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ABSTRACT
Wepresent StreamBed, a capacity planning system for stream
processing. StreamBed predicts, ahead of any production de-
ployment, the resources that a query will require to process
an incoming data rate sustainably, and the appropriate con-
figuration of these resources. For this purpose, StreamBed
builds a capacity planning model by piloting a series of runs
of the target query in a small-scale, controlled testbed. We
implement StreamBed for Apache Flink. Our evaluation with
large-scale queries of the Nexmark benchmark demonstrates
that StreamBed can accurately predict capacity requirements
for jobs spanning more than 1,000 cores using a model built
with a 48-core testbed.

CCS CONCEPTS
• Computer systems organization→ Data flow archi-
tectures; • General and reference → Performance; Esti-
mation; • Information systems→ Data streams.
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1 INTRODUCTION
Distributed Stream Processing (DSP) is a key component of
analytics and decision-support systems. DSP engines such
as Twitter Heron or Spark Streaming support the efficient
execution of stream processing queries. Apache Flink [9] is
one of the most popular open-source engines. Like other
engines, Flink leverages massively parallel processing. A user
query is expressed as a graph of processing operators, each
supported by several tasks. Elastic scaling policies [6, 8, 10,
36] can adapt at runtime the parallelism of each operator to
support increasing event rates.

Motivation. It is hard to know, before the full-scale deploy-
ment of a new query, the resources budget that it will eventu-
ally require after elastic scaling, or how these resources will
have to be configured to sustainably ingest a target workload
(i.e., achieve a given capacity). The scaling behavior of que-
ries is often sub-linear, disallowing simple proportionality-
based predictions. They often exhibit non-trivial resource
usage and performance patterns, such as load spikes due
to stragglers [15] or imbalance between tasks’ loads due to
skew [19, 24, 48].

Uncertainty in the resource requirements of queries often
leads practitioners to exercise caution and over-provision
their infrastructure. An infrastructure that cannot scale out
to the needs of a query could, indeed, result in cascading
failures and query termination [32]. When DSP jobs are
deployed in a public cloud, the problem becomes that of
mastering costs, as uncontrolled scale-out may lead to paying
for a large amount of on-demand resources.

Contributions. We present StreamBed, a system for deter-
mining, ahead of any production deployment, the resources
budget needed for supporting sustainably a target DSP query.
In addition, StreamBed can predict the appropriate configu-
ration of these resources, without requiring a long and costly
adaptation process using elastic scaling. StreamBed is the
first system to enable capacity planning for stream process-
ing, an approach that has so far mostly targeted relational
databases [23, 47].
In contrast with previous approaches, based on costly

benchmarking at production scale [22, 25] or pre-execution
modeling of queries [1, 2, 21, 27, 44], StreamBed analyzes

https://doi.org/10.1145/3629104.3666034
https://doi.org/10.1145/3629104.3666034


DEBS’24, June 24–28, 2024, Villeurbanne, France Rosinosky, Schmitz, and Rivière

?target 
throughput

pay-per-use 
public cloud

cost planning long-term scheduling

private cloud

initial 
throughput

initial 
configuration

new query
running queries

new query

new query

pre-configuration

X
✔

Figure 1: StreamBed enables capacity planning for
streamprocessing. On the left, it helps to determine the
cost of running a large query at a certain throughput
and for a certain duration in the cloud. In the middle,
it allows for determining if a new query can be safely
deployed alongside others in a private cloud with lim-
ited resources. On the right, it returns an initial con-
figuration for a query, avoiding the costs and service
interruptions of many scale-out reconfigurations.

the behavior of a submitted query running in a controlled,
small-scale testbed, taking into account the impact of the
workload in actual runs of the query. The testbed used for
capacity planning is much smaller than the target production
system, with typically one to two orders of magnitude less
CPU cores and memory.

Using the small testbed, StreamBed builds a capacity plan-
ning model using a Bayesian Optimization method that ex-
plores different bounded resource budgets and decides on
the best fitting model using regression methods. For each
budget, StreamBed identifies its optimal configuration and
its maximum sustainable throughput [26], i.e., the volume
of data that can be ingested without provoking instabilities
and, eventually, crashes. These measurements allow training
and choosing the most appropriate scaling and configuration
model from different candidate regression models. The re-
sulting capacity planning model is used to predict, for large
target rates, the amount of necessary resources and how
these resources should be configured, enabling the use cases
illustrated by Figure 1.
We evaluate StreamBed in an 85-node cluster, featuring

a total of 1,344 cores and 7.5 TB of RAM. Out of these,
StreamBed uses 48 cores and 192 GB of RAM for controlled
runs; the rest supports production deployments and data
storage and replay. We use 5 representative queries from the
Nexmark benchmarking suite [45]. Our results show that
StreamBed can accurately predict the volume of necessary
resources with a low cores.hours budget, for queries reach-
ing more than 1,000 cores or ingesting up to 190 million
events per second. Our evaluation of StreamBed predictions
at a production scale shows that the system avoids over- or
under-provisioning and derives configuration that can sus-
tainably inject the targeted loads, even for complex, stateful
queries with non-linear scaling profiles.
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Figure 2: A Flink job with 4 operators (top left). The
Join operator is scaled-out to a parallelism of three
(top right). The resulting eight tasks are distributed to
available task slots on four task managers (bottom).

