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Multi-phase high frequency solutions to Klein-Gordon-Maxwell

equations in Lorenz gauge in (3+1) Minkowski spacetime

Tony Salvi

Abstract
We study a 1-parameter family (Aλ,Φλ)λ of multi-phase high frequency solutions to Klein-Gordon-Maxwell equa-
tions in Lorenz gauge in the (3+1)-dimensional Minkowski spacetime. This family is based on an initial ansatz.
We prove that for λ small enough the family of solutions exists on an interval uniform in λ only function of the
initial ansatz. These solutions are close to an approximate solution constructed by geometric optics. The initial
ansatz needs to be regular enough, to satisfy a polarization condition and to satisfy the constraints for Maxwell
null-transport in Lorenz gauge, but there is no need for smallness of any kind. The phases need to interact in a
coherent way. We also observe that the limit (A0,Φ0) is not solution to Klein-Gordon-Maxwell equations but to
a Klein-Gordon-Maxwell null-transport type system.
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1 Introduction

In this article, we construct a family of specific solutions to the Klein-Gordon Maxwell (KGM) equations

{

∂αF
αβ = −Im(Φ∂βΦ) +Aβ |Φ|2,

(∂α + iAα)(∂α + iAα)Φ = 0,
(1)

in the Minkowski spacetime on R3+1. The unknowns are the charged scalar field Φ (a complex function) and the
electromagnetic four-potential A. We also define the Faraday tensor (the electromagnetic field) as F = dA, that is
Fαβ = ∂αAβ − ∂βAα in coordinates. This is a system of semilinear second order partial differential equations. In
general, the solutions are given in a particular gauge (a representative of an equivalence class), see section 1.1.
Our specific solutions (Aλ,Φλ)λ are based on a multi phase1 high frequency initial ansatz of definition 2.21 for which
λ represents the period of oscillation (as λ goes to 0 we recover high frequency oscillations) and is tuned to the
amplitude. We are interested in the behaviour of these solutions when λ is very small : the limit (A0,Φ0) and the
convergence of the different part of the solutions as λ goes to 0. Indeed, the solutions admit a decomposition in an
approximate solution (approximated with respect to λ) plus an error term. The approximation itself is constructed
by geometric optics as a low order phases-amplitude WKB expansion2. For that to make sense, we want the family
of solutions to live on a uniform time interval with respect to λ. In particular, the time does not shrink when λ
goes to 0.

A work of the same type has been done in [10] and [9] on Yang Mills equation (generalising KGM) using different
methods. The author constructs exact solutions that require higher order expansion for a mono phase ansatz, see
section 7.2. In particular, the author gives a precise description of optic geometric expansions for any order and
differentiate the transported part, the polarized part and the "free" part3 of the system. Nonetheless, the author
does not give a description of the initial data. In this article, we are interested in construction for lower order

1We are speaking here about any finite number of phases.
2See section 1.3, on geometric optics.
3Due to the gauge freedom, see section 1.1.
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expansion (and thus lower order approximation) with a multi phase ansatz and in the precise manner the phases
interact. We also give a description of the multi phase high frequency initial data. The multi phase high frequency
(MPHF) solutions have been studied for generic first order symmetric hyperbolic4 systems in [19]. Note that this
also requires higher order expansions.

Another particularly interesting and related case for high frequency expansion is the one of the Einstein equation
in vacuum. It is a system of quasilinear second order partial differential equations whose solutions are spacetime
metric also defined up to a gauge. The behaviours of (multi phase or not) high frequency solutions to this equation
are known, see [3] for the beginning of it or [8], [6], [5], [17], [7], [24], [23] and [25] for the most recent works. Indeed,
the latter papers are dedicated to the proof of the Burnett conjecture (or its reverse counterpart) enunciated in
[2]. This conjecture states that the limits of such high frequency solutions5 are solutions to Einstein coupled with a
massless Vlasov field, i.e., there is a backreaction (an effective stress energy tensor in that case). The backreaction
is linked with the structure of the nonlinearities of the equation and is clearly observable using geometric optics
with the right scaling for the amplitude and the frequency. For example, the presence of nonlinearities with the
so called null structure6 prevents the apparition of backreactions. We are also interested in understanding such
structures on the KGM system in view of geometric optics.

As done in the previously cited papers, we use the WKB expansion method (which leads to geometric optics)
to construct our approximate solution. Then we construct the error term to have an exact solution. The approxi-
mation is understood in the not obvious sense of definition 3.1.
Indeed, the WKB expansion is commonly used for hyperbolic system which is more subtle here. Since, to recover
the hyperbolicity, we choose the Lorenz gauge (see (7)). However, having a good approximate solution to the hy-
perbolic reduced system and the real system is not equivalent, see remark 4.9. In Lorenz gauge, all the parameters
in the expansion obey transport or wave equations which is very convenient. In particular, we have access to the
Strichartz estimates that we use widely in section 6.3 to estimate the error term. The final family of solutions is in
an exact Lorenz gauge which is in contrast with the corresponding wave gauge for Einstein equations [23], this is
possible mainly because the gauge equation for KGM is linear.
Another reason why we define approximation as in definition 3.1 is because the oscillating terms and the non oscil-
lating terms are not treated the same way as a reminder. The important oscillating terms come from interactions
between two different phases and have a good behaviour.

We restrict the type of interactions between two phases, either everywhere characteristic or nowhere character-
istic. This is the commonly used strong coherence assumption7 restricted to the interactions between two phases
only. We deal with an approximate solution of order one so we do not see any other degree of interactions. The
resonant interactions8 are not treated in [6] and [25], it is possible here because of the scaling of the equation which
shifts the hierarchy of the equations for the different parameters. It can be noted that if all the phases are plane
waves then they fit the strong coherence case of the theorem.

In general, dealing with high frequency solutions with high amplitude makes poor uniform Sobolev norms with
respect to λ. The error term has a high amplitude (because it is constructed above an approximation of order 1)
and only a half derivative uniformly bounded. We use the fact that only certain directions contribute to this bad
behaviour and can be isolated by splitting the error in different parts. These different parts obey a coupled system
of wave/transport equations. We resort to the use of auxiliary functions to handle a loss of derivative in this
system. To show the uniform estimates for λ small we use a bootstrap argument, see section 6.2.3.

The initial data for the KGM system must satisfy the Maxwell constraint equation and a gauge condition. This
implies that the initial ansatz cannot be prescribed freely, we give the precise conditions in definition 2.24. This
condition is directly linked with the system given in section 1.2. Naturally, there are also constraint equations for
the error term such that the full initial data satisfy the Maxwell constraints. Moreover, because we cut the error
term in different parts with a nice structure and use auxiliary functions, we have other requirements on the initial
data. We show how to construct a generic set of initial data for the error term satisfying these constraints and

4In particular, without gauge choice.
5The assumptions are that the convergence of the derivative of the metric is only a weak convergence, see [2] for a more precise

statement.
6Which is not the case in the Einstein equations or in the KGM equations.
7See [19].
8When interactions give rise to characteristic phases in the sense of geometric optics.
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having the structure that we want. Each element of the set leads to a 1-parameter family of MPHF solutions to
KGM. These initial data and the estimates in sections 6.3.2, 6.3.3 and 6.1.1 are the key to the construction of our
exact solutions.

1.1 Generalities on Klein-Gordon Maxwell

The KGM equations
{

∂αF
αβ = −Im(Φ∂βΦ) +Aβ |Φ|2,

(∂α + iAα)(∂α + iAα)Φ = 0
(2)

are a model of quantum electrodynamics for charged spinless particles (in our case it is also massless). The
quantity

J β = −Im(Φ∂βΦ) +Aβ |Φ|2 (3)

is the flux of charge density and we have
∂αJ α = 0, (4)

that is the conservation of charge. Because the Faraday tensor Fαβ is antisymmetric, the 0 component of the
Maxwell equation gives

∂iF
i0 = −Im(Φ∂0Φ) +A0|Φ|2 = J 0, (5)

the divergence of the electric field is equal to the density of charge.

A solution to (2) is a critical point of the scalar quantum electrodynamics action

L =

∫

R3+1

−
1

4
FαβF

αβ −
1

2
(∂α + iAα)Φ(∂

α + iAα)Φdxdt, (6)

so that (2) corresponds to the Euler-Lagrange equations of this lagrangian.
The system is invariant by change of gauge. Indeed, let χ be a real function on R3+1 and let

A′
α = Aα + ∂αχ, Φ′ = e−iχΦ,

then (A′,Φ′) is a solution to KGM if and only if (A,Φ) is a solution too. We are free to fix a gauge and remove the
indeterminacy by adding one equation. In this paper, we use the Lorenz gauge

∂αA
α = 0 (7)

to recover a system of semilinear wave equation. With that choice (2) becomes
{

✷Aβ = −Im(Φ∂βΦ) +Aβ |Φ|2,

✷Φ = −2iAα∂αΦ+AαAαΦ.
(8)

We call this reduced system KGML and we call the reduced Maxwell and reduced Klein-Gordon equations Maxwell
and Klein-Gordon equations to simplify.
Other gauge choices which are very used are the Coulomb gauge and the temporal gauge. For example, these are
used to obtain global existence results or low-regularity class of solution in [13], [14] and [11].

1.1.1 Lorenz gauge

To solve (2) one can first prescribe initial data (Aα|t=0 = aα, ∂tA
α|t=0 = ȧα,Φ|t=0 = φ, ∂tΦ|t=0 = φ̇) satisfying the

Lorenz gauge condition and the Maxwell constraint equation from (5), that is
{

∆a0 + ∂iȧ
i = Im(φφ̇) + a0|φ|2,

∂ia
i + ȧ0 = 0.

(9)

Then, find a solution to the KGML system (8) and propagate the Lorenz gauge via the following argument. We
take the divergence of the Maxwell equation in (8) so that

✷∂βA
β = −∂βA

β |Φ|2, (10)

where we use the Klein-Gordon equation in (8) to get this result. From there, and because we choose initial data
accordingly with ∂αA

α|t=0 = 0 and ∂t(∂αA
α)|t=0 = 0 (due to the constraints), we deduce that the equation (7)

remains true for all time, i.e., the gauge propagates.
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1.1.2 Plane wave

Before discussing exact multi phase high frequency solutions we wish to present quickly the plane wave solutions to
the linearized Klein-Gordon Maxwell system around the vacuum state

{

∂αF
αβ
p.w. = ✷Aβp.w. − ∂β∂αA

α
p.w. = 0,

✷Φv.p. = 0.
(11)

The plane waves solutions are constant along planes perpendicular to the direction of propagation, we write them
under the form

Aαp.w. = P βcos(kαx
α) +Qβsin(kαx

α), Φp.w. = Ψeik
′
αx

α

respectively for the four-potential and the wave function. The quantities P,Q,Ψ, k and k′ are constants. We search
for solutions to (11) so this leads us to parameters9 satisfying

kαk
α = k′αk

′α = 0, kαP
α = kαQ

α = 0.

The waves propagate in a null direction (at the speed of light) and the amplitudes of the potential are polarized10.
It is not surprising that our initial ansatz is also polarized the same way, see definition 2.22.

1.2 Discussion on Klein-Gordon Maxwell null-transport

We introduce the KGM null-transport system







∂αF
αβ = −Im(Φ∂βΦ) +Aβ |Φ|2 +

∑N
j=1 V

β
(j)ρ

2
(j),

(∂α + iAα)(∂α + iAα)Φ = 0,

V α(j)∂αV
β
(j) = 0,

V α(j)V(j)α = 0,

2V α(j)∂αρ(j) + ∂αV
α
(j)ρ(j) = 0,

(12)

with V(j) a four-velocity vector field and ρ(j) a charge density both defined for j an integer smaller than a finite N.
The quantities A and Φ are the four-potential for the electromagnetic field and the wave function. The system (12)
is close to the null-dust (or discrete Vlasov) Klein-Gordon Maxwell system. The difference is that the charges ρ(j)
influence the electromagnetic field but their trajectories (following the flow lines of V(j)) do not see the electromag-
netic field.

We claim that a part of the parameters11 of the first order MPHF approximation are solution to this system.
These parameters (and by extension all the parameters of the approximate solution) are called the background. In
other words, the limit in L2, the background terms (A0,Φ0), of the high frequency family (Aλ,Φλ) is solution to
KGM null-transport and not KGM, there is a backreaction. This gives us an equivalent of the results of the Burnett
conjecture.
One can check that this system is also gauge invariant and that the gauge propagates with the same technique as
for KGM in section 1.1.1.

1.3 Geometric optics

We refer to [19] and [11] for very complete descriptions of the subject. Geometric optics is a high frequency
approximation of solution. It comes from optics which is meant to describe the propagation of light, that is
electromagnetic waves obeying the Maxwell equations. The propagation occurs along rays and fits the particle-like
view point of light. This high frequency approximation is generalised to first order symmetric hyperbolic systems
of the form

M(U)α∂αU = F (U), (13)

9One can check that there are other plane wave solutions to the Maxwell vacuum equation with a non characteristic phase, i.e.,
kαk

α 6= 0. These solutions are pure gauge solution, they are in particular invisible in the Faraday tensor.
10The Faraday tensor itself is polarized, the electromagnetic waves oscillates perpendicularly to the direction of propagation.
11The rest of the parameters obey decoupled equations.
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for U a vectorial quantity defined on R3+1. Typically, by analogy with light, the amplitudes are propagated at the
speeds given by the eigenvalues of the system and are polarized in the eigenspaces. In the monophase case, we look
at approximate solutions12 as such a (WKB) expansion

Uapp(t, x) = λp
∑

i≥0

λi/2Ui(t, x,
u

λ
), (14)

where λ is the typical period or wavelength, p a tuning parameter, u a phase and where the Ui(t, x, θ) are periodic
with respect to their third variable. In general, Uapp is a good approximation of order m if for 0 ≤ i ≤ m the Ui
are solutions to a cascade of equation13 that depends on the phase u.
The two main features of these equations are the so called eikonal equation14 for the phase

det(Mα∂αu) = 0, (15)

with the associated polarisation condition
U0 ∈ ker(Mα∂αu). (16)

A phase is said to be characteristic if it solves the eikonal equation. We do not detail the transport equation for the
amplitudes here. In the case of a linear system there is, by definition, no interactions and no creation of harmonics.
Thus, one can look at a more precise profile

Uapp(t, x) = λp
∑

i≥0

λi/2ei
u
λUi(t, x). (17)

In general, in the nonlinear case15 there is no reason to be able to have such an easy description, harmonics might
play an important role. In fact, it depends on the parameter p, if the amplitude is big (p small) then the nonlinearity
appears at the leading order and produces harmonics, it is called weakly nonlinear optics. We see that the geometric
optics really takes into account the scaling of problems. However, some structures in the nonlinearities might still
prevent the apparition of harmonics, for example the null structures, see [16].

In the multi phase case, the general ansatz is

Uapp(t, x) = λp
∑

i≥0

λi/2Ui(t, x,
U

λ
), (18)

where U is the vector containing all the phases. Recall that we only look at a finite number of phases, this implies
that the group of frequency (representative of the interaction between phases) is isomorphic to Zd for d finite. To
be able to apply geometric optics we need to qualify the interactions between phases. A typical restriction is the
strong coherence assumption, that is, for any z ∈ Zd and any phase uz = z · U we have

∀(t, x) ∈ R
3+1 det(Mα∂αuz)(t, x) = 0 or ∀(t, x) ∈ R

3+1 det(Mα∂αuz)(t, x) 6= 0. (19)

The phase uz is either everywhere characteristic or nowhere characteristic. Under this assumption one can generally
build approximate solutions at any order, see [19] for more details.

The next step is to study the stability of such approximate solutions, that is the existence of an exact solution close
to the approximated ones on a fixed interval (independent of λ). One can construct the exact solution as the sum
of the approximate solution (truncation of the WKB expansion (14) at order m) plus an error term Zλ, that is the
parametrix

Uλ(t, x) = λp
m∑

i≥0

λi/2Ui(t, x,
U

λ
) + Zλ. (20)

It is mathematically interesting to see up to which order of expansion one has to go to be able to build the exact
solution. For example, in the KGM case regularity is lost at each order of expansion, see section 7.3, so being able
to construct the error term at low order allows us to treat less regular initial ansatz. More generally, higher orders

12With respect to λ.
13Each level is meant to cancel a certain order of λ.
14Written here for linear systems.
15In this paper we only speak about the semilinear case, here it corresponds to Mα being independant of U .
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require the description of bigger hierarchical system of equations.

In this paper we start with the initial ansatz

aα1λ = aα0 + λ1/2
∑

A ∈A

(pαA cos(
vA

λ
) + qαA sin(

vA

λ
)), φ1λ = φ0 + λ1/2

∑

A ∈A

(ψA e
i
vA

λ ) (21)

and we search for solutions to (1)16 based on it. Firstly, we want an approximate solution of order one to (1) (which
are very close to approximate solutions to (8) at first order). This typically gives rise to high frequency expansions
such as (14). In our case this simplifies to

Aα1λ = Aα0 + λ1/2
∑

A∈A

(PαA cos(
uA

λ
) +QαA sin(

uA

λ
)), Φ1λ = Φ0 + λ1/2

∑

A ∈A

(ΨA e
i
uA

λ ). (22)

It is described in sections 2.3 and 4. We remark that this ansatz contains only the first harmonic of each phase, as
in the linear case (17). Moreover, there are O(1) non oscillating terms. This is the same type of expansion as in
[25] and [6] for the Einstein case, the only difference is the scaling of λ. The amplitude is bigger here because the
nonlinearities are weaker (quadratic with only one derivative).
Let starts the discussion by considering only one phase. Despite the bigger amplitude we remark that the param-
eters in the expansion obey linear transport equations17, see [19]. Indeed, in comparison with Einstein there is a
shift in the cascade of equation, for example the lower order interaction of the first parameter with itself is of order
O(1) and its transport equation of order O(λ−1/2). In fact, there is an even stronger property : there is no creation
of harmonics below the order O(λ). This is due to the structure of the nonlinearity. It is called transparency, see
[12] and [16]. Nonetheless, we observe that even if there was creation of harmonics in the equation at the lowest
order (that is O(1)), the first order expansion could still be described as (22) because of the shift in the hierarchy
of equation. This is a simpler case than the Einstein one where one has to use the polarization of higher order term
to treat the harmonics, see [23].
The absence of harmonics at big amplitudes is not equivalent to the absence of interaction at big amplitude. Indeed,
there is an O(1) non-oscillating term in the Maxwell equation coming from the interaction of the oscillating part
of Φ1λ with itself. In other words, there is a backreaction (in the language of [2]) or a rectification (in the language
of geometric optics [19]). There is an effective flux of charge density appearing (in comparison with Einstein where
there is an effective stress energy tensor). It is visible because of the fine tuning between the amplitude and the
frequency of the oscillation with respect to the structure of the nonlinearities.
Now, considering the different phases we see that there are O(1) oscillating terms coming from the interaction
of two phases. Under the strong coherence assumption (19), there are two possibilities for each new arising phase.
If a phase is non characteristic, then it is easy to deal with it as done in [6] for example, see section 6.1.3. Indeed,
it behaves like the reminder of a very small amplitude oscillating term plugged in the equation (1).
If the phase is characteristic, then we can absorb it with a small amplitude parameter, this is due to the shift in
the cascade of equation. This cannot be done for the Einstein case in [6] and [25]. All of this allows us to treat the
approximate solution under the form of a simple expansion (22). Then, we are able to construct an exact solution
close to the approximated one by adding an error term. The error term absorbs directly all the O(λ1/2) reminder,
we do not see interactions between more than two phases at all. This would not be the case if the error term was
constructed after a higher order expansion. One can observe that we did not talk about the non hyperbolicity of
the system or the choice of gauge. This is because it is almost invisible too. Indeed, the error term can absorb the
"gauge defect" of the approximate solution (22) for free at this order if the initial data are well chosen, see remark
4.9 and sections 5.1 and 6.3.6.

With our previous discussion we see that the most important nonlinearities18 are

Im(Φ∂βΦ), 2iAα∂αΦ,

coming respectively from the Maxwell equation and the Klein-Gordon equation. Both contain a hidden null
structure up to a Riesz operator, this is shown in the Coulomb gauge in [15]19. The transparency is often

16We can observe that it is a system of second order partial differential equations so the things are slightly different.
17Usually, the bigger is the amplitude the more we see the nonlineartities.
18In the sense that the cubic nonlinearties are basically invisible in a low order approximation.
19In Lorentz gauge the KG nonlinearity is also a null-structure in the sense of counting "bad derivatives".
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carried by the null structures but it is not the case here. For the Maxwell equation, the O(1) harmonics are canceled
by the nature of complex number but there still remains the backreaction. This effect guarantees the absence of a
complete null structure. For the KG equation, the polarization of the profiles perpendicularly to the direction of
propagation kills totally the O(1) interactions. This is closely related to the compatibility conditions described
in [16].

1.4 Rough statement of the theorems

Theorem 1.1. Let an initial ansatz (21) and the parameters that composed it have the following properties :

• To be a solution to the constraint equations for KGM null transport in Lorenz gauge

• To have a polarized first parameter for the electromagnetic potential

• To have phases two by two fully collinear or fully separated (strong coherence)

• To be regular enough without any assumptions about its size

then there exists λ0 > 0 and T > 0 such that for all λ < λ0 there exists a family of MPHF solution to KGM in
Lorenz gauge (Aλ,Φλ)λ<λ0 on [0, T ]. The solutions are decomposed as a first order expansion (22) (the background
terms) plus an error term. As λ goes to 0 the family converges to (A0,Φ0), a solution KGM null-transport in Lorenz
gauge.

We see that the conditions on the initial ansatz are the same as in [25], the main difference is that there is no
assumption about the size of the initial ansatz. Moreover, the limit (A0,Φ0) is not here solution to a physically
relevant system.

