  <!� and a2Mo!� with � :=L(a)¡L(a)�L(a). Moreover, the family

(((`!�
")(k) �L(a)) �k)k2N>

is summable, and the hyperlogarithm L!�(a) is given by

L!�(a)=L!�(a)+
X
k2N>

(`!�
")(k) �L(a)

k!
�k: (2.4)

For �2On, we writeNo�;!� :=L!�(Mo!�). We haveNo�;1=No�\No>;�. If '2No�;!�
and � is infinitesimal, with �� (E!�

' )¡1, then we have [11, Lemma 6.8]

E!�(')PE!�('+ �). (2.5)

Let � 2On, write � :=!�, and let a2No>;�. We write

E�[a] := fb2No : 9 <�;L(b)�L(a)g:

The class E�[a] is convex and the collection of classes E�[b]; b2No>;� forms a partition of
No>;�. Each class E�[a] contains a unique L<!�-atomic number which is denoted d�(a).
The function d�:No>;�¡!Mo� is a non-decreasing surjection with d� � d�= d�.

We also write E�[S] :=
S
b2SE�[b] for any subclass S of No.

Lemma 2.3. Let �2!On> and a2Mo�. For � <�/!, we have d�(L� a)= d�(E� a)= a.

Proof. We have L� a; E� a2E�[a] by [9, Lemma 3.10], hence the result. �

3 Hyperseries subfields

We fix �6On with � > 0 and we write � :=!�.

3.1 Hyperseries subfields

Definition 3.1. Let M�Mo be a subgroup and let T :=R[[M]]. For � 6On, we say
that T is a (hyperseries) subfield (of No) of force � if we have

8�6� ; d!�(M�)�M and L<� �T>;��T:

Hyperseries subfields 7



We see that in particular,T is a confluent hyperserial field of force � in the sense of [11,
Section 6.1]. In this case, for �6�, we write M!� :=M\Mo!�. Let S be a subclass of
No. If T is smallest for the inclusion among hyperseries subfields U of force � with U�S,
then we write T=H�(S).

Remark 3.2. The quality of hyperseries subfield of No of force � is preserved under
arbitrary intersections. Consider an �6On with 0<� and �2/On+1. Let (M)<� be
an increasing family of subgroups of Mo such that each R[[M]] for  <� is a hyperseries
subfield of force �. We see that R[[

S
<�M]] is a hyperseries subfield of force �.

Proposition 3.3. Let M�Mo be a subgroup and assume that

d!�(M�) � M for all �6�, and
L<!� � (d!�(M�)) � M for all �6�, and

suppL!�(d!�(M�)) � M for all � <�.

Then R[[M]] is a hyperseries subfield of force �.

Proof. By [11, Lemma 5.9], for a2No>;� and f 2L<�, the support of f �a is contained
in the class of finite products of monomials in the class[

�<�

[
��!�;<�

L<!� � d!�(dL(a)):

For �; � <� with �> �, we have dL!�(a)=dL!�(d!�(a)). So for  <� with ��!�, we have

supp f � a �
[
�<�

[
��!�;<�

L<!� � d!�(dL(a))

�
[
�<�

[
��!�;<�

L<!� � d!�
 [
!��/ 

suppL!�(d!�(M�))
!

�
[
�<�

L<!� � d!�(M�)

� M:

So the second condition in Definition 3.1 follows from the hypothesis, hence the result. �

Write � := f`�/!n :n2Ng if � is a successor and � := f`0g otherwise. Consider a non-
empty subclass A�Mo� with � �A�A. Let FA denote the set of families f := (fa)a2A in
L<�/! for which there are n2N and a0; : : : ; an¡12A with a0� � � � � an¡1 such that

S(f) := fa2A : fa=/ 1g�
[
i=0

n¡1
� � ai:

For such elements i2f0;:::; n¡1g, the family (log(fa)�a)a2A is summable. Indeed we have

S :=
[

0<i<n¡1

[
a2��ai

supp (log(fa) � a)

�
[

0<i<n¡1
f`+1 :  <�g � ai;

which is well-based. Moreover, for m= `�/!n+� � ai2S where n2N and �<�/!, we have

fa2� � ai :m2 supp log(fa) � ag = f`�/!n � aig:

8 Section 3



So
P

a2A(log(fa) � a) is defined and lies in No�. We set f~ := e
P

a2Alog(fa)�a2Mo. Write
LA for the set of monomials f~ where f2FA. Note that this is a subgroup of Mo.

Lemma 3.4. We have H�(A)=R[[LA]].

Proof. Let U be a hyperseries subfield of force � with A�U. We have L<� �A�U,
whence LA�U, whence R[[LA]]�U. So it is enough to prove that R[[LA]] is a hyperseries
subfield of force �. We first prove that for �6� with �> 0, we have

d!�(LA)= f` � a : a2A^  <�/!^ ��!�¡g: (3.1)

Indeed, consider f2FA, so f~2LA. Let n2N and a0; � � �;an¡12A with a0� ��� �an¡1 such
that S(f)�

S
i=0
n¡1� � ai.

By Lemma 2.3, for 0< i< j <n¡ 1, we have L<�/!
� � ai�L<�/!

� � aj, so f is uniquely
determined by f~. We have m� 1() fa� 1 where a :=minS(f). Assume now that m� 1.
By the previous argument, we have logm� log(fa�a)� log(` �a) where  <�/! is minimal
such that the -th coefficient of fa is non-zero. So ` � a= d!(m). We deduce that (3.1)
holds for �=1. Now let �6� with �>1 and let m2M�. We have d!�(m)=d!�(d!(m))
where d!(m)2L<�/! �a for a certain a2A. So the same arguments as in [11, Lemma 3.12]
apply and yield (3.1) for �.

Let �6 � and let b2 d!�(LA). We will prove that L<!� � b�LA and that L!�(b)2
R[[LA]] if �< �. We write �b for the family in FA with �b(b) = `0 and �b(c) = 1 if for
all c2A with c=/ b. If �= �, then we have b2A. Assume that � is a successor. Given

l2L<!�, write ln :=
Q
<!

�¡`
l
!
�¡n+2L<!�¡. So l=e

P
n2Nlog(ln)�`!�¡n. Consider the family

f2FA where for c2A, we set fc := ln if c= `!�¡n�b and fc :=1 otherwise. We have f~= l�b
so l � b2LA. Assume now that � is not a successor. So l2L<!�¡. We have f~= l � b where
f=(�b(c) � l)c2A, so l � b2LA.

If �< �, then there are a2A and  <�/! with  �� !�¡ and b= ` � a. Write  =
 0+!�¡n for a certain n2N and  0�!�¡. For l2L<!�, we have and l � b=(l � `) � b
where l � ` 2L<!��L<!�¡. So l � b= f~ where f=(�b(c) � (l � `))c2A. Moreover we have
L!�(a)= ` 0+!� � a¡n2R[[LA]].

Finally, for � < � and m= ` � a2 d!�(LA) where  <�/! ^  ��!�¡, We deduce with
Proposition 3.3 that R[[LA]] is a hyperseries subfield of force �, hence R[[LA]]=H�(A). �

Lemma 3.5. Any �-bounded path P in R[[LA]] has length jP j6 2.

Proof. Let P be a �-bounded path in R[[LA]] with jP j> 0, so mP ;0=/ 1 and we may
assume that mP ;0 � 1. Since P is �-bounded, we have mP ;i 2/ A for all i 6 jP j. Write
mP ;0=e (L�E�u)� in standard expansion. There is f2FA with f~=mP ;0. If �=0 or �> 0
and �P ;1=¡1, then we have mP ;12 term log f~ where log f~=

P
a2A log(fa) � a. We deduce

that mP ;1=L+1(a) for a certain  <�/! and a2A. Since a2M� and P is �-bounded,
we must have a=!. So jP j6 2.

If � > 0 and �P ;1= 1, then supp log f~ has a minimum n with L�E�
u= en. There are

<�/! and a2A with n=L+1(a), so L�E�u=L(a). We deduce by the unicity of standard
expansions and the fact that P is �-bounded that u= a=!. So jP j6 2. �

3.2 Hyperserial embeddings

Definition 3.6. Let T=R[[M]] be a hyperseries subfield of force �. An embedding of
force � is a strongly linear, morphism of ordered rings � :T¡!No with

a) �(M)�Mo.

Hyperseries subfields 9



b) �(f � s)= f ��(s) for all f 2L<� and s2T>;�.

So � is a hyperserial embedding of force � in the sense of [11, Definition 3.4]. By [11,
Proposition 3.5], we have �(M!�)=M\Mo!� for all �6�.

Lemma 3.7. Let T=R[[M]] be a subfield of force �. Let � :T¡!No be a strongly
linear morphism of rings with �(L!�(a))=L!�(�(a)) for all �<� and a2M!�. We have
�(f � s)= f ��(s) for all f 2L<� and s2T>;�.

Proof. Note that M=MR is divisible, so T is real-closed [24]. In particular whence � is
strictly increasing. Let C denote the class of series f 2L<� with �(f � s)= f ��(s) for all
s2T>;�. We prove that we have L<!��C by induction on �6�, starting with �=1.