Outline.We present the background on Flink and elastic sca-
ling in Section 2. We detail our operational assumptions and
give an overview of StreamBed in Section 3, before detailing
its components, namely the Capacity Estimator (Section 4),
the Configuration Optimizer (Section 5), and the Resource
Explorer (Section 6). We report implementation details in
Section 7 and our evaluation of StreamBed in Section 8. We
follow with related work in Section 9 and a conclusion in
Section 10.

2 BACKGROUND
Apache Flink. A DSP engine supports queries over continu-
ous data, or jobs, implemented as an oriented graph of inter-
connected operators as illustrated by the top-most example in
Figure 2. Each operator implements a basic operation on the
data flow(s) it receives as its input, and outputs a stream of
events to be consumed by downstream operators. Flink sup-
ports a variety of operators, selected from a standard library,
or compiled from SQL [35]. While some operators are state-
less (e.g., map or filter), others need to persist state across
events (e.g., join or group by) such as data structures over
a window of time or events. Sources and Sinks are specific
operators injecting and outputting data from/to the external
world.

Deployment of a Flink job is under the responsibility of
a centralized Job Manager node orchestrating several Task
Managers (TM), represented at the bottom of Figure 2. Each
TM runs as a process (JVM) and offers some Task Slots (TS).
Flink, similarly to other DSP engines, assumes homogeneous
task slots, each assigned to one CPU core but with a con-
figurable amount of memory, forming the task profile. In
Figure 2, the parallelism of operators is 1, except for the Join
using a parallelism of 3. The resulting 8 tasks are dispatched
by the JobManager to the available 4 TMs. The flow of events
to a parallelized operator, e.g., from Filter A to the Join, is
partitioned based on the key associated with events [8]. Each
task maintains a buffer of incoming events. Back-pressure
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Figure 3: Illustration of a reconfiguration using
DS2 [24]. Only a subset of the edges is shown in the
interest of clarity.

mechanisms regulate the production of events: a task can
instruct its upstream operator(s) to slow down production
when its buffer goes over a certain fill rate.

Elastic Scaling. Elastic scaling allows coping with varying
input rates for a DSP job, as imposed by its data sources. A
configuration maps each operator to a level of parallelism,
i.e., how many tasks support it. A reconfiguration adapts this
parallelism and is generally triggered by indicators such as
the amount of back-pressure or the average CPU consump-
tion of TMs [8]. Röger andMayer [36] and Carellini et al. [10]
present comprehensive surveys of elastic scaling approaches
for DSP. In what follows, we focus on the DS2 algorithm [24],
used by Linkedin [41] and integrated with Flink [30] as the
elastic scaler for its Kubernetes-based resource manager [18].

The key idea underlying DS2, illustrated by Figure 3, is to
determine the level of parallelism for all operators of a job
undergoing a scale-out rather than scaling out each operator
independently. DS2 collects rates (processed events/s) for all
operators’ tasks and a measure of their busyness, i.e., the ratio
of time spent actually processing these events. DS2 computes
in one pass a new configuration taking into account the
cascading loads between operators.

While DS2 improves over previous approaches based on a
cascading reconfiguration of operators, it cannot derive the
parallelism of a large-scale installment of a query from busy-
ness rates measured over a small-scale run of that same query.
Skew [19, 24, 48], i.e., the imbalance between the popularities
of keys used to dispatch events between one operator and
the next, leads, for many queries, to highly sub-linear scaling
behaviors. DS2 also does not take into account the memory
requirements of operators, assuming that tasks do not suffer
from performance degradation with large states. In contrast,
our objective is to take into account the impact of imbalance
and memory pressure when performing capacity planning,
while avoiding costly production-scale deployments.

3 OVERVIEW
StreamBed targets long-running queries that need to scale
out to hundreds of cores for their execution. We consider
a system formed of two clusters: a large one dedicated to
production deployments and a much smaller one dedicated

capacity planning model

resources = f(rate)

rate = f(resources)

query data

TestbedControlled data injection
Kubernetes Prometheus 

(monitoring)

Apache Flink

Kafka
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Usage metrics
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Figure 4: StreamBed workflow. For a query, the re-
source explorer builds a capacity planning model from
capacity estimations with small resource budgets. For
each budget, the configuration optimizer determines
the best resource allocation and its MST via controlled
benchmarking with the capacity estimator.

to capacity planning. The two clusters use the same hardware
to make observations on one transposable onto the other.
The goal of StreamBed is to build a capacity planning

model for a specific DSP query provided by the user. We
assume that a dataset, representative of the input of the
job, is also provided by that user, e.g., historical data for the
corresponding source. We do not require, however, that the
query ran previously on this dataset or any other dataset.
The query does not have to be modified by the user, but
StreamBed needs to be informed of fields in events’ schemas
used to represent event time, if any. This information is
needed to replace recorded, historical times with emulated
times in controlled runs of the query.
We assume that the submitted DSP job uses an arbitrary

combination of stateless and windowed stateful operators
including joins, as is common for continuous queries [46].
We do not make assumptions on the length of these windows
or the sizes of operators’ working sets.

StreamBed builds amodel allowing querying the necessary
resources budget for different input rates (i.e., the number
of task slots and their resource profile) as well as their ap-
propriate configuration (parallelism for each operator). The
returned configurations must be able to sustain the requested
throughput without over- or under-provisioning.
StreamBed handles skew (and the resulting imbalance in

the loads of tasks of a given operator) by considering the
measured capacity as the maximal sustainable throughput
(MST [26]) of the query under a specific resources budget,
and the evolution of this MST with varying budgets.
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StreamBed components.Theworkflow and the three nested
components of StreamBed are illustrated in Figure 4.

