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Abstract

Reliability analysis of complex systems is essential for cost-effective evalua-
tions. This study addresses scenarios where optimal system operation is an-
alyzed using deterministic black-box models. The input vector, x P X Ă R

d,
characterizes both the system and environmental conditions, while y repre-
sents the variable of interest associated to a “failure domain” expressed as
F “ tx P X | ypxq ď s‹u, with s‹ P R a given threshold. Given the uncer-
tainties in x, this deterministic model requires a probabilistic analysis for
robust safety demonstrations. Such an analysis typically involves two key
steps: first, estimating the system’s probability of failure (denoted by pf)
which is the statistical quantity of interest, and then, evaluating it against
safety standards or expert knowledge. While considerable effort has been
invested in proposing efficient methods for estimating pf, little attention has
been paid to the decision phase, which should take into account the uncer-
tainties (e.g., in the pf estimate). This work focuses on the definition and use
of safety margins in system reliability analysis with a final decision making
purpose, especially when the knowledge of the input vectors x is limited to a
finite set of n observations. An important distinction is made between cases
where n is large or small relative to 1{pf. The main contributions of the
paper focus on the scenario where n is relatively small, and propose two dif-
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ferent approaches, each of which allowing the definition of reasonable safety
margins. The first method focuses on the estimation of the probability dis-
tribution of the code inputs x, while the second method, closely related to
extreme value theory, focuses on the influence of the direct estimation of the
tail of the model output probability distribution. The developed framework
is then numerically validated on two test cases.

Keywords: Reliability Analysis, Complex Systems, Probability of Failure,
Safety Margins, Extreme Value Theory

1. Introduction

The reliability analysis of complex systems is increasingly based on simula-
tion. In that context, this work is concerned with the case where the proper
operation of these systems of interest can be analyzed using a determin-
istic black-box model. Let us note x P X Ă R

d the input vector of this
model, i.e., the vector characterizing the system of interest and the condi-
tions under which it will evolve, and y the variable of interest (supposed
to be scalar for the sake of simplicity) that is used to characterize the sys-
tem’s failure in the sense that one can define a so-called “failure domain” by
F “ tx P X | ypxq ď s‹u, with s‹ P R a prescribed threshold. By determinis-
tic model, we mean that if we provide the same value for x to the code twice,
we obtain exactly the same value for y twice. Here, the term “black-box”
indicates that the equations linking the values of x to y are not explicit, and
that only point estimates of y are available for the reliability assessment.

We assume that the value of x associated with a specific system is not per-
fectly known (due to manufacturing tolerances, for example), leading to con-
sider it in a probabilistic setting as being a collection of random variables
gathered in a random vector X , whose probability distribution is denoted by
µX . Given the random nature of the system characteristics, and denoting by
Y :“ ypXq the random variable with probability distribution νY , the safety
demonstration of the system now relies on two distinct steps:

1. The estimation of a quantity of interest which reflects the risk [26],
typically, the system’s probability of failure (supposed to be associated
to a rare failure event), which is denoted by pf, and which can be defined
in several ways, whether at the level of the random inputs X or at the
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level of the random output Y “ ypXq:

pf :“ PµX
pX P Fq “

ż

F

dµXpxq “ PνY pY ď s‹q “
ż s‹

´8

dνY pyq; (1)

2. Its confrontation either to safety standards or expert knowledge, to
decide whether this value is sufficiently small or not.

While much effort has been put to derive various efficient approximation
or estimation techniques (possibly using advanced adaptive surrogate-based
strategies) for static rare event estimation over the last decades (see, e.g., [18,
3] for comprehensive reviews), this decision phase does not seem to be really
addressed in the literature. To be more precise, this type of problem has
been seen in two paths of research:

• the first one focuses on the evaluation of the robustness of the fail-
ure probability estimation using several mathematical frameworks (see,
e.g., [20, 7] in a Bayesian framework, [28] using “Optimal Uncertainty
Quantification”, [13] using an information-geometric framework and [1]
using an info-gap approach);

• the second one focuses on the definition and evaluation of safety mar-
gins in the context of risk and reliability assessment (see, e.g., [10, 11, 9]
and [29]).

However, the present work addresses this problem of safety margin and/or
robustness evaluation from a slightly different perspective than the existing
literature. Here, the focus is on a reliability-based decision making process
while considering the constraint of limited statistical information about the
input data.

Thus the definition of these safety margins, and their use in system reliability
analysis, is therefore at the heart of this work. And of particular interest is
the case where the maximum information about the input vector is limited to
a set of n observations, which are denoted by X1, . . . ,Xn and are gathered
in the set Dn “ tX1, . . . ,Xnu. We assume that these observations can be
considered as n independent and identically distributed (i.i.d.) realizations
of X. In parallel, we define the realizations of Y associated with these
realizations of X by:

Y1 :“ ypX1q, . . . , Yn :“ ypXnq. (2)
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In this work, we focus on the case where n is predetermined (the realiza-
tions of X can thus correspond to the results of a completed measurement
campaign for instance), and we distinguish two configurations: the case where
n is high compared to 1{pf, and the case where n is smaller than or of the
same order as 1{pf. The case where n is sufficiently large is mainly used to
illustrate the proposed formalism on a simple case, and leads to relatively
classical results. The main innovative contributions of this paper are then as-
sociated with the case where n is relatively small, for which it is highly likely
that all the values of Y1, . . . , Yn will be greater than s‹ (thus, not in the failure
domain). Building an estimator of pf from these values of Y alone is therefore
unlikely to be very useful (in the sense that a large variance of the estimator
is expected). In order to define more interesting estimators of pf, we propose
to add information on the structure of the probability distribution µX of X ,
or on the tail of the probability distribution νY of Y . More precisely, these
distributions are assumed to admit a probability density function (PDF),
which can be searched among well-chosen sets of parametric PDFs [30]. The
construction of the estimator of pf is then based on two steps. The informa-
tion gathered in Dn is first used to estimate the parameters that characterize
µX (or νY ). The estimator of pf is then constructed from these estimated
distributions, whether or not based on new evaluations of y. In that case, it
is important to notice that two sources of uncertainty need to be considered
in the reliability analysis and the final decision: the fact that µX (or νY ) is
estimated using a finite number of realizations of X (or Y ), and can there-
fore be considered as random, and the fact that the estimator of pf given the
estimator of µX (or νY ) may also be random (if we consider, for example, an
estimator of pf based on samples drawn according to the estimated measure,
as will be the case in Section 4).

There are several papers in the literature that also looked at the consequences
of this double source of uncertainty, sometimes called "bi-level" uncertainty
(see for instance [6]). But as mentioned above, the positioning of this paper
is different in that what interests us here is quantifying the influence of this
double source of uncertainty on final decision-making, with a particular focus
on the definition of safety margins in a statistical framework, which will no
longer be as straightforward as in the case where n is large.

To meet these objectives, the outline of this paper is as follows. Section 2
presents the formalism to make reliability-based decision in a statistical
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framework. Section 3 then applies this formalism to the case where a large
number of observations of X is available, while Section 4 deals with the defi-
nition of safety margins in the context where n is relatively small, and brings
together the paper’s main original contributions. Section 5 illustrates nu-
merically the theoretical developments of Section 4 on two analytical cases,
and Section 6 concludes the paper while putting forward some directions for
further work.

Notations. In the rest of this paper, the random quantities will be written in
uppercase, and the deterministic quantities in lowercase. Thus, A will refer
to a random variable that can take the value a, and similarly, A will refer to a
random vector that can take the value a. In addition, for any positive integer
q, any real-valued measurable function h defined on R

q, and any subset A of
R, the notation PµphpAq P Aq designates the probability that hpAq is in A

under the assumption that A is of measure µ. And to simplify the reading,
if A1, . . . ,An correspond to n independent copies of the same random vector
A of measure µ, then we simply note PµprhpA1, . . . ,Anq P Aq the probability

that rhpA1, . . . ,Anq is in A, with rh a new deterministic measurable function.
The typical situation in which we will use this notation is when we shall deal
with an estimator pPn of the probability of failure, which is a deterministic
measurable function of the sample X1, . . . ,Xn. In Section 4.2, where the es-
timator pPn,m will be constructed from m random variables X

pnq
1 , . . . ,Xpnq

m re-
sampled according to some probability measure pµn estimated from X1, . . . ,Xn,
we will still use the notation Pµp pPn,m P Aq to keep track of the fact that

X1, . . . ,Xn are i.i.d. under µ, even though pPn,m is no longer a deterministic
function of X1, . . . ,Xn.
Then, we denote by MpXq the set of probability distributions defined on
X, and by P the particular subset (to be specified on a case-by-case basis)
of MpXq in which the (true but unknown) probability distribution of the
system input vector X is assumed to belong. This probability distribution is
noted µX , and the definition of P is thus based on a prior knowledge about
µX . When there is no assumption about this probability distribution, as will
be the case in Sections 2 and 3, then P “ MpXq. For any p P r0, 1s and any
α P p0, 1q, we finally denote by Pp and Pěα the subsets of P such that:

Pp :“ tµ P P : PµpX P Fq “ pu , Pěα :“
ď

pěα

Pp. (3)
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By definition, as pf “ PµX
pX P Fq, µX is a particular element of Pp for

which p “ pf, and if α is actually lower than pf, it is also an element of Pěα.

2. Statistical test formalism for reliability-based decision making

Deciding whether a particular system is sufficiently safe, or not, amounts to
comparing its failure probability pf to a certain value which can be called
the acceptable risk, and denoted by α in the following (the greater the con-
sequences of a failure, the smaller α is). A first decision criterion can then
be stated regarding the safety of the system.

Decision Criterion 1 (Theoretical case). The system is considered as
sufficiently safe if pf ă α.

As the true value of pf is (most of the time, for real applications) unknown,
this criterion is difficult to use in practice. To circumvent this problem, let
us suppose that one can build a statistical estimator pPn of pf relying on the
n evaluations of y at the n i.i.d. realizations of X gathered in Dn. Since
pPn is an estimator of pf, it is however important to keep in mind that it is
very likely it over- or underestimates the true pf (since it is associated to

a symmetric cost function, see [20]). As a consequence, ensuring that pPn

is smaller than α is likely to be not sufficient to guarantee that the system
of interest is actually safe. To better control the risks associated with this
replacement of pf by pPn, the classical formalism of statistical tests [17] is
particularly suited to this context of finite-size sample. Hence, one can take
as null and alternative hypotheses

H0 “ tpf ě αu , H1 “ tpf ă αu . (4)

Since one desires to test whether the system is sufficiently safe or not, one
chooses the null hypothesis H0 as corresponding to an unsafe system, accord-
ingly to standard formulations in statistical hypothesis testing. Then, if we
denote by β P p0, 1q the classical type I error, this formalism invites us to
consider the following new decision criterion to assess the system safety.