Consider s2T> and write s= rs ds (1 + "s) where rs2R> and "s� 1 as in (2.3). We
have �̂(s)= rs�(ds) (1+�("s)) where �("s)� 1, so

log s = log ds+ log rs+
X
k2N

(¡1)k
k+1

"s
k+1, and

log�(s) = log�(ds)+ log rs+
X
k2N

(¡1)k
k+1

�("s)k+1

= �̂(log ds)+ log rs+�̂

 X
k2N

(¡1)k
k+1

"s
k+1

!
= �̂(log s):

We deduce that C contains l2L<� if and only if it contains log l. By strong linearity of �̂,
the class C is closed under sums of summable families. Moreover, for f ; g2C with g >R,
we have f � g 2C. So we need only prove that we have `!� 2C for all � < �. Let � > 0
such that this holds for all � < �. So L<!��C by the previous arguments. Let s2T>;�

and write a := d!�(s). By (2.1), there is  <!� such that the number " := ` � s¡ ` � a is
infinitesimal, with

`!� � s= `!� � a+
X
k>0

(`!�
")(k) � ` � a

k!
"k:

Note that for k2N>, we have (`!�
")(k)2L<!��C. Moreover, we have

` ��(s)¡ ` ��(a)=�(` � s¡ ` � a)=�(")� 1:
We deduce that

`!� ��(s) = `!� ��(a)+
X
k>0

(`!�
")(k) � ` ��(a)

k!
�(")k:

= �(`!� � a)+�

 X
k>0

(`!�
")(k) � ` � a

k!
"k

!
= �(`!� � s):

We conclude by induction that C=L<�. �

3.3 Hyperexponential extensions
In this subsection we consider a hyperseries subfield T=R[[M]] of force � and a �6 �
with �>0. We say thatT has force (� ;�) if L!�(T>;�)=T>;� for all �<�. For instance,
the field of surreal numbers No has force (� ;�).
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In [11, Sections 6 and 7], conditions under which hyperserial fields have surjective
hyperlogarithms are discussed. We recall some of the results here.

Proposition 3.8. [11, Corollary 7.24] The field T has force (� ; �) if and only if

E!�(T\No�;!�)�T for all � < �.

Proposition 3.9. [11, Theorem 7.4] There is a smallest subfield of hyperseries T(<�) of
No of force (� ; �) which contains T.

Proposition 3.10. [11, Theorem 7.4] If � :T¡!No is an embedding of force �, then
there is a unique extension �(<�) of � into an embedding T(<�)¡!No of force �.

Let �< � and write T� for the class of !�-truncated series ' in T with E!�(')2/T. So

T�=T�;!� nL!�(M!�):

For '2T�, write h'i= f'¡n :n2Ng if � is a successor, and h'i= f'g otherwise. Let
F� denote the class of families f=(f')'2T� in (L<!�¡)

T� such that the set f'2T� : f'=/ 1g
is contained in

S
'2S h'i for a finite subset S �T�. Write L<!�

�
e!�
T�� for the subgroup of

monomials

f~ := e
P
'2T�log(f')�E!�

'

;

where f ranges in F�. We have M\L<!�
�
e!�
T� �=f1g. Write M(�) for the internal product

group ML<!�
�
e!�
T�� and set T(�) :=R[[M(�)]]. Then T(�) is a hyperseries subfield of force

� which contains T[E!�
T�.

The field T(<�) can be obtained, by induction on �, as the union of an increasing
family (T;�)2On of subfields of hyperseries T;�=R[[M;�]] of No of force �. Indeed,
for  2On and �6 �, we set

� M(0;0) :=M.

� M(;�) := (M(;�¡))(�¡) if � is a successor.

� M(;�) :=
S
�<�M(;�) if � is a limit or �=On.

� M(;0) :=
S
�<M(�;�) if  > 0.

We set T(;�) :=R[[M(;�)]], so T(0;0)=T and we have the force � inclusion T(�;�)�T(;�)
whenever �<  or �=  and �6 �. We set

M(<�) :=
[

2On
M(;0); T(<�) :=

[
2On

T(;0):

We have T(<�)=R[[M(<�)]] by [11, Lemma 2.1].

Proposition 3.11. Let a2T(<�) and let P be an infinite path in a. There is i2N with
�P ;i2T.

Proof. Proving the result by induction on �, we may assume that P is a path in T(�) for
some � < �. So mP ;0= f~m for f2F� and m2M.

Assume that �P ;0=1 or �P ;0= 0. In the latter case we have �P ;1=¡1 because P is
infinite. So in any case we have then mP ;12 supplog f~ or mP ;12 supplogm. In the latter case
we are done. In the first case, we have mP ;1=L+1E!�

' for a certain  <!�¡ and '2T�.
We have E!�

' =/ ! because P is infinite. So mP ;1=L+1E!�
' is a standard expansion. We

deduce that �P ;22 term '�T.
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Assume that �P ;0>!. So f~m is log-atomic. We deduce since M\L<!�
�
e!�
T� �=f1g that

f~=1 or m=1. In the first case, we have �P ;02T. In the second case, we have mP ;0=LE!�
'

for certain  <!�¡ and '2T�, and we conclude as previously that �P ;12T. �

4 Nested numbers

We now introduce the notions of hyperserial expansions, paths, well-nestedness, nested
numbers of [10] in the more general case of hyperseries subfields. Throughout this section,
we fix a �6On with �> 0 and a hyperseries subfield T of force �, and we write � :=!�.

4.1 Hyperserial expansions, paths and well-nestedness

Definition 4.1. We say that a purely infinite number '2T� is tail-atomic if '= ++ �a,
for certain  2T�, �2f¡1; 1g, and a2M!.

Definition 4.2. Let m2M=/1. Assume that there are  2T�, �2f¡1;1g, �2f0g[!On,
� 2On and u2No such that

m=e (L�E�u)�; (4.1)

with supp �L�+1E�u. Then we say that (4.1) is a hyperserial expansion of type I if

� �! <�;

� E�
u2Mo� nL<�Mo�!;

� �=1=) ( =0 and u is not tail-atomic).

We say that (4.1) is a hyperserial expansion of type II if �=0 and u2M�, so that
E�
u=u and

m=e (L�u)�: (4.2)

Remark 4.3. If m=e (L�E�u)� is a hyperserial expansion, then we may not have e 2T,
or, equivalently, (L�E�u)� 2T. But both monomials lie in the exponential closure of T,
hence in particular in T~ .

Proposition 4.4. Each m2M n f1g has a unique hyperserial expansion.

Using this, we define, as in [10, Section 5.2], the notion of path in elements of T. Let �
be an ordinal with 0<�6! and note that i<1+ �() (i6 �<!_ i<!= �) for all i2N.
Consider a sequence

P =(P (i))i<�=(�P ;i)i<�=(rP ;imP ;i)i<� in (R�M)�:

We say that P is a path if there exist sequences (uP ;i)i<1+�, ( P ;i)i<1+�, (�P ;i)i<�, (�P ;i)i<�,
and (�P ;i)i<1+� with

� uP ;0= �P ;0 and  P ;0=0;

� �P ;i2 term  P ;i or �P ;i2 termuP ;i for all i < �;

� �P ;i2R�[M�=) �= i+1 for all i< �;
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� For i< �, the hyperserial expansion of mP ;i is

mP ;i = e P ;i+1 (L�P ;iE�P ;i
uP ;i+1)�P ;i:

We call � the length of P and we write jP j := �. We say that P is infinite if jP j=! and
finite otherwise. We say that P is a path in s2T if P (0) is a term of s. In that case, we
set sP ;0 := s. For 0<i< jP j, we define

(�P ;i; sP ;i) :=

(
(¡1;  P ;i) if mP ;i2 supp  P ;i
(1; uP ;i) if mP ;i2 suppuP ;i:

Given �<� and � :=!�, we say that a path P is �-bounded if �P ;i<� for all i < jP j.

Definition 4.5. Let s2T and let P be a path in s. We say that an index i < jP j is bad
for (P ; s) if one of the following conditions is satisfied

1. mP ;i is not the 4-minimum of suppuP ;i;

2. mP ;i=min suppuP ;i and �P ;i=/ 0;

3. mP ;i=min suppuP ;i and �P ;i=0 and rP ;i2/ f¡1; 1g;

4. mP ;i=min suppuP ;i and �P ;i=0 and rP ;i2f¡1; 1g and mP ;i2 supp  P ;i.

The index i is good for (P ; s) if it is not bad for (P ; s).
If P is infinite, then we say that it is good if (P ;�P ;0) is good for all but a finite number

of indices. In the opposite case, we say that P is a bad path. A series s2T is said to be
well-nested every path in s is good.

4.2 Coding sequences
We say that a coding sequence � is �-bounded if we have ��;i<� for all i2N. Let � be
a coding sequence and let i2N. We write �%i for the coding sequence with

�%i(j) :=�(i+ j) for all j 2N:

If ��;02!On+1, then for n2Z we write �+n for the coding sequence with

'�+n;1 := '�;1+n;
'�+n;i = '�;i for all i2N n f1g, and

("�+n;i;  �+n;i; ��+n;i; ��+n;i) := ("�;i;  �;i; ��;i; ��;i) for all i2N.

We write �+ for the coding sequence with

�(0) := (0; 1; 0; 1; ��;0), and
�+(i) := �(i) for all i2N>.

We say that � is positive if �=�+.
Let � be a coding sequence. We say that a number a is �-admissible if there is a

sequence (a�;i)i2N such that for all i2N, we have

a�;i = '�;i++ "�;i e �;i (E��;i a�;i+1)
�i;

supp  �;i � logE��;i a�;i+1; and
'�;i+1 C ]�i(a�;i+1) if '�;i+1=/ 0:

We say that � is admissible if there exists a �-admissible number.
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We say that a is �-nested if it is �-admissible, and if for i2N, the number

ma�;i :=

 
a�;i¡ '�;i
r�;i e �;i

!��;i
is a monomial and ma�;i=E��;i

a�;i+1 is a standard expansion.