At the top-most level, theResource Explorer (RE) drives
the exploration of different resource budgets, i.e., numbers
of task slots with a given resource profile. For each budget,
the RE collects the Maximal Sustainable Throughput (MST)
and the associated configuration, which it uses to build the
capacity planning model. The choice of profiles is driven by a
Bayesian Optimization algorithm and regression techniques.
In Figure 4, the RE evaluates three such resource budgets.

The determination of the best configuration and of achiev-
able MST for a given resource budget is under the responsi-
bility of the Configuration Optimizer (CO). The CO lever-
ages BIDS2 (Bounded-Inverse DS2), an evolution of the DS2
algorithm able to determine, in one pass and for a bounded
resource budget, the configuration with the highest capacity.
In Figure 4, the CO determines the MST for the smallest of
the budgets submitted by the RE for evaluation.
The determination of the MST of a configuration is per-

formed by the Capacity Estimator (CE) using controlled
runs of the job in the small testbed. Determining the MST ex-
perimentally is a complex task due to variations of resource
usage over time (e.g., ramp-up phases) and instabilities when
operating above the MST. A controlled data injection strat-
egy determines the MST of a configuration by stress-testing
it and adjusting input rates using a dichotomous strategy.
In the following sections, we detail these components in

a bottom-up fashion, starting with the Capacity Estimator
(§4), following with the Configuration Optimizer (§5), and
finishing with the Resource Explorer (§6).

4 CAPACITY ESTIMATOR
The role of the Capacity Estimator (CE) is to determine ex-
perimentally the Maximal Sustainable Throughput, or MST,
of a job in a specific configuration, upon request of the Con-
figuration Optimizer. The MST [26] is the highest possible
average actual rate that can be processed by the configura-
tion (i.e., no piling up of unprocessed records). The goal of
the CE is to estimate the MST in a small amount of time,
while guaranteeing its accuracy, in particular concerning the
impact of stateful operators, skew, and stragglers. The CE
must also take into account that injected rates higher than
the MST often lead to chaotic behaviors such as unsteady
actual processing rates.

Load injection. The CE uses controlled load injection, at-
taching rate-limited sources to the job. These sources can
connect with a distributed storage in a data lake, allowing
the use of data at rest as a representative input. Alternatively,
StreamBed can employ as a source an online pseudo-random
event generator provided by the user. In both cases, sources

Time
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Cooldown throughput

Observation

Figure 5: The Capacity Estimator uses an evaluation
strategy based on fixed-rate load injection, with a di-
chotomous search following an initial warmup phase.
Black plain lines show the target input rate, while black
dashed lines show the actual, measured processing rate.
Dashed, thin red lines present the maximal and mini-
mal rates max𝑟 and min𝑟 .

attempt to inject events at up to a fixed target rate but abide
by the back-pressure received from downstream operators.

Warmup phase. A new job will typically accept a much
higher throughput than its steady-state MST. Back-pressure
mechanisms only kick in after a threshold capacity is reached
at a specific edge, leading to a temporarily higher initial
“absorption capacity”. Moreover, stateful operators start with
an empty state that gradually grows until it reaches a steady
state (e.g., a full sliding window of events). This leads us to
use a warmup phase before any measurement, to observe
performance metrics on a stabilized job.

Evaluation strategy. A policy decides on variations of the
input rate, and on when to measure the actual processing
rate. A naive approach to determining the MST would be to
start from a low target rate and gradually increase it until the
source starts observing a certain back-pressure level. This
approach is inappropriate for two reasons. First, it mixes the
necessarywarmup phasewith the actual measurement phase,
risking estimating the MST of a job that has not reached its
steady state. Second, it does not take into account the inertia
of the job under test: A change in input rate leads to cascading
effects on buffer occupancies and back-pressure levels. These
effects often take several seconds, and sometimes several
minutes, to stabilize. Using an ever-increasing rate bears
risks that this stabilization never occurs.
We propose a strategy, illustrated by Figure 5, that uses

fixed target throughputs, includes stabilization phases, but
avoids measurements during these phases. It starts with a
sufficiently long warmup phase where we inject throughput
at a very high rate, building up sufficient state at stateful
operators and filling buffers. Reaching this steady state can
require several minutes of warmup, depending on available
memory and the size of the working state of operators.
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The warmup phase is followed by the evaluation itself,
using a dichotomous approach similar to a binary search. We
consider a maximal and a minimal rate, max𝑟 and min𝑟 , ini-
tially set to∞ and 0. The search progresses in phases. In each
phase, a target rate 𝑟 is tested. If the actual processing rate
being equal or very close (i.e., ≥99%1) to the incoming rate
then min𝑟 = 𝑟 . Otherwise, max𝑟 = 𝑟 . The next target is the
average between these two values, i.e., 𝑟 = (max𝑟 +min𝑟 )/2.
The search stops when reaching a configurable sensibility
(e.g., the next value of 𝑟 is within 1% of the previous) or after
a maximal number of iterations.
A measurement for a target rate 𝑟 starts with a cooldown

phase, using a low (but non-zero) rate allowing operators
to process events in their input buffers and recover from
saturation in the previous measurement. Then, the target
rate 𝑟 is applied for an injection phase. We measure the actual
processing rate after a short duration to enable a local ramp-
up for the new injection. During the observation phase, we
measure the achieved rate from the point of view of the
source and collect busyness metrics and actual input rates.