Theorem 1.2. Under the same assumptions, the (Aλ,Φλ)λ<λ0 is uniformly bounded in H1/2 and the error term
is small in this norm.
The first order expansion corresponds to the truncation of a WKB expansion of order 1, that is an approximate
solution of KGM in Lorenz gauge in the sense of definition 3.1.

We observe in section 7.2 that these results are comparable to the ones of [10] in terms of smallness and stability
of KGM for the monophase case with higher order expansion.

1.5 Ideas of the proof

The proof of both theorems follows from the construction of the MPHF solution (point 1 of Theorem 3.1), thus we
only detail this part. In particular, we detail the structure of the error term that we cut in different parameters
with different roles.
Given an initial ansatz which satisfies the assumptions 1.1 the five main steps of the construction are :

(i) To construct an approximate solution based on the initial ansatz via geometric optics.

(ii) To provide well prepared initial data for the error parameters.

(iii) To construct an exact solution to KGML based on the previous approximation with the precise error term.
The different parameters of the error term are given by a wave/transport system.

(iv) To show that the Lorenz gauge propagates and to recover a solution to KGM.

(v) To show that the time of existence of solutions is independent of λ < λ0 by a bootstrap argument.

We do not detail here the construction of the approximate solution as it is straightforward once we have the initial
ansatz and a common problem, see section 4. We start with a discussion on the hyperbolic system of equations
KGML, we do not consider yet the problem of the gauge.
The structure of both equations in Lorenz gauge is captured by this schematic equation for Fλ,

✷Fλ = Fλ∂Fλ + (Fλ)
3, (23)

with
Fλ = F0 + λ1/2

∑

A ∈A

ei
uA

λ FA + Zλ, (24)
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where Zλ is the error term and the other terms form a first order expansion, F0 and FA are the background
of section 4. The background does not depend on λ, it needs to be solution to a system of equations given in
4.1 to have a good approximate solution (in the sense given in definition 3.1) and to be able to construct the exact
family of solutions.

In this paper we only need an almost approximate solution 3.1 of order 1 to build the error term and have exact
solutions. In particular, the order 1 is lower than what can be allowed in [10] to construct an exact solution for
only one phase, see section 7.2. Searching the error at a low order does not give a lot of smallness. It is harder
to improve the estimates in a bootstrap argument. For example, at order 1 we do not have pointwise uniform
bounds in λ on compact sets. The error term is too big in the Sobolev norms20. Meanwhile, searching it at a higher
order brings more difficulties with the interaction of phases. The two classes of interaction are dealt here with very
different methods (treating the d’Alembertian as an elliptic operator when there is no resonance and reintroducing
a parameter with smaller amplitude when there is). Implementing those methods at higher order approximations
would require a more general profile for the expansion and more conditions on the initial ansatz.

In general, we want some norms to be small in λ but big enough in terms of control of the regularity of Zλ to
control the RHS of its evolution equation. With a classical approximate solution of order 1 we must have

✷Zλ = O(λ1/2) + [. . .], (25)

where the O(λ1/2) comes from the background and where the [. . . ] contain terms involving Zλ. We could think of
having heuristically 21

∑

k≤1

(λk||Zλ(t)||Hk+1 + λk||∂tZλ(t)||Hk ) + λ||∂2ttZλ(t)||L2 ∼ O(λ1/2),

with natural energy estimates. Thus, be in "good enough norms" in terms of control and smallness to close the
bootstrap, for example with lemmas 8.17 and 8.18.
There are obstacles to that which arise from the interaction of phases and the Fλ∂Fλ term on the RHS. The
problems they pose are solved with the precise structure of the error term

Zλ =
∑

A ∈A

λ1F+
λA

ei
uA

λ +
∑

A ,B∈C,A<B

λ1F̆
+

A ±Be
i
uA ±uB

λ + E
ell
λ + E

evo
λ . (26)

Let us detail those problems

1) We do not have an approximate solution in the usual sense, i.e., there are high frequency interaction terms in
O(1).

2) The term Fλ∂Fλ contains schematically Zλλ
−1/2. This is also a problem for the mono phase case. It is

treated in [10] with product estimates for higher order approximation only.

3) There is a loss of derivative due to the ✷F+
λA

term appearing in the equation.

4) The term Fλ∂Fλ carries E
evo
λ ∂Eevoλ that cannot be treated in terms of smallness with Sobolev product esti-

mates and embeddings.

5) The term Fλ∂Fλ carries iEevoλ

∑

A ∈A
∂uA e

i
uA
λ F+

λA
that cannot be treated neither.

For 1) there are two cases22 :

– A part of the O(1) interactions are oscillating with a characteristic phase23 and are absorbed by F̆
+

A ±B (more
details are given in section 6.1.2).

20In particular, the E
evo
λ defined after.

21We ignore the fact that we need some weighted Sobolev norms.
22Due to the restriction on the phases possible interactions.
23Introducing a new parameter in λ also brings a λ−1 term via the d’Alembertian which is identically zero if and only if the phase is

characteristic.
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– The other part of the interaction, that are oscillating with a non-characteristic phase, are inverted by hand.
Indeed, the d’Alembertian is an elliptic operator in the non characteristic direction. The defect of this inversion
gives O(λ1) terms that are harmless. This is done with E

ell
λ in section 6.1.3.

The quantity E
ell
λ is directly given by the background and F̆

+

A ±B is solution to the equation

LA±BF̆
+

A±B = O(1) + [. . .], (27)

which only depends on the background, the transport operator is defined in 2.3.

This equation is linear in F̆
+

A±B. We consider these two decoupled error parameters as background terms in
the sense that they only depend on it and their time of existence too.
For 2), we remark that the previously cited bad term is highly oscillating only with characteristic phases

Fλ∂Fλ = Zλλ
−1/2

∑

A∈A

∂uA ie
i
uA
λ FA + [. . .]. (28)

Thus, it can be absorbed by introducing again a new parameter, F+
λA

, that also oscillates with these phases. In
fact the transport equation for F+

λA
is only coupled to E

evo
λ because the other part of Zλ are already better with

the splitting. See sections 6.1 and 6.3 for the construction.

Finally, Eevoλ absorbs all the remaining. In particular, all the high frequency interactions between the error param-

eters and the first order expansion F0 + λ1/2
∑

A ∈A
ei

uA

λ FA are above the minimum smallness required which is

O(λ1/2).

The quantities E
evo
λ and F+

λA
must satisfy a coupled system

{

✷E
evo
λ = Zλ∂Zλ −

∑

A∈A
λ1✷F+

λA
ei

uA

λ + [. . .],

LA F+
λA

= λ−1/2∂uA E
evo
λ FA + [. . .].

(29)

Now, we have to actually prove that this problem is well posed. Classical energy estimates for a wave-transport
system give us

∂Eevoλ ∼ ∂∂F+
λA

, (30)

F+
λA

∼ E
evo
λ , (31)

in terms of derivatives.
This leads us to problem 3) on the loss of derivatives. We use an auxiliary variable to fix it. Indeed, knowing that
F+
λA

is solution to a transport equation, we can improve the regularity of ✷F+
λA

(if the initial data are well chosen,
see section 5.2) by deriving a transport equation for G+

λA
:= ✷F+

A
. The auxiliary variable G+

λA
satisfies better

estimates than two standard derivatives of F+
A

. So, instead of searching a solution to (23), we search for a solution
to 





✷E
evo
λ = Zλ∂Zλ −

∑

A∈A
λ1G+

λA
ei

uA

λ + [. . .],

LA F+
λA

= λ−1/2∂uA E
evo
λ FA + [. . .],

LA G+
λA

= [LA ,✷]F
+
λA

+✷(LA F+
λA

).

(32)

The estimates on the commutator are given in section 8.2. The quantities E
evo
λ , F+

λA
and G+

λA
are the coupled

error parameters.

The last term that needs a special care is Zλ∂Zλ, this brings us to problem 4) and 5) with the terms E
evo
λ ∂Eevoλ

and iEevoλ

∑

A ∈A
∂uA e

i
uA

λ F+
λA

.
For 4) we use the Strichartz estimates for wave equation, see section 6.3.4.
For 5) it is more complicated. It is a quadratic term of the form E

evo
λ F+

λA
that does not have any extra smallness

usable with Strichartz estimates.24

24We can use the Strichartz estimates on F
+

λA
due to the control of G

+

λA
.
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Nonetheless, it has a good structure as it oscillates with respect to characteristic phases. So, instead of letting it
in the RHS of ✷Eevoλ we can choose to divide it and place it in the transport equation for F+

λA
as done for the first

bad term 2).

– On the RHS of ✷Eevoλ this term is lacking smallness (as it is nonlinear we need a smallness of O(λ1/2+ε) for
some ε > 0 to close the bootstrap, see b) of section 6.2) but is largely regular enough (it holds no derivatives
and is only quadratic).

– On the RHS of LA F+
λA

it has enough smallness but it is missing regularity. Indeed, because we have a
transport equation for ✷F+

λA
by commuting the one of F+

λA
with ✷, we get the source term ∂F+

λA
∂Eevoλ

which is not in H1 (where ✷F+
λA

needs to be) since ∂F+
λA

and ∂Eevoλ are in H1.

We split the term with a projector on frequency

Π−f(x) = F−1(1|ξ|≤ 1
λκ
f̂(ξ))(x), (33)

for a small κ > 0 and Π+ = 1−Π−.
We put the high frequency part in ✷E

evo
λ . With κ we recover the λε missing, we exchange regularity for smallness.

In the equation for ✷F+
A

, we put the low frequency. We miss regularity but the price of a derivative is very low (κ
can be taken as small as we want) so we can cover it with the natural smallness of Eevoλ , we exchange smallness for
regularity. We give more details in the bootstrap part 6.3.5.
The full system of equations is given in section 6.1.1.

We remark that

||Zλ||L2 ∼ O(λ1/2),

||Zλ||H1 ∼ O(1),

and also that the error term is smaller in H1/2 than what it is using only the interpolation of the previous estimates,
that is

||Zλ||H1/2 ∼ O(λ1/2).

The error term seems not small enough to handle the estimates of the RHS of (23) (which contains cubic terms).

But if taken with its good structure (ei
uA
λ F+

λA
and F̆

+

A ±Be
i
uA ±uB

λ carrying all the smallness defect) this is suffi-
cient to estimates all the RHS terms of ✷Eevoλ . In the theorems, we see that no smallness is required for the initial
ansatz (and thus the background initial data), a small λ is sufficient to close the bootstrap.

The background is just one order more regular than the error term (and thus the full solution) which is mainly due
to the ✷FA in O(λ) that is absorbed by the error term. The error term itself is at the lowest level possible in term
of regularity to have a local well posedness result for a system of equations of the type of KGM in Lorenz gauge
using the energy method. Well posedness in lower regularity class has been proved in [13] for KGM using Coulomb
gauge and the structure of the equation.
This ends the discussion on finding an exact solution to KGML with a good structure for the bootstrap.

The previous arguments rely in fact on the choice of well prepared error initial data (which we give in the
definition 5.9) and with the required smallness 5.12. By well prepared we morally mean with the right regularity
and such that the initial data for the auxiliary function G+

λA
make sense. Moreover, we want an exact solution to

KGM. This requires an exact solution to KGML in Lorenz gauge, that is with

∂αA
α
λ = 0. (34)

This also relies on the initial data, with definition 5.11, i.e., we need initial data that satisfy the constraint
equation for KGM in Lorenz gauge. The gauge propagation is direct after that, see section 1.1.1.
Even with these conditions, for each λ > 0 and each initial ansatz, there is still freedom of choice on the error initial
data and thus on the solutions to the system. The constraints are underdetermined. We exhibit a set of generic
error initial data fitting these three definitions. Each elements of the set leads to a 1-parameter family of MPHF
solutions to KGM. To construct the set :
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– We construct initial data zλ for the error term Zλ :

– We choose the free part of the initial data for the error term with compact support and generic smallness
properties, adding one more smallness assumption in proposition 5.14 to control the first time derivative
of the gauge in definition 5.12.

– We find a solution to the constraint equations for Maxwell in Lorenz gauge with respect to the initial
ansatz and the previously chosen free initial data. In particular, solving the Maxwell constraints cor-
responds to inverting a perturbed Laplacian, which is done in some weighted Sobolev spaces defined
in 2.1. The RHS of the equation corresponds to the RHS of the Maxwell evolution equation, we thus
recover the same kind of problem of smallness as described above. Nonetheless, because the equation
is not coupled and because we have an elliptic operator instead of a hyperbolic one everything is simplified.

– We cut the error term initial data zλ into initial data for the error parameters (see the precise error
term (26)) with the right properties and we use the freedom of choice to deal with technical problems :

– We express E
ell
λ |t=0 with respect to the initial background.

– We choose F+
λA

|t=0 = 0 and F̆
+

A±B|t=0 = 0 to deal with the smallness of Eevoλ and the smallness and

the regularity of G+
λA

.

– We set E
evo
λ |t=0 with respect to the previous choices and zλ so that the initial data for the precise error

term give a solution to the constraints.
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1.7 Outline of the paper

• In section 2 we give some notations and definitions on the functional spaces, on the phases and on the multi
phase high frequency initial ansatz.

• In section 3 we set the two main theorems.

• In section 4 we derive the evolution equations for the background to have an almost approximate solution 3.1,
the geometric optics approximation.

• In section 5 we give the details on the initial data for the error term.

• In section 6 we give the details on the error term, the existence of a local in time solution to KGML, the
propagation of gauge and finally the uniform time of existence with the smallness results and the bootstrap.

• In section 7 we conclude and put everything together. We do some other general remarks

• Appendix

2 Notations and definitions

2.1 General notations

Definition 2.1. For m ∈ N, 1 ≤ p < +∞ and δ ∈ R we define the weighted Sobolev space Wm
δ,p as the closure of

C∞
0 for the norm

||u||Wm
p,δ

= (
∑

i≤m

||(1 + |x|2)
δ+i
2 ∂iu||pLp)

1
p ,

with Hk
δ =W k

2,δ and Lpδ =W 0
p,δ. These are Banach spaces.
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Definition 2.2. For m ∈ N and δ ∈ R we define the weighted Cmδ as the Banach space of m-times continuously
differentiable functions for the norm

||u||Cm
δ

=
∑

i≤m

sup
x∈R3

|(1 + |x|2)
δ+i
2 ∂iu(x)|.

Notation 2.3. We write the transport operator 2∂αuA ∂α +✷uA as LA .

Notation 2.4. We note by Supp(f) the support in space of a function of space. For a function of space and time,
defined on the interval [0, t], we abuse some notation by writing Supp(f) = Us∈[0,t]Supp(f(s)).

Notation 2.5. For Ω a compact set of R3 we define I (t,Ω) := {x ∈ R3|∃y ∈ Ω, |x− y| ≤ t}.

2.2 Phases

2.2.1 Generalities

Here we define all the properties that concern the phases.

Definition 2.6. A phase u(x, t) is defined as a scalar function of space and time whose spacetime gradient du# is
never 0, it has no critical point. In this paper, it is said to be characteristic25 if it satisfies the so-called eikonal

equation for a metric g associated to the wave operator

∂αu∂αu = g(du#,du#) = 0. (35)

The phase is isotrope for the metric. For the Minkowski metric in Cartesian coordinates, it is equivalent to

|∇u|2 − (∂tu)
2 = 0. (36)

Moreover, the phase is future directed if
g(du#, ∂t) < 0. (37)

Proposition 2.7. If the phase u is characteristic for a metric g then its gradient d#u satisfies the geodesic equation

gαβ∂βu∂
2
αγu− Γβγα∂

αu∂βu = 0. (38)

Proof. We have

0 = ∂γ(g
αβ∂βu∂αu) = 2gαβ∂βu∂

2
αγu− 2gαµΓγµβ∂αu∂γu.

Remark 2.8. We wrote the equation for any metric g and for any system of coordinates. For the Minkowski metric
in Cartesian coordinates, the Christoffel symbols are 0.

Now we only consider the Minkowski metric.

Proposition 2.9. From any (v, v̇) ∈ (C2(R3), C1(R3)) eikonal initial data, i.e., where

(v̇)2 = |∇v|2, (39)

with ∇v 6= 0 and v̇ < 0 we can construct a unique future directed characteristic phase u(t, x) ∈ C2([0, Tv[×R3) with
initial data u|t=0 = v and ∂tu|t=0 = v̇, where Tv is maximal.

Proof. This is a classical result as we have a self transport equation. We use the representation formula

d#u(χ(y, t), t) = |∇v(y)|(1, ξ(y)), (40)

where we set ξ = ∇v
|∇v| and χ(y, t) = y + tξ(y).

The solution exists as long as χ(t) is a diffeomorphism from R3 to itself.

25We refer to the section on geometric optics for more details, this eikonal equation is associated to the d’Alembertian.
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In this article, we consider only two types of interactions that contain all the plane waves possible interactions26.
We consider either that two phases are fully collinear or that they are fully angularly separated.

Definition 2.10. Two phases uA and uB are called fully angularly separated (there is a non resonant interaction
if the phases are characteristic) at time t if

∀x ∈ R
3 |∂iuA ∂

iuB|

|∇uA ||∇uB|
(x, t) < 1.

Definition 2.11. Two phases uA and uB are called fully collinear (there is a resonant interaction if the phases
are characteristic) at time t if their gradient are collinear at every point,

∀x ∈ R
3 |∂iuA ∂

iuB|

|∇uA ||∇uB|
(x, t) = 1.

Remark 2.12. Without any mention of t, fully angularly separated and fully collinear mean that it is true for all
t on the intersection of the interval of definition of the two phases.

Proposition 2.13. If uA and uB are fully angularly separated at 0 and characteristic then they are fully angularly
separated for all t.
If uA and uB are fully collinear at 0 and characteristic then they are fully collinear for all t.

Proof. We suppose that the two phases exist on [0, T ∗] and are fully collinear at time t = 0 so that ∃k(x) > 0 such
that ∀x ∈ R3

∇vA (x) = k(x)∇vB(x)

⇔ ∇uA (x, 0) = k(x)∇uB(x, 0)

⇔ ∀t ∈ [0, T ∗], ∇uA (χA (x, t), t) = k(x)∇uB(χA (x, t), t)

⇔ ∀y ∈ R
3, ∀t ∈ [0, T ∗], ∇uA (y, t) = k(χ−1

A
(y, t))∇uB(y, t),

where we use the representation formula and its inverse for both phases. In particular, we see that we substitute
χB(x, t) with χA (x, t) because χB(x, t) only depends on ξB = ∇vB

|∇vB| =
∇vA

|∇vA | = ξA and so χB(x, t) = χA (x, t).

We see that, at a time t two phases are collinear if and only if they were collinear at time 0. This is due to the
constant speed of propagation. The reverse argument apply for fully angularly separated phases.

2.2.2 Phase set

Definition 2.14. We call {vA , v̇A |A ∈ A} an initial phase set where each vA and v̇A are defined on R3 with
∇v 6= 0. To simplify, we forbid the existence of two phases such that ∇vA = ∇vB.
In the case where (vA , v̇A )A∈A are eikonal initial data, we call {uA |A ∈ A} the associated phase set emerging
naturally from the initial phase set. Each uA is a characteristic phase defined on [0, Tmin[×R3 for Tmin given by
the intersection of all the intervals of existence. We set N = |A| the number of phases and UA the vector of size N
containing each phase.

Definition 2.15. We call angularly adapted an initial phase set {vA , v̇A |A ∈ A} (respectively a phase set
{uA }A∈A) if for any (vA , vB) (respectively (uA , uB)) with A ,B ∈ A the phases are either fully angularly separated
or fully collinear.

Definition 2.16. For a given phase set {uA |A ∈ A}, let C ⊂ A × A be the set of couple of distinct phases that
are fully collinear and S ⊂ A×A be the set of couple of phases that are fully angularly separated. In particular, if
the phase set is angularly adapted then C ∪ S ∪A ∈A (uA , uA ) = A× A.

If the phase set is angularly adapted with characteristic phases we get a good control of the smallness of important
quantities.

26See the geometric optics part 1.3.
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Proposition 2.17. For a given angularly adapted phase set {uA |A ∈ A} with characteristic phases, for any
compact set Ω ⊂ R3 and any τ > 0 there exists η0 which depend on (Ω, τ) such that

∀(x, t) ∈ Ω× [0, τ ], minA∈A|∂
0uA (x, t))| > η0, (41)

∀(x, t) ∈ Ω× [0, τ ], minA∈A|∇uA (x, t)| > η0, (42)

∀(x, t) ∈ Ω× [0, τ ], min(A ,B)∈S |∂β(uA ± uB)∂β(uA ± uB)(x, t)| > η0, (43)

∀(x, t) ∈ Ω× [0, τ ], min(A ,B)∈S |∂i(uA ± uB)∂i(uA ± uB)(x, t)| > η0, (44)

∀(x, t) ∈ Ω× [0, τ ], min(A ,B)∈C ,A 6=B|∂i(uA ± uB)∂i(uA ± uB)(x, t)| > η0. (45)

Proof. The first two lines come from the fact that d#uA is never 0 and characteristic.
The two last lines come from the fact that the phases are all different with no critical points (their space gradient
is never 0).
Finally, the third line is a consequence of the following proposition.

Proposition 2.18. For (A ,B) ∈ S the phase uA ± uB is not characteristic.

Proof. We can write in coordinates ∂0uA = k∂0uB and ∂iuA = k∂iuB + li where l is a spacelike vector field and
k > 0 a function. We have

∂β(uA ± uB)∂β(uA ± uB) = ±2∂βuA ∂
βuB.

We suppose that this phase is characteristic, then

0 = ∂αuA ∂
αuA = 2k∂iuBl

i + lili,

0 = ∂αuA ∂
αuB = ∂iuBl

i.

By assumption, the phases are separated which implies lili > 0 so that there is a contradiction between line 1 and
2. The new uA ± uB phase cannot be characteristic.