Lemma 4.6. If �;�0 are distinct coding sequences and a is �-nested, then a is not �0-
nested.

Proof. Assume for contradiction that a is both �-nested and �0-nested. Consider i2N
minimal with �(i)=/ �0(i). Taking �%i and �%i

0 , we may assume that i=0. If '�;0=/ '�0;0,
then we must have '�;0C '�0;0 or '�0;0C '�;0. But

ot(supp '�;0;�)+1= ot(suppa;�)= ot(supp '�0;0;�)+1;

so ot(supp '�;0;�)= ot(supp '�0;0;�): a contradiction. So '�;0= '�0;0. We have

"�;0=1() a> '�;0() a> '�0;0() "�0;0=1;

so "�;0= "�0;0. Since e �;0 (E��;0
a�;1)��;0 and e �0;0

¡
E��0;0
a� 0;1���0;0 are both standard expansions

of "�;0 (a ¡ '�;0), we have ( �;0; ��;0; ��;0) = ( �0;0; ��0;0; ��0;0). This contradicts the
assumption that �(0)=/ �0(0). �

As a consequence, we may write �a for the unique coding sequence for which a is �a-
nested. We will also simply write a;i instead of a�;i for all i2N, in accordance with [10,
Section 6.1]. We write Ad� for the class of �-admissible numbers, and Ne� for the class
of �-nested numbers. By [10, Proposition 6.5], there are sets L� and R� of numbers with
L�<R� and Ad�=(L� j R�).

Note that we have Ad�%i� '�;i+ "�;i e
 �;i (E��;iAd�%i+1)

��;i for all i2N whenever
� is admissible. We say that an admissible sequence � is nested if we have

8i2N;Ad�%i= '�;i+ "�;i e �;i (E��;iAd�%i+1)
��;i:

We say that a coding sequence � is good if there is n2N such that �+n is nested. Note
that �%1;�¡ 1 and �+ are good if � is good. If � is good, then we generalize some of
our notations with

L� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
L(�+n)¡ '�;0
"�;0 e �;0

!��;0!��;0
if "�;0 ��;0=1,

L� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
R(�+n)¡ '�;0
"�;0 e �;0

!��;0!��;0
if "�;0 ��;0=¡1,

R� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
R(�+n)¡ '�;0
"�;0 e �;0

!��;0!��;0
if "�;0 ��;0=1,

R� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
L(�+n)¡ '�;0
"�;0 e �;0

!��;0!��;0
if "�;0 ��;0=¡1,

Ad� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
Ad(�+n)¡ '�;0

"�;0 e �;0

!��;0!��;0
=(L� j R�), and

Ne� := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
Ne(�+n)¡ '�;0

"�;0 e �;0

!��;0!��;0
:
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Good sequences will play an important role in the sequel. The following useful properties
are easily deduced from the corresponding properties of nested sequences.

Lemma 4.7. [10, Lemma 6.14] Let � be a good sequence. We have

Ad�= '�;0+ "�;0 e �;0 (E��;0[E��;0Ad�%1])
��;0:

Lemma 4.8. [10, Proposition 6.19] Let � be a good sequence. We have

Ne�= '�;0+ "�;0 e �;0 (E��;0Ne�%1)
��;0:

Let � be a good sequence and let n2N such that �+n is nested. For z2No, we define

�� z := '�;0+ "�;0 e �;0
 
L(��;0)/!n

 
��+n("�;0 ��;0 z)¡ '�;0

"�;0 e �;0

!��;0!��;0
;

so �� is a strictly increasing bijectionNo¡!Ne�. By [10, Proposition 6.21], this function
does not depend on the choice of n.

Lemma 4.9. [10, Corollary 6.20] Let � be a good sequence. We have

�� z= '�;0+ "�;0 e �;0 (E��;0��%1("�;0 ��;0 z))
��;0:

Lemma 4.10. [10, Proposition 6.21] Let � be a positive good sequence with ��;02!On+1
and let n2N. For all z 2No, we have

��¡n z=L(��;0)/!n�� z:

4.3 Hyperserial complexity
If (I ;<) is a well-ordered set and (i)i2I is a family of ordinals, then the ordered sum of
the family is the ordinal

P_
i2I j defined inductively for i2 I byX_

j2[min(I);i)
j := sup

nX_
j2[min(I);k]

j : k < i
o

if [min (I); i) has no maximum, andX_
j2[min(I);i]

j :=
�X_

j2[min(I);i)
j

�
+ i;

where + is the (non-commutative) ordinal sum.
We now define a lexicographic ordering on the set Pmax

<1(a) of finite maximal paths in
a number a. For P ; Q2Pmax

<1(a), we write P JQ if there is an i < jP j with P (j)=Q(j),
for all j < i and P (i)=/ Q(i) and

P (i); Q(i)2 term  P ;i ^ P (i)<Q(i), or
P (i)2 term  P ;i ^ Q(i)2 termuP ;i, or

P (i); Q(i)2 termuP ;i ^ P (i)<Q(i):

The fact that the paths are finite and maximal implies that only those situations can occur.
Since a is well-nested, we have mP ;i=min suppuP ;i for large enough i2N, for all infinite
paths P . It follows that J is well-founded. We define an auxiliary function pn as follows.
Given a2No define pn(a)2On as the order type of (Pmax

<1(a);J). We have

Lemma 4.11. Let a2No and m2 suppa. Then pn(a�m)<pn(a).
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Lemma 4.12. Let m2Mo=/ and let m=e (L�E�u)� be a hyperserial expansion. Then

pn(a)=pn( )+pn(u):

In particular pn( )<pn(a) and pn(u)6 pn(a).

Theorem 4.13. Let � 6On with � > 0. There is a unique function &� :No¡!On such
that for all a2No, we have

a) &�(a)=! if a2Mo� and &�(1)=1.

b) &�(a)=
P_

m2suppa &�(m)𝓁(am).

c) If m 2Mo has hyperserial expansion m= e (L�E�u)� and there is no �-bounded
nested sequence � such that m is �-nested, then we have

&�(m) = &�( )+ &�(u)+ �+1 if �<�, and
&�(m) = &�( )+!+ � if �=�.

d) If � is a �-bounded nested sequence and a is �-nested, then

&�(a)=
X_
i2N

(&�('�;i)+ &�( �;i)):

Proof. We define &�(a) by induction on pn(a). Let a2No such that &�(b) is defined for
all b with pn(b)<pn(a). In view of b, we may assume that a=m is a non-zero monomial.
If m=1, then we set &�(m)= 1. Assume that m=/ 1 and write

m=e 0 (L�0E�0
u1)�0

as a hyperserial expansion. We have pn( 1)< pn(a) so, by our induction hypothesis, the
number &�( 0) is defined. Consider the partial function lst:Mnf1g¡!M defined for non-
trivial monomials n that have hyperserial expansions n=e' (LE�v)� such that supp v has
a minimum, and with lst(n) :=min suppu.

If m is �-nested for some nested and �-bounded sequence �, then the sequence
(lst�i(m))i2N is defined. An induction on i2N using Lemmas 4.11 and 4.12 gives that

pn('�;i)=pn((a;i)�lst�i(m))<pn((a;i))6pn(a) and pn( �;i)<pn((a;i))6pn(a)

for all i2N. So all &�('�;i)'s and &�( �;i)'s are defined, and we may set

&�(m) :=
X_
i2N

(&�('�;i)+ &�( �;i)): (4.3)

Assume next that there is an i > 0 such that lst�j(m) is defined for all j 6 i, and that
ai := lst�i(m) is �i-nested for some nested and �-bounded sequence �i. We then choose i
to be minimal to satisfy this. Writing

m=e 0

 
L�0E�0

'1+r1e
 1

�
L�1E�1

� ��
'i++rimi

��1!�0
for some numbers '1; : : : ; 'i,  2; : : : ;  i+1 and r1; : : : ; ri, we have pn('j);pn( j+1)<pn(m)
for all j 2f1; : : : ; ig as above. So all &�('j)'s and &�( j+1)'s are defined. We define &�(mi)
as in (4.3) and for all j < i, we set

&�(lst�j(m)) := &�( j)+ (&�(lst�(j+1)(m)) `(r1))+ �j+1 (4.4)
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by induction on i¡ j.
Assume now that there is an i 2N such that lst�i(m) has the standard expansion

lst�i(m)=e a� where a is L<�-atomic. Then we set &�(lst�i(m)) := &�( )+! and we define
&�(m) as in (4.4). The case when lst�i(m) has standard expansion of type II is similar.

Assume lastly that there is an i2N, which we choose minimal, such that b := lst�i(m)
has no minimal monomial in its support. Then by Lemma 4.11 and the induction hypo-
thesis, we may define

&�(b) :=
X_

n2suppb
&�(n) 𝓁(bn)

We then define &�(m) as in (4.4).
Well-nestedness implies that the only remaining case is when lst�i(m)=1 for some i, in

which case again &�(lst�i(m)) := 1 is directly definable, and we conclude using (4.4). �

In the sequel we write & := &On.

Lemma 4.14. Let �<�6On and write � :=!�. For a2No>;�, we have &�(d�(a))6 &�(a),
with equality if and only if a2Mo�.