The metrics for the final measurement are returned along
with the MST to the Configuration Optimizer.

5 CONFIGURATION OPTIMIZER
The second component of StreamBed is the Configuration
Optimizer, or CO for short. It receives from the Resource
Explorer a query and a resource budget, i.e., a number of
task slots with a given profile (amount of RAM). Its goal is
to return a configuration fitting this budget with the best
possible MST.

The CO requires usage metrics for a run of aminimal con-
figuration, i.e., where each operator has a single task. These
include the actual input rate and the level of busyness of each
single-task operator, i.e., the percentage of time it spends ac-
tually processing events. The CO maintains a cache of these
single-task configuration metrics for different resource pro-
files, reusing previous measurements when possible. When
no data exists, the CO requests the CE to evaluate this single-
task configuration with the target profile.2

Based on observed metrics with the single-task configura-
tion, we formulate the problem of determining the optimal
capacity for a target resource budget, i.e., the highest possible
source input rate. The corresponding best possible configura-
tion is the one where the busyness metric of all tasks, across
all operators, is the highest possible while avoiding the satu-
ration of any task. We solve this optimization problem with
an algorithm we name BIDS2, for Bounded-Inverse DS2. In

1Due to the use of a rate limiter, the actual rate can never exceed 100%.
2An exception is when the Resource Explorer explicitly requests the re-
valuation of a single-task configuration as part of its exploration.

Symbol Description

P Task slots budget
𝑜𝑖 Observed true processing rate of a task of operator 𝑖
𝑟 𝑖 Observed ratio of operator 𝑖’s input rate over source’s rate

𝜋𝑖 Optimal parallelism of the operator 𝑖
𝜆src Optimal input rate of the source operator
𝜆𝑖 Optimal input rate of one operator instance 𝑖

Table 1: Notations used by the BIDS2 algorithm.

contrast with the original DS2 [24], BIDS2 does not deter-
mine the amount of necessary resources for a given input
rate, but determines the optimal configuration for a bounded
resource budget. The configuration resulting from the opti-
mization is given as an input to a call to the CE to determine
its MST and experienced busyness levels.
BIDS2 algorithm. Table 1 lists the variables used in the
optimization. Our goal is to maximize the source rate:

max 𝜆src (1)
The level of parallelism 𝜋𝑖 is the decision variable for each

operator 𝑖 (𝑖 varying between 1 and the number of opera-
tors of the job excluding the sources). As Kalavri et al. [24],
we assume in this optimization problem a linear relation
between the processing rate and the level of busyness for
a specific budget and a fixed profile: we compute the true
processing rate 𝑜𝑖 of a task of operator 𝑖 by dividing its actual
processing rate by the average busyness level of its tasks.
The non-linearity of jobs scaling due to skewwill be reflected
in the measured actual MST of the decided configuration,
when measured by the CE, and integrated in the model built
by the CO.

We compute the optimum processing rate 𝜆𝑖 of an operator
𝑖 based on its parallelism 𝜋𝑖 , as given by Equation 2.

∀𝑖 : 𝜆𝑖 = 𝜋𝑖𝑜𝑖 (2)
Then, we compute using Equation 3 the rate of each oper-

ator expressed as a function of the decision variable input
rate 𝜆𝑠𝑟𝑐 : The ratio 𝑟𝑖 , precomputed using the actual rates
returned by the CE is used as a multiplier to estimate this
proportion.

∀𝑖 : 𝜆src · 𝑟 𝑖 ≤ 𝜆𝑖 (3)
Finally, we set the constraint in Equation 4 that the sum of

the parallelism for the different operators should be exactly
the number of task slots P:∑︁

𝑖

𝜋𝑖 = P . (4)
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The configuration resulting from the optimization is given
as an input to a second call to the CE, allowing it to determine
its MST and to return it together with observed metrics.

6 RESOURCE EXPLORER
The goal of the Resource Explorer (RE) is to build the ca-
pacity planning model for a target unknown query. The RE
drives the collection of capacity measurements for different
resource budgets (number of tasks) and resource profiles
(RAM per task). Based on configurations and rates received
from the CO, the RE can further determine an optimal con-
figuration for a (predicted) resource budget.

The RE models the relation between resources and capac-
ity as a surrogate model, i.e., an approximation of a complex
system replacing expensive simulation models. The RE iden-
tifies the most representative function that describes the
relation between a number of TS Π (all used, i.e.,

∑
𝜋𝑖 = Π)

using resource profiles with M MB of memory per TS and
the resulting capacity 𝜆𝑠𝑟𝑐 as detailed in equation 5.

𝑓 (M,Π) = 𝜆𝑠𝑟𝑐 (5)
While some jobs exhibit linear scaling, others subject to

skew and/or containing stateful operators, aggregates, and
especially joins often see their improvement in performance
decrease with additional resources. We must model these
sub-linear scaling profiles appropriately, i.e., using monoto-
nically increasing functions with a derivative that decreases
over time. Based on our experience and results from other re-
searchers [19], we select in StreamBed two simple functions,
logarithm and square root, matching this requirement and
performing well in practice. Note that StreamBed can easily
accommodate alternative functions. The three linear regres-
sions we propose are given in equations 6, 7, and 8, with 𝑎

and 𝑏 the slopes of the functions applied to the quantity of
memory and task slots, and 𝑐 the intercept. The goal of the
RE is to determine which of the three models fits best the
observations, find coefficients 𝑎, 𝑏, and 𝑐 , and use the chosen
model.