Remark 2.19. If the initial phase set is composed of sufficiently regular eikonal initial data 2.9 and is angularly
adapted then its associated phase set is angularly adapted for all t ∈ [0, Tmin[. We recover the strong coherence

assumption, the interactions are either everywhere characteristic or never characteristic.

2.3 Initial ansatz

We introduce some material to have a better understanding of the conditions on the initial data for the background
and the initial ansatz.

Definition 2.20. We call a background initial data set the following set of functions (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
)

for A ∈ A. It has its associated initial phase set {vA , v̇A |A ∈ A}. We write pα
A

+ iqα
A

= wα
A

for convenience.

Definition 2.21. For a given λ, we define the initial ansatz as

aα1λ = aα0 + λ1/2
∑

A∈A

(pαA cos(
vA

λ
) + qαA sin(

vA

λ
)),

φ1λ = φ0 + λ1/2
∑

A∈A

(ψA e
i
vA

λ ).

We say that aα1λ is the first order approximation of the electromagnetic vector potential and φ1λ is the first order
approximation of the wave function. The function φ0, φ1λ, ψA and wα

A
are complex functions.
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Definition 2.22. We call the background constraint equations the following system for a given background
initial data set

−∆a00 − ∂i(ȧ0
i) = −Im(φ0φ̇0)− a00|φ0|

2 +
∑

A

v̇A |ψA |2, (46)

ȧ00 = −∂ia
i
0, (47)

∀A ∈ A, (v̇A )2 = |∇vA |2, (48)

∀A ∈ A, ∂ivAw
i
A + v̇Aw

0
A = 0. (49)

Remark 2.23. The first three equations are the constraints for the initial data of a solution to the KGM-null dust
system in Lorenz gauge whose flows are given by (|∇vA |,∇vA ) and are irrotational. In particular, the first equation
is the Maxwell constraint, the second is the Lorenz gauge condition and the third is the eikonal equation.
Finally, the fourth equation is a polarization condition. The first order term in the expansion is orthogonal to the
direction of propagation, we discuss it in sections 1.1.2 and 1.3.

The construction of the full high frequency ansatz relies on a given admissible background initial data set.

Definition 2.24. A background initial data set (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
) is said to be admissible if it

satisfies the background constraint equations (46), (47), (48) and (49), if its initial phase set is angularly adapted
(2.15) and if it has the following regularity

||φ0||H3 + ||ai0||H3 + ||ȧi0||H2 + ||φ̇0||H2 + ||a00||H3
δ0

+ ||ȧi0||H2
δ0

≤ c′0,

max
A ∈A

(||ψA ||H3 + ||wA ||H3 + ||vA ||H5
δ1

+ ||v̇A ||H4
δ1+1

) ≤ c′0,

for27 −3/2 < δ0 and δ1 < −5/2. There is no need for c′0 > 0 to be small.
Moreover, we impose that

Supp(ai0, ȧ
i
0, φ0, φ̇0, ψA , w

α
A ) ⊂ BS′ ,

for some S′ ∈ R+. Only the phases, their gradients, ȧ00 and a00 are not compactly supported, and in particular not
in L2. By Sobolev injection we see that vA ∈ C2(R3).

Remark 2.25. The weight −3/2 < δ0 comes from the typical space on which the Laplacian in R3 is inverted and
the weight δ1 < −5/2 allows the plane waves, that is, ∇v is constant.

We are interested in finding exact solutions to Klein-Gordon Maxwell in Lorenz gauge based on the initial ansatz
of definition 2.21. For that, we add an error which is defined with respect to the background initial data in section
5.

Definition 2.26. The initial parametrix has the shape

aαλ = aα1λ + zαλ ,

φλ = φ1λ + ζλ,

where (zαλ , ζλ) are the error initial data.

3 Main results

Theorem 3.1 and 3.2 together imply that the KGM system is stable in the sense of geometric optics for multi phase
high frequency ansatz. The approximate solution remains close to an exact solution for λ small enough.

27We defined the weighted Sobolev norms in 2.1.

16



3.1 Main theorems

Theorem 3.1. Let (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
) be an admissible background initial data set 2.24 and let −3/2 <

δ < −1/2 with δ ≤ δ0. For 0 < λ < λ0, with λ0 depending on the background and δ :

1. There exists one family of high frequency solutions to KGM in Lorenz gauge. We have (Aiλ,Φλ) ∈ (C0([0, T ], H2)∩
C1([0, T ], H1) ∩ C2([0, T ], L2))2 and A0

λ ∈ C0([0, T ], H2
δ ) ∩ C

1([0, T ], H1
δ ) ∩ C

2([0, T ], L2
δ) based on the initial

ansatz 2.21 with the time T > 0 independant of λ < λ0 and fixed by the background initial data set.

2. Such a solution can be written as the following parametrix

Aαλ = Aα0 + λ1/2
∑

A ∈A

(cos(
uA

λ
)PαA + sin(

uA

λ
)QαA ) + Zαλ ,

Φλ = Φ0 + λ1/2
∑

A∈A

ei
uA
λ ΨA + Zλ,

where (Aβ0 ,W
β
A
,Φ0,Ψ

β
A
, uA ) is the background28 and where (Zλ,Zλ) is the error term.

3. The background is itself solution to a system close to KGM specified in proposition 4.1 and section 1.2.
The quantities A0 and Φ0 (to which the solution converges in the sense given below) are the electromagnetic
potential and the wave function of this system.

4. We have the convergence

∀t ∈ [0, T ], (Aiλ,Φλ)(t)
L2

−−→ (Ai0,Φ0)(t), A0
λ(t)

L2
δ−−→ A0

0(t),

∀t ∈ [0, T ], (∂Aiλ, ∂Φλ)(t)
L2

−−⇀ (∂Ai0, ∂Φ0)(t), ∂A0
λ(t)

L2

−−⇀ ∂A0
0(t).

5. We do not have uniform convergence on compact set but we have for 1 ≤ p <∞

(Aαλ ,Φλ)
Lp([0,T ],L∞)
−−−−−−−−→ (Aα0 ,Φ0).

The second theorem makes a link between [10] and this paper. See section 7.2.

Theorem 3.2. For 0 < λ < λ0, there exists C > 0 such that

1. The family of solutions given by the previous theorem 3.1 is uniformly bounded in H1/2,

∀λ < λ0, ∀t ∈ [0, T ], ||A0
λ(t)||H1/2

δ

+ ||Aiλ(t)||H1/2 + ||Φλ(t)||H1/2 < C.

2. In particular, the error term is small in that norm,

∀λ < λ0, ∀t ∈ [0, T ], ||Z0
λ(t)||H1/2

δ

+ ||Ziλ(t)||H1/2 + ||Zλ(t)||H1/2 < λ1/2C,

and more generally

∀λ < λ0, ∀s ∈ [0, 1/2], ∀t ∈ [0, T ], ||Z0
λ(t)||H1−s

δ
+ ||Ziλ(t)||H1−s + ||Zλ(t)||H1−s < λsC.

3. The first order WKB expansion

Aα1λ = Aα0 + λ1/2
∑

A ∈A

(cos(
uA

λ
)PαA + sin(

uA

λ
)QαA ),

Φ1λ = Φ0 + λ1/2
∑

A∈A

ei
uA

λ ΨA

is an almost approximate solution of order 1 to KGM in Lorenz gauge in sense given below.

28We write W
β

A
= P

β

A
+ iQ

β

A
for convenience.
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Definition 3.1. We say that (Amλ,Φmλ) is an almost approximate solution of order m in λ to KGM in Lorenz
gauge if







✷Aβmλ + Im(φmλ(∂β + iAβmλ)φmλ) = λm/2ΞβλA + λm/2−1/2Ξ̃βλA,

(∂α + iAαmλ)(∂α + iAαmλ)φmλ = λm/2ΞλΦ + λm/2−1/2Ξ̃λΦ,

∂αA
α
mλ = λm/2ΞλL

(50)

We set the Ξλ terms to be in O(1) and the Ξ̃λ to be a sum of high frequency terms :

λm−1/2
∑

N ′≤i≥0

ei
ui
λ νi,

for some finite number of phases (ui)i∈[0,N ′] that are either everywhere characteristic or nowhere characteristic and
for some functions νi.

Remark 3.2. In the monophase case, the author of [10] uses the same type of definition for approximate solution
(a sub case of this definition as there is only harmonics of the same characteristic phase) to build his exact solution
on.

4 First order approximation

4.1 Evolution equations for the background

In this section we construct the first order approximation based on the initial ansatz to have an almost approximate
solution. The first order approximation is made of the background terms which do not depend on λ.

Proposition 4.1. For a given admissible background initial data set 2.24 :

1. There exists a background (Aα0 ,Φ0, uA ,ΨA ,W
α
A
) and a maximal time T such that it is solution to







✷Aβ0 = −Im(Φ0∂βΦ0) +Aβ0 |Φ0|
2 +

∑

A
∂βuA |ΨA |2,

✷Φ0 + 2iAα0 ∂αΦ0 −Aα0A0αΦ0 = 0,

LA ΨA = −i2Aα0∂αuA ΨA ,

∂βuA ∂βuA = 0,

LAW
β
A

= i∂βuA ΨA Φ0,

(51)

with initial data

(Aα0 |t=0 = a0, ∂tA
α
0 |t=0 = ȧ0,Φ0|t=0 = φ0, ∂tΦ0|t=0 = φ̇0),

(uA |t=0 = vA , ∂tuA |t=0 = v̇A ,ΨA |t=0 = ψA ,W
α
A |t=0 = wαA ),

(52)

and with the regularity

3∑

j=0

(||Φ0||Cj([0,T ],H3−j) + ||Ai0||Cj([0,T ],H3−j) + ||A0
0||Cj([0,T ],H3−j

δ0
)) ≤ c0,

max
A ∈A

(

3∑

j=0

(||ΨA ||Cj([0,T ],H3−j) + ||WA |||Cj([0,T ],H3−j)) ≤ c0,

max
A ∈A

5∑

j=0

||uA ||Cj([0,T ],H5−j
δ1+j)

≤ c0,

where c0 only depends on c′0. We observe that by finite speed of propagation we get

Supp(Ai0,Φ0,ΨA ,W
α
A ) ⊂ I (T,BS′) ⊂ BS ,

for S = S′+T and also that only the phases and A0
0 are not compactly supported, and in particular not in L2.
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2. We have the polarization

∂βuAW
β
A

= 0, (53)

and the Lorenz gauge condition
∂αA

α
0 = 0. (54)

3. Moreover, (A1λ,Φ1λ) defined as the first order expansion

Aα1λ = Aα0 + λ1/2
∑

A∈A

(PαA cos(
uA

λ
) +QαA sin(

uA

λ
)), Φ1λ = Φ0 + λ1/2

∑

A ∈A

(ΨA e
i
uA
λ ) (55)

is an almost approximate solution of order 1 to KGM in Lorenz gauge on this time interval.

Remark 4.2. We see that the system (51) has a triangular structure. The phases can be determined first with
proposition 2.9, then the first 3 equations form a coupled system. As noted in section 1.2, these 4 equations together
are equivalent to KGML null-transport (12) with irrotational flows given by the phase gradient d#uA and the
corresponding charge density |ΨA |. Indeed, uA is a characteristic phase so its spacetime gradient is a null vector
field and obeys the geodesic equation. We have

LA |ΨA | =
ΨA

2|ΨA |
(LA ΨA ) +

ΨA

2|ΨA |
(LA ΨA ) =

1

2
(2iAα0 ∂αuA )−

1

2
(2iAα0 ∂αuA ) = 0.

The interaction of the phases with themselves produces a backreaction, an O(1) non oscillating term that we interpret
as a charge density flux. Finally, the equation for W β

A
is decoupled and propagates the polarization with the help of

the geodesic equation for d#uA .

Remark 4.3. In the case where ΨA |t=0 is equal to zero then it remains 0 (propagation of charge density) and so
the (A0,Φ0) are solution of KGM in Lorenz gauge.

Remark 4.4. Due to the polarization condition there is no backreaction in the Klein-Gordon equation.

Notation 4.5. We note by C0 = C0(c0,
1
η0
, N, T ) any constants that are a polynomial in c0, 1

η0
, N = |A| and T .

Proof of 1 of proposition 4.1. Following remark 4.2, we first determine the phases. For that we use the geodesic
and the method of characteristics as explained in proposition 2.9. We have sufficient regularity for proposition 2.9.
Then, we can use classical local existence results from energy estimates for a wave/transport system, here the first
three equations and the last equation. The regularity propagates on the time of existence.

Proof of 2 of proposition 4.1. The initial data are admissible 2.24 so we have the polarization condition and the
Lorenz gauge condition at t = 0.
To recover the propagation of the polarization condition, we contract equation 5 with the vector field d#uA and
we use the geodesic equation.
For the propagation of the gauge, we use the argument given in section 1.1.1. We take the divergence of the Maxwell
equation and we get a linear wave equation for the divergence of the potential with 0 initial data.

4.2 Almost approximate solution

Now we want to prove that the solution to (51) put under the form (55) is an almost approximate solution of order
1 to KGM.

Proof of 3 of proposition 4.1. The polarization condition (53) and the Lorenz gauge (56) for A0 imply that

∂αA
α
1λ = λ1/2

∑

A ∈A

(∂αP
α
A cos(

uA

λ
) + ∂αQ

α
A sin(

uA

λ
)).
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We just proved that
∂αA

α
1λ = O(λ1/2). (56)

We plug the truncated WKB expansions (55) in KGML (8), we get

✷Aβ0 = − Im(Φ0∂βΦ0) +Aβ0 |Φ|
2 +

∑

A

|ΨA |2∂βuA

︸ ︷︷ ︸

= ✷Aβ
0

+ λ−1/2
∑

A

sin(
uA

λ
) (✷uA P

β
A

+ 2∂αuA ∂αP
β
A

+ ∂βuA Im(Φ0ΨA ))
︸ ︷︷ ︸

=0

− λ−1/2
∑

A

cos(
uA

λ
) (✷uAQ

β
A

+ 2∂αuA ∂αQ
β
A

− ∂βuARe(Φ0ΨA ))
︸ ︷︷ ︸

=0

+ λ−3/2
∑

A

∂αuA ∂αuA
︸ ︷︷ ︸

=0

(cos(
uA

λ
)P β

A
+ sin(

uA

λ
)Qβ

A
)

+
∑

A ,B∈A,A 6=B

∂βuBIm(ei
uA
λ ΨA (iei

uB

λ ΨB))

︸ ︷︷ ︸

= Ξ̃λA

+λ1/2ΞβλA

(57)

and

✷Φ0 = −2iAα0∂αΦ0 +Aα0Aα0Φ0
︸ ︷︷ ︸

= ✷Φ0

−
∑

A

λ−1/2iei
uA
λ (✷uA ΨA + 2∂αuA ∂αΨA + 2iAα0 ∂αuA ΨA )

︸ ︷︷ ︸

=0

+ λ−3/2
∑

A

∂αuA ∂αuA
︸ ︷︷ ︸

=0

ei
uA

λ ΨA

−
∑

A ,B∈A,A 6=B

i2(cos(
uA

λ
)PαA + sin(

uA

λ
)QαA )∂αuBie

i
uB
λ ΨB

︸ ︷︷ ︸

= Ξ̃λΦ

+λ1/2ΞλΦ.

(58)

The two first equations of (51) cancel the O(1) non oscillating terms, including the backreaction.
Equations 3 and 5 of (51) cancel the O(λ−1/2) terms respectively in the equation for Klein-Gordon and Maxwell.
Then, with the eikonal equation, we get rid of the O(λ−3/2) terms that come from the d’Alembertian.
The remaining terms are in O(1), composed of the high frequency interactions, or in O(λ1/2). We clearly see that
the latter type corresponds to the ΞλΦ and ΞλA and we prove in the next proposition that the former corresponds
to the Ξ̃λΦ and Ξ̃λA of definition 3.1.

Proposition 4.6. The O(1) high frequency interaction terms Ξ̃λA of (57) and Ξ̃λΦ of (58) can be written and
separated as follows :

Ξ̃βλA =
∑

(A ,B)∈C ,A<B

Re(Kβ
A(A±B)(B

′
0)e

i
uA ±uB

λ ) +
∑

(A ,B)∈S ,A<B

Re(SβA(A±B)(B
′
0)e

i
uA ±uB

λ ), (59)

for Maxwell and

Ξ̃λΦ =
∑

(A ,B)∈C ,A<B

ei
uB±uB

λ Kφ(A±B)(B
′
0) +

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ SΦ(A ±B)(B
′
0), (60)

for Klein-Gordon and thus are the form of the Ξ̃s terms of definition 3.1, i.e., high frequency terms oscillating
with phases that are either always characteristic or never characteristic. The < denotes whatever total order on A.
The Ks correspond to terms emerging from collinear interactions and the Ss to the ones emerging from separated
interactions.

20



Notation 4.7. We use the schematic notation for both

Ξ̃λ =
∑

(A ,B)∈C ,A<B

ei
uB±uB

λ K(A ±B)(B
′
0) +

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ S(A±B)(B
′
0).

Proof of proposition proposition 4.6. By direct calculation using trigonometric formulas. This ends the proof of
propositions 4.6 and 4.1.

We give the properties of the interaction terms.

Proposition 4.8. For KA±B and SA ±B defined as in proposition 4.6 :

1. We have the following estimates

∀t ∈ [0, T ]
∑

k≤3

||KA±B(t)||Hkdt ≤ C0,

∀t ∈ [0, T ]
∑

k≤3

||SA ±B(t)||Hkdt ≤ C0.

2. The quantity Kβ
A(A±B) is orthogonal to ∂βuA ± ∂βuB.

Proof of 1 of proposition 4.8. By direct calculations as H3 is an algebra for n = 3 and as all the terms in the
definition are at least in H3.

Proof of 2 of proposition 4.8. From proposition 4.6 and the definition of Ξ̃λA in (57) we get that ∀(A ,B) ∈ C ,
A < B

∂βuBIm(ei
uA
λ ΨA (iei

uB

λ ΨB)) + ∂βuA Im(ei
uB
λ ΨB(iei

uA

λ ΨA ))

= −(∂βuB + ∂βuA )Re(2ei
uA −uB

λ ΨA ΨB)

= Re(ei
uA −uB

λ Kβ
A(A−B)(B

′
0)).

We clearly have that Kβ
A(A−B)(B

′
0) is orthogonal to ∂αuA −∂αuB (the phases are collinear and characteristic) and

Kβ
A(A+B)(B

′
0) = 0.

Remark 4.9. With the definition of an almost approximate solution 3.1 and the fact that the ΞL term is high
frequency the Maxwell equation is a bit worse than the rest of the system. Indeed, the Maxwell equation comes from
the divergence of the Faraday tensor Fαβ1λ = ∂αAβ1λ − ∂βAα1λ which includes one derivative of ∂αAα1λ. We showed
that we have

✷Aβ1λ + Im(φ1λ(∂β + iAβ1λ)φ1λ) = λ1/2ΞβλA(λ) + Ξ̃βλA(λ)

and so the Maxwell equation really is

∂αF
αβ
1λ + Im(φ1λ(∂β + iAβ1λ)φ1λ) = λ1/2ΞβλA + λ0Ξ̃βλA − λ1/2∂βΞL = O(λ−1/2).

It is in particular relevant because the constraint equation has this RHS and we have to solve it to have an exact
solution. However, because all the terms contributing to the λ−1/2 are high frequency and the operator of the
constraint is elliptic we can recover the mandatory smallness.
In general, we can add a parameter at order λ3/2 in the expansion whose polarization absorbs the problematic term.
It is done in [10] for example. This term would be of the size of the error term in our case so we do it directly with
the error term instead.
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5 Initial data for exact solutions

Here we give all the details and list all the requirements on the initial data for the error term to prove the
theorems 3.1 and 3.2. In particular, we search initial data for the precise error term (26). Indeed, as explain
in the introduction 1.5 and in section 6.1, we describe the evolution of the error term with a system of coupled
equations (78) to have the precise structure to close. This requires to prescribe initial data to all the different error
parameters under certain admissibility conditions given in section 5.2.
In sections 5.3 and 5.4, we exhibit for any λ > 0 a generic set of initial data fulfilling these requirements, see
proposition 5.16. To construct it, we first search for small solutions to the constraint equations for KGM in Lorenz
gauge (63) and then we separate them in the different initial data for the error parameters taking care of the
different properties needed.
Because we have more variables than we have constraint equations we have some freedom of choice that we will
exploit the less possible in that specific construction.
Before that we give the definition of the constraint equations and the admissibility criteria.

5.1 Equations of constraint for KGM in Lorenz gauge

The initial data set for Klein-Gordon Maxwell is composed of (aαλ , ȧ
α
λ , φλ, φ̇λ).

In the case of high frequency solution, we expend it as the initial parametrix

aαλ = aα1λ + zαλ , ȧαλ = ȧα1λ + żαλ ,

φλ = φ1λ + ζλ, φ̇λ = φ̇1λ + ζ̇λ,
(61)

where (zλ, ζλ, żλ, ζ̇λ) is the error initial data for the error term (Zλ,Zλ).

Definition 5.1. For a given admissible background initial data set (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
) we define the

initial ansatz (aα1λ, φ1λ) directly with the background as in definition 2.21.
We define (ȧα1λ, φ̇1λ) as ((∂tA

α
1λ)|t=0, (∂tΦ1λ)|t=0) where (Aα1λ,Φ1λ) are almost approximate solution to KGM and

are given using proposition 4.1. The quantities ((∂tA
α
1λ)|t=0, (∂tΦ1λ)|t=0) can be expressed only in terms of the

background initial data and their space derivatives.