Decision Criterion 2 (Estimator-based case). The system is considered

as sufficiently safe if pPn ` c˚pn, α, βq ă α, where the constant c˚pn, α, βq is
the solution of the following constrained optimization problem:

c˚pn, α, βq :“ inf

"
c P r0, αs :

"
sup

µPPěα

Pµ

´
pPn ` c ă α

¯*
ď β

*
. (5)

6



In Decision Criterion 2, we recall that Pěα corresponds to the set of input
probability distributions µ such that Pµ pX P Fq is higher than α. The con-
stant c˚pn, α, βq acts therefore as a safety margin as it is supposed to avoid
false certification with (high) probability 1 ´ β. Indeed, if the true (but un-
known) failure probability pf “ PµX

pX P Fq is actually higher than α, that

is to say if µX is in Pěα, pPn ` c˚pn, α, βq should also be higher than α with
probability 1 ´ β.

Note also that, for all µ P Pěα, Pµp pPn`c ă αq corresponds to the probability

for pPn ` c to be strictly lower than α, under the assumption that pPn relies
on the evaluation of x ÞÑ ypxq in n i.i.d. copies of a random vector with
probability distribution µ (not µX). As a consequence, the computation of
c˚pn, α, βq in Eq. (5) depends on a priori information about the true proba-
bility distribution of X (allowing the optimization problem to be solved on
a search space P potentially smaller than MpXq), but does not require its
precise knowledge.

Under that formalism, the certification of a system by simulation refers to
several constants, which have different meanings (see Figure 1 for a graphical
illustration). First, the constant s‹ is the threshold that y should not exceed,
which is generally provided either by safety standards or by expert judgments.
Then, we have what we have called the acceptable risk α, which clearly
depends on s‹, and β, which characterizes the confidence level associated
with the replacement of pf by its estimator pPn. At last, there is the safety
margin c˚pn, α, βq, which depends on n, α and β (the smaller c˚pn, α, βq is,

the more usable the estimator pPn is in practice). Like any statistical test,
let us insist on the anti-symmetric character of this decision criterion, which
minimizes in priority the risk of false certification of the system. This may
result in a significant number of safe systems, but with a failure probability
close to α, which may not be labeled as safe by Decision Criterion 2.

The following propositions then give conditions on pPn to ensure that Deci-
sion Criterion 2 is consistent, i.e., that it gives the same answer as Decision
Criterion 1 with probability 1 when n tends to infinity. In this statement,
we recall that we say that the estimator pPn is consistent if it converges to pf

in probability under PµX
.
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Proposition 1. For pf ą α, if pPn is a consistent estimator of pf,

lim
nÑ`8

PµX

´
pPn ` c˚pn, α, βq ă α

¯
“ 0. (6)

˝ Proof: Let ε “ pf ´ α ą 0. As c˚pn, α, βq ě 0, it comes:

PµX

´
pPn ` c˚pn, α, βq ă α

¯
ď PµX

´
pPn ă α

¯
“ PµX

´
ε ă pf ´ pPn

¯
ď PµX

´
ε ă | pPn ´ pf|

¯
.

(7)

Hence, the consistency of pPn directly implies that PµX

´
pPn ` c˚pn, α, βq ă α

¯

tends to 0 when n tends to infinity. ˝

By adding the following assumption of uniform consistency, we can go further
and show the consistency of Decision Criterion 2 on H1, that is to say for
the cases where pf is strictly lower than α.

Definition 1 (Uniform consistency). The estimator pPn is said to be uni-
formly consistent if, for any ε ą 0,

lim
nÑ`8

sup
µPP

Pµ

´
| pPn ´ PµpX P Fq| ě ε

¯
“ 0. (8)

Proposition 2 (see Appendix A.1 for the proof). For pf ă α, if pPn is
uniformly consistent,

lim
nÑ`8

PµX

´
pPn ` c˚pn, α, βq ă α

¯
“ 1. (9)

Remark 2.0.1. Note that Decision Criterion 2 is not consistent for the very
specific and unlikely case pf “ α.

Remark 2.0.2. For any µ P P, if qn;µpβq denotes the β-quantile of pPn, such
that:

qn;µpβq :“ inf
!
q P r0, 1s : β ď Pµ

´
pPn ď q

¯)
, (10)

and if
q˚
npβq :“ inf

µPPěα

qn;µpβq, (11)
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Figure 1: Graphical illustration of the meaning of the various constants leading to decision-
making for the case pf “ α. The vertical red dashed line indicates the value of α, the
grey area corresponds to the probability β of false certification, the black dotted line
characterizes the PDF of a particular unbiased estimator pPn of pf, while the blue solid
line is associated with the PDF of pPn ` c˚pn, α, βq. As pf “ α, the value of c˚pn, α, βq is

supposed to be chosen such that P

´
pPn ` c˚pn, α, βq ă α

¯
ď β.
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then

c˚pn, α, βq “ inf

"
c P r0, αs :

"
sup

µPPěα

Pµ

´
pPn ` c ă α

¯*
ď β

*

“ inf
!
c P r0, αs : @ µ P Pěα, Pµ

´
pPn ă α ´ c

¯
ď β

)

“ inf tc P r0, αs : @ µ P Pěα, α ´ c ď qn;µpβqu
“ inf tc P r0, αs : α ´ q˚

npβq ď cu
“ α ´ q˚

npβq.

(12)

Hence, the search for c˚pn, α, βq can be carried out in an equivalent way by
solving the problem defined by Eq. (11), and Decision Criterion 2 can be
equivalently reformulated by saying that the system can be considered suffi-
ciently safe if pPn ă q˚

npβq. It is this second formulation that will be considered
for the numerical estimation of the safety margins in Section 4.

3. Application to the case where n is sufficiently large

As a first application of the formalism presented in Section 2, we focus on
the case where the size of Dn “ tX1, . . . ,Xnu is large. Given these i.i.d.
realizations of X (and the associated realizations of Y “ ypXq denoted by

Y1, . . . , Yn), the estimator pPn can be chosen as the usual Monte Carlo (MC)
estimator of pf,

pPn :“ 1

n

nÿ

i“1

1typXiqďs‹u “ 1

n

nÿ

i“1

1tYiďs‹u, (13)

where 1tau is equal to 1 if a is true and to 0 otherwise. For this estimator, it

is interesting to notice that for each subset E of R, the value of Pµp pPn P Eq
depends on µ only through the value of p “ PµpX P Fq. This means first,
using the Chebyshev inequality, that for any ε ą 0, p P r0, 1s and µ P Pp,

Pµ

´
| pPn ´ p| ě ε

¯
ď pp1 ´ pq

nε2
ď 1

4nε2
, (14)

so that pPn is uniformly consistent according to Definition 1. This also implies
that if 0 ď α ď p ď 1, then for all µα P Pα, µ P Pp, and c P r0, αs,

Pµα

´
pPn ` c ă α

¯
ě Pµ

´
pPn ` c ă α

¯
, (15)
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so that:

sup
µPPěα

Pµ

´
pPn ` c ă α

¯
“ sup

µPPα

Pµ

´
pPn ` c ă α

¯
“ Pµα

´
pPn ` c ă α

¯
. (16)

It is also well known, using the Central Limit Theorem (CLT), that for each

p P r0, 1s, if pPn is associated with n independent copies of a random vector
with probability distribution µ P Pp,

?
n
´
pPn ´ p

¯

a
pp1 ´ pq

LÑ N p0, 1q, (17)

where
LÑ is the convergence in law, and where for any a P R and b ą 0, N pa, bq

denotes the set of Gaussian random variables whose mean and variance coef-
ficients are equal to a and b respectively. In that case, for n sufficiently large
and G „ N p0, 1q (i.e., distributed according to the standard Gaussian dis-

tribution), pPn is close (in distribution) to p ` G
a
pp1 ´ pq{n, and therefore,

for each 0 ď c ď α and each µ P Pp, Pµ

´
pPn ` c ă α

¯
is close to

PN p0,1qpp ` G
a
pp1 ´ pq{n ` c ă αq “ Φ

´
pα ´ c ´ pq

a
n{ppp1 ´ pqq

¯
, (18)

where Φ is the cumulative distribution function (CDF) of G. The Gaussian

assumption in the asymptotic case thus allows us to make Pµ

´
pPn ` c ă α

¯

depend explicitly on p. Hence, for sufficiently large n such that the Gaussian
regime is reached, if φβ “ ´φ1´β is the β-quantile of G, Eqs. (16) and (18)
allow us to write

c˚pn, α, βq :“ inf

"
c P r0, αs :

"
sup

µPPěα

Pµ

´
pPn ` c ă α

¯*
ď β

*

« inf
!
c P r0, αs : Φ

´
pα ´ c ´ αq

a
n{pαp1 ´ αqq

¯
ď β

)
“ φ1´β

c
αp1 ´ αq

n
.

(19)

This leads to the following (asymptotic) Decision Criterion 3.

Decision Criterion 3 (Monte Carlo case). If n is sufficiently large for

the CLT to hold, the system is considered as sufficiently safe if pPn`φ1´β

a
αp1 ´ αq{n ă

α.
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It is important to note that Decision Criterion 3 only makes sense if c˚pn, α, βq ă
α, that is to say if n is greater than

nMC

min
:“ φ2

1´βpα´1 ´ 1q. (20)

For given values of pf and α, and for n greater than nMC

min and sufficiently large

for the Gaussian behavior of pPn to be valid, the probability of certifying
the system, which is defined by PµX

p pPn ` c˚pn, α, βq ă αq, can then be
approximated by:

Φ

˜?
npα ´ pfq ´ φ1´β

a
αp1 ´ αqa

pfp1 ´ pfq

¸
. (21)

We recover the consistent character of this decision criterion, in the sense
that when n tends to infinity this probability tends to 1 when α ą pf, and to
0 when α ă pf. We can also verify that for finite values of n, this probability
is equal to β when α “ pf, which is coherent with the definition of β. In
the context of the usual crude Monte Carlo reliability assessment, once n

is sufficiently large, it is thus possible to specify a couple p pPn, c
˚pn, α, βqq

allowing to evaluate, in a conservative manner, the proper operation of the
system. Thus, three situations may occur:

• a favorable case, where pPn ` c˚pn, α, βq is actually strictly smaller than
α, which means that the risk of failure can reasonably be considered
smaller than the acceptable risk;

• an unfavorable case, where pPn ě α (necessarily implying pPn`c˚pn, α, βq ě
α), which shows a too important risk of failure for the system,

• an intermediate case, where pPn ă α ď pPn ` c˚pn, α, βq, for which it
is likely that the true failure probability pf is smaller than α. But
without sufficient statistical guarantees, it is preferable not to consider
the system as sufficiently safe.

From Eq. (21), it is then possible to calculate, for different values of pf, α
and β (with pf ă α), the minimum value of n noted nβ,γ allowing the correct
labeling of the system with a probability greater than 1 ´ γ (for γ P p0, 1q):

Φ

˜?
nβ,γpα ´ pfq ´ φ1´β

a
αp1 ´ αqa

pfp1 ´ pfq

¸
“ 1 ´ γ

ô nβ,γ :“ 1

pα ´ pfq2
´
φ1´γ

a
pfp1 ´ pfq ` φ1´β

a
αp1 ´ αq

¯2

.

(22)
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Figure 2: Evolutions of nβ,γ and PµX

´
pPn ` c˚pn, α, βq ă α

¯
with respect to pf for different

values of α and n, and for β “ γ “ 5%. In the left figure, the blue solid line, the red dotted
line and the green dashed line are respectively associated with α “ 10´4, 10´3, 10´2, while
the horizontal dotted lines indicate the lower bounds nMC

min
in each case. In the right figure,

α is chosen equal to 10´3, and the blue solid line, the red dotted line and the green dashed
line are associated with N “ 5ˆ103, 104, 105 respectively, while the vertical and horizontal
lines show the considered values of α and β respectively.