𝑎M + 𝑏Π + 𝑐 = 𝜆𝑠𝑟𝑐 (6)
𝑎 logM + 𝑏 logΠ + 𝑐 = 𝜆𝑠𝑟𝑐 (7)

𝑎
√

M + 𝑏
√

Π + 𝑐 = 𝜆𝑠𝑟𝑐 (8)

Overview. The RE builds concurrently the three candidate
models based on a succession of measurements by the CO.
The model is then used to extrapolate, for high values of 𝜆𝑠𝑟𝑐 ,
values of Π that are outside of that search space.

The construction of surrogate model candidates must bal-
ance their extrapolation capacity and the cost of collecting
measurements. The collection of the MST for a given re-
source budget and resource profile requires running the CO

and up to two instances of the CE. Due to the need for the
query to stabilize to its steady state, these steps easily repre-
sent dozens of minutes of data collection in the test cluster.

The model construction happens in three phases. First, in
a candidate search phase, we use a black-box optimization
technique to determine new resource budgets and profile
candidates optimizing the distance between the prediction
of the current best model and the actual results of the runs.
Second, in amodel selection phase, we determine which of the
three models has the best potential for extrapolation. Finally,
as the best model is selected, it can be used to directly predict
the MST for a given configuration.

Model performance. We measure the accuracy of the can-
didate models with the root mean squared error (RMSE), a
quantitative measure of how well the model predicts the
resource requirements by comparing predicted values with
the results obtained by the CO. Lower RMSE values indicate
a better-performing model.
The predictive capabilities of the models are determined

using Leave-One-Out Cross-Validation (LOOCV): for each
observation in the data set, we evaluate if the model trained
on all other observations provides a good (low) RMSE value.
LOOCV helps to minimize overfitting and provides a reliable
estimate of the model’s predictive capabilities, especially in
cases where there are few observations [31].

Candidate search. The goal of the candidate search is to
find candidate couples (M , Π ) and their corresponding MST
that reduce the training error for the current best model.
The search space is 2-dimensional. The number of task

slots Π ranges from the number of operators to the number
of cores available in the test cluster.𝑀 is discretized using a
configurable level of granularity. If we consider a query with
9 operators on a cluster with 48 cores (39 possible values for
Π ) and memory ranging from 512 MB to 4 GB in increments
of 512 MB (8 possible values) then the search space admits
312 different combinations.
An intensive evaluation of the search space (i.e., a grid

search) is simply too costly. We use instead Bayesian Opti-
mization (BO) [3], an optimization method targeting black-
box functions. BO is based on a probabilistic model (a Gauss-
ian Process) approximating the true function coupled to an
acquisition function guiding the search for the optimal point
for a cost function. The acquisition function balances explo-
ration (searching in uncertain locations of the search space)
and exploitation (searching in regions with low predicted
error) of candidate points, collected in set 𝐷 . Typical acquisi-
tion functions include Probability of Improvement, Expected
Improvement, and Lower Confidence Bound. The RE uses Ex-
pected Improvement as it balances the search for low mean
(exploitation) and high variance (exploration) candidates.



StreamBed: Capacity Planning for Stream Processing DEBS’24, June 24–28, 2024, Villeurbanne, France

The candidate search must identify configurations that
are likely to yield better RMSE values for the currently better
candidate model. The cost function in Equation 9 identifies
the lowest LOOCV score amongst candidate models, reduc-
ing the training error.

BestModel(𝐷) = argmin
model∈{linear,log,sqrt}

LOOCV(𝐷,model) (9)

The set 𝐷 is bootstrapped by collecting measurements
from the 4 “corners” of the search space, i.e., 4 combinations
of lowest and highest values of Π and M , enabling to com-
pute an initial LOOCV score for the three candidate models.
The general behavior of the training process is that, follow-
ing an initial chaotic phase, the RMSE decreases until new
individuals start to worsen the score. Our stop criterion takes
this behavior into account. We proceed to a minimum of 3
measurements in addition to the 4 corners. Then, we stop
when the RMSE increases by more than 10% between two
measurements, or after 20 measurements (by default).

Following the bootstrap phase, BO executes the candidate
search phase by calling the acquisition function, a call to the
CO followed by error computation using Equation 9 as the
cost function, and then the adaptation of the internal proba-
bilistic models based on the received candidate couple (M , Π ).
Note that, to account for the unavoidable measurement varia-
tions that happen when collecting MST from the CO and the
CE, the RE may decide to re-evaluate a candidate couple that
has been previously evaluated to reduce uncertainty. Our
experience is that variations are common between two runs
with the same budget and profile in particular for complex
queries involving joins and/or windowed operations.

Model selection. Following the BO, we select the most
appropriate model from the three candidates based on their
predictive capability. To evaluate it we use a 50/50 split on
𝐷 . Since we want to compute the extrapolation capability,
we use the first half of 𝐷 with observations with the lowest
values of Π as the training set to predict the other half as the
test set, as commonly reported in the literature [38].
We apply each candidate model and evaluate how well

it predicts observations in the test set. The model with the
lowest average RMSE for points in the test set is selected
(obviously, we use the model trained on the full 𝐷 and not
only on the training set used for model selection).