Remark 5.2. We recall that the constraints for (aαλ , ȧ
α
λ , φλ, φ̇λ) to Klein-Gordon-Maxwell in Lorenz gauge are

{

ȧ0λ = −∂ia
i
λ,

−∆a0λ − ∂i(ȧ
i
λ) = −Im(φλφ̇λ)− a0λ|φλ|

2.
(62)

Remark 5.3. If we fix (aα1λ, φ1λ, ȧ
α
1λ, φ̇1λ) with definition 5.1, it remains to determine the error initial data

(zλ, ζλ, żλ, ζ̇λ) to have initial data for the exact solution (aαλ , ȧ
α
λ , φλ, φ̇λ). That is 10 variables (as zλ and żλ are

four-vectors). There are only 2 constraint equations so 8 variables are free.

The next proposition gives the constraints and the regularity for the error initial data. We solve it in section
5.3.

Proposition 5.4. For a given admissible background initial data set (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
), let

(aα1λ, ȧ
α
1λ, φ1λ, φ̇1λ) be given by the definition 5.1 with λ > 0 and let the error initial data set (z0λ, z

i
λ, ζλ, ż

0
λ, ż

i
λ, ζ̇λ) ∈

H2
δ ×H2 ×H2 ×H1

δ ×H1 ×H1 satisfies






ż0λ + ∂iz
i
λ = −λ1/2

∑

A ∈A
Re(ei

uA
λ (∂αWα

A
)|t=0),

−∆z0λ + |φ1λ + ζλ|
2z0λ − ∂iż

i
λ = λ1/2

∑

A ∈A
(∂tRe(e

i
uA
λ ∂αWα

A
))|t=0 + λ1/2ξ0λA(B0) + ξ̃0λA(B0),

−Im(φ1λζ̇λ)− Im(ζλφ̇1λ)− Im(ζλζ̇λ)− |ζλ|
2a01λ − (ζλφ1λ + ζλφ1λ)a

0
1λ,

(63)

where λ1/2ξ0λA(B0) = λ1/2Ξ0
λA(B0)|t=0 and ξ̃0λA(B0) = Ξ̃0

λA(B0)|t=0 are from the RHS of the almost approximate
solution in section 4.2. Then, with (aαλ , ȧ

α
λ , φλ, φ̇λ) defined as (61), we have a solution to (62) with enough regularity

for our purposes.

22



Proof. First we look at the Lorenz gauge condition, we want

ȧ0λ + ∂ia
i
λ = ȧ01λ + ∂ia

i
1λ + ż0λ + ∂iz

i
λ = 0,

and we have

ȧ01λ + ∂ia
i
1λ = λ1/2

∑

A∈A

Re(ei
uA
λ (∂αWα

A
)|t=0),

from definition 2.22, so we get the first equation.

For the second equation, we first calculate

−∆(λ1/2Re(ei
uA
λ W 0

A
))− ∂2jt(λ

1/2Re(ei
uA
λ W j

A
))

= −λ−1/2Re(iei
uA
λ (∆uAW 0

A
+ 2∂juA ∂jW 0

A
+ ∂t(∂juAW

j
A
) + ∂tuA ∂jW

j
A
))

− λ1/2Re(ei
uA
λ (∆W 0

A + ∂2tjW
j
A
)) + λ−3/2Re(ei

uA
λ (∂juA ∂juAW 0

A
+ ∂juA ∂tuAW

j
A
))

= −λ−1/2Re(iei
uA

λ (∆uAW 0
A

− ∂2ttuAW 0
A

− ∂tuA ∂tW 0
A

+ 2∂juA ∂jW 0
A

− ∂tuA ∂tW 0
A
))

− λ1/2Re(ei
uA

λ (∆W 0
A

− ∂2ttW
0
A
))− ∂t(Re(e

i
uA

λ λ1/2∂αWα
A
))

= −✷(λ1/2Re(ei
uA
λ W 0

A
))− ∂t(Re(e

i
uA
λ λ1/2∂αWα

A
)),

where we use that ∂αuAW
α
A

= 0.
We have

−∆a01λ − ∂i(ȧ
i
1λ) + Im(φ1λ ˙φ1λ) + a01λ|φ1λ|

2 = λ1/2
∑

A ∈A

∂t(Re(e
i
uA
λ ∂αWα

A
))|t=0 + λ1/2ξ0λA(B0) + ξ̃0λA(B0) (64)

because of the previous calculations and the fact that the background initial data are admissible 2.24 and so satisfy
the constraint equation (46).
All the other terms are obtained by direct calculations.

5.2 Definition of the criteria for admissible error initial data

As explained in the introduction 1.5, the error term is divided in different error parameters to recover the necessary
structure for the bootstrap argument of section 6.3. We give more details on the splitting in section 6.1. The error
parameters are ((Eevo)αλ , E

evo
λ ,W+α

λA
, W̆+α

A ±B
,Ψ+

λA
, Ψ̆+

A±B
, G+α

W+
λA

, G+

Ψ+
λA

, (Eellλ )α, Eellλ ), their corresponding error

parameters initial data are

((eevoλ )α, ǫevoλ , (ėevoλ )α, ǫ̇evoλ , w+α
λA

, w̆+α
A ±B

, ψ+
λA

, ψ̆+
A ±B

, g+α
W+

λA

, g+
Ψ+

λA

, (eellλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ).

In our construction, the quantities ((eevoλ )α, ǫevoλ , (ėevoλ )α, ǫ̇evo, w+α
λA

, ψ+
λA

, g+α
W+

λA

, g+
Ψ+

λA

) are initial data for the system

(78), (w̆+α
A ±B

, ψ̆+
A ±B

) are initial data for the decoupled equations (87) and ((eellλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ) must be given

directly by the background. Details on these equations are given in section 6.1.
The next definition explains how from the error parameters initial data one can build error initial data under
the form (61).

Definition 5.5. For a given admissible background initial data and error parameters initial data we can
define (aαλ , ȧ

α
λ , φλ, φ̇λ), the initial data for KGM, with

aαλ = aα1λ + zαλ , ȧαλ = ȧα1λ + żαλ ,

φλ = φ1λ + ζλ, φ̇λ = φ̇1λ + ζ̇λ,

where (aα1λ, ȧ
α
1λ, φ1λ, φ̇1λ) can be expressed only in terms of the background initial data as in definition 5.1 and

where the precise error term initial data (zαλ , ż
α
λ , ζλ, ζ̇λ) can be expressed in terms of the error parameters
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initial data as






zαλ =
∑

A ∈A

λ1Re(ei
vA
λ w+α

λA
) +

∑

A ,B∈C,A<B

λ1Re(ei
vA ±vB

λ w̆+α
A ±B

) + (eevoλ )α + (eellλ )α,

ζλ =
∑

A∈A

λ1ψ+
λA

ei
vA
λ +

∑

A ,B∈C,A<B

λ1ψ̆+
A±B

ei
vA ±vB

λ + ǫevoλ + ǫellλ ,

żαA =
∑

A∈A

λ1Re(ei
vA

λ (∂tW
+α
λA

)|t=0) +
∑

A

v̇ARe(ie
i
vA

λ w+α
λA

) +
∑

A ,B∈C,A<B

λ1Re(ei
vA ±vB

λ (∂tW̆
+α
A ±B

)|t=0)

+
∑

A ,B∈C,A<B

(v̇A ± v̇B)Re(ei
vA ±vB

λ w̆+α
A ±B

) + (ėevoλ )α + (ėellλ )α,

ζ̇λ =
∑

A∈A

λ1(∂tΨ
+
λA

)|t=0e
i
vA

λ +
∑

A

v̇A ψ
+
λA

iei
vA

λ +
∑

A ,B∈C,A<B

λ1∂t(Ψ̆
+
A±B

)|t=0e
i
vA ±vB

λ

+
∑

A ,B∈C,A<B

(v̇A ± v̇B)ψ̆+
A ±B

iei
vA ±vB

λ + ǫ̇evoλ + ǫ̇ellλ .

(65)

Remark 5.6. We observe that (g+α
W+

λA

, g+
Ψ+

λA

) do not appear in these parametrix. Indeed, these two quantities are

the initial data for auxiliary functions which are here to deal with regularity to have local well posedness, see
section 6.3.3.

Remark 5.7. The quantities (∂tW
+α
λA

)t=0 and (∂tΨ
+
λA

)t=0 are calculated directly with the evolution equations (86)
and depend on ((eevoλ )α, ǫevoλ , w+α

λA
, ψ+

λA
,∇w+α

λA
,∇ψ+

λA
) (a part of the initial data for the error parameters) and

the background.
The same remark holds for (∂tΨ̆

+
A±B

)|t=0 and (∂tW̆
+α
A ±B

)|t=0.

We define the three criteria required for the initial data to prove the theorems 3.1 and 3.2. First, a special definition
is made for ((eellλ )α, ǫellλ , (ė

ell
λ )α, ǫ̇ellλ ).

Definition 5.8. We define ((eellλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ) as

(eellλ )α = ((Eellλ )α(t))|t=0, ǫellλ = (Eellλ (t))||t=0,

(ėellλ )α = ∂t(E
ell
λ )α(t))|t=0, ǫ̇ellλ = (∂tE

ell
λ (t))|t=0,

with ((Eellλ )α, Eellλ ) from definition 6.9. As we expect to have a solution to an evolution system, the time derivatives
are computed with the transport equations of proposition 4.1. To be more precise, with the initial ansatz we can
construct a background solution to (51) and take the time derivatives of these background terms at time t = 0, they
are functions of the background initial data and their space derivatives.
Moreover, we directly get the following regularity and smallness from section 6.1.3

∑

k≤2

λk(||eellλ ||Hk + ||ǫevoλ ||Hk ) +
∑

k≤1

λk+1(||ėellλ ||Hk + ||ǫ̇ellλ ||Hk) ≤ λ2C0. (66)

Definition 5.9. We say that the error parameters initial data are admissible for KGML with respect to a
background initial data if we have

g+α
W+

λA

= (✷W+α
λA

)|t=0, g+
Ψ+

λA

= (✷Ψ+
λA

)|t=0,

and

∀A ∈ A, w+α
λA

∈ H2, ∀(A ,B) ∈ S ,A < B, w̆+α
A ±B

∈ H3,

∀A ∈ A, ψ+
λA

∈ H2, ∀(A ,B) ∈ S ,A < B, ψ̆+
A ±B

∈ H3,

∀A ∈ A, g+α
W+

λA

∈ H1, ∀A ∈ A, g+
Ψ+

λA

∈ H1,

(eevoλ )i ∈ H2, (ėevoλ )i ∈ H1,

(eevoλ )0 ∈ H2
δ , (ėevoλ )0 ∈ H1

δ+1,

ǫevoλ ∈ H2, ǫ̇evoλ =∈ H1,
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and ((eellλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ) given by the definition 5.8. We also impose that the functions

(gα
W+

λA

, gα
Ψ+

λA

, w+α
λA

, ψ+
λA

, w̆+α
A ±B

, ψ̆+
A ±B

, (eevoλ )i, (ėevoλ )i, ǫevoλ , ǫ̇evoλ ) are compactly supported29 in BS′ .

Remark 5.10. The second derivatives, (∂2ttW
+α
λA

)t=0 and (∂2ttΨ
+
λA

)t=0, are obtained by taking one time derivative on
the transport equation. They can be expressed with respect to ((eevoλ )α, ǫevoλ , (ėevoλ )α, ǫ̇evoλ , w+α

λA
, ψ+

λA
,∇w+α

λA
,∇ψ+

λA
),

((∂tW
+α
λA

)t=0, (∂tΨ
+
λA

)t=0,∇(∂tW
+α
λA

)t=0,∇(∂tΨ
+
λA

)t=0) and the background. Taking into account remark 5.7, we
see that the quantities (✷Ψ+

λA
)|t=0 and (✷W+α

λA
)|t=0 can be expressed in terms of the error parameters initial

data and the background.

Definition 5.11. We say that the error parameters initial data set is admissible for KGM in Lorenz gauge

with respect to a background initial data if (zαλ , ż
α
λ , ζλ, ζ̇λ) from (65) is solution to the constraint equations (63).

Definition 5.12. We define the required smallness for the coupled parameters as
∑

k≤1

λk(||ǫevoλ ||Hk+1 + ||ǫ̇evoλ ||Hk + ||(eevoλ )i||Hk+1 + ||(ėevoλ )i||Hk + ||(eevoλ )0||Hk+1
δ

+ ||(ėevoλ )0||Hk
δ+1

) ≤ λ1/2C0,

max
A∈A

(
∑

k≤1

λk(||w+α
λA

||Hk+1 + ||g+α
W+

λA

||Hk + ||ψ+
λA

||Hk+1 + ||g+
Ψ+

λA

||Hk)) ≤ C0,

and for the other parameters30 as

max
(A ,B)∈S ,A<B

(||w̆+α
A ±B

||H3 + ||φ̆+
A ±B

||H3) ≤ C0.

Remark 5.13. Initial data fulfilling the three criteria 5.9, 5.11 and 5.12 are admissible. They have the sufficient
conditions to build exact solutions that allows to close the bootstrap argument in section 6.3.5 and prove the main
theorems 3.1 and 3.2.

The next two sections are dedicated to the construction of a generic set of error parameters initial data fitting
these definitions.

5.3 Inversion of the perturbed Laplacian and smallness for the error term

This section gives the basis for the construction of the generic set of admissible initial data of proposition 5.16.
It guarantees that our precise error initial data (65) satisfy the constraint system (63), we use these results in
the next section. We are also searching for solutions with a small error term with respect to λ so we need to have
small initial data for it. Thus, in the next proposition we choose the error initial data (ziλ, ζλ, ż

i
λ, ζ̇λ) with some

smallness assumptions and we determine (z0λ, ż
0
λ) through the equations. Moreover, we need to add some more

smallness to ∂iż
i
λ to recover the required smallness on z0λ. This is possible because we have freedom of choice and

this makes the precise error initial data a little less generic.

Proposition 5.14. Let (ziλ, ζλ, ż
i
λ, ζ̇λ) ∈ H2×H2×H1×H1 be compactly supported31 in BS′ and have the following

smallness ∑

k≤1

λk||ζλ||Hk+1 + λk||ζ̇λ||Hk + λk||ziλ||Hk+1 + λk||żiλ||Hk ≤ λ1/2C0, (67)

with

||∂iż
i
λ||L2 ≤ λ1/2C0, (68)

then there exists (z0λ, ż
0
λ) solution to (63) such that

∑

k≤1

λk||z0λ||Hk+1
δ

+ λk||ż0λ||Hk
δ+1

≤ λ1/2C0, (69)

where the weighted norms are defined in 2.1.

29We pick the same S′ as for the background in proposition 4.1 without loss of generality.
30The quantities (w̆+α

A±B
, φ̆+

A±B
) are treated as background terms in the evolution scheme as the evolution equation (87) is decoupled.

See section 6.1.2.
31We pick the same S′ as for the background in proposition 4.1 without loss of generality.
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Proof. For ż0λ, we use the first equation of (63) and we see directly the result.

Remark 5.15. We see that the polarization condition (49) is mandatory to cancel the λ−1/2 potentially harmful
terms in the first equation.

For z0λ, we look at the second equation with the operator −∆+ |φ1λ + ζλ|
2.

We see that if we invert this perturbed Laplacian directly32 with 8.1 we will have ||z0λ||H2
δ
∼ O(λ−1/2)33 because of

the derivative of the divergence of WA (see remark 4.9), the O(1) high frequency interactions and Im(ζλφ̇1λ). This

latter term contains −
∑

A ∈A
Im(iζλλ

−1/2v̇A ψA e
−i

vA
λ ). It is a term of the type of 2) given in the introduction in

1.5, it is treated by introducing F+
λA

in the evolution equations.
To deal with that, we can invert by hand the λ−1/2 and λ0 terms. We set

z0BISλ = λ3/2
∑

A ∈A

[
v̇ARe(ie

i
vA
λ (∂αWα

A
)|t=0)

∂ivA ∂ivA

]− λ3/2
∑

A∈A

[
Im(iζλv̇A ψA e

−i
vA

λ )

∂ivA ∂ivA

], (70)

+ λ2
∑

(A ,B)∈C ,A<B

Re(Kβ
A(A±B)(B

′
0)e

i
vA ±vB

λ )+

∂i(vA ± vB)∂i(vA ± vB)
+ λ2

∑

(A ,B)∈S ,A<B

Re(SβA(A±B)(B
′
0)e

i
uA ±uB

λ )

∂i(vA ± vB)∂i(vA ± vB)
. (71)

By itself, z0BISλ has enough smallness and is compactly supported, we have

∑

k≤1

λk||z0BISλ ||Hk+1 ≤ λ1/2C0, (72)

where we use proposition 2.17 to have control of the smallness of the denominator.
Then, we search for z0TERλ as a solution to

(−∆+ |φ1λ + ζλ|
2)z0TERλ − ∂iż

i
λ = (∆− |φ1λ + ζλ|

2)z0BISλ + λ1/2ξ0λA(B0) + ξ̃0λA(B0)

− Im(φ1λζ̇λ)− Im(ζλφ̇1λ)− Im(ζλζ̇λ)− |ζλ|
2a01λ − (ζλφ1λ + ζλφ1λ)a

0
1λ

+ λ1/2
∑

A ∈A

(∂tRe(e
i
uA
λ (∂αWα

A
)))|t=0.

(73)

The RHS is in O(λ1/2) and well defined in terms of regularity34 and the quantity |φ1λ+ζλ|
2 is in H2 and compactly

supported. This allows us to use the lemma 8.14 to get

||z0TERλ ||H2
δ
≤ λ1/2C0.

In particular, the term Im(ζλζ̇λ) (which is dangerous in the evolution equations, see 4) of section 1.5, but harmless
here because of size C0 by assumption) is controlled in L2 as follow

||Im(ζλζ̇λ)||L2 ≤ ||ζλ||H1 ||ζ̇λ||H1/2 ≤ λ1/2C0,

using the product estimate (172) and the interpolation inequality (163). All the other terms are easily controlled
in L2, we use the extra smallness (68) for ∂iż

i
λ.

Finally, we pick z0λ = z0BISλ + z0TERλ and we get

∑

k≤1

λk||z0λ||Hk+1
δ

≤ λ1/2C0,

which ends the proof.

32The perturbed Laplacian operator is only invertible in some weighted Sobolev spaces.
33The constant in lemma 8.14 only depends on L2 norms of C0 size initial data.
34In particular, the Laplacian of ζλ appears and needs to be in L2 which is the case because ζλ is in H2. The other terms involve

only background terms which are more regular.
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5.4 Construction of the precise error initial data

In the previous section, we show how to construct small error initial data (zλ, ζλ, żλ, ζ̇λ) to have exact solutions
to the constraints (63). However, if we search directly a solution to (76) whose initial data are (zλ, ζλ, żλ, ζ̇λ) we will
not have the right structure to close the bootstrap. In this section, we treat the construction of a generic set
of initial data for the error parameters that are admissible (remark 5.13) and based on the previously cited
error initial data of proposition 5.14.

Proposition 5.16. For a given admissible background initial data set (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
) and for

λ > 0, we pick (z0λ, z
i
λ, ζλ, ż

0
λ, ż

i
λ, ζ̇λ) from proposition 5.14 and (eellλ , ǫellλ , ė

ell
λ , ǫ̇

ell
λ ) from definition 5.8. Then, for

(eevoλ )α = zαλ − (eellλ )α, ǫevoλ = ζλ − ǫellλ ,

∀A ∈ A, w+α
λA

= 0, ∀(A ,B) ∈ S ,A < B, w̆+α
A ±B

= 0,

∀A ∈ A, ψ+
λA

= 0, ∀(A ,B) ∈ S ,A < B, ψ̆+
A ±B

= 0,

∀A ∈ A, g+α
W+

λA

= (✷W+α
λA

)|t=0, ∀A ∈ A, g+
Ψ+

λA

= (✷Ψ+
λA

)|t=0,

(ėevoλ )α = żαλ − λ
∑

A

Re(e
vA
λ (∂tW

+α
λA

)|t=0)−
∑

A ,B∈C,A<B

λRe(e
vA ±vB

λ (∂tW̆
+α
A ±B

)|t=0)− (ėellλ )α,

ǫ̇evoλ = ζ̇λ − λ
∑

A

(∂tΨ
+
λA

)|t=0e
i
vA

λ −
∑

A ,B∈C,A<B

λ∂t(Ψ̆
+
A±B

)|t=0e
i
vA ±vB

λ − ǫ̇ellλ ,

the initial data for the error parameters are admissible for KGML, admissible for KGM in Lorenz gauge

and have the required smallness.

Remark 5.17. This set is generic as we do not use any freedom of choice on (z0λ, z
i
λ, ζλ, ż

0
λ, ż

i
λ, ζ̇λ), we just ask for

a convenient smallness and regularity with an extra condition on the smallness of ∂iżiλ for technical purposes. We
already remark, with the estimates (67) and (69), that the error terms initial data (z0λ, z

i
λ, ζλ, ż

0
λ, ż

i
λ, ζ̇λ) have better

estimates than the error terms (Zλ,Zλ) (see point 2 of the Theorem 3.2) in terms of smallness. This is due to the
choice of the parameters (w+α

λA
, ψ+

λA
, w̆+α

A ±B
, ψ̆+

A ±B
) = 0. It gives extra smallness to (z0λ, z

i
λ, ζλ, ż

0
λ, ż

i
λ, ζ̇λ) and gives

the sufficient regularity to (g+α
W+

λA

, g+
Ψ+

λA

). At time t 6= 0 there is no reason to have (W+α
λA

,Ψ+
λA

, W̆+α
A ±B

, Ψ̆+
A±B

) = 0,

the extra smallness of the error initial data does not propagate but the regularity of (g+α
W+

λA

, g+
Ψ+

λA

) does.

Overall, we can say that we use the freedom of choice only on the extra parameters that we introduced. The 10 true
initial data are let with their 2 constraints and their 8 real degrees of freedom.