Figure 2 shows first the evolution of nβ,γ and PµX

´
pPn ` c˚pn, α, βq ă α

¯

with respect to pf for different values of n, α and β “ γ. Focusing on Figure
2-(a), we find that, without surprise, the closer from above pf is to α, the
larger n must be to be able to say that pf is smaller than α with sufficient
confidence. A vertical asymptote in α “ pf can also be seen, which is due to
the deliberately conservative nature of the reliability analysis. The case of pf

greater than α is of little interest, in the sense that c˚pn, α, βq is constructed
to make, in that case and whatever the value of n, the probability of false
labeling be lower than β. We also find an increase of n in 1{α that is relatively
classical for crude Monte Carlo approaches.

4. Application to the case where n is small

In this section, we now focus on the case where n is close to 1{α. Note that
Decision Criterion 3 is no longer really useful in this case as c˚pn, α, βq will be
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close to α and the probability of labeling the system as sufficiently safe will
be close to 0 whatever the true value of pf. This may also be explained by
the fact that for such values of n and assuming that pf ă α, it is highly likely
that there will be no failure points in the learning set Dn “ tX1, . . . ,Xnu.

To better support decision-making in such a context, it is then necessary to
turn to alternative estimators of pf, which will exploit additional assump-
tions about the statistical behavior of X and/or Y . This will result in the
introduction of specific subsets P of MpXq for µX , whether working at the
level of the output Y in Section 4.1, or at the level of the inputs X in Section
4.2.

4.1. Parametric approximation of the probability distribution of Y

4.1.1. Choice of the parametric family

From an output point of view, the objective of this section is to propose an
estimator of pf (different from the crude Monte Carlo estimator) based on
the n i.i.d. realizations of Y “ ypXq, which would allow the generalization of
the developments presented in Section 3. If n is close to 1{α, we remind that
the vast majority (if not all) of the values of Y1 “ ypX1q, . . . , Yn “ ypXnq
is likely to be above s‹ (i.e., in the safe region). In this case, the Extreme
Value Theory [15, 8] seems to be the most appropriate way of estimating the
probability PµX

pypXq ď s‹q “ PνY pY ď s‹q. According to this mathematical
framework, the generalized Pareto distribution (GPD) is a good candidate
[24] for modeling the left tail (“left” here, due to the formulation of the
problem) of the CDF of Y . This CDF, which we denote by Fps,σ,ξq, is generally
specified by three parameters (the location s, the scale σ, and the shape ξ),
such that

Fps,σ,ξqpsq “

$
&
%

´
1 ` ξps´sq

σ

¯´1{ξ

for ξ ‰ 0,

exp
`
´ s´s

σ

˘
for ξ “ 0.

(23)

By construction, this CDF is defined on p´8, ss if ξ ě 0, and on
”
s ` σ

ξ
, s
ı

if ξ ă 0. By introducing w :“ pσ, ξ, psq, we then use the notation Z „
a ´ GPDps,wq (for “adapted generalized Pareto distribution”) to say that
PpZ ď sq “ ps and that pZ | Z ď sq has CDF Fps,σ,ξq. Notice that the state-
ment that Z „ a ´ GPDps,wq does not characterize the whole distribution
of Z, but only describes its CDF PpZ ď sq for values of s smaller than s.
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Hypothesis 4.1 (Asymptotic behavior of the PDF of Y ). In this sec-
tion, we assume that there exist s ě s‹ and w‹ :“ pσ‹, ξ‹, p‹

sq P p0,`8q ˆ
p´8, 1{2q ˆ p0, 1q such that

Y „ a ´ GPDps,w‹q. (24)

Hypothesis 4.1 tells us that s ÞÑ PpY ď s | Y ď sq coincides with a GPD
with a shape parameter in p´8, 1{2q. The main reason for specifying that ξ‹

is less than 1{2 is to ensure that pY | Y ď sq has a finite variance, which we
accept here (other regimes could also be considered, in particular to ensure
the uniform consistency of the estimator that will be proposed in Section
4.1.2, as explained in Proposition 3). We also assume that the value of the
location parameter s is known (or empirically chosen as explained in Section
4.1.5).

4.1.2. Construction of a new estimator of pf

Under Hypothesis 4.1, the probability of failure can be decomposed as

pf “ PνY pY ď sq ˆ PνY pY ď s‹ | Y ď sq “ p‹
s ˆ Fps,σ‹,ξ‹qps‹q. (25)

In order to propose an alternative estimator of pf to the crude Monte Carlo
estimator, we therefore need to estimate w‹ from the available realizations
of Y . Several methods can be found in the literature [24]. In this work, we
limit ourselves to a method of moments, noting that if Hypothesis 4.1 is true,

ξ‹ “ 1

2

˜
1 ´ ps ´ EνY rY | Y ď ssq2

VarνY pY | Y ď sq

¸
, σ‹ “ ps ´ EνY rY | Y ď ssq p1 ´ ξ‹q .

(26)
Hence, denoting by

Ns “
nÿ

i“1

1tYiďsu (27)

the number of realizations of X in Dn that are associated with values of Y
that are lower than s, and then introducing the estimators

xMn “ 1

Ns

nÿ

i“1

Yi 1tYiďsu, pS2
n “ 1

Ns

nÿ

i“1

Y 2
i 1tYiďsu ´ xM2

n , (28)

15



of EνY rY | Y ď ss and VarνY rY | Y ď ss, the random variables

pΞn :“ 1

2

¨
˚̋
1 ´

´
s ´ xMn

¯2

pS2
n

˛
‹‚, pΣn :“ 1

2

´
s ´ xMn

¯
¨
˚̋
1 `

´
s ´ xMn

¯2

pS2
n

˛
‹‚, (29)

are two natural moment estimators of ξ‹ and σ‹. As a consequence, and
given Eq. (25), we introduce the following estimator of pf:

pPn :“ Ns

n
ˆ Fps,pΣn,pΞnqps‹q. (30)

Remark 4.1.1. Even if it is not possible to write the expression of the prob-
ability distribution of pPn as an explicit function of w‹, it is relatively easy and
quick to generate i.i.d. realizations of pPn from i.i.d. realizations of uniform
random variables, as explained in Appendix B.1.

4.1.3. Uniform consistency of the proposed estimator

To prove the uniform consistency of the estimator pPn that is introduced in
Eq. (30), we need to reduce the possible ranges of variation of the components
of w‹, and work with a priori bounds for σ‹, ξ‹ and p‹

s. We thus let 0 ă
σmin ă σmax ă `8, ´8 ă ξmin ă ξmax ă 1{4, and 0 ă ps,min ă ps,max ď 1,
set

W “ rσmin, σmaxs ˆ rξmin, ξmaxs ˆ rps,min, ps,maxs,
and let P be the set of µ P MpXq such that, under Pµ, there exists w P W

for which ypXq „ a ´ GPDps,wq.

Proposition 3 (see Appendix A.2 for the proof). The estimator pPn de-
fined in Eq. (30) is uniformly consistent for the parametric family P.

4.1.4. Practical solving of the constrained optimization problem

In order to apply Decision Criterion 2 in the former GPD context, one needs
to solve the optimization problem

c˚pn, α, βq :“ inf

"
c P r0, αs :

"
sup

µPPěα

Pµ

´
pPn ` c ă α

¯*
ď β

*
, (31)

where pPn is defined by Eq. (30), Pěα is defined by Eq. (3), and where we
recall that

P :“ tµ P MpXq : D w P W { ypXq „ a ´ GPDps,wqu . (32)
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Let µ be an element of P, and w “ pσ, ξ, psq P W be the vector that charac-
terizes its left tail. Since s‹ ď s, PµpypXq ď s‹q only depends on µ through
w, and there is no ambiguity in denoting it by PwpY ď s‹q. Similarly, the

law of pPn under Pµ is completely characterized by w, and for all A Ă R, we

shall also use the notation Pw

´
pPn P A

¯
instead of Pµ

´
pPn P A

¯
to simplify

reading. For any p ě α, we now introduce

Wp :“ tw P W : PwpY ď s‹q “ pu, Wěα :“
ď

pěα

Wp, (33)

so that the optimization problem in Eq. (31) rewrites in the form:

c˚pn, α, βq :“ inf

"
c P r0, αs :

"
sup

wPWěα

Pw

´
pPn ` c ă α

¯*
ď β

*
. (34)

For any value of c P r0, αs, we are thus looking for the value of w “ pσ, ξ, psq P
W that maximizes Pwp pPn ` c ă αq under the constraint that

ps ˆ Fps,σ,ξqps‹q ě α. (35)

In the context of Section 3, Eq. (15) shows that pPn is an increasing function
of p “ PµpY ď s‹q, in the sense of stochastic ordering. In the computation of
c˚pn, α, βq, this allows one to reduce the search to measures µ P Pα instead of
µ P Pěα. In the present case, this stochastic monotonicity property may be
tedious to prove, but it has been verified numerically by analyzing a very large
number of configurations. It is also heuristically justified by Proposition 3,
since the latter statement asserts that for n large enough, pPn concentrates
around p, uniformly in µ. So, in the present case we also reduce the search
to Wα instead of Wěα, which amounts to imposing the relation

ps ˆ Fps,σ,ξqps‹q “ α. (36)

This first reduction allows us to express ps as a function of pσ, ξq and we now

focus on maximizing Pw

´
pPn ` c ă α

¯
as a function of pσ, ξq.

In addition, it is possible to restrict the domain of definition of pσ, ξq by
noting that if ξ is strictly negative, the definition domain of Y is necessarily
rs ` σ{ξ; ss. Assuming that the true probability of failure pf is strictly posi-
tive (conservative assumption), and noting Ymini “ min1ďiďn Yi the minimal
observed value of Y when using the realizations of X that are in Dn, this
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also means that minps‹, Yminiq ě s ` σ{ξ. This ensures that pσ, ξq can be
searched in

Scont :“
"

pσ, ξq P rσmin, σmaxs ˆ rξmin, ξmaxs : 1 ` ξps ´ minps‹, Yminiqq
σ

ě 0

*
.

(37)
Note that this constraint on pσ, ξq has been rewritten so that it always holds
when ξ is positive, and only comes into play when ξ is negative. Finally, the
safety margin c˚pn, α, βq can now be searched as the solution of the following
simplified problem:

inf

#
c P r0, αs :

#
sup

wPWred
α

Pw

´
pPn ` c ă α

¯+
ď β

+
, (38)

where the reduced searching set is now defined by

Wred
α :“

 
pσ, ξ, psq P W : pσ, ξq P Scont, ps ˆ Fps,σ,ξqps‹q “ α

(
. (39)

In order to solve this problem numerically, we propose to exploit the rewriting
of c˚pn, α, βq proposed in Remark 2.0.2, saying that

c˚pn, α, βq “ α ´ q˚
npβq, (40)

where

q˚
npβq “ inf

wPWred
α

qn;wpβq, and qn;wpβq “ inf
!
q P r0, 1s : β ď Pw

´
pPn ď q

¯)
.