Model usage. The model considers the resource budgets and
their profiles as independent variables. It can be used directly
to derive a capacity. Returning the necessary resource budget
for a target input rate requires solving the model inversely.
We adopt an iterative strategy where we consider one or
several memory profiles𝑀 and we incrementally increase Π
until the predicted capacity matches or exceeds the request.

StreamBed tends to estimate resource budgets for which
the requested rate is very close to the maximum capacity. To
guarantee that the requested rate will be sustainable, the RE
applies a slight over-provisioning factor by interrogating the
model with 110% (by default) of the requested rate.
The model returns the number of task slots but not their

configuration. This configuration can be computed using a
final pass of BIDS2 using the metrics collected for the largest
number of cores in 𝐷 .

7 IMPLEMENTATION
StreamBed uses a cloud-native stack with Kubernetes sup-
porting Apache Kafka for data ingestion, storage, and replay
and Flink for processing. We use the Strimzi Kafka Kuber-
netes operator [43] to use Kafka as a source of data for Flink,
and Spotify’s Flink Kubernetes operator [42] to be able to
deploy Flink easily with different memory and CPU settings
(Kubernetes operators support specific software in Kuber-
netes and are not Flink operators).

Capacity Estimator. The CE interacts with a running, un-
modified instance of Flink v.1.14.1 [17], using Apache Zep-
pelin [4] notebooks. Runtime measurements (e.g., about
processing rates and busyness) are collected using Prome-
theus [11] with a 5-second aggregation period.
We deploy a Flink instance in the test cluster without

auto-scaling features, using only dedicated cores for every
TS without simultaneous multi-threading. This instance is
deployed by the CE on demand with a fixed, homogeneous
resource profile for the TS. It is re-deployed only if the CO
requests a different profile, which takes less than a minute.

The CE must be able to control precisely the rate at which
the source of a query under test in the small cluster receives
data. We developed a novel rate-limited Kafka source con-
nector extending the regular Apache Flink Kafka source [16].
This rate-limited source obtains data from a first Kafka topic
as well as rate control information from a secondary topic.

Configuration Optimizer and Resource Explorer. The
RE and CO are both developed in Python. The CO uses
the Python PuLP library [13] coupled to the CBC (Coin-or
Branch and Cut) solver [12] both developed by the COIN-OR
foundation.Metrics are retrieved fromCE runs in Prometheus
using the prometheus-api-client library [40]. The RE uses
the scikit-optimize [20] library for Bayesian Optimization
and the scikit-learn [33] library for the regression.

8 EVALUATION
We wish to answer the following research questions:

• (RQ1) Is the evaluation of the MST by the CO and CE
accurate, i.e., can the RE rely on these measurements
for its model training?
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• (RQ2) Is the CO effective at deriving the “best possible”
configuration for a given resource budget?

• (RQ3) Is StreamBed able to predict, based on small-
scale runs, an accurate budget of resources, their pro-
file, and their configuration, such that a production
run based on this prediction is neither over- nor under-
provisioned?

• (RQ4) How much resources and time are necessary for
StreamBed to build capacity planning models?

We first present our workloads and our experimental setup.
Then, we answer questions (RQ1) and (RQ2) using micro-
benchmarks at the CE and CO levels. Finally, we answer
questions (RQ3) and (RQ4) using macro-benchmarks involv-
ing the RE and the full StreamBed stack. StreamBed is, to the
best of our knowledge, the only capacity planning system for
stream processing, disallowing comparison to a system with
the same goal. We validate the complete system by compar-
ing its predictions to actual production-scale deployments.

8.1 Experimentation infrastructure

Target workload and queries. We use representative que-
ries from the Flink SQL implementation of Nexmark [45], a
reference benchmark also used in the evaluation of DS2 [24].
The benchmark reproduces an online auction system, with
various continuous queries. According to our target assump-
tions, we consider queries that employ state under the win-
dowed model, summarized in Table 2. Nexmark provides a
data generator that we use with its default settings, i.e., the
input event stream features 2% of events linked to persons,
6% proposing auctions, and 92% representing bids by the
former to the latter. The average sizes of these events are
respectively 200, 500, and 100 Bytes. We populate the data
lake (Kafka) with pre-generated data streams that we use as
data-at-rest input for StreamBed operations.
Queries q1 and q2 use a single, stateless operator. Other

queries include stateful operators including GroupBy (win-
dow) and Joins. Queries q5 and q8 have complex graphs
with 8 operators, including GroupBy and Joins. Both queries
encounter skewed streams (hot items and sellers). Query
q11 uses a pipeline of three operators, including a compute-
heavy GroupBy (window). All stateful functions use a time
window of 10 seconds. For q5, windows slide in increments
of 2 seconds while they are non-overlapping for q8 and q11.
Experimental setup.We use an 85-node cluster from the
Grid5000 federated testbed [7]. Nodes in our cluster have an
18-core Intel Xeon Gold 5220 and 96 GB of RAM each. Their
480-GB SSD has sequential read andwrite performance of 540
and 520 MB/s. They are connected with 25-Gbps Ethernet.