Proof of proposition 5.16. For the KGML admissibility, there is only the regularity to prove. We show that we have
the regularity and the required smallness with estimates of the RHS of the error parameters initial data. We only
need to be careful with the time derivatives on W+α

λA
, W̆+α

A±B
,Ψ+

λA
and Ψ̆+

A±B
, the estimates for (zλ, ζλ, żλ, ζ̇λ) and

(eellλ , ǫellλ , ė
ell
λ , ǫ̇

ell
λ ) are direct using proposition 5.14 and the inequalities (69), (67) and (66). In particular, for g+α

W+
λA

and g+
Ψ+

λA

, we use remark 5.10 and the fact that we chose w+α
λA

= 0 and ψ+
λA

= 0 to deduce that even if the ✷ terms

seems to holds 2 derivatives it is not the case. Indeed, the two derivatives in space are 0 and the two derivatives in
time only depend on quantities that hold one derivative and have the right regularity. We have

(∂tW
+α
λA

)|t=0 = λ−1/2fαw(B
′
0)ǫ

evo
λ ,

(∂tΨ
+
λA

)|t=0 = λ−1/2fψα(B
′
0)(e

evo
λ )α,

(∂2ttW
+α
λA

)|t=0 = Lαw(∇(∂tW
+α
λA

)|t=0, λ
−1/2ǫ̇evoλ ,B′

0) +Qαw(ǫ
evo
λ , eevoλ ) + [. . .],

(∂2ttΨ
+
λA

)|t=0 = Lαψ(∇(∂tΦ
+α
A

)|t=0, λ
−1/2ėevoλ ,B′

0) +Qαψ(e
evo
λ , eevoλ ) + [. . .],

where the [. . .] involve lower order more regular terms or smaller terms. The fw and fψ contain no derivatives of
B′

0, Lw and Lψ are linear in their 2 first parameters and Qw and Qψ contain a product with respect to their 2
parameters. We can estimate these terms using (41)35 and all the previous estimates from proposition 5.14 and

35As we have to divide by ∂0uA .
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definition 2.24.
For ėevoλ and ǫ̇evoλ we have

∑

k≤1

λk||λei
vA

λ (∂tW
+
λA

)|t=0||Hk ≤ λC0,
∑

k≤1

λk||λei
vA

λ (∂tΦ
+
λA

)|t=0||Hk ≤ λC0,

and the estimates for the other terms are direct. For g+α
W+

λA

and g+
Ψ+

λA

we have

∑

k≤1

λk||(∂2ttW
+
λA

)|t=0||Hk ≤ C0,
∑

k≤1

λk||(∂2ttΨ
+
λA

)|t=0||Hk ≤ C0,

so that we have the required smallness and the required regularity of definition 5.12. In particular, the quantities
g+α
W+

λA

and g+
Φ+

λA

are more regular than two standard derivatives of W+
λA

and Ψ+
λA

are expected to be.

For the KGM in Lorenz gauge admissibility, because our precise error initial data are constructed on the
error initial data from definition 5.5 we clearly see that (aαλ , ȧ

α
λ , φλ, φ̇λ) is solution to the constraint equations

(62).

6 Exact multi phase high frequency solutions

6.1 More detail on the error term

6.1.1 Parametrix and evolution equations for the error term

We want to have exact solutions to KGM in Lorenz gauge under the form of theorem 3.1 :

Aαλ = Aα1λ + Zαλ , Φλ = Φ1λ + Zλ, (74)

where the (Aα1λ,Φ1λ) are almost approximate solution of order 1 to KGM in Lorenz gauge36 and (Zαλ ,Zλ) the
error terms.

Notation 6.1. We can write cos(uA

λ )Pα
A
+sin(uA

λ )Qα
A

as Re(ei
uA
λ W β

A
) and so both parametrix have the schematic

shape
Fλ = F0 + λ1/2

∑

A ∈A

ei
uA
λ FA + Zλ. (75)

In general, when we use the bold letters as Zλ it means that we are speaking about both the potential and the wave
function at the same time on a schematic level. We also write B0 for the background terms (F0 and FA ) and B′

0

when we also mean ∂αuA to shorten the notation.

The error terms (Zλ,Zλ), both given as Zλ, must be schematically solution to

✷Zλ = Zλ∂Zλ + L1

(

Zλ, ∂B0,B
′
0,

UA

λ

)

+ L2

(

∂Zλ,B0,
UA

λ

)

+ H

(

Zλ,B0,
UA

λ

)

+ λ1/2Ξλ + Ξ̃λ, (76)

where L1 (resp. L2) are linear in their first 3 (resp. first 2) parameters and oscillate at high frequency for some
phases u, the quantity H is at least quadratic and at most cubic in its first parameter and also oscillate at high
frequency with respect to UA. Finally, Zλ∂Zλ is explicit and the last terms are already given and only depend on
the background.
This system (represented by only one equation here) is clearly locally well posed for λ > 0 and initial data such
(zλ, żλ) ∈ H2 ×H1 but it is not direct at all that we can recover a time of existence uniform in λ.
To show that, we define more precisely the error term under the form

Zλ =
∑

A ∈A

λ1F+
λA

ei
uA

λ +
∑

A ,B∈C,A<B

λ1F̆
+

A ±Be
i
uA ±uB

λ + E
ell
λ + E

evo
λ . (77)

36See remark 4.9.

28



The quantities (Eevoλ ,F+
λA

) plus the auxiliary function G+
λA

(introduced in 3) to handle a loss of derivative) are
the coupled evolution parameters and are solution to the coupled system of equation







✷E
evo
λ = E

evo
λ ∂Eevoλ +

∑

A ∈A
ei

uA
λ (i∂uA Π+(E

evo
λ F+

λA
)− λ1G+

λA
) + [. . .],

LA F+
λA

= λ−1/2∂uA E
evo
λ B0 + ∂uA Π−(E

evo
λ F+

λA
) + ∂uA F+

λA
B0,

LA G+
λA

= [LA,✷]F
+
λA

+ λ−1/2∂uA ✷E
evo
λ B0 +✷(∂uA Π−(E

evo
λ F+

λA
))

+∂uAΠ−(E
evo
λ G+

λA
)− ∂uA Π−(E

evo
λ ✷F+

λA
) + ∂uA G+

λA
B0 + [. . .],

(78)

where the [. . .] depend on E
ell
λ , F̆

+

A ±B, the background or lower order terms. The quantities E
ell
λ and F̆

+

A±B are
the decoupled evolution parameters and are given by

E
ell
λ = −λ2

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ
S(A±B)(B

′
0)

∂α(uA ± uB)∂α(uA ± uB)
, (79)

∀(A ,B) ∈ C,A < B, LA ±BF̆
+

A ±B = K(A±B)(B
′
0) + (∂uA ± ∂uB)B0F̆

+

A ±B, (80)

for S(A±B)(B
′
0) and K(A±B)(B

′
0) given by proposition 4.6 and notations 4.7.

We give details on the choices and the constraints for the initial data in section 5 and also in section 6.1.2 for

F̆
+

A ±B.

Remark 6.2. Non schematically the parametrix is written

Aαλ = Aα0 + λ1/2
∑

A∈A

Re(ei
uA
λ Wα

A
) +

∑

A∈A

λ1Re(ei
uA
λ W+α

λA
) +

∑

A ,B∈C,A<B

λ1Re(ei
uA ±uB

λ W̆+α
A ±B

)

+ (Eevoλ )α + (Eellλ )α,

(81)

Φλ = Φ0 + λ1/2
∑

A∈A

ei
uA
λ ΨA +

∑

A∈A

λ1Ψ+
λA
ei

uA
λ +

∑

A ,B∈C,A<B

λ1Ψ̆+
A ±B

ei
uA ±uB

λ + Eevoλ + Eellλ , (82)

and we have

(Eellλ )α = −λ2
∑

(A ,B)∈S ,A<B

Re(SαA(A±B)(B
′
0)e

i
uB±uB

λ )

∂α(uA ± uB)∂α(uA ± uB)
, (83)

Eellλ = −λ2
∑

(A ,B)∈S ,A<B

SΦ(A ±B)(B
′
0)e

i
uB±uB

λ

∂α(uA ± uB)∂α(uA ± uB)
. (84)

Remark 6.3. We write the transport equations for F̆
+

A±B and F+
λA

in a non schematic way as

{

LA±BW̆
+β
A ±B

= i(∂βuA ± ∂βuB)Ψ̆+
A ±B

Φ0 + iKβ
A(A±B)(B

′
0),

LA±BΨ̆+
A±B

= −i2Aα0 (∂
αuA ± ∂αuB)Ψ̆+

A±B
− iKΦ(A±B)(B

′
0),

(85)

where the RHS of the equation for W̆+β
A ±B

is orthogonal to (∂βuA ± ∂βuB) (see proposition 4.8), and

{

LAW
+β
λA

= i∂βuA Ψ+
λA

Φ0 + λ−1/2i∂βuA ΨA Eevoλ + i∂βuA Π−(Ψ
+
λA

Eevoλ ),

LA Ψ+
λA

= −i2Aα0∂αuA Ψ+
λA

− λ−1/2i2(Eevoλ )α∂αuA ΨA − i2∂αuA Π−((E
evo
λ )αΨ+

λA
),

(86)

where the RHS of the equation for W+β
λA

is orthogonal to ∂βuA .

We can already give all the details on the decoupled evolution parameters F̆
+

A±B and E
ell
λ as they only depend

on the background and not on the other coupled parameters.
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6.1.2 Information on F̆
+

A±B

Definition 6.4. For a given admissible background initial data, let B′
0 be the background given by proposition 4.1.

We define the transport equation for F̆
+

A±B as

∀A ,B ∈ C,A < B, LA±BF̆
+

A ±B = K(A±B)(B
′
0) + (∂uA ± ∂uB)B0F̆

+

A±B. (87)

Remark 6.5. We use F̆
+

A±B to absorb the
∑

(A ,B)∈C ,A<B
ei

uB±uB
λ K(A±B)(B

′
0) in Ξ̃λ, i.e., the O(1) high-

frequency interaction terms that oscillate in a null directions37, it does not depend on λ. The equation (87) is

decoupled from the the system (78). We use our freedom to choose F̆
+

A±B|t=0 = 0 in proposition 5.16 to simplify.
More details on the initial data are given in section 5.

Remark 6.6. The RHS term

(∂uA ± ∂uB)B0F̆
+

A ±B (88)

comes from L2(∂Z,B0,
UA

λ ) in (76) and the term

K(A ±B)(B
′
0) (89)

from the cutting in two of Ξ̃λ in 4.6.

The next proposition gives the smallness and regularity properties of F̆
+

A±B given by the equation (87).

Proposition 6.7. Let f̆
+

A ±B ∈ H3 with Supp(f̆
+

A±B) ⊂ Ω for Ω a compact set in R3. There exists a unique local

solution F̆
+

A ±B ∈ ∩3
j=0(C

j([0, T ], H3−j) for T the time of existence of the background and equal to f̆
+

A ±B ∈ H3 at

time t = 0. Moreover, we have Supp(F̆
+

A ±B) ⊂ I (T,Ω) and the estimates

max
A ,B∈C,A<B

∑

k≤3

(||∂kt F̆
+

A ±B||L∞([0,T ],H3−k)) ≤ C0. (90)

Proof. We refer to section 8.1, in particular we use first proposition 8.438 to get the right H3 norms and we use the

fact that f̆
+

A ±B is in H3. Then, we plug it in proposition 8.5 to get the control on the time derivatives.
The finite speed of propagation implies the property of the support.

Remark 6.8. We see that F̆
+

A ±B is in H3 for t ∈ [0, T ] as the background and is more regular than F+
λA

and E
evo
λ .

This regularity is useful because in the RHS of (117) is present the term ✷F̆
+

A ±B. In general, we see that F̆
+

A±B

is a decoupled error parameter and only depends on the background so it is treated as a background term.

6.1.3 Information on E
ell
λ

Definition 6.9. For a given admissible background initial data, let B′
0 be the background given by proposition 4.1.

We set Eellλ with the equation

E
ell
λ = −λ2

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ
S(A ±B)(B

′
0)

∂α(uA ± uB)∂α(uA ± uB)
. (91)

Remark 6.10. These expressions make sense because the denominator is not 0, see proposition 2.17. As it is a
direct expression of the background, Eellλ is treated as a background term39.

37Along a characteristic phase emerging from resonant interaction.
38The linear term on the RHS of (153) is harmless and controlled like the other linear term in the evolution equation.
39Even if its expression depends on λ.
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Remark 6.11. We use E
ell
λ to invert the O(1) high-frequency interaction terms that oscillate in a non null direc-

tion40 from Ξ̃λ. More precisely,

✷E
ell
λ −

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ S(A±B)(B
′
0)) = O(λ1)f(B′

0), (92)

and at the same time E
ell
λ is small enough as an error parameter, see the next proposition.

Proposition 6.12. We have Supp(Eellλ ) ⊂ BS and

∑

k≤2

λk||Eellλ ||L∞([0,T ],Hk) +
∑

k≤1

λk+1||∂tE
ell
λ ||L∞([0,T ],Hk) + λ2||∂2ttE

ell
λ ||L∞([0,T ],L2) ≤ λ2C0, (93)

and ∑

k≤1

λk||✷Eellλ −
∑

(A ,B)∈S ,A<B

ei
uB±uB

λ S(A±B)(B
′
0))||L∞([0,T ],Hk) ≤ λ1C0. (94)

Proof. Using the definition 6.9 and the previous remark 6.11, it is trivial for the support and we get the estimates
by direct calculation with (43) to have control on the smallness of the denominator.

6.2 Main propositions

We give here the schematic propositions that compose the proof of the Theorems 3.1 and 3.2 after the construction
of the approximate solution step (i) of 1.5. The three propositions correspond to the steps (iii), (iv) and (v).
Each proposition relies on conditions on the initial data for the error parameters, see the definitions 5.9, 5.11
and 5.12. We give a generic set of initial data fulfilling these conditions with the specific choice of initial data of
proposition 5.16, this corresponds to point (ii). In general, in this section and the following ones all the propositions
and definitions concern the error terms for λ > 0 with respect to a given initial ansatz and the corresponding
background, given in proposition 4.1.

6.2.1 Exact solutions to KGML

Proposition 6.13 (Exact solutions to KGML). Let (f+λA
, g+λA

, f̆
+

A±B, e
evo
λ , ėevoλ , eellλ , ė

ell
λ ) be initial data for the

error parameters admissible for KGML 5.9 with respect to a certain background initial data and a λ > 0. We

give E
ell
λ and F̆

+

A ±B as explained in section 6.1.3 and 6.1.2. Then,

1. the system (78) is well-posed and there exists a time tλ for which the solution (F+
λA

,G+
λA

,Eevoλ ) exists and
stays in its class of regularity.

2. the solution put under the form41 of the parametrix Fλ (75) is solution to KGML and has a good structure
for proposition 6.18.

6.2.2 Exact solutions to KGM in Lorenz gauge

Proposition 6.14 (Exact solutions to KGM in Lorenz gauge). Let (F+
λA

,G+
λA

,Eevoλ ,Eellλ , F̆
+

A±B) be given by the
previous proposition 6.13. If the initial data for error parameters is also admissible for KGM in Lorenz

gauge 5.11 then the parametrix (75) is solution to KGM in Lorenz gauge, i.e., the gauge propagates.

6.2.3 Assumptions

If we search directly for an error term solution to (76) with classical well posedness techniques its time of existence
tλ tends to 0 as λ goes to 0 due to the fact that we do not have good uniform bounds for the norms. To show
that the time tλ is not optimal (for λ small enough) we make some assumptions about the size of the norms of the
coupled evolution parameters on [0, T ] and we show that they can be improved so that no explosion occurs.

40Along a non characteristic phase emerging from non resonant interactions.
41That is (Aλ,Φλ) in the non schematic way.
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Notation 6.15. We write E
evo
λ for all the parts of the parameters E

evo
λ that are not (Eevoλ )0 in the parametrix

written in 6.2. The quantity (Eevoλ )0 is a part of the error term associated to A0
λ, we find it by solving the constraint

equation (62). To invert the Laplacian we usually use weighted Sobolev norms, so that (Eevoλ )0 it is not in L2.

Assumptions 6.16. There exists c1 > 0 and c2 > 0 such that for τ ∈ [0, T ]

max
A ∈A

∑

k≤1

λk(||F+
λA

(τ)||Hk+1 + ||∂tF
+
λA

(τ)||Hk ) + λ||∂2ttF
+
λA

(τ)||L2 ≤ c1e
τc2,

∑

k≤1

λk(||Eevoλ (τ)||Hk+1 + ||∂tE
evo
λ (τ)||Hk ) + λ||∂2ttE

evo
λ (τ)||L2 ≤ λ1/2c1e

τc2,

∑

k≤1

λk(||(Eevoλ )0(τ)||Hk+1
δ

+ ||∂t(E
evo
λ )0(τ)||Hk

δ+1
) + λ||∂2tt(E

evo
λ )0(τ)||L2

δ+2
≤ λ1/2c1e

τc2,

max
A ∈A

∑

k≤1

(λk||G+
λA

(τ)||Hk ) + λ||∂tG
+
λA

(τ)||L2 ≤ c1e
τc2.

Notation 6.17. We note by C0,1,2,τ = C0,1,2,τ (c0,
1
η0
, N, T, c1, c2, τ) any constants that are polynomial in c1e

τc2,
c1
c2
eτc2 and the background constants c0, 1

η0
, N = |A| and T .

To improve the estimates, there are three possibilities or a combination of them term by term

a) We show that our estimates depend in fact on some background norms that do not explode on [0, T ] (≤ C0)

b) We show that our estimates depend on the a priori estimates but with a bigger power in λ, so that, for λ
small enough, we improve them. (≤ λ>0C0,1,2,τ )

c) We show that the source term only depends linearly on the coupled evolution parameters (C0
c1
c2
eτc2)

6.2.4 Uniform in λ time of existence

Proposition 6.18 (Uniform in λ time of existence). Let (F+
λA

,G+
λA

,Eevoλ ,Eellλ , F̆
+

A ±B) be given by the proposition
6.13. If the initial data for the error parameters have also the required smallness then there exists a certain
λ0, only function of the background, such that for all λ < λ0 the parametrix Fλ exists and stays in its class of
regularity on [0, T ] (the existence time of the background). Thus, the family of solutions to KGML (Fλ)λ<λ0 has a
uniform time of existence.

6.3 System of evolution

We recall that our goal is to have a family of multi phase high frequency (Fλ)λ<λ0 solutions to KGM based on the
initial ansatz 2.21 with a uniform time of existence with respect to λ. We show in proposition 4.1 how to construct
an almost approximate solution of order 1 as

Aα1λ = Aα0 + λ1/2
∑

A ∈A

Re(ei
uA

λ Wα
A
), Φ1λ = Φ0 + λ1/2

∑

A ∈A

ei
uA

λ ΨA . (95)

To have an exact solution we extend schematically the parametrix as

Fλ = F0 + λ1/2
∑

A ∈A

ei
uA

λ FA + Zλ, (96)

with

Zλ =
∑

A ∈A

λ1F+
λA

ei
uA

λ +
∑

A ,B∈C,A<B

λ1F̆
+

A ±Be
i
uA ±uB

λ + E
ell
λ + E

evo
λ , (97)

solution to

✷Zλ = Zλ∂Zλ + L1(Zλ, ∂B0,B
′
0,

UA

λ
) + L2(∂Zλ,B0,

UA

λ
) + H (Zλ,B0,

UA

λ
) + λ1/2Ξ+ Ξ̃, (98)
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where the terms are more detailed in section 6.1.1.
We discuss all the construction of the initial data in section 5 and the notion of admissibility in the sense of the
three definitions 5.9, 5.11 and 5.12.

The existence, the regularity and the smallness of F̆
+

A ±B and E
ell
λ are given in sections 6.1.2 and 6.1.3.

It remains to show the local well posedness of







✷E
evo
λ = E

evo
λ ∂Eevoλ +

∑

A ∈A
ei

uA
λ (i∂uA Π+(E

evo
λ F+

λA
)− λ1G+

λA
) + [. . .],

LA F+
λA

= λ−1/2∂uA E
evo
λ B0 + ∂uA Π−(E

evo
λ F+

λA
) + ∂uA F+

λA
B0,

LA G+
λA

= [LA,✷]F
+
λA

+ λ−1/2∂uA ✷E
evo
λ B0 +✷(∂uA Π−(E

evo
λ F+

λA
)),

+∂uAΠ−(E
evo
λ G+

λA
)− ∂uA Π−(E

evo
λ ✷F+

λA
) + ∂uA G+

λA
B0 + [. . .],

(99)

from which we determine E
evo
λ and F+

λA
, to show that Zλ (97) is in fact solution to (98) and to close the bootstrap.

Recall that G+
λA

is a auxiliary function introduced to deal with a loss of derivative.
In the following sections we first show the local well-posedness of (99). Then, for each of Eevoλ , F+

λA
and G+

λA
we

detail their roles, their evolution equations and their RHS. In particular, how to estimate them in Hk norms to
obtain energy estimates and improve the a priori ones 6.16. Finally, gathering all the information on the different
parameters we show that we have a solution to (2) and that there exists λ0 such that for λ < λ0 the time of existence
T is uniform in λ.

6.3.1 Well-posedness

We reformulate point 1 of proposition 6.13 more precisely as follows :

Proposition 6.19. For a given admissible background initial data set 2.24, let B′
0 be the background given by

proposition 4.1 and let λ > 0. Let F̆
+

A±B be given by proposition 6.7 and E
ell
λ be given by definition 6.9 from

(f+λA
, g+λA

, f̆
+

A ±B, e
evo, ėevo, eell, ėell) admissible for KGML 5.9. Then, the problem (99) is well posed for the

initial data (f+λA
, g+λA

eevo, ėevo). There exists a time tλ such that there exists a solution (F+
λA

,G+
λA

,Eevoλ ) with the
following regularity42

∀A ∈ A, F+
λA

∈

2⋂

j=0

Cj([0, tλ], H
2−j), ∀A ∈ A, G+

λA
∈

1⋂

j=0

Cj([0, tλ], H
1−j),

E
evo
λ ∈

2⋂

j=0

Cj([0, tλ], H
2−j), (Eevo)0 ∈

2⋂

j=0

Cj([0, tλ], H
2−j
δ+i ).