(41)
We then proceed in three steps to find q˚

npβq (and c˚pn, α, βq). First, we
choose r1 values of w in Wred

α according to a space-filling design (see, e.g., [22]
for more details about space-filling designs in such constrained spaces). Then,
for each chosen value of w, we then generate r2 independent realizations of the
associated estimator pPn as it is explained in Appendix B.1. This allows us to
estimate empirically its β-quantile qn;wpβq. Finally, a Bayesian optimization
algorithm ([16, 14, 12, 23]) is used to construct a sequence of r3 points of
Wred

α likely to converge towards q˚
npβq (in Section 5, we will take r1 “ 40,

r2 “ 104 and r3 “ 40), from which we can deduce c˚pn, α, βq using Eq. (40).

4.1.5. Choice of the location parameter

The previous developments are conditional on the choice of s. By construc-
tion, the higher s, the more realizations of Y are available to estimate ξ‹,
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σ‹ and ps, but the less likely it is that Hypothesis 4.1 will be appropriate,
and the less likely it is that the tail approximation performed using data
that are far from s‹ will be able to approximate what is happening below
s‹. As a search for such a bias-variance compromise, we therefore propose to
choose s such that the variance of pPn is minimal, when relying to a bootstrap
procedure over the n available realizations of Y to carry out the variance ap-
proximation.

4.2. Parametric approximation of the input probability distribution

4.2.1. Construction of a new estimator of pf

As an alternative to the method proposed in Section 4.1, one can seek to
further exploit the function y to explore the failure domain. We can then
proceed in four steps: (1) select an adapted set for µX noted P; (2) estimate
µX in P from the n already available realizations of X (the approximate
probability distribution is denoted by pµn, and the notation X

pnq is intro-
duced to refer to random vectors with probability distribution pµn); (3) draw

m supplementary i.i.d. realizations of Xpnq, noted X
pnq
1 , . . . ,Xpnq

m ; and (4)
estimate pf by its crude Monte Carlo estimator from these m realizations:

pPn,m :“ 1

m

mÿ

j“1

1typX
pnq
j

qďs‹u. (42)

It is important to note that this new estimator pPn,m of pf is affected by a
double source of uncertainty (which explains the double index): the uncer-
tainty related to the random nature of pµn (due to the fact that the number
of available realizations of X is finite) and the uncertainty related to the
fact that the function y is evaluated only in a finite set of m points. The
safety margin introduced in Decision Criterion 2 is now expected to depend
on these values of n and m. It is then denoted c˚pn,m, α, βq, and defined by:

c˚pn,m, α, βq :“ inf

"
c P r0, αs :

"
sup

µPPěα

Pµ

´
pPn,m ` c ă α

¯*
ď β

*
. (43)

For all µ P Pěα and all c P r0, αs, Pµ

´
pPn,m ` c ă α

¯
is the probability

that pPn,m ` c is strictly smaller than α under the assumption that pPn,m is
constructed from m independent copies of a random vector with probability
distribution pµn, where pµn is itself constructed from n independent copies
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of a random vector with probability distribution µ. For all p P r0, 1s, to
emphasize the random nature of pµn, we choose to note the probability that
pPn,m is smaller than p conditionally on pµn as Pµ

´
pPn,m ď p | pµn

¯
. Using the

law of total probability, this allows Pµ

´
pPn,m ` c ă p

¯
to be decomposed into

Pµ

´
pPn,m ` c ă p

¯
“ Eµ

”
Pµ

´
pPn,m ` c ă p | pµn

¯ı
. (44)

Remark 4.2.1. In the context of this work, we would like to re-emphasize
the important difference between n and m: while it is a priori not possible
to modify the value of n, it is possible to adapt the value of m with respect
to the targeted safety objective. The only potential constraint on m can be
a maximum allowable computation budget. In particular, we assume that m
can be chosen much larger than n and than 1{α.

Remark 4.2.2. Due to their common dependence on pµn (and therefore on

Dn), the random vectors X
pnq
1 , . . . ,Xpnq

m are identically distributed but no
longer statistically independent, which makes the analysis of the statistical
properties of pPn,m more complicated than in the crude Monte Carlo case.

4.2.2. Uniform consistency of the proposed estimator

By construction, the convergence of pPn,m to pf relies heavily on the conver-
gence of pµn to µX . In this section, we place ourselves in the case where the
process of constructing pµn satisfies the following hypothesis, which will need
to be verified on a case-by-case basis once the search set P has been further
specified in numerical applications.

Hypothesis 1. We assume that the process of constructing pµn from n i.i.d.
realizations of a vector X, whose probability distribution is in P, is uniformly
consistent for the estimation of the failure probability, in the sense that

lim
nÑ`8

sup
µPP

Eµ

„´
PµpXpnq P F | pµnq ´ PµpX P Fq

¯2


“ 0, (45)

where extending the notation introduced in Eq. (44),

Pµ

´
X

pnq P F | pµn

¯
:“

ż

F

dpµnpxq “ Eµ

”
pPn,m | pµn

ı
(46)

is the (random) probability of failure associated with pµn.
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Proposition 4 (see Appendix A.3 for the proof). Under Hypothesis 1,
pPn,m is a uniformly consistent estimator of pf, in the sense that for each ε ą 0,

lim
nÑ`8

lim
mÑ`8

sup
µPP

Pµ

´
| pPn,m ´ PµpX P Fq| ě ε

¯
“ 0. (47)

Remark 4.2.3. From the proof of Proposition 4, we note that the limits in
m and n could have been inverted to define the uniform consistency of pPn,m.

4.2.3. Application to the case where the probability distribution admits a PDF

We focus in the rest of this section on the case where the probability distri-
bution of X admits a continuous PDF fX such that

dµXpxq “ fXpxqdx, x P X, (48)

and we focus on the case where µX belongs to a known parametric family P

such that:

P :“
#
µ P MpXq : D θ P T Ă R

q, fp¨; θq P F1pX,R`q
{ @ x P X, dµpxq “ fpx; θqdx

+
, (49)

where q is a positive integer characterizing the number of parameters that
must be specified to define an element of P, and F1pX,R`q is the family of
PDFs defined on X, that is to say the family of positive functions defined
on X, and whose integral on X is 1. For instance, we can think of the set
of d-dimensional Gaussian PDFs, and in this case, θ groups together all the
parameters characterizing the mean vector and the covariance matrix. The
set T in which the parameters θ evolve characterizes the a priori information
we may have about θ, positivity constraints for instance. As we shall see in
the Application Section, constraints on T are often necessary to ensure that
pPn,m is uniformly consistent.

To simplify reading, for all θ P T, we note in the following µθ the probability
distribution such that for each x P X, dµθpxq “ fpx; θqdx. We next define,
for any θ P T,

pfpθq :“ Pµθ
pX P Fq “

ż

F

fpx; θqdx. (50)

Then, assuming that µX is in P amounts to saying that there exists θ
‹ P T

such that µX “ µθ
‹ , and thus

pf “ pfpθ‹q. (51)
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This value θ
‹ is however unknown, and must be estimated from the available

information on X, i.e., the n realizations of X gathered in Dn. Let pθn

be an estimator of θ‹ based on Dn. With the notation introduced above,
Hypothesis 1 rewrites

lim
nÑ`8

sup
θPT

Eµθ

„´
pf

´
pθn

¯
´ pfpθq

¯2


“ 0. (52)

As explained above, the estimator we are considering to measure to what
extent pf can be considered smaller than α is now

pPn,m :“ 1

m

mÿ

j“1

1!
y
´
X

pθn
j

¯
ďs‹

), (53)

where X
pθn

1 , . . . ,X
pθn

m correspond to m conditionally independent realizations

of X
pθn , which is a random vector with PDF fp¨; pθnq. As for Decision criterion

2, it finally amounts to considering the system as sufficiently safe if pPn,m `
c˚pn,m, α, βq ă α, where the constant c˚pn,m, α, βq is the minimal positive
constant c such that

sup
θPSINPpαq

Pµθ

´
pPn,m ` c ă α

¯
(54)

is lower than β, with SINPpαq :“
 
θ P T

ˇ̌
pfpθq ě α

(
(INP stands for “input”).

4.2.4. Practical solving of the optimization problem

In the same manner as the GPD case presented in Section 4.1.4, the method
we propose for the optimization problem defined by Eq. (54) relies on the
result of Remark 2.0.2. Hence, for each θ P SINPpαq, we denote by qn,m;θpβq
the β-quantile of pPn,m when assuming that X „ fp¨; θq, and by q˚

n,mpβq the
solution of

q˚
n,mpβq :“ min

θPSINPpαq
qn,m;θpβq, with Pµθ

´
pPn,m ď qn,m;θpβq

¯
“ β, (55)

from which, using Eq. (12), we deduce

c˚pn,m, α, βq “ α ´ q˚
n,mpβq. (56)

Using q˚
n,mpβq to estimate c˚pn,m, α, βq is explained by the fact that once a

value of θ has been chosen, it is relatively simple to generate r independent
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realizations of pPn,m, and then deduce from these values an estimation of
qn,m;θpβq (see Appendix B.2 for more details). However, the main difference

with the GPD case is that each realization of pPn,m is, this time, based on
the evaluation of the underlying code y in m different points. Consequently,
rˆm evaluations of the code would be necessary for an estimate of qn,m;θpβq,
which can quickly become prohibitive in terms of computational cost. The
second major additional obstacle lies in the difficulty of selecting elements
from SINPpαq. Indeed, as the failure domain F is a priori unknown, it is hard
to know whether the constraint pfpθq ě α will be verified, or not, without a
large number of supplementary calls to the code. To circumvent these issues
and restrict the maximum number of code evaluations to be smaller than m,
the strategy we propose is based on the coupling of an augmented Lagrangian
(AL) algorithm with an importance sampling (IS) procedure.

The idea of this algorithm is to start by choosing an auxiliary PDF, called fIS,
such that the support of fIS contains the support of all the PDFs associated
with the elements of P. Then, one needs to generate m i.i.d. realizations of
a random vector X

IS according to this PDF, denoted by X
IS
1 , . . . ,X

IS
m, and

then evaluate the numerical code at these m points. For a given θ P T, let
pθp1q

n , . . . , pθprq

n be r i.i.d. realizations of the estimator pθn under Pµθ
. These

values can be obtained by post-processing in a similar way r times a set of n
realizations of a random vector with PDF fp¨; θq, as explained in Appendix

B.2. For all 1 ď ℓ ď r, let ppIS
´
pθpℓq

n

¯
and ppIS be the IS estimators of pf

´
pθpℓq

n

¯

and pfpθq respectively,

ppIS
´
pθpℓq

n

¯
:“ 1

m

mÿ

j“1

1typXIS
j qďs‹u

f
´
X

IS
j ;

pθpℓq

n

¯

fISpX IS
j q

, ppISpθq :“ 1

m

mÿ

j“1

1typXIS
j qďs‹u

fpX IS
j ; θq

fISpX IS
j q

.