Proof. We prove the result by induction on &�(a). Let a 2No>;� such that the result
is true for all � < � for b 2No>;� with &�(b)<  := &�(a). The result is immediate by
Theorem 4.13(b) if �= 0. So we may assume that � > 0 and that a 2Mo�. Write a=
e (L�E�u)� as a hyperserial expansion and write a :=d�(a). If  =/ 0, then we have a=d�(e )
where &�(e )< &(a). The induction hypothesis yields in particular &�(a)< &�(a). Assume
that  =0, so �=1. Write �= � 0+  where � 0>o �/! and  <�/!. We have a= d�(L� 0E�u)
by Lemma 2.3. So &�(a)> &�(a)+ . Since a=a if and only if =0 and d�(L� 0E�u)=L� 0E�u

this yields the result. �

5 Extensions by nested numbers

Throughout this section, we consider a subfield T=R[[M]] of No of force (� ; �). We
say that a coding sequence � lies over T, or that � is a coding sequence over T, if '�;i;
 �;i2T for all i2N. If � lies over T and a2No is �-nested, then we say that a is nested
over T. We will see how to adjoin T with classes of nested numbers over T.

5.1 Nested extensions

Remark 5.1. Note that if � is a �-bounded good sequence, then the sets L� and R� of
Section 4.2 lie in any subfield of No of force (� ;�) which contains '�;i;  �;i for all i2N.
So if � lies over T, then L� and R� are subsets of T.

Lemma 5.2. Let � be a �-bounded good sequence over T. If Ad�\T=/ ?, then Ne�\
T=/ ?.

Proof. Let s 2Ad� \T. Since T has force (� ; �) and ��;0< �, we may assume that
� is nested. By [10, Lemma 6.16 and Theorem 6.17], there are i 2N, a 2Ne� and �;
� 0� (E��;i

a;i+1)¡1 with

sg;i='�;i+"�;ie �;i (E��;i(a;i+1+�))
��;i<s;i<'�;i+"�;ie �;i (E��;i(a;i+1+�

0))��;i=sh;i:
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We have E��;i a;i+1PE��;i(a;i+1+ �); E��;i(a;i+1+ � 0) by [10, (3.7)]. We deduce that

a;i= '�;i+ "�;i e �;i (E��;i a;i+1)
��;iP sg;i; sh;i;

where a;iPs;i. Thus a;i2T. Since � is �-bounded over T, we deduce that a2T(<�). Since
T has force (� ;�), we deduce that a2T. �

Lemma 5.3. Let �; �0 be distinct �-bounded good sequences over T with T \Ne�=
T\Ne�0=?. One of the following cases occurs:

a) L�0�R� and then Ad�0<Ad�.

b) L��R�0 and then Ad�<Ad�0.

Proof. We have Ad�=(L� j R�) and Ad�0=(L�0 j R�0), so by Lemma 2.1, it is enough
to prove that Ad�\Ad�0=?. So assume for contradiction that there is a number a with
a 2Ad�\Ad�0. Let i 2N be minimal with �(i) =/ �0(i). Considering �%i and �%i0 , we
may assume that i=0.

Assume for contradiction that '�;0=/ '�0;0. We have '�;0; '�0;0C a so we must have
'�;0C'�0;0 or '�0;0C'�;0 and we may assume without loss of generality that the first case
occurs. Write '�0;0= '�;0++ "�;0 t where t� supp '�;0. So we have dt= da¡'�;0, whence
'�;0++ "�;0 dt 2Ad�. Since '�;0++ "�;0 dt 2T, we have T\Ad�=/ ?. We deduce with
Lemma 5.2 that T\Ne�=/ ?: a contradiction.

So '�;0='�0;0. We have a>'�;0()"�;0="�0;0=1 and a6'�;0()"�;0="�0;0=¡1
so we must have "�;0= "�0;0. The same arguments as for '�;0; '�0;0 imply that  �;0=
 �0;0, and the same argument as for "�;0; "�0;0 imply that ��;0= ��0;0. So we must have
��;0 =/ ��0;0. We may assume without loss of generality that ��;0 > ��0;0. Write b :=
E��;0 a�;1=E�� 0;0 a�0;1. We have

c := '�;0+ "�;0 e �;0 (d��;0(b))
��;02Ad�0

by Lemma 4.7. Let j2N> be minimal with ('�0;j ;  �0;j)=/ (0;0). Let k6 j be maximal with
��0;k=��0;0. We have ��0;0>��0;1> ���>��0;j¡1 and b=E�� 0;0k+��0;k+1+ � � �+��0;j¡1a�0;j.
Note that d��;0(a�0;k+1)=d��;0('�0;j+ "�0;j e

 �0;j)2T because � is �-bounded. If ��;0=
��0;0!, then d��;0(b)=E��0;0kd��;0(a�0;k+1), which lies inT becauseT has force (� ;�) and
�0 is �-bounded. If ��;0>��0;0!, then [10, Lemma 5.5(b)] gives d��;0(b)= d��;0('�0;j+
"�0;j e �

0;j)2T. So in any case, we have c2Ad�0\T. We deduce with Lemma 5.2 that
T\Ne�0=/ ?: a contradiction. �

Let P be a class of positive, �-bounded good sequences � over T. Assume that for all
�2P, we have

8i2N; (�%i)+ 2 P and (5.1)
Ne�\T = ? and (5.2)

�+n 2 P whenever ��;02!On+1 and �+n is good. (5.3)

Note that those conditions are satisfied for the class P of all positive good sequences over
T with Ne�%i\T=? for all i2N.

We write P0 for those sequences in P which are nested, and set

SP :=
[
�2P

Ne��Mo�
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For g2GP, we write ng for the least number ng2N such that �g+ng is nested. We write
mg for the unique (�g+ng)-nested number with g=L(��g;0)/!n(mg). We have �g+ng2P0

by (5.3) so mg2GP. We write GP;0 for the class of monomials mg; g2GP. For m2GP;0,
we write Gm for the class of monomials h with mh=m.

Lemma 5.4. For g; h2GP, we have g�h if and only if one of the following cases occurs:

a) �g=�h and zg<zh.

b) L�g�R�h and Ne�g<Ne�h.

Moreover, we have E�g[g]�E�h[h] in each case.

Proof. If �g=�h, then we have g;h2Ne�g whence g=��g zg and h=��g zh. So we have
g< h if and only if zg<zh in that case. We obtain E�g[g]�E�h[h] in that case because g;
h are both L<�g-atomic.

Assume now that �g=/ �h. By Lemma 5.3, we have Ne�g<Ne�h or Ne�g>Ne�h. So
we have g� h if and only if Ne�g<Ne�h, if and only if L�g�R�h. We have E�g[Ne�g]=
Ne�g�Ne�h= E�h[Ne�h] by Lemma 4.7, whence E�g[g]�E�h[h] in that case. �

Corollary 5.5. For g; h2GP with g� h, we have L<(�g)/! � g�L<(�h)/!
� � h.

For every family f := (fg)g2GP 2
Q

g2GP
L<(�g)/!, we write S(f) := fg 2 GP : fg=/ 1g.

We let FP denote the set of families f2
Q

g2GP
L<(�g)/! such that the set S0(f) := fmg :

g 2 S(f)g is finite. For f 2 FP, and each m 2 S0(f), the sum
P

mg=m
(log(fg) � g) is well-

defined by Corollary 5.5. So
P

g2GP
(log(fg) � g) is well-defined and lies in No�. We set

f~ := e
P

g2GP
log(fg)�g2Mo. Note that f¡1 := (fg

¡1)g2GP lies in FP and we have f¡1e = f~¡1.

Therefore the class M[P] of monomials f~ for f2FP is a subgroup of Mo. We see that
M[P] is the subgroup of Mo generated by the sets L<��;0�Gm where �2P0 and m2Ne�.
By the previous argument, the ordering on M[P] corresponds to the lexicographic ordering
on FP. We write MP for the subgroup of Mo generated by M and M[P].

We claim thatM\M[P]=f1g. Indeed assume for contradiction that there is a monomial
n� 1 in M[P] \M. So there is f 2 FP with n= f~. In particular, dlogn= dlogf~. So there
are g 2GP and  < (�g)/! with `+1 � g 2M. But there are ' 2T;  2T� and "; � 2
f¡1; 1g with '++ " e g�2Ne�. So by Lemma 4.7, we have '++ " e E�g[g]�2Ne�, whence
'++ " e E�g[g]�\T=?. We deduce that log E�g[g]\T=?, whence in particular `+1 �
g2/ T: a contradiction.

So any element of MP can be uniquely written as n=m f~ where m2M and f2FP. We
write TP for the field TP=R[[MP]].

Lemma 5.6. Let m2M and f2FP�. Let g :=maxS(f). We have m f~� 1 if and only if
Ne�g�m¡1.

Proof. We have jlog f~j2 E�g[jlogmgj] by the previous arguments. So f~2E�g[g]�E�g[Ad�].
We have T\E�g[Ad�]=T\Ad�=? by (5.2) and Lemma 4.7. Since the class E�g[Ad�]
is convex in, we either have m¡1�E�g[Ad�] or m¡1�E�g[Ad�]. We obtain the result by
noticing that Ne� is cofinal and coinitial in Ad�. �

Lemma 5.7. We have TP=H�(
S
�2P0Ne�[M). Moreover (MP)�=M�.
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Proof. Let U be a subfield of force � with U�
S
�2P0Ne�[M. For �2P0 and m2Ne�,

we have L<��;0 �m�U, so L<��;0 �Gm�U. We deduce that M[P]�U, whence MP�U,
whence TP�U.