StreamBed needs sufficiently many nodes supporting data
injection and source operators. Table 2 presents as a reference
the minimal, single-task rate for each query. Queries q1, q2,

Query Description Operators Stateful Min rate
(×103 evt/s)

q1
Currency conversion: converts
bid values from dollars to euros 1 - 1600

q2
Selection: filter bids with specific

auction identifier 1 - 3600

q5
Hot items: determine auctions
with most bids in last period 8 GB, GBW, J 50

q8
Monitor new users: identify active

users in last period 8 GBW (×2), J 1400

q11
User sessions: compute number of
bids each user makes while active 3 GBW 60

Table 2: Nexmark queries [45]. The number of opera-
tors excludes sources and sinks. “Stateful” lists stateful
operators used by the query: GB for GroupBy, GBW
for GroupBy (window), and J for Join. Minimal rates
are for single-task configurations with 4-GB profiles.

and to a lesser extent q8 have a high minimal rate, while q5
and q11 process fewer events per second.
When replaying data at rest, the limiting factor are our

modest SSDs, with a peak capacity per Kafka server of about
1,200,000 events/s. This represents, for our target queries, a
minimal number of 8 Kafka nodes for𝑞5 and𝑞11 and 16 Kafka
nodes for 𝑞1, 𝑞2, and 𝑞8 to be able to inject rates decided
during the RE exploration (obviously, using machines with
multiple, high-performance drives would allow reducing this
number). Rate-limited source operators are CPU-bound: We
must also ensure they never are the limiting factor when
testing a specific configuration. We identified that 64 source
tasks are necessary to support the maximal rate that the
Kafka nodes can serve (4 servers).

The test cluster uses 3 servers with 48 task slots to leave 2
available cores per machine for system management. Simi-
larly, we use up to 64 GB of RAM per machine, resulting in a
maximum profile of 4 GB per task. We also dedicate 3 nodes
for the Kubernetes management, Prometheus, and the Flink
Job Manager.

8.2 Experimentation results
(RQ1) MST estimations. We first evaluate the accuracy of
the CO and CE in identifying the MST of configurations.
A run for the CE with queries q1, q2, and q11 uses a

warmup of 120 s and measurements of 75 s (30 s ramp-up,
30 s observation, and 15 s cooldown). The cooldown uses
a throughput of 200 events per second and per source, for
a total of 6,400 events/s. One CE run performs 8 iterations
for a total duration of 645 s. For complex queries q5 and
q8, our initial evaluations highlighted the need for longer
measurements, due to the longer time necessary for our con-
figurations to use disk storage (in the RocksDB backend [14])



StreamBed: Capacity Planning for Stream Processing DEBS’24, June 24–28, 2024, Villeurbanne, France

0.53
x0.95

(±0.04)

Target rate 
(M events/s)

Observed rate
(ratio of target)

Variability
(std dev of ratio)

ratio of target ≥ 0.85
and

std dev of ratio > 0.1

ratio of target ≥ 0.85
and

std dev of ratio ≤ 0.1

ratio of target < 0.85

Figure 6: Accuracy of MST estimations for various resource budgets. The estimated MST is replayed at 100% (upper
row) or 150% (lower row) of the prediction. Colors represent runs that sustainably process the target rate (green),
approach or meet the target with instabilities (purple), or fail (red).

and not only main memory: We use a 450 s warm-up, a 900 s
duration, and 7 iterations, for a total of 900 s (15 minutes);
we also increase cooldown throughput to 12,800 events/s.

We query the CO for 16 combinations of resource budgets
and profiles per query. We consider 3 to 16 tasks for q1, 3 to
6 for q2, and 12 to 48 for q5, q8, and q11 (the high achievable
rate of q1 and q2makes it unnecessary to test them with the
full cluster). We use memory profiles of 0.5, 1, 2, and 4 GB.
We run each query with the 16 configurations returned

by the CE, using their estimated MSTs as the target rate.
We observe if each configuration supports the estimated
rate sustainably for 10 minutes preceded by a warmup of 2
minutes. Figure 6 presents the results in its upper row. For
each of the 16 configurations, a box presents first the target
rate returned by the CE for this configuration (for instance,
q8 with 12 TS of 2 GB has an MST of 1.92×106 events/s) and
the observed rate, expressed as a ratio of this target. A high
level of variation in the measurements, as presented by the
standard deviation of this ratio across all measurements, is
a sign that the job is close or past saturation. Finally, we
report in the lower row of Figure 6 results using a target rate
of 150% of the estimated MST. Passing this test means the
estimation was too conservative.
Simple queries q1 and q2 show little variations. All their

tested configurations sustainably process the estimated MST
at 100% but fail with 150%. Query q11 shows good results
but slightly higher variations. This is due to the behavior of
its stateful GroupBy (window) operator and resulting strag-
glers. For these three queries, a general linear scale behavior
seems to apply with increasing numbers of TS. The impact
of memory is less clear and highlights the variability of the

in-situ data that the RE receives as an input (and that BO will
address by repeating runs where RMSE error is important).

For complex queries q5 and q8, we observe a lower level of
repeatability and lower scaling capabilities in terms of task
slots. For q5, the factor of instability lies mostly in the Join
operator and its very uneven load across tasks, as we also
highlight in the next experiment. For q8, variability is caused
by the presence of stragglers due to the windowed opera-
tors using a non-overlapping window size of 10 seconds,
higher than our 5-second monitoring period, and leading to
“sawtooth-like” load profiles. For both queries, results with
150% of the MST injected show that some estimations (in
particular with 32 TS/4 GB and 48 TS/2 GB for q8) can be too
conservative. This behavior is not predictable from one run
to the next–we did not select a “good run” but the one per-
formed in the whole series. This highlights that the RE must
accommodate variations in the data collected in particular
for more complex queries.