Moreover, we have Supp(F+
λA

,G+
λA

,Eevoλ ) ⊂ BS.

Proof. In terms of derivatives we get

∂Eevoλ ∼ ∂Eevoλ , G+
λA

, ∂F+
λA

,

F+
λA

∼ F+
λA

, Eevoλ ,

G+
λA

∼ G+
λA

, ∂F+
λA

, ∂Eevoλ .

To give more details, in the equation for G+
λA

, we use the evolution equation to replace ✷E
evo
λ by its RHS to get

linear terms in ∂Eevoλ , ∂F+
λA

or G+
λA

at most, all the other terms are in H2 and thus in L∞. We also use the
results of section 8.2 on the commutator and we treat the nonlinearity Π−(∂F

+
λA

∂Eevoλ ) using the projector on
lower frequency to make it as regular as we want. All the other nonlinearities of the system pass with the regularity
described in the proposition. In fact, a lot of terms are estimated in details in the bootstrap parts 6.3.2, 6.3.3 and
6.3.4.
Finally, for the support property, we know that with initial data admissible for KGML we have
Supp(f+λA

,g+
λA

, eevo, ėevo) ⊂ BS′ and so by finite speed of propagation we recover the results.

42We make a difference between Eλ and (Eevo
λ

)0 as in 6.15.
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Remark 6.20. With the previous propositions 6.12, 6.7 and 6.19 we have Supp(F+
λA

,G+
λA

, F̆
+

A±B,Eλ
evo,Eellλ ) ⊂

BS . The quantity (Eevoλ )0 is not compactly supported but in H2
δ .

Nonetheless, all the right hand side terms of the evolution equations (99) are compactly supported because A0 and
(Eevoλ )0 are always in products with compactly supported terms. So, when doing estimates in sections 6.3.2, 6.3.3
and 6.3.4, the ||.||Lp are really ||.||Lp(BS). We also have

||.||Hm(BS) ≤ CS ||.||Hm
δ
.

Thus, we abuse notation to write all the weighted norms as classical Sobolev norms in the following estimates.

Remark 6.21. When we use the Strichartz estimates 8.2 and the lemmas 8.17 and 8.18 on (Eevoλ )0 in the following
sections we need bounds on ||∂t(E

evo
λ )0(0)||L2 and ||(Eevoλ )0(0)||Ḣ1 . Because (Eevoλ )0|t=0 (resp. ∂t(Eevoλ )0|t=0) is only

bounded in H2
δ (resp. H1

δ+1) for −3/2 < δ < −1/2, we have no information on the previous norms. Nonetheless,
we remark in 6.20 that (Eevoλ )0 appears always in products with compactly supported terms. In particular, in the
following section, the equations only see (Eevoλ )0|BS . The latter coincides with E

′0
λ given by







✷E
′0
λ = ✷(Eevoλ )0,

E
′0
λ (t = 0) = (Eevoλ )0(t = 0)|I (T,BS),

∂tE
′0
λ (t = 0) = (∂t(E

evo
λ )0)(t = 0)|I (T,BS),

(100)

where I (T,BS) is the propagation of BS defined in 2.5. Thus, we can use the Strichartz estimates on E
′0
λ , which

is in the right norms with its compact support.

6.3.2 Estimates for F+
λA

The transport equation for F+
λA

is

LA F+
λA

= λ−1/2∂uA E
evo
λ B0 + ∂uA Π−(E

evo
λ F+

λA
) + ∂uA F+

λA
B0. (101)

Remark 6.22. We introduce F+
λA

specifically to absorb λ−1/2∂uA E
evo
λ B0, the λ−1/2 high frequency terms oscil-

lating in the directions of the set of phases and arising from the interaction of the error term with the background.
The equation (101) is coupled with the equations (109) and (117).

We give the detail of the RHS terms and their estimates in the next proposition.

Proposition 6.23. The RHS terms

λ−1/2∂uA E
evo
λ B0, ∂uA Π−(E

evo
λ F+

λA
) and ∂uA F+

λA
B0 (102)

respectively come from L1(Zλ, ∂B0,B
′
0,

UA

λ ), Zλ∂Z and L2(∂Zλ,B0,
UA

λ ). Under the assumptions 6.16 and for any
τ ∈ [0, T ], we have the estimates

I :=
∑

k≤1

∫ τ

0

λk||∂uA F+
λA

B0(t)||Hk+1dt ≤ C0
c1
c2
eτc2, (103)

II :=
∑

k≤1

∫ τ

0

λk||λ−1/2∂uA E
evo
λ (t)||Hk+1dt ≤ C0

c1
c2
eτc2, (104)

III :=
∑

k≤1

∫ τ

0

λk||∂uA Π−(E
evo
λ F+

λA
)(t)||Hk+1dt ≤ C0,1,2,τλ

>0. (105)

Proof. We obtain the first two inequalities, for I and II, by direct calculations with Sobolev inequalities of section
8.3, the product estimate (172) and the assumptions 6.16. It fits the case c) as the terms are linear in the error
parameters.
To get the inequality for III, we do not need to use the projector to have extra smallness (see case b)). We have
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first
∫ τ

0

||∂uA Π−(E
evo
λ F+

λA
)(t)||H1dt

≤ ||∂uA ||L∞([0,τ ],W 1,∞)

∫ τ

0

||Eevoλ F+
λA

(t)||L2 + ||∇E
evo
λ F+

λA
(t)||L2 + ||Eevoλ ∇F+

λA
(t)||L2dt

≤ C0(||E
evo
λ F+

λA
||L1([0,τ ],L2)

︸ ︷︷ ︸

III.1

+ ||∇E
evo
λ F+

λA
||L1([0,τ ],L2)

︸ ︷︷ ︸

III.2

+ ||Eevoλ ∇F+
λA

||L1([0,τ ],L2)
︸ ︷︷ ︸

III.3

).

For III.1 we used classical product inequality (172) to obtain

III.1 ≤ C0,1,2,τλ
1/2.

We use Lemma 8.18 to recover

III.2 ≤ C0||∇E
evo
λ ||Lp([0,τ ],L2)(||F

+
λA

||Lq([0,τ ],H2))
θ(||✷F+

λA
||L1([0,τ ],L2) + ||F+

λA
(0)||Ḣ1 + ||∂tF

+
λA

(0)||L2)1−θ

≤ C0,1,2,τλ
1/2λ−θ(||G+

λA
||L1([0,τ ],L2) + C0)

1−θ ≤ C0,1,2,τλ
1/2−θ ≤ C0,1,2,τλ

>0,

III.3 ≤ C0||∇F+
λA

||Lp([0,τ ],L2)(||E
evo
λ ||Lq([0,τ ],H2))

θ(||✷Eevoλ ||L1([0,τ ],L2) + ||Eevoλ (0)||Ḣ1 + ||∂tE
evo
λ (0)||L2)1−θ

≤ C0,1,2,τλ
−θ/2(||✷Eevoλ ||L1([0,τ ],L2) + C0λ

1/2)1−θ ≤ C0,1,2,τλ
1/2−θ ≤ C0,1,2,τλ

>0,

for θ ∈ (0, 1/2) and where p and q depend on θ.
The inequality ||✷Eevoλ ||L1([0,τ ],L2) ≤ C0,1,2,τλ

1/2 comes from the naive estimates of proposition 6.33.
We have secondly

λ

∫ τ

0

||∂uA Π−(E
evo
λ F+

λA
)(t)||H2dt ≤ λ||∂uA ||L∞([0,τ ],L∞)

∫ τ

0

||∇∇(Eevoλ F+
λA

)(t)||L2dt

+ λ

∫ τ

0

||∂uA (t)||W 1,∞ ||∇(Eevoλ F+
λA

)(t)||L2 + ||∇∇∂uA (t)||L2 ||Eevoλ (t)||L∞ ||F+
λA

(t)||L∞ + ||∂uA E
evo
λ F+

λA
(t)||H1dt

︸ ︷︷ ︸

III.4

≤ III.4 + C0 λ||∇E
evo
λ ∇F+

λA
||L1([0,τ ],L2)

︸ ︷︷ ︸

III.5

+C0 λ||∇∇E
evo
λ F+

λA
||L1([0,τ ],L2)

︸ ︷︷ ︸

III.6

+C0 λ||E
evo
λ ∇∇F+

λA
||L1([0,τ ],L2)

︸ ︷︷ ︸

III.7

.

For III.4, we use the previous calculations, the Sobolev embeddings of proposition 8.7 and the product estimate of
proposition 8.16 to get for a small 0 < ε < 1/2

III.4 ≤ C0,1,2,τλ
1/2−ε.

For III.6 and III.7 we also use Lemma 8.18 as with III.2 and III.3, losing one λ in the operation. To estimate III.5,
we use lemma 8.17 to obtain

III.5 ≤ λC0||∇F+
λA

||Lp([0,τ ],H1/2−ν)(||✷∇E
evo
λ ||L1([0,τ ],L2) + ||∇E

evo
λ (0)||Ḣ1 + ||∂t∇E

evo
λ (0)||L2)

≤ C0,1,2,τλ
1/2+ν(||✷∇E

evo
λ ||L1([0,τ ],L2) + λ−1/2C0)

≤ C0,1,2,τλ
>0,

for ν > ε′, where ε′ is from the naive estimates of proposition 6.33 and where p depends on 1/2 > ν > 0.
Finally, we obtain

III ≤ C0(III.1 + III.2 + III.3 + III.4 + III.5 + III.6 + III.7) ≤ C0,1,2,τλ
>0.
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6.3.3 Estimates for G+
λA

The transport equation for G+
λA

is

LA G+
λA

= [(2∂αuA ∂α +✷uA ),✷]F+
λA

+ λ−1/2∂uA ✷E
evo
λ B0 +✷(∂uA Π−(E

evo
λ F+

λA
)) (106)

+ ∂uA Π−(E
evo
λ G+

λA
)− ∂uA Π−(E

evo
λ ✷F+

λA
) + ∂uA G+

λA
B0 + [. . .]. (107)

(108)

Remark 6.24. This auxiliary function G+
λA

is here to estimate ✷F+
λA

and fight the loss of derivatives. The
equation (106) is obtained by commuting the transport equation for F+

λA
with the d’Alembertian, that is

LA G+
λA

= [(2∂αuA ∂α +✷uA ),✷]F+
λA

+✷(LA FA ), (109)

where we replace all the appearances of ✷F+
λA

by G+
λA

. The quantities ✷F+
λA

and G+
λA

have the same initial data,
see definition 5.9, and obey the same transport equation so they are equal. The equation (106) is coupled with the
equations (101) and (117).

We give the detail of the RHS terms and their estimates in the next proposition.

Proposition 6.25. The [. . .] terms have the shape

[. . .] = ✷(∂uA F+
λA

B0)− ∂uA ✷F+
λA

B0 +✷(λ−1/2∂uA E
evo
λ B0)− λ−1/2∂uA ✷E

evo
λ B0, (110)

the other terms are explicit. Under the assumptions 6.16 and for any τ ∈ [0, T ], for the [. . .] we have

IV :=
∑

k≤1

∫ τ

0

λk||[. . .](t)||Hkdt ≤ C0
c1
c2
eτc2, (111)

for the commutator we have

V :=
∑

k≤1

∫ τ

0

λk||[(2∂αuA ∂α +✷uA ),✷]FA (t)||Hkdt ≤ C0
c1
c2
eτc2 + C0,1,2,τλ

>0, (112)

for the remaining terms without a projector we have

V I :=
∑

k≤1

∫ τ

0

λk||∂uA G+
λA

B0(t)||Hkdt ≤ C0
c1
c2
eτc2, (113)

V II :=
∑

k≤1

∫ τ

0

λk||λ−1/2∂uA ✷E
evo
λ B0(t)||Hkdt ≤ C0

c1
c2
eτc2 + C0 + C0,1,2,τλ

>0, (114)

and finally, for the terms involving the projector on low frequencies we have

V III :=
∑

k≤1

∫ τ

0

λk||∂uA Π−(E
evo
λ G+

λA
)(t)||Hkdt ≤ C0,1,2,τλ

>0, (115)

IX :=
∑

k≤1

∫ τ

0

λk||✷(∂uA Π−(E
evo
λ F+

λA
))(t)− ∂uA Π−(E

evo
λ ✷F+

λA
)(t)||Hkdt ≤ C0,1,2,τλ

>0. (116)

Proof. We obtain the [. . .] directly from remark 6.24. To derive the estimates on IV we use directly the assumptions
6.16. There are only linear terms in E

evo
λ and F+

λA
with at most one derivative, we get the case c). We use the

better regularity of the background.
For V, using (161) we get

∑

k≤1

∫ τ

0

λk||[(2∂αu∂α + ✷u),✷]FA (t)||Hkdt

≤ C0

∑

k≤1

∫ τ

0

λk(||G+
λA

(t)||Hk + ||∂(∂αuA ∂αF
+
λA

)(t)||Hk + ||F+
λA

(t)||Hk+1 )dt.
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Then, with the estimates on LA ∂αF
+
λA

of proposition 6.23 and the assumptions 6.16 we get the desired inequality
directly.
For VI the inequality is direct with assumption 6.16, we recover the case c). The quantity VII is estimated with the
improved estimate on ||✷Eevoλ ||L1([0,τ ],Hk) given all along section 6.3.4. In both cases we use the better regularity
of the background43.
For VIII and IX, we use the projector44 and the product inequality (172) to recover extra smallness (case b)).
Firstly, for VIII

V III ≤
∑

k≤1

λk||∂uA ||L∞([0,τ ],W 1,∞)||Π−(G
+
λA

E
evo
λ )||L1([0,τ ],Hk)

≤ C0

∑

k≤1

λkλ−κ/2||G+
λA

E
evo
λ ||L1([0,τ ],Hk−1/2)

≤ C0

∑

k≤1

λk−κ/2||Eevoλ ||L∞([0,τ ],H1)||G
+
λA

||L1([0,τ ],Hk)

≤ C0,1,2,τλ
1/2−κ ≤ C0,1,2,τλ

>0,

where we use the assumption 6.16 and the product inequality from proposition 8.16 for both k = 0 and k = 1. For
IX, we first develop the term as

IX ≤
∑

k≤1

λk||✷∂uA Π−(E
evo
λ F+

λA
)||L1([0,τ ],Hk)

︸ ︷︷ ︸

IX.1

+
∑

k≤1

λk||∂∂uA ∂Π−(E
evo
λ F+

λA
)||L1([0,τ ],Hk)

︸ ︷︷ ︸

IX.2

+
∑

k≤1

λk||∂uA Π−(∂E
evo
λ ∂F+

λA
)||L1([0,τ ],Hk)

︸ ︷︷ ︸

IX.3

+
∑

k≤1

λk||∂uA Π−(✷E
evo
λ F+

λA
)||L1([0,τ ],Hk)

︸ ︷︷ ︸

IX.4

,

then for IX.1 and IX.2

IX.1 ≤
∑

k≤1

λk||✷∂uA ||L∞([0,τ ],H1)||Π−(E
evo
λ F+

λA
)||L1([0,τ ],Hk+1/2+ε)

≤ C0

∑

k≤1

λk−κ−εκ||Eevoλ F+
λA

||L1([0,τ ],Hk−1/2)

≤ C0

∑

k≤1

λk−κ−εκ||Eevoλ ||L2([0,τ ],H1)||F
+
λA

||L2([0,τ ],Hk)

≤ C0,1,2,τλ
1/2−κ−εκ,

IX.2 ≤
∑

k≤1

λk||∂∂uA ||L∞([0,τ ],H1)||Π−(∂(E
evo
λ F+

λA
))||L1([0,τ ],Hk+1/2+ε)

≤ C0

∑

k≤1

λk−κ−εκ||∂(Eevoλ F+
λA

)||L1([0,τ ],Hk−1/2)

≤ C0

∑

k≤1

λk−κ−εκ(||∂Eevoλ ||L∞([0,τ ],Hk)||F
+
λA

||L1([0,τ ],H1) + ||∂F+
λA

||L∞([0,τ ],Hk)||E
evo
λ ||L1([0,τ ],H1))

≤ C0,1,2,τλ
1/2−κ−εκ,

where ε > 0 is small (but not 0 as we have to control the L∞ norm).

43One derivative of B
′
0 is in L∞.

44In particular, the fact that the cost a derivative is very low, κ is as small as we want.
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For IX.3 and IX.4, we have

IX.3 ≤
∑

k≤1

λk||∂uA (t)||L∞([0,τ ],W 1,∞)||Π−(∂E
evo
λ ∂F+

λA
)||L1([0,τ ],Hk)

≤ C0

∑

k≤1

λk−κ||∂Eevoλ ∂F+
λA

||L1([0,τ ],Hk−1)

≤ C0

∑

k≤1

λk−κ||∂Eevoλ ||L2([0,τ ],Hk)||∂F
+
λA

(t)||L2([0,τ ],H1/2)

≤ C0λ
1/2−κ,

IX.4 ≤
∑

k≤1

λk||∂uA ||L∞([0,τ ],W 1,∞)||Π−(✷E
evo
λ F+

λA
)||L1([0,τ ],Hk)

≤ C0

∑

k≤1

λkλ−κ/2||✷Eevoλ F+
λA

||L1([0,τ ],Hk−1/2)

≤ C0

∑

k≤1

λkλ−κ/2||F+
λA

||L∞([0,τ ],H1)||✷E
evo
λ ||L1([0,τ ],Hk)

≤ C0,1,2,τλ
1/2−κ/2,

where we use the naive estimates 6.33 for ||✷Eevoλ ||L1([0,τ ],Hk) with k = 0, 1.
This gives

IX ≤ IX.1 + IX.2 + IX.3 + IX.4 ≤ C0,1,2,τλ
1/2−κ−ε ≤ C0,1,2,τλ

>0,

and it ends the proof.

Remark 6.26. The only term that really requires the use of the projector on low frequency is ∂Eevoλ ∂F+
λA

which is
a null form. The others can be treated with the lemmas 8.17 and 8.18.

6.3.4 Estimates for E
evo
λ

The wave equation for E
evo
λ is

✷E
evo
λ = E

evo
λ ∂Eevoλ +

∑

A ∈A

ei
uA

λ (i∂uAΠ+(E
evo
λ F+

λA
)− λ1G+

λA
) + [. . .]. (117)

Remark 6.27. We use E
evo
λ to absorb all the remaining terms of the equation (98). The equation (117) is coupled

with the equations (101) and (106).

The next propositions give the details on the [. . .] term and all the estimates of the RHS of ✷Eevoλ .

Proposition 6.28. The [. . .] are separated and estimated term by term. Under the assumptions 6.16 and for any
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τ ∈ [0, T ], we have

X :=
∑

k≤1

∫ τ

0

λk||(L1(Zλ, ∂B0,B
′
0,
u

λ
)− λ−1/2

∑

A ∈A

i∂uA E
evo
λ B0e

i
uA

λ )(t)||Hkdt ≤ λ1/2C0
c1
c2
eτc2, (118)

XI :=
∑

k≤1

∫ τ

0

λk||(L2(∂Zλ,B0,
u

λ
)−A−B)(t)||Hkdt ≤ λ1/2C0

c1
c2
eτc2, (119)

for A =
∑

A ∈A

iei
uA
λ ∂uA F+

λA
B0 and B =

∑

(A ,B)∈C,A<B

iei
uA ±uB

λ (∂uA ± ∂uB)B0F̆
+

A±B,

XII :=
∑

k≤1

∫ τ

0

λk||H (Zλ,B0,
u

λ
)(t)||Hkdt ≤ λ>1/2C0,1,2,τ , (120)

XIII :=
∑

k≤1

∫ τ

0

λk||(Zλ∂Zλ − C −D)(t)||Hkdt ≤ λ>1/2C0,1,2,τ + λ1/2C0
c1
c2
eτc2, (121)

for C = E
evo
λ ∂Eevoλ and D =

∑

A ∈A

iei
uA

λ ∂uA Π−(E
evo
λ F+

λA
),

XIV :=
∑

k≤1

∫ τ

0

λk||
∑

A ,B∈C,A<B

λ1ei
uA ±uB

λ ✷F̆
+

A ±B(t)||Hkdt ≤ λ1C0, (122)

XV :=
∑

k≤1

∫ τ

0

λk||✷Eellλ −
∑

(A ,B)∈S ,A<B

ei
uB±uB

λ S(A±B)(B
′
0))(t)||Hkdt ≤ λ1/2C0, (123)

XV I :=
∑

k≤1

∫ τ

0

λ||λ1/2Ξλ(t)||Hkdt ≤ λ1/2C0, (124)

(125)

where the functions H , L1 and L2 are given in (98). Overall, we have

∑

k≤1

∫ τ

0

λk||[. . .](t)||Hkdt ≤ C0λ
1/2 + λ>1/2C0,1,2,τ + λ1/2C0

c1
c2
eτc2. (126)

(127)

Proof. We recall that

✷Zλ = Zλ∂Zλ + L1(Zλ, ∂B0,B
′
0,
u

λ
) + L2(∂Zλ,B0,

u

λ
) + H (Zλ,B0,

u

λ
) + λ1/2Ξλ + Ξ̃λ. (128)

First, we can write

∑

(A ,B)∈C,A<B

λ✷(ei
uA ±uB

λ F̆
+

A ±B)− L2(∂Zλ,B0,
u

λ
)− Ξ̃λ =

∑

A ,B∈C,A<B

λei
uA ±uB

λ ✷F̆
+

A ±B,

− L2(∂Zλ,B0,
u

λ
) +

∑

A ,B∈C,A<B

iei
uA ±uB

λ (∂uA ± ∂uB)B0F̆
+

A ±B − Ξ̃λ,

+
∑

(A ,B)∈S ,A<B

ei
uB±uB

λ K(A±B)(B
′
0),

from remark 6.6 and we can write from proposition 4.6 that

Ξ̃λ −
∑

(A ,B)∈S ,A<B

ei
uB±uB

λ K(A±B)(B
′
0) =

∑

(A ,B)∈S ,A<B

ei
uB±uB

λ S(A±B)(B
′
0).
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Secondly, we can write

∑

A∈A

λ✷(ei
uA
λ F+

λA
)− L1(Zλ, ∂B0,B

′
0,
u

λ
)− L2(∂Zλ,B0,

u

λ
)− Zλ∂Zλ =

∑

A ∈A

λei
uA
λ ✷F+

λA

− L1(Zλ, ∂B0,B
′
0,
u

λ
) + λ−1/2

∑

A∈A

i∂uAE
evo
λ B0e

i
uA
λ )− L2(∂Zλ,B0,

u

λ
) +

∑

A ∈A

iei
uA
λ ∂uA F+

λA
B0

− Zλ∂Zλ +
∑

A ∈A

iei
uA

λ ∂uA Π−(E
evo
λ F+

λA
),

by proposition 6.23. We plug the parametrix (97) in the equation (98). Then, we assemble the previous calculations,

we replace the ✷F+
λA

by G+
λA

, we separate E
evo
λ ∂Eevoλ and

∑

A ∈A
ei

uA

λ (i∂uA Π+E
evo
λ F+

λA
) from Zλ∂Zλ and we

pass ✷E
ell
λ to the RHS. We recover the full equation for E

evo
λ and in particular the [. . .].