So we need only justify that TP is a confluent subfield of force �. Let n 2MP
� and

write n=m f~ where f2FP and m2M. Let �6 � with �> 0 and write a := d!�(n). By
Proposition 3.3, it is enough to prove that a2TP, that L<!��a�TP, and that L!�(a)2TP
if moreover �<�.

Let g2GP be minimal with fg=/ 1 and let  < (�g)/! be minimal with (fg)=/ 0. We
have logn� logm or log n� `+1 � g. Therefore we have

a2fed!(logm); d!�(m)g= fd!�(m)g� d!�(T)

or

a2fed!(`+1�g); d!�(` � g)g= fd!�(` � g)g:

In the first case, since T is a confluent subfield of force �, we obtain a2T and L<!��a�T
and L!�(a)2T if moreover �< �. So we may assume that n= ` � g. Write  =  0+ �
where supp  0<!�¡ and �<!�¡. So a= d!�(` 0 � g), so we may assume that =  0 and
that supp <!�¡. Write � :=�g and �i :=��;i for all i2N. Consider i>0 minimal with
('�;i;  �;i)=/ (0; 0). So �0> � � �>�i¡1 and

g=E�0+ � � �+�i¡1('�;i+ "�;i e
 �;im��;i);

for a certain m2Ne(�%1)+.
Assume that �0> !�, so �< �. We have a= ` � g 2TP. Moreover L<!� � a�

L<�0 �Gmg�TP. If �0=!�, then we must have =0 and L!�(a)=L�0(g)= g;12TP.
Otherwise write  =  00+!�¡ n for  00>o!�¡ and n2N. So L!�(a) = ` 00+!� � g¡n
where ` 00+!� � g2L<�0 �Gmg. So L!�(a)2TP.

Assume now that �0<!�. Let j6 i¡ 1 be maximal with either j=0 or j > 0 and
�j!=!�. So we have

b := d!�(E�j+1+ � � �+�i¡1('i+ "i e
 im�i))= d!�('�;i+ "�;i e �;i)2T;

and a=E�0j b2T because T has force (� ;�).
In this case we obtain again a2T, and L<!� � a�T and L!�(a)2T if �<�. �

5.2 Nested extensions of embeddings

Proposition 5.8. Let �:T¡!No be an embedding of force � and let � be a �-bounded
good sequence which lies over T. The sequence

�(�) := (�('�;i); "i;�( �;i); �i; �i)i2N

is good. Moreover, it is nested if � is nested.

Proof. Note that we have �('�;i+1)2No�;��;i and �( �;i)2No� for all i2N. The other
conditions of coding sequences are clearly preserved, so �(�) is a coding sequence. We
have �(�+n)=�(�)+n for all n2N so we may assume that � is nested and prove that
�(�) is nested as well. By Remark 5.1, we have L�(�)=�(L�)<�(R�)=R�(�). So �(�)
is admissible. Finally to prove that �(�) is nested, we must justify that for i2N, we have

Ad�(�)%i��('�;i+1)+ "�;i e
�( �;i) (E��;iAd�(�)%i+1)

��;i:
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If "�;i ��;i=1, then (5.8) is equivalent to

�('�;i+1)+ "�;i e�( �;i) (E��;i�(L�%i+1))
��;i is cofinal with respect to �(L�%i) and

�('�;i+1)+ "�;i e�( �;i) (E��;i�(R�%i+1))
��;i is coinitial with respect to �(R�%i).

Those statements hold because � :T¡!�(T) is an order isomorphism. If "�;i ��;i=¡1,
then (5.8) is equivalent to

�('�;i+1)+ "�;i e�( �;i) (E��;i�(L�%i+1))
��;i is cofinal with respect to �(R�%i) and

�('�;i+1)+ "�;i e�( �;i) (E��;i�(R�%i+1))
��;i is coinitial with respect to �(L�%i);

which holds as well. So �(�) is nested. �

Proposition 5.9. Let T and P be as above and let �:T¡!No be an embedding of
force �. Consider a family (��)�2P of order isomorphisms �� :No¡!No with

��(z) = "�;1 ��;1�(�%1)+("�;1 ��;1 z) and (5.4)
��¡1(z) = ��(z) whenever �¡ 12P. (5.5)

for �2P and z 2No. There is a unique extension �P of � into a hyperserial embedding
TP¡!No of force � with

�P(�� z)=��(�)��(z) for all �2P and z 2No. (5.6)

Proof. By Proposition 5.8, the class �(P) := f�(�) : � 2Pg satisfies (5.1,5.2,5.3) with
respect to �(T). We define a function 	:G�(P)¡!GP. For g2G�(P), there is a unique

�2P with �g=�(�). We set	(g) :=����
¡1(zg). We claim that	 is an order isomorphism

G�(P)¡!GP.
Indeed let g; h2G�(P) with g� h. If �g=�h, then by Lemma 5.4, we have zg<zh, so

��
¡1(zg)<��

¡1(zh), so 	(g)�	(h). Otherwise, by Lemma 5.4, we have L�g�R�h. Write
�;�02P with �g=�(�) and �h=�(�0). We deduce with Remark 5.1 that L��R�0, so
Ne�<Ne�0, whence in particular 	(g)�	(h). The function 	 is surjective because �:
P¡!�(P) is surjective and each �� :No¡!No for �2P is surjective. So this proves
the claim.

We set �P(f~) := f �	g for all f 2FP. This defines an isomorphism of ordered groups
M[P]¡! (�(M))[�(P)]. We then set �P(m f~) := �(m) �P(f~) for all m 2M and f 2 FP.
Consider m 2M and f 2 FP with m f~� 1. If f~ = 1 then m� 1 so �P(m f~) = �(m)� 1.
Assume that f~� 1. By Lemma 5.6, we have m¡1�Ne� where g=maxS(f). So there is
b 2 L� with m¡1< b. We have 	¡1(g) =max S(f �	). Note that �(m¡1)��(b) where
�(b)2�(L�)=L�(�). We deduce that m¡1�Ne�(�), so �P(m f~)�1. If f~�1, then we have

�P(m f~)=�P((m f~)¡1)¡1 where �P((m f~)¡1)� 1 by the previous arguments. We deduce
that �P(m f~)� 1. So in general �P(MP

�)�Mo�, which implies that �P is an embedding
of ordered groups MP¡!Mo.

So �P further extends uniquely as a strongly linear embedding of ordered fields TP¡!
No which extends �. Note that by definition, this embedding commutes with the logar-
ithm. We claim that �P is a hyperserial embedding of force �.

By Lemma 3.7, we need only prove that L!�(�P(a)) =�P(L!�(a)) for all � < � with
� > 0 and all a2 (MP)<!�. Consider such elements �; a. We may assume that a2/M, so
a= ` � g for a certain g2GP and  < (�g)/!. We must have �g>!� and �!�¡ because
a is L<!�-atomic. Write �=�g and rite =  0+!�¡n where  0�!�¡ and n2N.
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If �g=!�, then =0. So a=g and �P(a)=	¡1(g)=��(�)��(zg). By Lemma 4.9,
we have

L!�(a)= '�;1+ "�;1 e �;1 (�(�%1)+("�;1 ��;1 zg))
��;1:

Lemma 4.9 also yields

L!�(�P(a)) = '�(�);1+ "�;1 e
 �(�);1 (�(�(�)%1)+("�;1 ��;1��(zg)))

��;1

= �('�;1)+ "�;1�(e �;1) (��((�%1)+)("�;1 ��;1��(zg)))
��;1

= �P('�;1)+"�;1�P(e �;1)(��((�%1)+)�(�%1)+("�;1 ��;1zg))
��;1(by (5.4))

= �P('�;1+ "�;1 e �;1 (�(�%1)+("�;1 ��;1 zg))
��;1)

= �P(L!�(a)):

If �g=!�+1, then  0=0 so a= `!�¡n�g and �P(a)= `!�¡n���(�)��(zg) and L!�(a)=
L!�(g)¡n. We have �L!�(g)=�¡ 1, and zL!�(g)= zg by Lemma 4.10. So

�P(L!�(a)) = ��(�¡1)��¡1(zL!�(g))¡n
= ��(�¡1)��(zg)¡n (by (5.5))
= ��(�)¡1��(zg)¡n
= L!�(��(�)��(zg))¡n (by Lemma 4.10)
= L!�(�P(a)):

Finally, if �g>!�+1, then �P(a)= ` �	¡1(g) and L!�(a)= ` 0+!� � g¡n so

�P(L!�(a))= ` 0+!� �	¡1(g)¡n=L!�(�P(a)):

This proves that �P is a hyperserial embedding of force �. In order to see that it is unique,
consider an embedding �0:TP¡!Mo satisfying the conditions. We have �0(l�a)= l��0(a)
for all l2L<!� and a2(MP)<!� where �6�. So it is enough to prove that�0(ma)=�P(ma)
for all a2No which is �-nested for a certain �2P. For such a=�� z where z 2No, the
number ma is �a

+-nested. So

�0(ma)=��a+��a+(z)=m�
�
¡
�a
+��

�a
+(z)=m��(�a)��a(z)

=�P(ma):

We deduce that �0=�P. �

6 Embedding theorems

6.1 Atomic embeddings

Proposition 6.1. Let T=R[[M]] be a subfield of force � and let � :M�¡!Mo� be a
strictly increasing function. If � is a successor, then we assume moreover that we have

�(L�/!(a))=L�/!(�(a)) (6.1)

for all a2M�. Then there is a unique extension �̂ of � into an embedding H�(M�)¡!No
of force �.