(57)
The AL function [25] can then be written as

LApθ; ρ, λq “ pqprq
IS;θpβq ` λκpθq ` 1

2ρ
maxp0, κpθqq, κpθq :“ α ´ ppISpθq, (58)

where ρ ą 0 is a penalty parameter, λ ě 0 serves as a Lagrange multi-
plier, and pqprq

IS;θpβq is the empirical estimator of the β-quantile of pPn,m using!
ppIS

´
pθpℓq

n

¯)r

ℓ“1
. The AL method then transforms the constrained problem
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into a sequence of unconstrained ones with automatic updates of the param-
eters pλ, ρq, as described in Algorithm 13.

1 Choose ρ ą 0, λ ě 0, kmax ą 0, tol, θmin P T

2 for k in 1, . . . , kmax do
3 Approximately solve the subproblem

θk P argmin
θPT

LApθ; ρ, λq,

Update λ Ð maxp0, λ ` κpθq{ρq. if κpθq ă 0 then
4 Set ρ Ð ρ{2.
5 end

6 if κpθq ě 0 and pqprq
IS;θk

pβq ă pqprq
IS;θmin

pβq then

7 Set θmin Ð θk.
8 end
9 if κpθq ě 0 and }θk ´ θmin} ă tol then

10 Break the “for loop”.
11 end

12 end

13 Return pq˚
n,mpβq “ pqprq

IS;θmin
pβq (as an approximation of qn,m;θmin

pβq).
Algorithm 1: Proposed algorithm for the approximation of q˚

n,m;β using
an augmented Lagrangian algorithm and an importance sampling strat-
egy.

As with any IS method, the effectiveness of Algorithm 13 depends on a
judicious choice of the auxiliary PDF fIS [27], which in particular should allow
a good exploration of the failure domain (i.e., leads to a sufficient number of
failure points). There are many methods for optimizing the definition of such
a PDF in a more or less sequential manner, which we will not discuss here
for the sake of brevity. The interested reader can nevertheless turn to [4] and
the associated references for a review of several adaptive IS algorithms. In
our situation, as the aim is to find values of θ such that pfpθq ě α but also

such that pPn,m is likely to be smaller than α, it seems a good idea to focus
on PDFs fIS such that ż

X

1typxqďs‹qufISpxqdx (59)

is close to α. Moreover, if fp¨; θq deviates too far from fIS, we can expect
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to find potentially pathological values of the fp¨; θq{fIS ratio both for the

calculation of pfpθq and for pPn,m. In this case, we can expect this value of
θ to be of little relevance for the minimization problem because it would
unlikely lead to pfpθq ě α and pPn,m ă α at the same time. Finally, we note
that it is possible (as we did for the Monte Carlo and rare event cases) to add
to Algorithm 13 the a priori information that the optimal value of θ should
be sought such that pfpθq “ α by adding the second inequality constraint
pfpθq ď α in the AL function.

4.2.5. Regular case

In order to study in more detail the sensitivity of the pPn,m estimator to
the choices of n and m, we now focus on the case where the parametric
class from which the PDF of X is chosen is regular, in the sense that for
each µ P P so that dµpxq “ fpx; θqdx, Bf{Bθ and B2f{pBθBθJq exist and
are integrable over the failure domain. For the sake of simplicity, we also
assume that all the elements of this parametric class have the same support
(i.e., the support of fp¨; θq does not depend on θ), that pθn is an unbiased
estimator of θ based on n realizations of X with distribution µθ, and we

denote by Cθ the asymptotic covariance matrix of
?
n
´
pθn ´ θ

¯
. Taking the

maximum likelihood estimator for pθn is a way of placing oneself under this
last hypothesis, at least asymptotically in n. Indeed, we can show [30] that
in this case, ?

n
´
pθn ´ θ

¯
LÝÑ N p0,Cθq, (60)

where Cθ is a matrix that only depends on θ.

Under these assumptions, and taking n sufficiently large, we can then ap-
proximate fpx; pθnq by its second-order Taylor expansion:

f
´
x; pθn

¯
« fpx; θq `

´
pθn ´ θ

¯J Bf
Bθ px; θq

` 1

2

´
pθn ´ θ

¯J B2f

BθBθJ
px; θq

´
pθn ´ θ

¯
.

(61)
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Integrating Eq. (61) over the failure domain F , we obtain

pf

´
pθn

¯
« p

reg
f

´
pθn, θ

¯
:“ pfpθq

¨
˚̋1 `

´
pθn ´ θ

¯J

Bpfpθq

` 1

2

´
pθn ´ θ

¯J

B2pfpθq
´
pθn ´ θ

¯

˛
‹‚,

(62)
where for each θ P T,

Bpfpθq :“ 1

pfpθq

ż

F

Bf
Bθ px; θqdx “ 1

pfpθq
Bpf

Bθ pθq, (63)

B2pfpθq :“ 1

pfpθq

ż

F

B2f

BθBθJ
px; θqdx “ 1

pfpθq
B2pf

BθBθJ
pθq. (64)

This allows us to approximate the mean and variance of pPn,m in explicit
forms, as it is done in Proposition 1.

Proposition 1. For n sufficiently large for Approximation (62) to be valid
and any θ in T,

Eµθ

”
pPn,m

ı
« pfpθq

ˆ
1 ` s2

θ

2n

˙
, (65)

Varµθ

´
pPn,m

¯
« pfpθq

m

ˆ
1 ´ pfpθq ` s2

θ
p1{2 ´ pfpθqq ´ pfpθqσ2

θ

n

˙
` pfpθq2σ2

θ

n
,

(66)
where s2

θ
and σ2

θ
are two positive constants that depend on Cθ but not on n

so that

σ2
θ
:“ n ˆ Eµθ

«ˆ´
pθn ´ θ

¯J

Bpfpθq
˙2

ff
“ BpfpθqJ

Cθ Bpfpθq, (67)

s2θ :“ n ˆ Eµθ

„´
pθn ´ θ

¯J

B2pfpθq
´
pθn ´ θ

¯
“ Cθ : B2pfpθq, (68)

with “ : ” denotes the double contracted tensor product.

˝ Proof: Using Eq. (62), and remembering that pθn is an unbiased estimator
of θ with covariance Cθ{n, we can calculate:

Eµθ

”
pPn,m

ı
“ Eµθ

”
pf

´
pθn

¯ı
« pfpθq

ˆ
1 ` s2

θ

2n

˙
. (69)
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In the same manner, using the notations formerly introduced,

Varµθ

´
pPn,m

¯
“ Eµθ

”
Varµθ

´
pPn,m | pθn

¯ı
` Varµθ

´
Eµθ

”
pPn,m | pθn

ı¯

“ Eµθ

”
pf

´
pθn

¯´
1 ´ pf

´
pθn

¯¯
{m

ı
` Varµθ

´
pf

´
pθn

¯¯

« pfpθq
m

ˆ
1 ´ pfpθq ` s2

θ

n

ˆ
1

2
´ pfpθq

˙
´ pfpθqσ2

θ

n

˙
` pfpθq2σ2

θ

n
.

(70)

˝

Looking at Proposition 1, we first note that even if pθn is an unbiased es-
timator of θ, the estimator pPn,m is biased, and that its bias tends to 0 in

s2
θ
{n. We then notice that the variance of pPn,m does not converge to 0 when

m tends to infinity, but remains greater than pfpθq2σ2
θ
{n. Conversely, if n

tends to infinity, that is to say if the PDF of X is perfectly known, then

Varµθ

´
pPn,m

¯
tends to pfpθqp1 ´ pfpθqq{m, which corresponds to the usual

Monte Carlo case. If we wanted to balance the contributions of m and n on
the variance, we could choose m “ mbalpn, pfpθqq, with

1

mbalpn, pfpθqq

ˆ
1 ´ pfpθq ` s2

θ
p1{2 ´ pfpθqq ´ pfpθqσ2

θ

n

˙
“ pfpθqσ2

θ

n

ô mbalpn, pfpθqq “ n
1 ´ pfpθq
pfpθqσ2

θ

` s2
θ
p1{2 ´ pfpθqq
pfpθqσ2

θ

´ 1 « n ` s2
θ
{2

pfpθqσ2
θ

.

(71)

Because of the multiplicative factor 1{ppfpθqσ2
θ
q, we see that this required

value of m can be much larger than n when the probability of failure is
much lower than the first-order sensitivity of this probability of failure to the
uncertainties about θ, i.e., when pf is much smaller than σ2

θ
. In that balanced

case, provided that Eµθ

”
pPn,m

ı2
ą 0, it is possible to approximate the square

of the coefficient of variation of pPn,m, noted δ2, under the form

δ2 :“
Varµθ

´
pPn,m

¯

Eµθ

”
pPn,m

ı2 « 2pfpθq2σ2
θ
{n

pfpθq2p1 ` s2
θ
{nq2 “ 2σ2

θ

n p1 ` s2
θ
{nq2

. (72)

The precision of the estimator is thus mainly controlled by σ2
θ
{n. Using the

approximation p1`s2
θ
{nq2 « 1`2s2

θ
{n, a link can eventually be made between
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a targeted precision ε2 and the minimum value nε of n for such precision in
the form of

n ě nε :“
2σ2

θ

ε2
´ 2s2

θ
. (73)

The development presented in Eq. (61) can also be used to simplify the
calculation of c˚pn,m, α, βq defined at the end of Section 4.2.3. Indeed, for

each θ P T, if pPn,m is an estimator of pfpθq relying on n i.i.d. realizations

of a random vector with PDF fp¨; θq, and if we approximate pf

´
pθn

¯
“

Eµθ

”
pPn,m | pθn

ı
by its Taylor expansion at θ, which was noted p

reg
f

´
pθn, θ

¯

in Eq. (62), we can use the CLT to approximate the probability distribution
of ?

m
´
pPn,m ´ p

reg
f

´
pθn, θ

¯¯

c
p
reg
f

´
pθn, θ

¯´
1 ´ p

reg
f

´
pθn, θ

¯¯
ˇ̌
ˇ̌ pθn (74)

by a standard Gaussian distribution, and therefore introduce the following

approximation of Pµθ

´
pPn,m ` c ă α

¯
:

Pµθ

´
pPn,m ` c ă α

¯
“ Eµθ

”
Pµθ

´
pPn,m ă α ´ c | pθn

¯ı

« Eµθ

»
——–Φ

¨
˚̊
˝

?
m
´
α ´ c ´ p

reg
f

´
pθn, θ

¯¯

c
p
reg
f

´
pθn, θ

¯´
1 ´ p

reg
f

´
pθn, θ

¯¯

˛
‹‹‚

fi
ffiffifl ,

(75)

where it is recalled that Φ is the CDF of a standard Gaussian random vari-
able. In that case, the safety margin c˚pn,m, α, βq can be searched as the
minimal positive constant c such that

sup
θPSINPpαq

Eµθ

»
——–Φ

¨
˚̊
˝

?
m
´
α ´ c ´ p

reg
f

´
pθn, θ

¯¯

c
p
reg
f

´
pθn, θ

¯´
1 ´ p

reg
f

´
pθn, θ

¯¯

˛
‹‹‚

fi
ffiffifl (76)

is lower than β. In Eq. (76), for each tested value of θ in SINPpαq, rather

than having to estimate the value of pfppθnq for many realizations of pθn, the
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new problem defined by Eq. (76) only relies on the computation of pfpθq,
pfpθq ˆ Bpfpθq and pfpθq ˆ B2pfpθq. And it is worth noting that these three

quantities can again be estimated by ppISpθq, pκp1q
IS pθq and pκp2q

IS pθq using an IS
strategy to limit the number of code evaluations, as it was done in Section
4.2.4,

ppISpθq :“ 1

m

mÿ

j“1

1typXIS
j qďs‹u

fpX IS
j ; θq

fISpX IS
j q

, (77)

pκp1q
IS pθq :“ 1

m

mÿ

j“1

1typXIS
j qďs‹u

1

fISpX IS
j q

Bf
Bθ pX IS

j ; θq, (78)

pκp2q
IS pθq :“ 1

m

mÿ

j“1

1typXIS
j qďs‹u

1

fISpX IS
j q

B2f

BθBθJ
pX IS

j ; θq, (79)

where we recall that fIS is the chosen auxiliary PDF, while X
IS
1 , . . . ,X

IS
m

correspond to m i.i.d. realizations of a random vector with PDF fIS.