The quantities X and XI are linear in the coupled evolution parameters (case c)) so we get the estimates directly
by assumptions and using the regularity of the background.
The quantity XII is at least quadratic in terms holding no derivatives, thus we have for free extra smalless with the
product estimate 8.16 (see case b)).
For XIII, we see that we took off the problematic terms. One can remark that there is a product between E

evo
λ and

F̃
+

A±B without any λ but as the latter is treated as a background term (a decoupled error parameter) it is in fact

linear in E
evo
λ (a coupled error parameter). Again, because F̃

+

A±B works as a background term we obtain directly
the inequality for XIV by the assumptions 6.16 (case c)).
For XV, we use 6.12.
The estimate for XVI is direct by definition of Ξ in 3.1, it is the case a).
Finally, for [. . .] we just add all the estimates established above.

Proposition 6.29. Under the assumptions 6.16 and for any τ ∈ [0, T ], for −
∑

A ∈A
ei

uA
λ λ1G+

λA
we have the

inequality

XV II :=
∑

k≤1

∫ τ

0

λk||
∑

A∈A

ei
uA

λ λ1G+
λA

(t)||Hkdt ≤ λ>1/2C0,1,2,τ . (129)

Proof. By direct calculations using the assumptions 6.16 (case c)) on G+
λA

.

Proposition 6.30. Under the assumptions 6.16 and for any τ ∈ [0, T ], for
∑

A∈A
ei

uA

λ i∂uA Π+(E
evo
λ F+

λA
) we

have

XV III :=
∑

k≤1

∫ τ

0

λk||
∑

A ∈A

ei
uA
λ i∂uAΠ+(E

evo
λ F+

λA
)(t)||Hkdt ≤ λ>1/2C0,1,2,τ . (130)

Proof. For the L2 norm, we have

XV III.1 :=

∫ τ

0

||∂uA Π+(E
evo
λ F+

λA
)(t)||L2dt ≤ ||∂uA ||L∞([0,τ ],W 1,∞)

∫ τ

0

||Π+(E
evo
λ F+

λA
)(t)||L2dt

≤ C0

∫ τ

0

(

∫

R3

| ̂Π+(E
evo
λ F+

λA
)(t)|2(ξ)

|ξ|

|ξ|
dξ)1/2dt

≤ C0

∫ τ

0

(

∫ ∞

(1/λ)κ
|( ̂
E
evo
λ F+

λA
)(t)|2(ξ)

|ξ|

|ξ|
|ξ|2dξ)1/2dt

≤ C0λ
κ/2

∫ τ

0

||(Eevoλ F+
λA

)(t)||H1/2dt

≤ C0λ
κ/2

∫ τ

0

||Eevoλ (t)||H1 ||F+
λA

(t)||H1dt ≤ C0,1,2,τλ
>1/2,

where we use the Plancherel theorem, the product estimate 8.16 and the assumptions 6.16 on E
evo
λ and F+

λA
. We

see that without the extra smallness λκ/2 we cannot close the bootstrap as we have a quadratic term in O(λ1/2).
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On the other hand, for the H1 norm we do not need to use the projector to get the extra smallness (case b)), we
have

XV III.2 := λ1
∫ τ

0

||∂uA Π+(E
evo
λ F+

λA
)(t)||H1dt ≤ λ1||∂uA ||L∞([0,τ ],W 1,∞)

∫ τ

0

||Π+(E
evo
λ F+

λA
)(t)||H1dt

≤ C0λ
1

∫ τ

0

||(Eevoλ F+
λA

)(t)||H1dt

≤ C0λ
1

∫ τ

0

||Eevoλ (t)||H5/4 ||F+
λA

(t)||H5/4dt

≤ C0,1,2,τλ
1λ1/4λ−1/4 ≤ C0,1,2,τλ

>1/2,

by the product estimate 8.16 and interpolation 8.10.
We conclude that XV III ≤ XV III.1 +XV III.2 ≤ C0,1,2,τλ

>1/2.

It remains to estimate the quadratic term E
evo
λ ∂Eevoλ .

Proposition 6.31. Under the assumptions 6.16 and for any τ ∈ [0, T ], for E
evo
λ ∂Eevoλ we have

XIX :=
∑

k≤1

∫ τ

0

λk||Eevoλ ∂Eevoλ (t)||Hkdt ≤ λ>1/2C0,1,2,τ . (131)

Remark 6.32. Using only product estimates and Sobolev interpolation (8.16 and 8.10) we are missing λε to close
the bootstrap (case b)). Indeed, for 0 < α < 3/2, 0 < β ≤ 1 and α+ β = 3/2 we have

||Eevoλ ∂Eevoλ ||L2 ≤ ||Eevoλ ||Hα ||∂Eevoλ ||Hβ ,

which leads to the cases

1/2 ≤ α ≤ 1, ||Eevoλ ∂Eevoλ (τ)||L2 ≤ λ−1/2+α(c1)
2e2τc2, 1 < α < 3/2, ||Eevoλ ∂Eevoλ (τ)||L2 ≤ λ1/2(c1)

2e2τc2 ,

by interpolation. Moreover, for the Ḣ1 we use the same techniques and we get

||∇E
evo
λ ∂Eevoλ (τ)||L2 ≤ λ−1/2C0,1,2,τ , ||Eevoλ ∇∂Eevoλ (τ)||L2 ≤ λ−1/2−εC0,1,2,τ ,

where we lose a small ε because we need to control the L∞ norm of Eevoλ . This gives us at best

XIX ≤ C0,1,2,τλ
1/2−ε.

We observe that we did not use at all the integral in time.

Proposition 6.33. We assume 6.16. With all the previous estimates (6.28, 6.29 and 6.30) and using the bad
product estimates from the latter remark 6.32 on E

evo
λ ∂Eevoλ , we have, for 0 < ε′ (as small as we want), the naive

estimates

||✷Eevoλ ||L1([0,τ ],L2) ≤ C0,1,2,τλ
1/2 + C0λ

1/2, ||✷∇E
evo
λ ||L1([0,τ ],L2) ≤ C0,1,2,τλ

−1/2−ε′ + C0λ
−1/2, (132)

where the C0
c1
c2
eτc2 can be controlled by C0,1,2,τ . We see from remark 6.20 that even ✷(Eevoλ )0 is in L2 in space.

Proof of 6.31. Let

XIX.1 := ||Eevoλ ∂Eevoλ ||L1([0,τ ],L2), XIX.2 := λ||Eevoλ ∇∂Eevoλ ||L1([0,τ ],L2), XIX.3 := λ||∇E
evo
λ ∂Eevoλ ||L1([0,τ ],L2).

We use Lemma 8.18 to get

XIX.2 . λ||∇∂Eevoλ ||Lp([0,τ ],L2)(||E
evo
λ ||Lq([0,τ ],H2))

θ(||✷Eevoλ ||L1([0,τ ],L2) + ||Eevoλ (0)||Ḣ1 + ||∂tE
evo
λ (0)||L2)(1−θ)

≤ C0,1,2,τλ
1/2λ−θ/2(||✷Eevoλ ||L1([0,τ ],L2) + c1λ

1/2)(1−θ)

≤ C0,1,2,τλ
>1/2,
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for θ ∈ (0, 1/2) and p and q functions of θ. We used the naive estimates of 6.33 to obtain the last line.
This method is directly applicable to XIX.1 to have

XIX.1 ≤ C0,1,2,τλ
>1/2.

Now, we use Lemma 8.17 to get

XIX.3 . λ||∂Eevoλ ||Lp([0,τ ],H1/2−ν)(||✷∇E
evo
λ ||L1([0,τ ],L2) + ||∇E

evo
λ (0)||Ḣ1 + ||∂t∇E

evo
λ (0)||L2)

≤ λ1+ν(||✷∇E
evo
λ ||L1([0,τ ],L2) + c1λ

−1/2)

≤ C0,1,2,τλ
>1/2,

for ν > ε′, where ε′ is from proposition 6.33 and where p depends on 1/2 > ν > 0.
Finally,

XIX . XIX.1 +XIX.2 +XIX.3 ≤ C0,1,2,τλ
>1/2.

This ends the proof of proposition 6.31.

6.3.5 Exact solution to KGML and bootstrap

The next propositions are the consequences of the previous sections, they gather the different results on the ex-
istence of multi phase high frequency solutions. We reformulate 2 of proposition 6.13 independently and non
schematically.

Proposition 6.34. For a given admissible background initial data set (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
), let λ > 0

and let ((eevoλ )α, ǫevoλ , (ėevoλ )α, ǫ̇evoλ , w+α
λA

, w̆+α
A ±B

, ψ+
λA

, ψ̆+
A ±B

, g+α
W+

λA

, g+
Ψ+

λA

, (eevoλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ) be initial data

admissible for KGML. Then, there exists a time tλ for which we have a local exact multi-phase high frequency
solution to KGML (Aαλ ,Φλ) for these initial data assembled as in definition 5.5. We have

A0
λ = A0

1λ + Z0
λ ∈

2⋂

j=0

Cj([0, tλ], H
2−j
δ+i ), Aiλ = Ai1λ + Ziλ ∈

2⋂

j=0

Cj([0, tλ], H
2−j),

Φλ = Φ1λ + Zλ ∈

2⋂

j=0

Cj([0, tλ], H
2−j),

where (Aα1λ,Φ1λ) are almost approximate solution of order 1 to KGM in Lorenz gauge and where (Zαλ ,Zλ) is the
precise error term with

Zαλ =
∑

A ∈A

λ1Re(ei
uA

λ W+α
λA

) +
∑

A ,B∈C,A<B

λ1Re(ei
uA ±uB

λ W̆+α
A ±B

) + (Eevoλ )α + (Eellλ )α, (133)

Zλ =
∑

A∈A

λ1Ψ+
λA
ei

uA
λ +

∑

A ,B∈C,A<B

λ1Ψ̆+
A ±B

ei
uA ±uB

λ + Eevoλ + Eellλ . (134)

Proof. We do it schematically. For initial data admissible for KGML there exists a time tλ for which we have a

solution (F+
λA

,G+
λA

,Eevoλ ) to the system (98) by proposition 6.19 (F̆
+

A ±B is given by proposition 6.7 and E
ell
λ is

given by definition 6.9).
With remarks 6.6, 6.11, 6.27 (and in particular proposition 6.28) we see that

Zλ =
∑

A∈A

λ1F+
λA

ei
uA

λ +
∑

A ,B∈C,A<B

λ1F̆
+

A ±Be
i
uA ±uB

λ + E
ell
λ + E

evo
λ

is solution to (98). This equation is given with respect to the background in proposition 4.1, it is constructed so
that if Zλ is a solution then Fλ = F1λ + Zλ is solution to (23), i.e., (Aλ = A1λ + Zλ,Φλ = Φ1λ + Zλ) is a solution
to KGML (8). The regularity follows directly from propositions 6.19, 6.7 and 6.12.

Proposition 6.35. For a given admissible background initial data set 2.24, let B′
0 be given by proposition 4.1

with size c0. Let λ > 0 and let (f+λA
, g+λA

, f̆
+

A ±B, ǫ
evo
λ , ǫ̇evoλ , ǫellλ , ǫ̇

ell
λ ) be initial data admissible for KGML 5.9
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and have the required smallness 5.12. Then, under the assumptions 6.16 and for any τ ∈ [0, T ], the solution
(F+

λA
,G+

λA
,Eevoλ ) to (98) given by proposition 6.19 obey the following estimates45

∑

k≤1

λk(||Eevoλ (τ)||Hk+1 + ||∂tE
evo
λ (τ)||Hk ) + λ||∂2ttE

evo
λ (τ)||L2 ≤ C0,1,2,τλ

>1/2 + λ1/2C0
c1
c2
eτc2 + λ1/2C0,

∑

k≤1

λk(||(Eevoλ )0(τ)||Hk+1
δ

+ ||∂t(E
evo
λ )0(τ)||Hk

δ+1
) + λ||∂2tt(E

evo
λ )0(τ)||L2

δ+2
≤ C0,1,2,τλ

>1/2 + λ1/2C0
c1
c2
eτc2 + λ1/2C0,

max
A ∈A

∑

k≤1

λk(||F+
λA

(τ)||Hk+1 + ||∂tF
+
λA

(τ)||Hk ) + λ||∂2ttF
+
λA

(τ)||L2 ≤ C0,1,2,τλ
>0 + C0

c1
c2
eτc2 + C0,

max
A ∈A

∑

k≤1

(λk||G+
λA

(τ)||Hk ) + λ||∂tG
+
λA

(τ)||L2 ≤ C0,1,2,τλ
>0 + C0

c1
c2
eτc2 + C0,

for constants defined in 4.5 and 6.17.

Proof. Firstly, we add all the estimates from sections 6.3.2, 6.3.3 and 6.3.4 and we use propositions 8.4 and 8.146

with proposition 8.2 and the smallness of the initial data 5.12 to have control of the Sobolev norms in space.
Then, we use propositions 8.3 and 8.5 to get the control on the time derivatives. The results on the smallness are
immediate.

Lemma 6.36. For ε > 0, c0 > 0, 1
η0

> 0, N ∈ N, T > 0 and any C0 = C0(c0,
1
η0
, N, T ) and C0,1,2,τ (·, ·, ·) =

C0,1,2,τ (c0,
1
η0
, N, T, ·, ·, ·) from 4.5 and 6.17 there exists λ0 > 0, c1 and c2, such that for any λ < λ0 and for any

0 ≤ τ ≤ T we have

C0
c1
c2
eτc2 + C0 + C0,1,2,τ (c1, c2, τ)λ

ε ≤
1

2
c1e

τc2.

Proof. We pick any c2 such that C0

c2
≤ 1

6 then we pick c1 such that C0 ≤ 1
6c1 and λ0 such that C0,1,2,τ (c1, c2, T )λ

ε ≤
1
6c1.

6.3.6 Exact solution to KGM in Lorenz gauge and gauge propagation

We prove the proposition 6.14. First, we rewrite it more precisely as follows :

Proposition 6.37. For a given admissible background initial data set 2.24 (aα0 , ȧ
α
0 , φ0, φ̇0, vA , v̇A , ψA , w

α
A
), let

λ > 0 and let ((eevoλ )α, ǫevoλ , (ėevoλ )α, ǫ̇evoλ , w+α
λA

, w̆+α
A ±B

, ψ+
λA

, ψ̆+
A±B

, g+α
W+

λA

, g+
Ψ+

λA

, (eellλ )α, ǫellλ , (ė
ell
λ )α, ǫ̇ellλ ) be KGML

admissible and KGM in Lorenz gauge admissible. Let (Φλ, Aαλ) be the solution to KGML on [0, tλ] given by
proposition 6.34 for these initial data assembled as in definition 5.5. Then, it is also a solution to KGM in Lorenz
gauge. We have for all t ∈ [0, tλ]

∂αA
α
λ(t) = 0, (135)

∂αA
α
0 (t) = 0, (136)

∀A ∈ A, ∂αuAW
α
A , (t) = 0, (137)

(138)

and if the parameters are initially polarized as

∀A ∈ A, ∂αuAw
+α
λA

= 0, ∀(A ,B) ∈ S ,A < B, (∂αuA ± ∂αuB)w̆+α
A ±B

= 0, (139)

(140)

45We make a difference between Eλ
evo and (Eevo

λ
)0 as in 6.15.

46The linear term in the RHS of (146) and (153) is not a problem and is dealt with as the other linear terms (case c)).
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then we have

∀A ∈ A, ∂αuAW
+α
λA

, (t) = 0, ∀(A ,B) ∈ S ,A < B, (∂αuA ± ∂αuB)W̆+α
A ±B

(t) = 0, (141)

(142)

∑

A∈A

(λ1/2Re(ei
uA

λ ∂αWα
A
) + λ1Re(ei

uA

λ ∂αW
+α
λA

))(t) +
∑

A ,B∈C,A<B

λ1Re(ei
uA ±uB

λ ∂αW̆
+α
A ±B

)(t)

+ ∂α(E
ell
λA)

α(t) + ∂α(E
evo
λA )α(t) = 0.

(143)

Proof. We use the argument of section 1.1.1, we have initial data satisfying the constraints so we take the divergence
of the Maxwell equation to recover the propagation of gauge via a wave equation with zero initial data.
For the decomposition of the divergence of Aλ, we already have the equalities on the second line from (53) and (54).
For the propagation of polarization, we observed in remark 6.3 that the RHS of the evolution equation for W+α

λA

(resp. W̆+α
A ±B

) are orthogonal to ∂αuA (resp. ∂βuA ± ∂βuB). We contract the equations with their respective
vector fields and use the geodesic equation for the characteristic phases to conclude.
Finally, the last line comes from all the remaining term.

Remark 6.38. The set we exhibit in proposition 5.16 is polarized as w̆+α
A ±B

= w+α
λA

= 0.

7 Conclusion

We put everything together and give some general remarks.

7.1 Proof of the theorems

For the first theorem 3.1, we only detail the proof of the point 1. Indeed, everything boils down to the construction
of the MPHF solutions, the other points are direct consequences of our construction and the point 5 is proved
using the Strichartz estimates for waves. The statement of point 1 is that for a given initial ansatz there exists λ0
such that below it there is a family of multi phase high frequency solutions to KGM (Aλ,Φλ)λ<λ0 on [0, T ]. More
precisely, for each λ > 0 we can build an almost approximate solution arising from the initial ansatz and an exact
solution based on this almost approximate solution. We follow the steps of 1.5. The approximation (step (i)) is
done in proposition 4.1. The rest of the theorem follows from the main propositions 6.13 (step (iii)), 6.14 (step (iv))
and 6.18 (step (v)). The construction of the initial data (step (ii)) is considered after.
From proposition 6.13, we have for any λ > 0 a well structured multi phase high frequency local solution to KGML
on [0, tλ]. The part 1 of this proposition is proved in proposition 6.19 and its part 2 in proposition 6.34. This
requires initial data admissible for KGML 5.9. Then, with the proposition 6.14, we recover a true solution to KGM
in Lorenz gauge if the initial data are admissible for KGM in Lorenz gauge 5.11, this is proved in proposition
6.37. Finally, the good structure of the previously cited solutions is exploited to prove the proposition 6.18. This
proposition states that for λ < λ0 the family of solutions to KGM exists on [0, T ]. For λ > 0, we have either tλ > T
and the proof is done or, if λ is small enough, that tλ can be improved up to T . To demonstrate the second case,
we use the following method. We assume some estimates 6.16 from which we deduce the proposition 6.35. Then,
using the lemma 6.36, we exhibit λ0 and we show that the estimates of proposition 6.35 are in fact better than the
assumptions 6.16 for λ < λ0. This shows a contradiction, tλ cannot be the maximum time of existence, it can be
pushed up to T . This requires a certain smallness for the error initial data 5.12.
We exhibit one generic set of initial data which fits the three criteria in proposition 5.16. This concludes the proof
of the first theorem.

For the second theorem, the proof is direct with the structure of the solution and the structure of the error
term in particular. We make some more remarks on that in the next section. The third point is detailed in section
4.2.

7.2 Convergence and smallness of the error term

It is interesting to compare our results to the ones of [10]. The author of [10] exhibits mono phase high frequency
solutions to Yang Mills coupled with a scalar field and a spinor field. More particularly, the author shows how to
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construct approximate solutions of any order with the WKB expansion

FMλ =
∑

0≤i≤M−1

λi/2(F̃i(x) + λ1/2
⋆

Fi(x,
u

λ
))

and how to construct exact solutions

Fλ = FMλ + Zλ

on a time interval uniform in λ and for M ≥ n where n is the dimension. The function Fi(x, .) is decomposed

as a mean part F̃i(x) and a purely oscillatory part
⋆

Fi(x, .). It has to be a more general profile than the cos(uλ)
and sin(uλ ) case of our paper to treat the harmonics. The construction of approximate solutions of [10] holds for a
broader family of gauges than the only Lorenz gauge. Dealing with the non hyperbolicity requires to add a higher
order parameter, see the remark 4.9. The following bounds for the Yang-Mills potential and the scalar field is
obtained

∀λ < λ0, λ
M/2||Fλ||H1/2 + ||Zλ||H1/2 ≤ λM/2C,

for some constant C which depends on the initial data.
The KGM system is a sub case of this more general case. On the other hand, the mono phase case of [10] is a sub
case of the multi phase case treated here. We show in this paper how to construct an error term at order M = 1,
that is below 3 (the dimension). Our first order approximation looks like

F1λ = F̃0(x) + λ1/2
⋆

F0(x,
u

λ
) := F0(x) + λ1/2F(x)ei

u
λ .