Proof. Note that (6.1) insures that �(M�) satisfies the premises of Lemma 3.4. Consider
the reciprocal �¡1 of the co-restriction � :M�¡!�(M�). We have a group morphism

�1 :LM�¡!L�(M�) ; f~ 7! f ��¡1;
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which extends �. Since �¡1 is a strictly increasing bijection, for f2FM�, we have

f~� 1() fminS(f)� 1() (f �	)minS(f�	)� 1() f �	g � 1:

So �1 is a strictly increasing group morphism LM�¡!Mo. By , there is a unique strongly
linear extension �̂ of �, which is a field morphism. For f~2LA, we have

�̂(log f~) = �̂(�a2A(log fa) � a)

=
X
a2A

�̂
 X
<�/!

(fa) `+1 � a
!

=
X
a2A

X
<�/!

(fa)�1(`+1 � a)

=
X
a2A

X
<�/!

(fa) `+1 ��(a)

=
X
a2A

(log fa) � �̂(a)

=
X
a2A

(log (f ��¡1)a) � a

= log �̂(f~):

For �<� and b2d!�(LA), by (3.1), there are a2A, �!�¡ and n2N with b= `+!�¡n�a.
We have

�~(`!� � b) = �̂(`+!� � a¡n)
= �1(` � (`!� � a))¡n
= ` ��(`!� � a)¡n (by definition of �1)
= ` � `!� ��(a)¡n (by (6.1))
= `!� � (`+!�¡n ��(a))
= `!� � (�(`+!�¡n � a)) (by definition of �1)

= `!� � �̂(b):

We deduce with Lemma 3.7 that �̂ is an embedding of force �.
For f2FM�, there are n 2N and a0; : : : ; an¡1 2 S(f) and l0; : : : ; ln¡1 2L<� with f~=Q
i=0
n¡1

li � ai. We thus have

	(f~)=
Y
i=0

n¡1

	(li � ai)=
Y
i=0

n¡1

li �	(ai)=
Y
i=0

n¡1

li ��(ai)= �̂(f~)

for any extension 	 of � which is a force � hyperserial embedding. So �̂ is unique. �

6.2 General embedding theorem
Let � 6On with � > 0, write � :=!� and let T=R[[M]] be a confluent subfield of force
�. We define an increasing sequence (T[�])�2On of confluent subfields T[�]=R[[M[�]]] of
No of force (� ;�) as follows. Set T[0] :=H�(M�). Let �2On such that T[�]=R[[M[�]]] is
defined for all � < �.

If � is a limit, then define M[�] :=
S
�<�M

[�]. We set

T[�] := (R[[M[�]]]);
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which is a confluent subfield of force (� ;�).
If �= �+1 is a successor, then consider the class P[�] of all �-bounded positive good

sequences which lie over T[�], with Ne�%i\T[�]=? for all i 2N. We claim that P[�]

satisfies (5.1,5.2,5.3) with respect to T[�]. Indeed, for �=('i; "i;  i; �i; �i)i2N2P[�], we
have

Ne�%1\T[�]=L�0

�
Ne�¡ '0
"0 e 0

��0
\T[�]�?:

So �%12P�, so �%i2P� for all i2N. Moreover, if �0= � ! for a certain additively
indecomposable ordinal �0, then �¡n is good for all n2N. Let n2N and assume for
contradiction that there is m in T[�]\Ne�¡n. Then E�nm2T[�]\Ne� because T[�]

has force (� ;�): a contradiction. So �¡n2P[�]. We define

T[�] := ((T[�])P[�])(<�):

We set T[On] :=
S
�2OnT

[�] and T0 :=T \ T[On]. We have T[On] =R[[M[On]]] where

M[On] :=
S
�2OnM

[�] and T[On] is a confluent subfield of force (� ;�).

Proposition 6.2. We have T[On]=T.

Proof. We prove this by induction on the hyperserial complexity. Let s2T, write &�(s) :=
� and assume that we have t 2T[On] for all t 2T with &�(t)< �. If supp s has no least
element, then we have supp s�T[On] whence s2T[On].

Otherwise, let m=min (supp s;�) and write m=e (L�E�u)� as a standard expansion.
We have &�(s�m)<� so s�m2T[On], and we need only prove that m2T[On]. If sm2/ f¡1;1g,
then &�(m)< � so m2T[On]. So we may assume that sm2f¡1;1g. We have also &�( )< �
so  2T[On] so e 2T[On]. So we need only prove that L�E�u2T[On]. If L�E�u2M�, then
we have L�E�

u2T0�T[On]. So we assume that L�E�
u is not L<�-atomic. In particular�

we have �<� and ���/! and (�; �)=/ 0. If �=/ 0, then we have &�(n)< � where n :=E�u,
so n2T[On]. But we have � <�, whence L�E�u2T[On]. So we may assume that �=0. If
E�
u is not �-nested for a nested sequence �, then we have &�(u)< � so u2T[On], whence

E�
u2T[On] since �<�.
Assume that E�u is � nested for a certain nested sequence �. We have &�('i); &�( i)<

&�(E�u) for all i 2N, so 'i;  i2T[On] for all i 2N. If there is a i 2N, which we choose
minimal, with ��;i>�, then we have (E�u);i2T[On] as above. Given �2On with (E�u);i2
T[�] and 'j ;  j 2T[�] for all j6 i, we obtain so E�

u2 (T[�])(<�)=T[�]. So we may assume
that � is �-bounded.

Let �2On be minimal such that there is a j 2N with with 'i;  i2T[�] for all i> j.
Choosing j minimal, we claim that �%j 2P�. Indeed �%j is a good �-bounded sequence
which lies over T�, so we need only prove that Ne�%j+i\T[�]=? for all i 2N. Assume

for contradiction that there is i 2N, and m 2Ne�%j+i \T[�]. We cannot have �= 0 by
Lemma 3.5. Applying Lemma 3.11 to the path P := (m;k ¡ '�;i+j+k)k2N in m, we see
that there are a k2N and a �< � with m;k¡ '�;i+j+k2T[�]. But then for l > k, we have
'�;j+i+l;  �;j+i+l 2T[�]. This contradicts the minimality of �. Therefore � 2 P�. We
deduce that E�u2T[�+1]. This concludes the proof that T�T[On]. �

Theorem 6.3. Let T=R[[M]] be a subfield of force � and let �:M�¡!Mo� be a func-
tion. If � is a successor, then we assume moreover that we have �(L�/!(a))=L�/!(�(a))
for all a2M�. Let P denote the class of �-bounded positive good sequences over T.
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Consider a family (��)�2P of order isomorphisms ��:No¡!No with

��(z) = "�;1 ��;1�(�%1)+("�;1 ��;1 z) and (6.2)
��¡1(z) = ��(z) (6.3)

for �2P and z 2No. There is a unique extension �̂ of � into a hyperserial embedding
T¡!No of force � with

�̂(�� z)=��̂(�)��(z) for all �2P and z 2No with �� z 2T.

Proof. By Propositions 3.9 and 3.10, we may assume that T has force (� ; �). For each
� 2On, we define a hyperserial embedding ��:T[�]¡!No of force � such that �� and
�� coincide on T[�] whenever �< � and that �0 and � coincide on M�. Recall that T[0] :=
H�(M�). By Proposition 6.1 we have a unique extension of � into an embedding �:
H�(M�)¡!No of force On. We define �0 as the unique hyperserial embedding extending
� of Proposition 3.10. Let �2On such that �� is defined for all � < �.

If � is a limit, then 	� :=
S
�<��� induces a unique hyperserial embedding �� :T[�]¡!

No of force �.
If �= �+1 is a successor, then note that P[�]�P. In view of (6.2,6.3), we may apply

Proposition 5.9 for (��)� :=�� for all �2P[�]. We deduce that there is a unique extension
	� of �� to (T[�])P[�] which satisfies (5.6). We then set �� :=(	�)(<�) using Proposition 3.10.

Lastly, we define �On :=
S
�2On��. So �On is a hyperserial embedding of force �. By

Proposition 6.2, the map �̂ :=�On�T is an embedding T¡!No of force � extending �.
For �2P, as we have seen, there is �2On with �2P�. Given z2No with ��z2T, we have

�̂(�� z)= (��)P[�](�� z)=��i(�)(��)�(z)=��̂(�)��(z):

So �̂ satisfies the condition.
Assume for contradiction that there is a distinct embedding 	:T¡!No which extends

� and satisfies the condition. Let �2On be minimal such that there is a2T with 	(a)=/
�̂(a) and &�(s)= �. As usual we may assume that a is a monomial with standard expansion
a=L�E�u. If �>�, then we write �= � 0+ � 00 where � 00��/! and � 0���/!. So L� 0E�u2
M�. We have 	(a)=L� 00	(L� 0E�u)=L� 00�(L� 0E�u)=�̂(a): a contradiction. So �<�. We
may assume that &�(u)= �, so �=0 and there is a �-bounded nested sequence � such that
s is �-nested. Let z2No with a=�� z. We deduce that 	(s)=�	(�)��(z). But we have
&�('�;i); &�( �;i)<� for all i2N, so 	(�)=�̂(�). So 	(a)=�	(�)��(z)=��̂(�)��(z)=
�̂(a): a contradiction. �

6.3 Automorphisms of No by scalar multiplication
We can readily define bijective embeddingsNo¡!No of forceOn. Let f 2No>. A simple
example is that of embeddings whose effect on the hyperserial description of a number a is
to multiply each surreal label by f . Let P denote the class of all positive good sequences.
The family (�f ;�)�2P of order isomorphisms Idf ;�:No¡!No given by

8z 2No; Idf ;�(z) := f z

satisfies (6.2) and (6.3). By Theorem 6.3, the mapping Id: f!g¡!f!g extends uniquely
into an embedding Idf :No¡!No of force On with Idf(�� z) =�Idf(�) f z for all �2P
and z 2No. Note that for 	= Idf � Idf¡1 or 	= idNo, the function 	 extends of Id into
an embedding of force On with 	(�� z)=�	(�) z or all �2P and z 2No. We deduce by
unicity that Idf � Idf¡1= idNo, that is, the function Idf is bijective with functional inverse
Idf¡1. Note lastly that Idf fixes L~ pointwise.
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7 Applications

We now apply our results by proving auxiliary facts that are crucial for defining derivations
and composition laws on No. We will first give a characterization of the hyperexponential
closure of a subclass (see below) in terms of properties of paths. We will then extend
the method described in [6, Section 5] in order to adapt it to the presence of nested
numbers. Lastly, we will define the fields of bounded surreal numbers and the canonical
right compositions with sufficiently atomic elements on those fields.