Remark 4.2.4. In the case where the function θ ÞÑ fpx; θq is regular for

each x P F , the fact that |pfppθnq ´ pfpθq| ď 1 for each θ P T allows us to
write the following inequalities

´
pf

´
pθn

¯
´ pfpθq

¯2

ď
ˇ̌
ˇpf

´
pθn

¯
´ pfpθq

ˇ̌
ˇ

ď
ż

F

ˇ̌
ˇf
´
x; pθn

¯
´ fpx; θq

ˇ̌
ˇ dx

ď
›››pθn ´ θ

››› ˆ
ż

F

sup
θPT

››››
Bf
Bθ px; θq

›››› dx,

and therefore Eq. (52) is satisfied as soon as the following two conditions
hold:

ż

F

sup
θPT

››››
Bf
Bθ px; θq

›››› dx ă `8 and lim
nÑ`8

sup
θPT

Eµθ

”›››pθn ´ θ

›››
ı

“ 0.

(80)

5. Applications

We can list several objectives for this application section. On the one hand,
when the uncertainty on the input or output probability distribution is not
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Example Function y d s‹ pf (IC 95%)
1 Waarts function 2 0 0.00223 [0.00220; 0.00226]
2 Borehole function 8 -225 0.00141 [0.00139; 0.00144]

Table 1: Characteristics of the two analyzed test functions.

taken into account, we highlight the significant risk of designating as safe
a system that is not. By modifying the safety factors to include this new
source of uncertainty, on the simulation inputs or outputs, we then show
that the risk of designating a faulty system as safe is much better controlled.
Although most of the results presented are based on the asymptotic behavior
of estimators, we then empirically demonstrate the practical applicability of
these results to finite regimes.

5.1. Presentation of the test functions

The developments presented in Sections 3 and 4 are illustrated on two an-
alytical functions, whose characteristics are listed in Table 5.1. The refer-
ence values for the failure probability pf are estimated using a crude Monte
Carlo approach based on 107 function evaluations. To get sound compar-
isons between the different tests, the results presented in the next sections
are averaged over 103 repetitions of the whole procedures.

Test function #1: the Waarts function

To begin, we focus on the Waarts function, which is a very common func-
tion in reliability analysis and has been studied in numerous papers in the
literature, and which is given by the following expression:

ywaarts :

"
R

2 Ñ R

x ÞÑ min pb1pxq, b2pxqq , (81)

b1pxq :“ 3`px1 ´ x2q2
10

´signpx1 ` x2qpx1 ` x2q?
2

, b2pxq :“ signpx1´x2qpx1´x2q` 7?
2
.

(82)
This function is in dimension d “ 2, and its inputs are assumed to be inde-
pendent and Gaussian, with unknown means µ1, µ2, and variances σ2

1, σ
2
2:

X „ N

ˆˆ
µ1

µ2

˙
,

„
σ2
1 0

0 σ2
2

˙
. (83)
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The number of parameters characterizing the distribution of the input vector
X is therefore equal to four, and we can write θ “ pµ1, σ

2
1, µ2, σ

2
2q P T Ă

R ˆ p0,`8q ˆ R ˆ p0,`8q, so that:

fpx; θq “ 1

2π
?
θ2θ4

exp

ˆ
´1

2

ˆpx1 ´ θ1q2
θ2

` px2 ´ θ3q2
θ4

˙˙
, x P X. (84)

Given n i.i.d. realizations of X, which are noted X1, . . . ,Xn, the vector pθn

such that for i P t1, 2u,
´
pθn

¯
2i´1

:“ 1

n

nÿ

i“1

pXnqi ,
´
pθn

¯
2i
:“ 1

n ´ 1

nÿ

i“1

ˆ
pXnqi ´

´
pθn

¯
2i´1

˙2

(85)

is the standard estimator of θ. It is unbiased, and it can be shown that

Cov
´?

n ˆ pθn

¯
“

»
———–

σ2
1 0 0 0

0
2nσ4

1

n´1
0 0

0 0 σ2
2 0

0 0 0
2nσ4

2

n´1

fi
ffiffiffifl “: Cθ. (86)

With no real limitation on generality, if we limit the possible values for θ

(and therefore for pθn), and choose for T the following closed set

T “ r´t1, t2s ˆ rt3, t4s ˆ r´t1, t2s ˆ rt3, t4s, (87)

with t1, t2, t4 (resp. t3) as large (resp. close to 0 ) as desired, we can verify
that ż

F

sup
θPT

››››
Bf
Bθ px; θq

›››› dx ă `8. (88)

In addition, if χ is a random variable following a chi-squared distribution
with n ´ 1 degrees of freedom, we can show that

1

θ2
E

„´´
pθn

¯
1

´ θ1

¯2


“ 1

θ4
E

„´´
pθn

¯
3

´ θ3

¯2


“ 1

n
,

1

θ22
E

„´´
pθn

¯
2

´ θ2

¯2


“ 1

θ24
E

„´´
pθn

¯
3

´ θ3

¯2


“ 2

n ´ 1
.

As Eµθ

”›››pθn ´ θ

›››
ı

ď
d
Eµθ

„›››pθn ´ θ

›››
2

, we then show that

lim
nÑ`8

sup
θPT

Eµθ

”›››pθn ´ θ

›››
ı

“ 0, (89)
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which allows us to ensure that Hypothesis 1 is indeed verified by this esti-
mator, using the results of Remark 4.2.4.

For this first test function, PDF fp¨; θq is regular with respect to θ, and the
constants Bpfpθq and B2pfpθq can be estimated, using Eqs. (63) and (64),
as functions of the statistical moments of the random vector X

F , whose
PDF is x ÞÑ 1

pfpθq
1txPFufpx; θq. In particular, if we choose s‹ “ 0, θ

‹ “
pµ1, σ

2
1, µ2, σ

2
2q “ p0, 1, 0, 1q, as it will be done for generating the realizations

of X in the following, we obtain:

s2
θ

‹ « 27.5, σ2
θ

‹ « 23.9. (90)

Using the result of Eq. (71), the value of m that balances the two variance
terms of the estimator of pf, which was noted mbalpn, pfq, is then close to

mbalpn, pfq « 20 ˆ n. (91)

Test function #2: the borehole function

The second function studied is the borehole function, which models the flow of
water through a borehole [19], and which is given by the following expression:

yborehole :

$
&
%

R
8 Ñ R

x ÞÑ ´ 2πx3px4´x6q

logpx2{x1q

ˆ
1`

2x7x3

logpx2{x1qx2
1
x8

`
x3
x5

˙ . (92)

Once again, we have chosen this function for its simplicity and rapid evalua-
tion, which have made it a benchmark function in recent years in computer
experiments. This function is in dimension d “ 8, and the components of its
input vector X are assumed to be independent and uniformly distributed on

rθ1, θ2s ˆ rθ3, θ4s ˆ rθ5, θ6s ˆ rθ7, θ8s ˆ rθ9, θ10s ˆ rθ11, θ12s ˆ rθ13, θ14s ˆ rθ15, θ16s.
(93)

The number of parameters characterizing the PDF of X is thus equal to 16,
and this PDF is this time not regular with respect to θ “ pθ1, . . . , θ16q:

fpx; θq “ 1

VolpΩpθqq1txPΩpθqu, x P R
d, (94)

Ωpθq :“
dą

i“1

rθ2i, θ2i´1s , VolpΩpθqq :“
dź

i“1

pθ2i ´ θ2i´1q . (95)
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The uncertainty therefore relates to the support of the input PDF, which
is a configuration that is often overlooked in the literature despite its great
practical interest. Each component of θ can a priori take any value in R,
provided that θ2i´1 is smaller than θ2i for each 1 ď i ď d. The definition
domain for θ can thus be written as

T :“
 
θ P R

2d : @ i P t1, . . . , du , θ2i ą θ2i´1

(
. (96)

Nevertheless, from the n available realizations of X, it is possible to reduce
T by integrating the fact that the lower bound θ2i´1 (resp. the upper bound
θ2i) of the domain of definition of Xi is necessarily smaller (resp. larger) than
the smallest (resp. largest) observed value of Xi. For the numerical results,
the true value of this vector, θ‹, will be chosen equal to

p0.05, 0.15, 102, 5.104, 63070, 115600, 990, 1100, 63.1, 116, 700, 820, 1120, 1680, 9885, 12045q,

as it was proposed in [32]. To estimate θ‹, we focus on its maximum likelihood

estimator pθn, so that:

´
pθn

¯
2i´1

“ min
1ďiďn

pXnqi ,
´
pθn

¯
2i

“ max
1ďiďn

pXnqi , 1 ď i ď d. (97)

For each θ P T, note that this estimator is biased,

E

„´
pθn

¯
2i´1


´ pθq2i´1 “ pθq2i ´ E

”´
pθn

¯
2i

ı
“ pθq2i ´ pθq2i´1

n ` 1
, 1 ď i ď d,

(98)
but that its convergence to θ is particularly quick as a function of n:

Var

ˆ´
pθn

¯
2i´1

˙
“ Var

´´
pθn

¯
2i

¯
“ n

pn ` 1q2pn ` 2q
`
pθq2i ´ pθq2i´1

˘2
.

(99)

Using the notations of Eq. (95), we also see that Ωppθnq Ă Ωpθq by construc-

tion, so that VolpΩppθnqq ď VolpΩpθqq and VolpF X Ωppθnqq ď VolpF X Ωpθqq.
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For all θ in T, we can then calculate:

ˇ̌
ˇpfpθq ´ pf

´
pθn

¯ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ
VolpF X Ωpθqq

VolpΩpθqq ´ VolpF X Ωppθnqq
VolpΩppθnqq

ˇ̌
ˇ̌
ˇ

“

ˇ̌
ˇVolpF X ΩpθqqVolpΩppθnqq ´ VolpF X ΩppθnqqVolpΩpθqq

ˇ̌
ˇ

VolpΩpθqqVolpΩppθnqq

ď
VolpF X Ωpθqq

ˇ̌
ˇVolpΩppθnqq ´ VolpΩpθqq

ˇ̌
ˇ ` VolpΩpθqq

ˇ̌
ˇVolpF X Ωpθqq ´ VolpF X Ωppθnqq

ˇ̌
ˇ

VolpΩpθqqVolpΩppθnqq

ď

ˇ̌
ˇVolpΩppθnqq ´ VolpΩpθqq

ˇ̌
ˇ `

ˇ̌
ˇVolpF X Ωpθqq ´ VolpF X Ωppθnqq

ˇ̌
ˇ

VolpΩppθnqq

ď
2
ˇ̌
ˇVolpΩppθnqq ´ VolpΩpθqq

ˇ̌
ˇ

VolpΩppθnqq
.