In [10], it is not possible to give directly the error term at this order. This is due to the use of some product estimates
(proposition 3.1.1 in [10] and 2.2.2 in [9]) which is consistent with the results of [19] for first order hyperbolic system.
To get higher order approximate solutions one needs to build a hierarchical system of equations and to take care of
harmonics which arise from the interactions between phases.

7.3 Regularity of the background

The background B′
0 := (A0,Φ0, wA , ψA , duA ) defined in proposition 4.1 is more regular than the full solution (and

in particular the error term). This extra regularity is mandatory and is used to have the well posedness of (99)
and (87) and along the estimates in section 6.3. For example, the equation for E

evo
λ has ✷FA in its RHS so that

∂Eevoλ ∼ ✷FA in terms of regulartiy. We see that B0 = (A0,Φ0, wA , ψA ) is one degree more regular than the error
term. Moreover, the phases have the following regularity

max
A ∈A

5∑

j=0

||uA ||Cj([0,T ],H5−j
δ1+j

≤ c0.

The phases need to be this regular to have the well-posedness of (51) with solutions in H3 and to be able to use
the commutator estimates of proposition 8.6 for (106). In fact, it is doable if we only have ✷uA in H3 and uA in
H4
δ1

. Constructing the error term for a higher order approximation requires a more regular background.

8 Appendix

8.1 Estimates for evolution equations

Proposition 8.1. For f a function defined on [0, T ′]× R3 solution to
{

✷f = h,

f(t = 0) = f0 ∈ Hm+1
δ′−1 ∂tf(t = 0) = f1 ∈ Hm

δ′ ,
(144)

we have the energy estimate

||∂f(t)||Hm
δ′

≤ C(||∂f(0)||Hm
δ
+

∫ t

0

||h(s)||Hm
δ′

+ ||∂f(s)||Hm
δ′
ds), (145)
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and more precisely for δ′ = 0

||∂f(t)||Hm ≤ C(||∂f(0)||Hm +

∫ t

0

||h(s)||Hmds). (146)

Proof. We detail the energy estimate for f for m = 0 and for any δ′

✷f(1 + |x|2)δ
′

∂tf = h(1 + |x|2)δ
′

∂tf,

∫

R3

✷f(1 + |x|2)δ
′

∂tfdx =

∫

R3

h(1 + |x|2)δ
′

∂tfdx

= −
d

dt

∫

R3

(1 + |x|2)δ
′ ∂tf

2 + |∇f |2

2
dx− 2δ′

∫

R3

(1 + |x|2)δ
′−1xi∂if∂tfdx,

where |(1 + |x|2)δ−1xi| ≤ (1 + |x|2)δ
′

. We can control this term in L2 norm with the weight δ′. We finally get

d

dt

1

2
||∂f(t)||2L2

δ′
≤ C(||∂f(t)||L2

δ′
||h(s)||L2

δ′
+ ||∂f(t)||2L2

δ′
),

||∂f(t)||L2
δ
≤ C(||∂f(0)||L2

δ
+

∫ t

0

||h(s)||L2
δ
+ ||∂f(s)||L2

δ
ds).

Then, we commute the equation with ∂−→m where −→m is a multi-index with |−→m| = m. We multiply by ∂t−→mf instead
of ∂tf and the adjusted weight to get the Sobolev norms.

Moreover, having bounds on ∂f = (∂tf,∇f) and on f0 gives us bounds on f(t) for finite t.

Proposition 8.2. With f solution to (144) we have ∀t ∈ [0, T ′]

d

dt
||f(t)||L2(t) ≤ ||∂tf(t)||L2 , (147)

and so for m ≥ 0

||f ||Hm+1

δ′−1

(t) ≤ (||f0||Hm+1

δ′−1

+ (t+ 1)sups∈[0,T ′]||∂f(s))||Hm
δ′
). (148)

Proof. By direct calculation.

Proposition 8.3. The time derivatives of solutions to (144) obey the following inequalities

||∂tf(t)||Hm
δ

≤ C(||∂f(0)||Hm
δ′
+

∫ t

0

||h(s)||Hm
δ′
+ ||∂f(s)||Hm

δ′
ds), (149)

||∂2ttf(t)||Hm−1

δ′+1

≤ (||f(t)||Hm+1

δ′−1

+ ||h(t)||Hm−1

δ′+1

). (150)

Proof. The first inequality is a specific case of (146) and the second comes directly using the equation.

Proposition 8.4. For f a function defined on [0, T ′]× R3 solution to
{

2∂αu∂αf +✷uf = j,

f(t = 0) = f0 ∈ Hm,
(151)

with u a smooth characteristic phase satisfying

min
(t,x)∈[0,T ′]×Supp(f)

|∂tu(t, x)| > η > 0 ||∂u||Hm′ + ||✷u||Hm′ + ||∂t∂u||Hm′−1 + ||∂t✷u||Hm′−1 ≤ Cu, (152)

for m′ = max(m, 2). We have the energy estimate

||f ||L∞([0,T ′],Hm) ≤ Cu(||f(0)||Hm +

∫ T ′

0

||j(s)||Hm + ||f(s)||Hmds). (153)
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Proof. In the case m = 0, we multiply by f

∂α(∂
αuA f

2) = jf,

so we have a conservative transport equation, by Stokes theorem47 we get

∫

R3

(∂0uA f
2)(t)dx =

∫

R3

(∂0uA f
2)(0)dx +

∫ t

0

∫

R3

(jf)(s)dxds,

and so

η||f(t)||2L2 ≤ Cu||f(0)||
2
L2 + ||f ||L∞([0,T ′],L2)

∫ t

0

||j||L2ds,

which implies

||f(t)||L∞([0,T ′],L2) ≤ Cu,η(||f(0)||L2 +

∫ T ′

0

||j||L2ds).

For m > 1 we commute the equation with ∂−→m , where −→m is a multi-index with |−→m| = m, and we get

(2∂αu∂α +✷u)∂−→mf = [2∂αu∂α +✷u, ∂−→m ]f + ∂−→mj,

where

||[2∂αu∂α +✷u, ∂−→m ]f(t)||L2 ≤ C(||∂u||Hm′ + ||✷u||Hm′ )||f(t)||Hm ,

for m′ = max(m, 2).

Proposition 8.5. The time derivatives of (151) obey the following inequalities

||∂tf ||L∞([0,T ′],Hm) ≤ Cu,η(||f ||L∞([0,T ′],Hm+1) + ||j||L∞([0,T ′],Hm)), (154)

||∂2ttf ||L∞([0,T ′],Hm−1) ≤ Cu,η(||f ||L∞([0,T ′],Hm+1) + ||j||L∞([0,T ′],Hm)). (155)

Proof. For the first inequality we use directly the transport equation. In the second case we apply one derivative
on the transport equation and use the previous one to control the appearing first order in time derivatives.

8.2 Commutator

Proposition 8.6. Let g be a smooth Lorentzian metric, we define ✷ := DαD
α for D the covariant derivative and

we contract the indices with respect to this metric.
Let f defined on [0, T ′]× R3 be compactly supported and solution to

{

2∂αu∂αf +✷uf = j,

f(t = 0) = f0 ∈ H2,
(156)

for u a smooth characteristic phase such that there exists Cu such that for every compact set Ω ⊂ R3

||✷∂u||L∞([0,T ′],L∞(Ω)) + ||✷✷u||L∞([0,T ′],H1/2(Ω)) + ||∂∂u||L∞([0,T ′],L∞(Ω)) ≤ Cu. (157)

We suppose that
(✷f)|t=0 = G0, G0 ∈ H1. (158)

47We ignore the border terms as they will be useless in our application.
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Let G defined on [0, T ′]× R3 be solution to
{

2∂αu∂αG+✷uG = ✷j + [(2∂αu∂α +✷u),✷]f,

G(t = 0) = G0.
(159)

Then, G stays in H1 for all t ∈ [0, T ′] and

||G(t)||H1 ≤ Cg,u

∫ t

0

(||✷j(s)||H1 + ||∂j(s)||H1 + ||f(s)||H2)ds+ ||G0||H1 , (160)

where we use the pointwise in time estimate

||[(2∂αu∂α +✷u),✷]f(t)||L2 ≤ Cg,u(||G(t)||L2 + ||∂j(t)||L2 + ||f(t)||H1 ). (161)

The result is true independently of the metric g.

Proof. We see that if u = kαxα for k a constant vector, that is if u is the phase of a plane wave, we have ∂αu = kα
so that

[(2∂αu∂α +✷u),✷] = [(2kα∂α),✷] = 0, (162)

so the result is direct.
Now we do the general case, to simplify the calculations we put ourselves in wave coordinates gµνΓγµν = 0.

[(2∂αu∂α +✷u),✷]f = 2∂αu∂α(g
µν)∂µ∂νf − 2∂αu∂α(g

µνΓγµν)∂γf − 4✷∂αu∂αf − 4gµν∂µ∂
αu∂ν∂αf −✷✷uf

= −4(Γµραg
ρν∂αu+ gµα∂α∂

νu)∂µ∂νf − 4(✷∂αu)∂αf −✷✷uf = −4(∇µ∂νu)∂µ∂νf − 4(✷∂αu)∂αf −✷✷uf.

We can write the metric as

gµν = −
1

2
(∂µu∂ν ū+ ∂µū∂νu) + δMNeµMe

ν
N ,

where eM,N are spacelike vector fields orthonormal to ∂u. We set ∂ū as the only null vector field such that
g(∂u, ∂ū) = −2 and g(EM , ∂ū) = 0.

We know that ∂νuD
µ∂νu = 0 (35) and ∂νuD

ν∂µu = 0 (38), we deduce that locally we can write the tensor
∇µ∂νu as

a∂u⊗ ∂u+ b(∂u⊗ eM,N + eM,N ⊗ ∂u) + c(eM,N ⊗ eM,N ),

a, b and c depend on ∂∂u and ∂g. All the other components are zero.
We conclude that schematically

[(2∂αu∂α +✷u),✷]f = f1(∂∂u, ∂g)∂(∂
αu∂αf) + f2(∂∂u, ∂g)∂f + f3(∂∂u, ∂g)∂M∂Nf +✷∂u∂f +✷✷uf,

for some functions f1, f2 and f3.

We know that the hessian ∂M∂Nf can be estimated in L2 on surfaces of u and ū constant via ∆M,NF and ∂F , see
[21].
We use the identity

∆M,Nf = ✷f +
1

2
(∂µu∂νū+ ∂µū∂νu)∂µ∂νf,

to get
||∂M∂Nf ||L2 ≤ Cu,g(||✷f ||L2 + ||∂(∂αu∂αf)||L2 + ||∂f ||L2).

Putting everything together, we deduce

||[(2∂αu∂α +✷u),✷]f(t)||L2 ≤ Cu,g(||✷f ||L2 + ||∂(∂αu∂αf)||L2 + ||f ||H1) = Cu,g(||G||L2 + ||∂j||L2 + ||f ||H1).

This is the desired inequality.
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8.3 Sobolev inequalities

Here we recall the classical Sobolev embedding and interpolation results.

Proposition 8.7. Let n ∈ N∗ be the dimension k > 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞, k > l and 1
p ≥ 1

q ≥ 1
p − k−l

n

W k,p →֒W l,q.

Proof. From standard results.

Proposition 8.8. Let n ∈ N∗ be the dimension k > 0, 1 ≤ p <∞, 1 ≤ q <∞,

1

p
−
k

n
≥ 0 => W k,p c

−֒→ Lq,

1

p
−
k

n
< 0 => W k,p c

−֒→ L∞.

Proof. From standard results.

Proposition 8.9. We have the embedding of weighted Sobolev spaces into the weighted Cmδ′ spaces for m ∈ N,
1 ≤ p ≤ ∞, n/p < s <∞ and δ′ ≤ δ + n

p

W s+m
p,δ →֒ Cmδ′ .

Proof. From [3].

Proposition 8.10. For sθ, s0, s1 ∈ R, 1 ≤ pθ, p0, p1 ≤ ∞ and 0 < θ < 1 with 1
pθ

= 1−θ
p0

+ θ
p1

and sθ = (1−θ)s0+(θ)s1
we have

||f ||W sθ,pθ ≤ (||f ||W s0,p0 )1−θ(||f ||W s1,p1 )θ. (163)

Proof. From standard results.

Proposition 8.11. We have the Gagliardo-Nirenberg inequality : Let 1 ≤ r, q ≤ ∞, j,m ∈ N such that j < m,
p ≥ 1 then for

1

p
=
j

n
+ θ(

1

r
−
m

n
) + (1− θ)

1

q
,

j

m
≤ θ ≤ 1,

we have

||∂jxf ||Lp(Rn) ≤ C(||∂mx f ||Lr(Rn))
θ(||f ||Lq(Rn))

1−θ.

Proof. From standard results.

8.4 Laplacian inversion

Definition 8.12. We define the classical Laplacian as ∆ = ∂i∂
i where

∆ :W 2+m
δ,p −→Wm

δ+2,p.

Theorem 8.1. For n ≥ 3, δ 6≡ −2 + n
p′mod(N) and −δ 6≡ n

pmod(N) with

−n/p < δ < −2 + n/p′,
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the Laplacian operator is an isomorphism from W 2+m
δ,p to Wm

δ+2,p and is in particular invertible.

Moreover, for f solution to
∆f = h,

we have
||f ||H2

δ
. ||h||L2

δ+2
. (164)

Proof. From [18].

Remark 8.13. In the case n = 3, p = 2 and p′ = 2 we have −3/2 < δ < −1/2. With m = 0, we see that the source
term h must be in L2

δ+2 ⊂ L2 (δ + 2 > 0) but if Supp(h) ⊂ K for K compact then

||h||L2
δ+2

≤ C||h||L2(K).

We can deduce the following useful lemma.

Lemma 8.14. Let
L = −∆+ g, (165)

for g ≥ 0 a compactly supported function in H2 with ||g||H2 ≤ Cg. Then, for δ ∈ (−3/2,−1/2) the operator L is
an isomorphism from H2

δ to L2
δ+2 and is in particular invertible.

Moreover, for f solution to
Lf = h, (166)

We have
||f ||H2

δ
. ||h||L2

δ+2
. (167)

Proof. First, we show that the multiplication by g is a compact operator from H2
δ to L2

δ+2.
Let B be a ball of finite radius such that Supp(g) ⊂ B. For f ∈ H2

δ with ||f ||H2
δ
≤ C we have

||gf ||H1(B) ≤ ||g||H2(B)||f ||H2(B) ≤ c(B)||f ||H2
δ
||g||H2 ≤ c(C,B,Cg).

Using the Rellich-Kondrachov theorem we deduce that {gf |f ∈ H2
δ , ||f ||H2

δ
≤ C} is a compact subset of L2(B) and

so a compact subset of L2
δ+2. Now we show the invertibility.

The classical Laplacian is already an isomorphism from H2
δ to L2

δ+2 for δ ∈ (−3/2,−1/2) so that it is Fred-
holm of index 0. Adding a compact perturbation do not modify the index of the operator.
We deduce that the operator L is Fredholm of index 0. For such an operator, the injectivity will imply the invert-
ibility.

To prove the injectivity we use the maximum principle for Sobolev regularity.
Let f be in H2

δ such that
Lf = 0,

then because g ≥ 0 we can use the maximum principle (see chapter 8 of [4] for example) for any set Ω of finite
radius R with smooth boundary we have

sup
Ω
f ≤ sup

∂Ω
f |∂Ω, inf

Ω
f ≥ inf

∂Ω
f |∂Ω,

where the trace of f is its restriction to the border as f is continuous (by Sobolev embedding in Hölder spaces from
proposition 8.9). In fact, we have even more than continuity, f also obeys the following inequality

|f(x)| ≤
C||f ||H2

δ

|x|β
,
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for some C > 0 and for 0 ≤ β < δ + 3/2 (here δ ∈ (−3/2,−1/2)) due to the fact that the Sobolev spaces are
weighted.
We have

| sup
Ω
f | ≤

C||f ||H2
δ

Rβ
, | inf

Ω
f | ≤

C||f ||H2
δ

Rβ
.

Letting the R go to +∞ we deduce that f is identically 0. This proves the injectivity of L and thus its invertibility.

To prove the inequality (167), we work by contradiction.
First, because L is asymptotic to a Laplacian in the senses of [1] (for q = 4) we have the following inequality for
every f in H2

δ

||f ||H2
δ
≤ C(||Lf ||L2

δ+2
+ ||f ||L2(BR)), (168)

which is from theorem 1.10 of [1]. The constant C and R depend on g and δ.
If the inequality (167) is false, then there exists a sequence fn such that

||fn||H2
δ
= 1, lim

n−>∞
||Lfn||L2

δ+2
= 0.

Because the sequence is uniformly bounded there exists a subsequence that converges weakly to f in H2
δ and that

converges strongly in L2(BR) by Rellich-Kondrachov.
We have ∀ϕ ∈ C∞

c

lim
n−>∞

∫

Lfnϕdx = 0

by assumptions and
∫

(Lfn − Lf)ϕdx =

∫

(−∆fn +∆f)ϕdx+

∫

g(fn − f)ϕdx ≤

∫

−∆(fn − f)ϕdx+ ||gu||L2(Ω)||fn − f ||L2(Ω),

which implies that

lim
n−>∞

∫

Lfnϕdx =

∫

Lfϕdx.

We deduce that Lf = 0 and thus f = 0 by injectivity.
Now, using the inequality (168), we find out that for any ε > 0 there exists m ∈ N such that for any n ≥ m

1 = ||fn||H2
δ
≤ C(ε+ ||fn||L2(BR)),

and we have limn−>∞ ||fn||L2(BR) = ||f ||L2(BR) as the convergence is strong. We deduce that f 6= 0 which is a
contradiction. Thus, we obtain the inequality (167).

8.5 Strichartz

Definition 8.15. We say that (q, r) are Strichartz admissible if :

q ≥ 2,
2

q
≤ (n− 1)(

1

2
−

1

r
),

(q, r, n) 6= (2,∞, 3), r <∞.

Theorem 8.2. For (q1, r1) et (q2, r2) Strichartz admissible with

1

q1
+
n

r1
=

1

q′2
+
n

r′2
− 2 =

n

2
− γ, (169)

and f solution to the Cauchy problem
{

✷f = j,

f(0) = f0, ∂tf(0) = ḟ0,
(170)

then
||u||Lq1([0,T ],Lr1) ≤ (||S||

Lq′2 ([0,T ],Lr′2)
+ ||u0||Ḣγ + ||u̇0||Ḣγ−1 ). (171)
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Proof. From [20]

8.6 Product estimates

We recall the following Sobolev product estimates result.

Proposition 8.16. For 1 < p < ∞, r, s ∈ R, r, s < n
p , r + s > max(np − n

p′ , 0) with 1
p + 1

p′ = 1 and, if p > 2,
||f ||Wp′,−r or ||g||Wp′,−s we have

||fg||Wp,t ,≤ ||f ||Wp,r ||g||Wp,s , (172)

for t = r + s− n
p .

Proof. From [22].

We give two lemmas on product estimates based the Strichartz estimates.

Lemma 8.17. Let f and g be two functions defined on [0, T ′] × R3 for T ′ > 0. For ν ∈ (0, 1/2) we have the
inequality

||fg||L1([0,T ′],L2) ≤ C||f ||Lp([0,T ′],H1/2−ν)(||✷g||L1([0,T ′],L2) + ||g(0)||Ḣ1 + ||∂tg(0)||L2), (173)

with p given by ν > 0.

Proof. For 1
p + 1

p′ = 1, 2 < α = 3
1+ν < 3 and 1

2 = 1
α + 1

β we have

||fg||L1([0,T ′],L2) ≤ ||f ||Lp([0,T ′],Lα)||g||Lp′([0,T ′],Lβ)

≤ ||f ||Lp([0,T ′],H1/2−ν)||g||Lp′([0,T ′],Lβ).

We set (r2 = 2, q2 = ∞), they are Strichartz admissible, we want p′ such that (β, p′) are Strichartz admissible and
such that

1

p′
+

3

β
=

1

q′2
+

3

r′2
− 2 =

1

2
,

this implies that p′ = α
3−α and so p = α

2α−3 . Then, we use the Strichartz estimates on ||g||Lp′([0,T ′],Lβ) to get the
desired inequality.

Lemma 8.18. Let f and g be two functions defined on [0, T ′]×R3 for T ′ > 0, for θ ∈ (0, 1/2) we have the inequality

||fg||L1([0,T ′],L2) ≤ ||f ||Lp([0,T ′],L2)(||g||Lq([0,T ′],H2))
θ(||✷g||L1([0,T ′],L2) + ||g(0)||Ḣ1 + ||∂tg(0)||L2)1−θ,

where p and q depend on θ.

Proof. We have

||fg||L1([0,T ′],L2) ≤ ||f ||Lp([0,T ′],L2)||g||Lp′([0,T ′],L∞), (174)

with Gaglirado-Nirenberg 8.11 we get

||fg||L1([0,T ′],L2) ≤ ||f ||Lp([0,T ′],L2)(||g||Lp′θ([0,T ′],H2))
θ(||g||Lp′(1−θ)([0,T ′],Lr1))

1−θ, (175)

where r1 = 6(1−θθ ) > 6 with θ ∈ (0, 1/2). We set (r2 = 2, q2 = ∞) and p1 = p′(1 − θ) and search for (r1, p1)
Strichartz admissible with

1

p1
+

3

r1
=

1

q′2
+

3

r′2
− 2 =

1

2
.

We find p′ = 2
1−θ so that p = 2

1+θ . Finally, we use the Strichartz estimates on ||g||Lp′(1−θ)([0,T ′],Lr1) to recover the
desired inequality.
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