7.1 Hyperexponential closure of a subclass

Let � 6On with � > 0. Let U=R[[U]] be a subfield of No of force �. Given a subclass
X�U with X*R, we write X(<�) for the smallest subfield of U of force (� ;�) containing
X. We show that this can be constructed as the union of subgroupsR[[S()]]; 2On where

Sh0i :=
[
s2X

supp s

Shi := Sh¡i[
[
�<�

 
f(E!�

' )�1 : '2R[[Sh¡i]]\U�;!�g [
 [
a2Sh¡i\U!�

suppL!�(a)
!!

if  is a successor, and

Shi :=
[
�<

Sh�i if  is a limit.

Proposition 7.1. The class X(<�) :=
S
2OnR[[Sh i]] is the smallest subfield of U of

force (� ;�) that contains X.

Proof. It is easy to see by induction that any subfield of U of force (� ;�) that contains
X must also contain X(<�). Writing S(<�) :=

S
2OnSh i, we have X(<�) :=R[[S(<�)]]

by [11, Lemma 2.1]. The class X(<�) is closed under logarithms of infinite monomials,
additive opposites, exponentials of 1-truncated series and reciprocals of those exponentials.
Therefore S(<�) is a group, so X(<�) is a field of well-based series. We also deduce that
X(<�) is closed under exponentials, and logarithms and real powers of strictly positive
elements. Given s2X nR, we there is an u2 supp s\U=/ , whence S(<�)) f1g, i.e. X(<�)

is non-trivial.
It is enough in order to show that X(<�) is a subfield of force � to show that it is

closed under all hyperlogarithms L!�; � < �. We prove this by induction on �< �. We
already dealt with the case �=0, so we may assume that �> 1 and that X(<�) is closed
under L!� for all � < �. But then X(<�) is also closed under the action of L<!�. Given
s2X(<�) and �<�, we have L(s)¡L(a)� 1 for an L<!�-atomic element a2U!�. Our
induction hypothesis implies that L(a), as the dominant monomial of L(s), lies inX(<�).
So " :=L(s)¡L(a) lies in X(<�) as well. Recall that

L!�(s)=L!�(a)+
X
k>0

(`!�
")(k) �L(a)

k!
"k;

where (`!�
")(k)2L<!� for each k>0. So (`!�

")(k)�L(a)2X(<�). We deduce that L!�(s)2
X(<�), which concludes our proof that X(<�) is a subfield of force �. Now X(<�) is closed
under hyperexponentials of truncated elements, so X(<�) has force (� ;�). �
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7.2 Characterizing closure in terms of paths

Lemma 7.2. Assume that supp L!�(a)�Sh0i for all a 2 U!� \X and all � < �. Let
m2S(<�) and let P be a �-bounded infinite path in m. Then we have mP ;i2Sh0i for large
enough i2N.

Proof. Note that the hypothesis that suppL!�(a)�Sh0i for all a2U!�\X and all �<�
implies that for any infinite �-bounded path Q and any i2N, we have

mQ;i2Sh0i=) (8j> i; (mQ;j 2Sh0i)): (7.1)

We will prove the statement of the lemma by induction on the least  2On with m2S.
Consider an ordinal  such that the result holds for all n 2Ne� \S and assume that
m2Shi n

S
�<Sh�i. Note that  is either 0 or a successor. If  = 0 then m2X so we

are done. So we assume that  = �+1 is a successor. By definition of Sh�+1i, there are
a �<�, an a2Sh�i\U!� and a '2R[[Sh�i]]\U�;!� such that m2 suppL!�(a) or that
m=E!�

' . In the first case, write � :=L!�(a). By [10, Corollary 5.17], there are a �-bounded
infinite path Q in dE!�

� = a and a k > 0 with P%1=Q%k. The induction hypothesis yields
an i2N with mQ;i2Sh0i. We conclude with (7.1).

Consider the second case, when m=E!�
' , so '=L!�(m). By [10, Corollary 5.17], there

are a path R in ' and an l > 0 with P%1=R%l. As previously, the induction hypothesis
gives an i2N with mR;i2Sh0i. We conclude with [10, Corollary 5.17] and (7.1). �

Proposition 7.3. Let S�U be a subclass with suppL!�(a)�S for all a2U!�\S and
all �<�. Set G :=R[[S]]. Assume that each atomic element of U lies in G. Let C denote
the class of elements s 2U such that any maximal �-bounded path P in s satisfies uP ;i;
 P ;j 2G for a certain i6 jP j. Then C=G(<�).

Proof. We first prove that each s2C lies in G(<�) by induction on &�(s). Let  be an
ordinal such that any t2C with &�(t)<  lies in G(<�), and let s2C with &�(s)= . We
may assume that s=m is a monomial with m2/G. SinceG(<�) contains all atomic elements
ofU, we may assume that m is not atomic, so any maximal �-bounded path in m has length
>1. Write m=e (L�E�u)� as a standard expansion. If P is a maximal �-bounded path in
 , then (m)�P is a �-bounded maximal path in m with uP ;i;  P ;j2G for a certain i6 jP j.
Since m2/G, the number i cannot be zero, therefore  2C. But &�( )<, so the induction
hypothesis yields  2G(<�), whence e 2G(<�). It remains to show that L�E�u2G(<�).
Again we may assume that �<�. Ifm is not �-nested for a nested and �-bounded sequence
�, then &�(u)<  and any maximal �-bounded path in u similarly yields a maximal �-
bounded path in m, so E�u2G(<�), whence L�E�u2G(<�). We next assume that m is �-
nested for a nested and �-bounded sequence �=('i; "i;  i; �i; �i)i2N, whence in particular
�=0. Let i2N and let Pi be a maximal �-bounded path in 'i or in  i. Then there is a
finite path Pi;0 in m such that Pi;0�Pi is a maximal �-bounded path in m. We deduce again
that 'i;  i2C. Since &�('i); &�( i)< , the induction hypothesis gives 'i;  i2G(<�).

Consider the rightmost path P in m. Since P is infinite, we have �P ;i2G for a certain
i2N. But then E�u lies in G(<�) since G(<�) has force (� ; �) and 'j ;  j 2G(<�) for all
j6 i. This concludes the inductive proof that C�G(<�).

We now prove that s2C for each s2G(<�) by induction on &�(s). Let  2On such
that any t2G(<�) with &�(t)<  lies in C, and let s 2G(<�) with &�(s) = . Note that
C=R[[N]] where N=C\U. Therefore, we may assume that s= n is a monomial. Write

n=e (L�E�u)�
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as a standard expansion. If jP j=0 then n is atomic, so n2G�G(<�). Assume that jP j>0
and �P ;12 supp  . Then since &�( )< , the path P%1 in  is maximal and �-bounded.
So there is an i2N with uP ;i+1=uP%1;i2G and  P ;i+1=  P%1;i2G.

If jP j> 0 and �P ;1 2 supp u, then in particular � < �. Assume that (L�E�u)� is �-
nested for a �-bounded sequence � = ('i; "i;  i; �i; �i)i2N, so � = 0. Note that &�('i);
&�( i)<  for all i 2N, so 'i;  i 2C for all i 2N. Thus it suffices to show that the
right-most path R in (E�u)� satisfies �R;i 2G for a certain i 2N. But this follows from
Lemma 7.2. Assume now that (L�E�u)� is not �-nested for a �-bounded sequence � or that
� =/ 0. Then &�(u)< (L�E�u)�, so u 2C. As previously, we have uP ;i+1= uP%1;i2G and
 P ;i+1=  P%1;i2G for a certain i < jP j. This concludes our inductive proof that n2C.
Therefore C=G(<�). �

7.3 A proof method, revisited
We next generalize the approach used throughout [6] (see [6, Section 5]), as an important
step toward defining the composition law on No.

Theorem 7.4. Let G be a subgroup of (U;+) with 1 2 G. Consider the class E(G) =
R[[A(G)]] where A(G) is the class of log-atomic monomials LE�

'2U where � is additively
indecomposable with !6�<�, ! <�, and '2G \U�;�. Assume that G(<1)�G for all
transserial subgroups of U with G�G and that E(G)�G.

Let S�U be a subclass with f1g(S such that suppL!�(S\U!�)�S for all �<�.
Write G :=R[[S]] and H :=E(G)+G=R[[A(G)[S]]. If G�G, then

G(<�)=H(<1)�G:

Proof. Since 12 G, we have G ¡ 1= G, and consequently the class E(G) is a transserial
subgroup of U. It follows that H is a transserial subgroup of U. Since E(G) and G are
contained in G, so is H. Therefore H(<1)�G.