As pθn tends to θ in probability when n tends to infinity, and as θ ÞÑ
VolpΩpθqq is a continuous function, we can then make Hypothesis 1 true
by excluding the possibility that the components of θ can take too large or
too small values and that the upper bounds can be too close to the lower
bounds. Without much limitation from an application point of view, we
therefore ensure that Hypothesis 1 is verified by choosing

T “
 
θ P r´t, ts2d : @ i P t1, . . . , du , θ2i ´ θ2i´1 ě δ ą 0

(
, (100)

with t and δ respectively as large and as small as desired.

Remark 5.1.1. It is possible to consider an unbiased version of this estima-
tor, without this having any real impact on the following.

5.2. Comparing the performance of estimators

For each test function, we are interested in three values for the number of
available realizations of X, n P t104, 103, 500u, and we take m “ 103{pf (we
voluntarily place ourselves in the case m " mbalpn, pfq in order to focus mainly
on the effects of a limited number of observations of X). Five configurations
are then compared:
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• Case 1 (MC-m) corresponds to the case where the estimate of pf relies
on a MC procedure using a large number m of realizations of X. As,
in practice, only n ! m realizations of X are really available, this
configuration is used as a reference for comparison.

• Case 2 (MC-n) corresponds to the case where the estimate of pf relies
on a MC procedure using directly the n available realizations of X. For
values of n close to or smaller than 1{pf, this method is not expected
to be very relevant.

• Case 3 (EV-n) corresponds to the output parametric case relying on
the extreme value theory presented in Section 4.1. This approach relies
on the introduction of a location parameter s. As explained in Section
4.1.5, this value may be adapted to n using a bootstrap strategy to
minimize the variance of the estimator of pf. For the Waarts function
(respectively the borehole function), s is therefore chosen equal to 0.970

(resp. ´179) when n “ 104, to 1.33 (resp. ´162) when n “ 103, and to
1.64 (resp. ´155) when n “ 500. The relevance of the GPD to model
s ÞÑ PpY ď s‹ | Y ď sq for the two studied functions and these values
of the location parameter is illustrated graphically in Figure 3.

• Case 4 (InP-n) corresponds to the input parametric case presented in
Section 4.2, assuming we know the parametric class to which belongs
the PDF of X. Whether or not we are in a regular case, the construc-
tion of the safety margins relies in this case on the introduction of an
auxiliary PDF that we noted fIS. In the case of the Waarts function,
the Gaussian distribution with parameters pθn is taken for fIS, while for
the borehole function, a uniform distribution over the slightly increased
domain

dź

i“1

„
´δi `

´
pθn

¯
2i´1

, δi `
´
pθn

¯
2i


, (101)

is considered, with δi “ 2

ˆ´
pθn

¯
2i

´
´
pθn

¯
2i´1

˙
{n (i.e., an arbitrary

shift of around 2 standard deviations on each bound). For these two

PDFs, pθn refers to the estimator of the true value of the parameters
obtained from the observed realizations of X contained in Dn. For the
second IS PDF, the reduced increase results from a necessary compro-
mise: the greater the increase, the greater the exploration of the para-
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Figure 3: Assessment of the suitability of the GPD distribution for approximating the
tail of the distribution of Y “ ypXq. The black solid lines correspond to the empirical
estimation of the PDF of Y using 107 i.i.d. realizations of X. The blue dashed lines, the
red dotted lines and the green dotted-dashed lines correspond to the approximation of this
PDF using Hypothesis 4.1 when taking s equal to 0.970, 1.33 and 1.64 respectively for the
Waarts case, and equal to ´179, ´162 and ´155 for the borehole function. In each case,
the vertical lines indicate the value of s‹ and the three considered values of s.

metric set P, as the choice for fIS necessarily implies new constraints
for the search domain T in the optimization problems in Algorithm 13.
But for a number of evaluations of y fixed at m, the greater the domain,
the smaller the number of failure points in the smaller domains, and
therefore the greater the risk of increasing the variance of the estima-
tors based on this IS strategy. As it will be explained in conclusion,
the introduction of more sophisticated and potentially more effective
IS procedures is left as a working perspective.

For the values of n and m considered, Figure 4 then compares, in boxplot
form, the dispersion of the values of the proposed estimators of pf. For the
two functions studied, we first observe, not surprisingly, that the greater the
value of n, the more precise the estimate of pf. Furthermore, we observe that
switching from a crude Monte Carlo approach to another one based on the
extreme value theory leads to a slight reduction in variance (reduction by a
factor of 1.5 to 2), while knowing the parametric class in which the PDF of
X evolves leads to an even stronger reduction in variance (reduction by a
factor of around 15 for the Waarts function to more than 100 for the borehole

36



0
.0

0
0

0
.0

0
4

0
.0

0
8

V
al

u
es

of
p P n

an
d
p P n

,m

pf

MC-M MC-104 MC-103 MC-500 EV-104 EV-103 EV-500 InP-104 InP-103 InP-500

(a) Waarts function

0
.0

0
0

0
.0

0
4

0
.0

0
8

V
al

u
es

of
p P n

an
d
p P n

,m

pf

MC-M MC-104 MC-103 MC-500 EV-104 EV-103 EV-500 InP-104 InP-103 InP-500

(b) Borehole function

Figure 4: Comparison of the dispersions of the different proposed estimators of pf. In
each case, the boxplots group together 103 values of each estimator calculated from 103

independent drawns of Dn, whose elements correspond to n i.i.d. realizations of X „
fp¨; θ‹q.
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Figure 5: Comparison of the evolution of α ÞÑ PµX

´
pPn ` c˚pn, α, βq ă α

¯
in the crude

MC case (in solid lines) and in the extreme value case (in dashed lines). In both figures,
the black lines correspond to the ideal case where m " 1{pf i.i.d. realizations of X

are available, when the curves in blue are associated to n “ 104, the curves in red are
associated to n “ 103, and the curves in green are associated to n “ 500.

function).

5.3. Construction of the safety margins

In this section, we aim to illustrate graphically the extent to which the de-
cision criteria proposed in Sections 2, 3 and 4 can allow us to decide, with
a chosen and controlled risk β, whether the system of interest can be con-
sidered sufficiently safe. In the following, we choose β “ 5%, which amounts
to say that we accept being wrong when saying that a system is safe only 5
times over 100 in average. Depending on the system under study and the po-
tential consequences of its failure, this value of β may of course be considered
smaller or larger.

In order to numerically evaluate the relevance of the proposed decision cri-
teria, Figure 5 first shows, for the chosen values of n and m, the evolution

of α ÞÑ PµX

´
pPn ` c˚pn, α, βq ă α

¯
, that is to say the probability of labeling

the true system as safe as a function of the acceptable risk α (remember
that the system is considered as safe if pf ă α). These probabilities are es-

timated empirically from the 103 values of pPn obtained in Section 5.2, the
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values of the safety factors c˚pn, α, βq being estimated according to Eq. (19)
for the crude MC case and as indicated in Section 4.1.4 for the extreme value
case. In all these figures, the vertical lines correspond to the true values of
pf, while the horizontal lines are associated with the value of β. The safe
regions are therefore to the right of these vertical lines (α is bigger than pf),
and the unsafe regions are to the left (α is in this case lower than pf). By
construction, we would like this probability to be as close to zero as possible
for α ă pf, as close to 1 when α ą pf, and equal to β when α “ pf. And this
is exactly what we obtain when looking at the black solid line, which is the
reference assuming that we have access to m " 1{pf i.i.d. realizations of X .
However, it becomes increasingly difficult for this probability to pass through
the point ppf, βq as n decreases. Indeed, in the MC case, this probability of
labeling the system as safe is by construction a piecewise constant function,
with a number of steps that corresponds to the number of times (out of the n
values of X drawn) that a failure point is obtained. As n approaches 1{pf, it
becomes less and less likely to obtain even a single failure point, resulting in
an increasingly long phase where this probability is equal to 0, i.e., a range
of α values where, whatever the true probability of failure, the system will
be considered unsafe. Unsurprisingly, we also observe that the lower n is, the
more this probability decreases, which again reflects the increasingly difficult
nature of being able to guarantee the reliability of the system as the level of
information decreases. The results improve slightly when the extreme value
theory is used rather than the MC approach. For the two functions studied,
this approach based on the approximation of the tail of the distribution of
Y “ ypXq by a GPD seems to make it possible to smooth the step func-
tions of the Monte Carlo approach from above. Again, this is not necessarily
surprising, as the MC and GPD approaches rely on the same information,
namely n i.i.d. realizations of Y , very few of which being below s‹.

Things improve greatly when we add as new information the knowledge
of the parametric set to which the PDF of X belongs, as we can see in
Figure 6. In these graphs, the values of c˚pn,m, α, βq are calculated as
indicated in Section 4.2.4. Two types of evolution are thus compared in
these graphs. In the top figures (a) and (b), we first plot the evolution of

α ÞÑ PµX

´
pPn,m ` φ1´β

a
αp1 ´ αq{m ă α

¯
, which corresponds to the case

where the decision would be based on the estimator pPn,m, but taking the
safety factor provided by Eq. (19), i.e., not incorporating the double source
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Figure 6: Comparison of the evolution of α ÞÑ PµX

´
pPn,m ` φ1´β

a
αp1 ´ αq{m ă α

¯

(figures at the top) and α ÞÑ PµX

´
pPn,m ` c˚pn,m, α, βq ă α

¯
(figures at the bottom).

In each figure, the vertical line indicates the abscissa α “ pf, and the horizontal line
corresponds to the chosen value of β. The grey lines correspond to the ideal MC case
using m " 1{pf i.i.d. realizations of X. The curves in blue dashed line are associated to
n “ 104, the curves in red dotted line are associated to n “ 103, and the curves in green
dashed dotted line are associated to n “ 500.
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of uncertainty on which pPn,m depends (crude MC approach). By neglect-
ing the uncertainty associated to n, the risk of labeling the system as safe
when it is not is not properly controlled, and this is all the more true as
n decreases. In particular, if we focus on the case α “ pf, we can see that
this probability can exceed 50%, which is much higher than the risk β we
had chosen. On the contrary, if we take correctly into account the input
uncertainty in the construction of the safety margin and now plot the evo-

lution of α ÞÑ PµX

´
pPn,m ` c˚pn,m, α, βq ă α

¯
, we find back curves that

almost pass by the point ppf, βq, and we find again that the higher n, the
quicker the increase of the probability in the safe region. In particular, with
n “ 104, we obtain results that are very similar to the reference case relying
on m “ 1000{pf realizations of X.
However, it is important to emphasize that this approach, which is based on
an approximation of the PDF of the inputs, may generate a non-negligible
additional numerical cost compared with the previous MC or extreme event
approaches, in the sense that, this time, the code is always evaluated at m

inputs points, whereas only n ! m evaluations of the code were previously
necessary.