We claim that H(<1)=G(<�). We have H(<1)�G(<�) by Proposition 7.1. We prove
the inclusion G(<�)�H(<1) by induction on the hyperserial complexity. Let  2On such
that any t�G(<�) with &�(t)<  lies in H(<1) and let s2G(<�) with &�(s)= . We may
assume that s=m is a monomial. Write m=e (L�E�u)� as a standard expansion. We have
&�( )<  so  ; e 2H(<1), and we may assume that m=L�E�u.

If m is �-nested for a certain �-bounded nested sequence �= ('i; "i;  i; �i; �i), then
applying Lemma 7.2 to the right-most path R in m, we obtain an i 2N with mR;i2G.
Therefore mR;i2 G. Now for j6 i, we have &�('j); &�(e j)< , so 'j ; e j 2H(<1), whence
in particular 'ij; e j 2 G. We deduce by induction on j 6 i that m;i¡j 2E(G), whence in
particular m2E(G). So m2H(<1).

Assume now that m is �-nested for no �-bounded nested sequence �. This implies that
&�(u)< , so u2 G. But then m=L�E�u2E(G), so m2H(<1). This concludes our proof
that H(<1)=G(<�). �

Proposition 7.5. Let � be a limit ordinal and let U[�]; � < � be an increasing family of
subgroups of U such that each U[�] :=R[[U[�]]] is a subfield of U of force (� ;�). Let 4:S
�<�U

[�]¡!No such that each restriction 4 �U[�]:U[�]¡!No for � < � is a right
composition of force � as per [6, Definition 7.2] with a well-based relative near-support.
Finally, consider a subclass S�U with f1g(S such that suppL!�(S\U!�)�S for all
�<�. If 4 �S is well-based, then 4 �S(<�) is well-based.
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Proof. SetG :=R[[S]]. Write G for the class of series s2G(<�) such that (4(m))m2supps is
summable. So G�G. Each element of A(G) is log-atomic, so [6, Lemma 1.16] implies that
4 is well-based on A(G). Thus E(G)�P. Given any transserial subgroup T=R[[X]]�P,
the function 4 �H extends uniquely into a transserial right composition 41 on T(<1) by
[6, Proposition 4.7]. But 41 must coincide with 4, which implies that 4 is strongly linear
on T(<1), whence T(<1)�P. We can thus apply Theorem 7.4 and obtain that G(<�)�P,
hence that 4 �S(<�) is well-based. �

7.4 Surreal numbers of bounded strength
Let � be a non-zero ordinal and write � :=!�. In this section, we define the force � analogue
No� of surreal numbers. Roughly speaking, the field No� contains all numbers which can
be constructed using hyperexponentials and hyperlogarithms of force <�, and arbitrary
surreal indexes for nested numbers.

Set T[0] := L<�g � !. As in Section 6.2, we have a tower of confluent subfields T[�];
�2On of force (� ; �). We define No� to be the field T[On]=

S
�2OnT

[�], which is thus a
confluent subfield of force (� ; �). We write Mo(�) for the group of monomials in No�, i.e.
No�=R[[Mo(�)]].

Lemma 7.6. The L<�-atomic elements in No� are ! if � is a limit, and among fL(�/!)n!;
E(�/!)n! :n2Ng if it is a successor.

Proof. Assume that � is a limit. By [6, Lemma 7.25], the only atomic element of L<��! is
!. It follows by induction using [6, Lemma 7.25] and Lemma 5.7 that ! is the only atomic
element of No�.

Assume now that �= �+1 is a successor. Then by [6, Lemma 7.25], the set fL(�/!)n!;
E(�/!)n! : n2Ng is the set of atomic elements of L<� � !. It follows by induction using
[11, p. 66] and Lemma 5.7 that fL(�/!)n!;E(�/!)n! :n2Ng is the set of atomic elements
of No�. �

Lemma 7.7. Consider a property X of paths such that if every path in a number a2No
satisfies X, then every subpath in a satisfies X. Assume that every L<�-atomic number
whose paths all satisfy X lie in No�. Let a2No such that every path in a satisfies X. Then
a2No�.

Proof. We prove this by induction on &�(a). Write X for the class of numbers whose
paths all satisfy X . Let  2On such that a 2X with &�(a)<  lie in No�. Let a 2No
with &�(a)= . We may assume that a=m is a non-trivial monomial. If m is L<�-atomic,
then m2No� by the hypothesis on X . We next assume that m is not L<�-atomic. Write
m= e (L�E�u)� as a hyperserial expansion. Every path P in  or u, is a subpath in m.
Since &�( )< , we deduce that  2No�. If �=/ 0 or m is not �-nested for a �-bounded
nested sequence �, then we also have &�(u)<  whence u2No�, whence m2No�. So we
may assume that m is �-nested for a �-bounded nested sequence �=('i; "i;  i; �i; �i)i2N.
Given i2N, we have &�('i); &�( i)< . Furthermore any path in 'i or  i is a subpath in
m. We deduce by the induction hypothesis that 'i;  i2No�. Let �2On be minimal such
that 'i;  i2T[�](�) for large enough i2N, and fix the least corresponding index i02N.
So �%i02P[�] where T[�+1](�)= ((T[�](�))P[�])(<�). But m2 (T

[�](�))P[�], so m2No�. �

Lemma 7.8. Let �2!On and a2Mo�!. Then one of the following cases occurs:

a) The standard expansion of E�
a is E�!

L�!a+1.
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b) There are a k 2N> and a b2Mo�!2 with a=L�k b.

Proof. Note that E�!
L�!a+1=E�a. If this is a standard expansion then we are done. Oth-

erwise, we have E�
a2L<�!Mo�!2 so there is n 2N with b :=E�nE�

a2Mo�!2. Setting
k :=n+12N, we have a=L�k b as in b. �

Proposition 7.9. We have the following characterization of No�.

a) If � is a non-zero limit, then a number a lies in No� if and only if every path in a
is �-bounded.

b) If � = �+1 is a successor, then a number a lies in No� if and only if path in a is
either �-bounded or satisfies

9n2Z; (uP ;jP j¡1; �P ;jP j¡1)= (L�!+n; �):

for the first index i < jP j with �P ;i+1=1 and (�P ;i>� or �P ;i>�).

Proof. We write No�=
S
�2OnT

[�](�) as above, irrespective of the nature of �. Sup-
pose that � is a limit. Every path in elements of L<� �! is �-bounded. We deduce with
Proposition 7.3 that every path in T[0](�) is �-bounded. It follows by induction using
Proposition 7.3 that every path in elements of No� is �-bounded.

Consider the property X0 of paths of being �-bounded. Consider a L<�-atomic number
a all of whose paths satisfy X0. Write a=LE�u as a hyperserial expansion, where !<�.
By [10, Lemma 5.5(a)], we have  �� �/! = �, and we either have �= 0 or �> �. The
path (a) is �-bounded so we must have �=0 and  <�, whence  =0 and a=! 2No�.
Therefore Lemma 7.7 applies for X0 and entails that numbers with only �-bounded paths
lie in No�. This concludes the proof of a).

Assume now that �= �+1 is a successor and write � :=!�. Consider the property X1
of a path P of being �-bounded or satisfying

9n2Z; (uP ;jP j¡1; �P ;jP j¡1)= (L�!+n; �):

for the first index i < jP j with �P ;i+1= 1 and �P ;i> � or �P ;i> �. Let P be a path in
L<�g �! and assume that P is not �-bounded. Let i < jP j be minimal to witness this. So
�P ;i+1= 1 and �P ;i> � or �P ;i> �. Then in particular a :=L�P ;iE�P ;i

uP ;i+1 is L<�-atomic,
so there is an n2Z with a=L�n!. Therefore �P ;i= 0 and the hyperserial expansion of
a is a=L�P ;iE�P ;i

uP ;i+1=E�
L�!+n by Lemma 7.8. So P satisfies X1. It follows by induction

on � using Proposition 7.3 that every path in elements of No� satisfies X1. As we've seen,
each path in L�n! for n2Z satisfies X1. We deduce with Lemma 7.6 that we can apply
Lemma 7.7 for X1. So any path in an element of No� satisfies X1. �

7.5 Right compositions with atomic elements
Let � 2On>, write � :=!� and fix an a2Mo�. We now define an embedding 4a :No�¡!
No of force � which is to be thought as the canonical composition on the right with a. Recall
by Lemma 7.6 that (Mo(�))�=f!g if � is a limit and that (Mo(�))�=fE(�/!)n! :n2Zg
if � is a successor. Consider the function 4a : (Mo(�))�¡!Mo� defined by 4a(!) := a
if � is a limit, and 4a(E(�/!)n!) :=E(�/!)n a for all n2Z if � is a successor. If � is a �-
bounded nested sequence over No�, then we define (4a)� to be the identity map on No.
The family (4a; ((4a)�)) satisfies the premises of Theorem 6.3. So 4a extends uniquely
into a hyperserial embedding

4a :No�¡!No
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of force �. We call 4a the canonical right composition with the atomic element a.

Example 7.10. Suppose that �=1 and a= log!. Then 4a should be thought as a formal
substitution of log ! for ! in hyperserial representations (see [10, Section 7]) of numbers
in No!. The unicity property of Theorem 6.3 entails that for n2N, the n-fold iterate of
4a (taking inverses if n< 0) is 4Ln(!).
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