6. Conclusions and prospect

By focusing on statistical inference and uncertainty quantification, the main
idea of this work was to provide a pathway to make informed decisions about
system safety in the face of limited input information. Indeed, reliability
analysis of systems traditionally relies on probabilistic models that require
a precise understanding of input probability distributions. But in practical
engineering settings, such distributions are often unknown or poorly char-
acterized, which requires the adaptation of existing methods to determine
whether the system is secure or not, while minimizing the risk of mislabel-
ing due to uncertainty about input distributions. Several methods have thus
been developed in this paper to enable a decision to be made on whether
a system is safe or not in the case where the maximum information on the
inputs is a set of n i.i.d. realizations. A distinction has been made between
cases where n is large and cases where n is relatively small compared with
the inverse of the probability of failure. And it is in the treatment of this
case where n is relatively small, i.e., the cases where the estimation of the
probability of failure must integrate this additional source of uncertainty
linked to the lack of knowledge of the input probability distribution, that
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the main contributions of this paper are to be found. Our findings demon-
strate the potential of statistical frameworks to enhance reliability analysis
by incorporating probabilistic assessments and robust decision-making tools.
And by controlling the risk of misclassification, our approach offers practi-
cal solutions for assessing system safety based on limited input knowledge,
paving the way for more effective and reliable engineering design and risk
management practices.
In future work, further refinements and extensions of the proposed methods
could explore alternative assumptions on the input and output probability
distributions, and expand the applicability of the proposed framework to
broader classes of estimators for the probability of failure. For this work, we
limited ourselves to parametric approximations for the distributions of inputs
and outputs, and we can wonder if it would not be possible to also obtain
interesting decision criteria by working with non-parametric estimates. In
addition, we have focused on estimates of the probability of failure relying
on a Monte Carlo approach, without really worrying about the number of
times we call the numerical code. If the calculation cost of the simulator is
significant, it is nevertheless not reasonable to allow millions of calls to it,
and we could seek to couple the work presented with estimators more suited
to the estimation of a low probability, such as estimators from Multilevel
Splitting / Subset Simulation (see, e.g., [2, 5]) or Moving Particles [31, 21]
approaches. Finally, a number of numerical optimizations could be proposed
to make the application of the introduced decision criteria more efficient,
whether at the level of the choice of the auxiliary PDFs, or at the level of the
constrained problems for the identification of safety margins.
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A. Proofs

A.1. Proof of Proposition 2

In order to prove Proposition 2, we begin by introducing the following lemma.

Lemma A.1. If pPn is uniformly consistent, c˚pn, α, βq tends to 0 when n

tends to infinity.
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˝ Proof: L ˝et ε ą 0 and pPn be a consistent estimator of pf. We can then
calculate:

sup
µPPěα

Pµ

´
pPn ` ε ă α

¯
“ sup

αďpď1

#
sup
µPPp

Pµ

´
pPn ` ε ă α

¯+

ď sup
αďpď1

#
sup
µPPp

Pµ

´
pPn ` ε ă p

¯+

ď sup
αďpď1

#
sup
µPPp

Pµ

´
ε ă | pPn ´ p|

¯+
.

(A.1)

As pPn is uniformly consistent, supαďpď1

!
supµPPp

Pµ

´
ε ă | pPn ´ p|

¯)
tends to

0 when n tends to infinity. As long as the type I error β is strictly positive,
which is the framework used in this paper, we deduce that there exists rn such
that for all n ě rn,

sup
µPPěα

Pµ

´
pPn ` ε ă α

¯
ď sup

αďpď1

#
sup
µPPp

Pµ

´
ε ă | pPn ´ p|

¯+
ď β. (A.2)

Using Eq. (5), c˚pn, α, βq is then smaller than ε for all n ě rn. This being
true whatever the value of ε, we deduce that

lim
nÑ`8

c˚pn, α, βq “ 0. (A.3)

Now, since pPn is (uniformly) consistent, we have in particular that under

PµX
, pPn converges to pf in probability. By Lemma A.1, c˚pn, α, βq tends to

0, and therefore, since pf ă α, Eq. (9) holds.

A.2. Proof of Proposition 3

Let X „ µ P P, and w “ pσ, ξ, psq P W be the vector of parameters
characterizing the left tail of the CDF of ypXq, in the sense that Y “ ypXq „
a ´ GPDps,wq. For k P t0, 1, 2u, if Y1, . . . , Yn are n i.i.d. copies of Y , we
define

τkn “ 1

n

nÿ

i“1

Y k
i 1tYiďsu.
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Recalling that ps “ PµpY ď sq, it comes:

Eµ

”`
τkn ´ Eµ

“
Y k

1tY ďsu

‰˘2ı “ 1

n
Var

`
Y k

1tY ďsu

˘

“ 1

n

´
ps Eµ

“
Y 2k | Y ď s

‰
´ p2sEµ

“
Y k | Y ď s

‰2¯
.

Using the properties of the GPD, for all ℓ P t0, . . . , 4u, we have

Eµ

“
pY ´ sqℓ | Y ď s

‰
“ σℓϕℓpξq,

where ϕℓ is a rational fraction which is well defined if ξ ă 1{ℓ. As a conse-
quence, the assumptions that ´8 ă ξmin ă ξmax ă 1{4 and that σmax ă `8
yield

@k P t0, 1, 2u , lim
nÑ`8

sup
µPP

Eµ

”`
τkn ´ E

“
Y k

1tY ďsu

‰˘2ı “ 0,

and thus by the Chebychev inequality, for any δ ą 0,

lim
nÑ`8

sup
µPP

Pµ p}τ n ´ τ pµq}1 ě δq “ 0, (A.4)

with τ n :“ pτ 0n , τ 1n, τ 2nq and τ pµq :“ Eµ rτ ns “
`
PµpY ď sq, Eµ

“
Y 1tY ďsu

‰
, Eµ

“
Y 2

1tY ďsu

‰˘
.

We now introduce the function

Ψpτ 0, τ 1, τ 2q “ τ 0 ˆ Fps,σ,ξqps‹q,

with

ξ “ 1

2

ˆ
1 ´ ps ´ τ 1{τ 0q2

τ 2{τ 0 ´ pτ 1{τ 0q2
˙
, σ “ 1

2
ps´τ 1{τ 0q

ˆ
1 ` ps ´ τ 1{τ 0q2

τ 2{τ 0 ´ pτ 1{τ 0q2
˙
,

such that
pPn “ Ψpτ nq, PµpY ď s‹q “ Ψpτ pµqq.

The function Ψ is defined and continuous at all points τ “ pτ 0, τ 1, τ 2q P R
3

such that τ 0 ą 0 and τ 2{τ 0 ą pτ 1{τ 0q2. But the conditions that ps,min ą 0

and σmin ą 0 in the definition of W ensure that τ pµq satisfies these conditions
uniformly in µ P P. Therefore, since the set tτ pµq, µ P Pu Ă R

3 is moreover
bounded, we deduce that for any ε ą 0, there exists δ ą 0 such that, for any
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µ P P and for any τ P R
3, if }τ ´ τ pµq}1 ă δ then |Ψpτ q ´Ψpτ pµqq| ă ε. As

a consequence,

sup
µPP

Pµ

´
| pPn ´ PµpY ď s‹q| ě ε

¯
“ sup

µPP
Pµ p|Ψpτ nq ´ Ψpτ pµqq| ě εq

ď sup
µPP

Pµ p|Ψpτ nq ´ Ψpτ pµqq| ě ε, }τ n ´ τ pµq}1 ě δq

` sup
µPP

Pµ p|Ψpτ nq ´ Ψpτ pµqq| ě ε, }τ n ´ τ pµq}1 ă δq

ď sup
µPP

Pµ p}τ n ´ τ pµq}1 ě δq ,

and by Eq. (A.4), the right-hand side vanishes when n Ñ `8, which com-
pletes the argument.

A.3. Proof of Proposition 4

Let ε ą 0. For each µ P P, noting p “ PµpX P Fq, recalling that

Eµ

”
pPn,m | pµn

ı
“ Pµ

´
X

pnq P F | pµn

¯
, and using the Markov inequality, we

have:

Pµ

´
| pPn,m ´ p| ě ε

¯
“ Eµ

”
Pµ

´
| pPn,m ´ p| ě ε | pµn

¯ı

ď Eµ

»
——–
Eµ

„´
pPn,m ´ p

¯2

| pµn



ε2

fi
ffiffifl

ď Eµ

»
——–
Eµ

„´
pPn,m ´ Eµ

”
pPn,m | pµn

ı
` Pµ

´
X

pnq P F | pµn

¯
´ p

¯2

| pµn



ε2

fi
ffiffifl

ď 1

ε2
Eµ

„
Eµ

„´
pPn,m ´ Eµ

”
pPn,m | pµn

ı¯2

| pµn


`
´
Pµ

´
X

pnq P F | pµn

¯
´ p

¯2


“ 1

ε2
Eµ

»
–
Pµ

´
X

pnq P F | pµn

¯´
1 ´ Pµ

´
X

pnq P F | pµn

¯¯

m
`
´
Pµ

´
X

pnq P F | pµn

¯
´ p

¯2

fi
fl

ď 1

4mε2
` 1

ε2
Eµ

„´
PµpXpnq P F | pµnq ´ p

¯2

.

(A.5)
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Using Hypothesis (1), we therefore see that supµPP Pµp| pPn,m ´ p| ě εq tends
to 0 when n and m tend to infinity, which proves the uniform consistency of
pPn,m.

B. Generation of i.i.d. realizations of the failure probability esti-
mator

B.1. The extreme-value case

Let s ě s‹, w “ pσ, ξ, psq P W, and pPn be the estimator of pf given by (30).
Under Pw, this statistic is a function of a vector pZ1, . . . , Znq of i.i.d. realiza-
tions of a variable Z „ a ´ GPDps,wq. With the notation of Section 4.1.2,
Ns indicates the number of realizations of Z that are smaller than s, and
follows therefore a binomial distribution with parameters n and ps, while pΞn

and pΣn are constructed from these Ns realizations. By inversion of the CDF,
we can then note that if U is a random variable uniformly distributed on
p0, 1s, pZ | Z ď sq and

F´1
ps,σ,ξqpUq “

#
s ´ σpU´ξ´1q

ξ
if ξ ­“ 0,

s ` σ logU if ξ “ 0,

have the same probability distributions. As a consequence, to simulate a
realization of pPn under Pw, one first draws a binomial random variable Ns

with parameters n and ps, and then Ns independent uniform random vari-
ables U1, . . . , UNs

on p0, 1s, sets Zi “ F´1
ps,σ,ξqpUiq for 1 ď i ď Ns and returns

the associated value of pPn.

B.2. The input case

Once a value of θ has been chosen in SINPpαq (assuming we are able to select
such a vector, which is a priori not trivial), the PDF fp¨; θq is completely
defined. We can then generate n independent realizations of X „ fp¨; θq,
and deduce a possible value for the estimator pθn. We can then generate m

new values of X „ fp¨; pθnq according to this new PDF. By evaluating the

code at these m input points, we can generate a possible realization of pPn,m

that is associated with the chosen value of θ. By repeating this procedure in-
dependently r times, r independent realizations of pPn,m are generated, which

can eventually be post-processed to estimate the β-quantile of pPn,m.
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