For all memory profiles, q1, q2, and q11 achieve at worst
95% of the expected rate, and often 99-100%, this showing
we manage to answer positively (RQ1). For q5 and q8, per-
formance is much lower and very volatile with 0.5 and 1 GB.
This is caused by state needs that cannot be satisfied with
these feeble memory values, highlighting the impact of in-
sufficient memory for efficient scaling. In the next sections,
we focus on 2- and 4-GB profiles for these two queries.

(RQ2) Configurations.We now evaluate the result of the
CO optimization, zooming in the largest configuration for
each query running at 100% of the estimatedMST (i.e., bottom-
right corners of matrices in Figure 6’s first row). Figure 7
presents the distribution of the time series measurements
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Figure 7: Distribution of task busyness levels measurements. Numbers above box plots are operators’ parallelism.

Number of TS with profile
Query Requested rate 0.5 GB 1 GB 2 GB 4 GB

q1 160 ×106 179 179 179 178
q2 190 ×106 69 69 69 69
q5 2.5 ×106 - - 1069 1079
q8 15 ×106 - - 179 176
q11 20 ×106 565 564 562 559

Table 3: Capacity planning results for the five queries.

over each 10-minute run. Most scaled-out operators reach
their peak capacity at some point in time during the run, even
if the median busyness is lower. This is the expected behav-
ior: Operators must be provisioned to handle peak load for
non-minimal configuration, i.e., when the parallelism of all
operators is not fixed to 1 task. For Group By (window) and
Joins, we observe a wide range of busyness levels, due to the
skew and the stragglers resulting from upstream Group By
(window) operators’ uneven output rates. For the Join of q8,
additional tests with a forced lower parallelism (not shown)
lead to saturations, back-pressure cascades, and instabilities;
the measured busyness of 60% seems to be a practical maxi-
mum. Some stateless, scaled-out operators such as the first
Filter of q5, q8, and q11 have relatively low busyness levels,
due to an important level of back-pressure from downstream
tasks. Overall, the CO can avoid under-provisioned opera-
tors with frequent busyness levels of 100%, thus answering
favorably the (RQ2).

(RQ3) Capacity planning: accuracy. Our final evaluation
explores the capacity of StreamBed to build accurate capacity
planning model (RQ3) and the cost of building this model
(RQ4).

Table 3 presents the uses of the models for large requested
rates and Table 4 presents their results and building costs.
Queries q1, q2, and q11 are identified with a linear scaling
model, while q5 and q8 respectively use the log and square
root models. We can see that the models identify a minor
impact of memory profiles for all queries (also clear in the

– Min/Max – – Runs – — Coefficients —
Query TS RAM #CO #CE Duration Model 𝑎 𝑏 𝑐

q1 2/16 0.5/4 9 10 139 min. lin 1.0 9.9E5 -7.6E5
q2 2/6 0.5/4 14 20 248 min. lin 7.5 3.0E6 -2.7E6
q5 9/48 2/4 14 14 252 min. log -7.6E3 5.7E5 -1.2E6
q8 9/32 2/4 13 13 234 min. sqrt 2.6E3 1.4E6 -3.9E6
q11 4/48 0.5/4 16 20 252 min. lin 4.1 3.9E4 -2.1E5

Table 4: RE results: training costs, chosen model, and
coefficients. #CO/#CE: number of calls to the modules.

values of coefficient 𝑎 in the models). For q5, the small varia-
tion (<1%) between the 2- and 4-GB profiles is a result of the
uncertainty in the CO measurements. We can also observe
that the effect of increasing rates differs between tasks, e.g.,
with coefficient 𝑏 in the linear models of q1, q2, and q11.

We validate the predictions using large-scale production
runs. These runs use up to 85 nodes, using up to 69 nodes
for Flink TMs (for q5) and up to 36 Kafka nodes (for q11).
As Kafka in our cluster does not allow supporting the rates
requested for q1 and q2 we inject for these queries data
directly using sources paired with the Nexmark generator.

We adopt a similar strategy as for testing small-scale runs,
to verify that the predictions of StreamBed are neither over-
or under-provisioned. A prediction is not under-provisioned
if it sustainably supports the requested rate over time. A pre-
diction is not over-provisioned if, when injecting a higher
rate (we use 120% and 150% of the requested rate) the query
shows signs of instability or insufficient capacity. High insta-
bility in the observed rate shows that we are above the MST
and should be avoided. We also observe the pending records
metrics, i.e., how many events generated by the fixed-rate
source “pile up” at the source operator due to back pressure.
While a small amount of buffering is normal in a setup close
to full utilization, an ever-increasing pending records metric
is a clear sign of an under-provisioned system.

Figure 8 presents the results of production-scale runs using
the number of TS (cores) given in Table 3. We measure rate
and pending records metrics after a ramp-up period of 5
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Figure 8: Large-scale production runs using capacity
planning models (Table 3). We present the requested
rate (thin red line) and the actual rate when injecting
100% (blue), 120% (yellow), and 150% (purple) of this
rate. The second row presents accumulated pending
records. We present the 100% and (120%, 150%) cases
separately for the two profiles of q5 for readability.

minutes, for 30 minutes (q1, q2, and q11), 90 minutes (q5),
and 120 minutes (q8). For q1 and q2, the actual rate is exactly
the one requested at 100%, while 120% and 150% rates are
not matched and lead to piling-up pending records. After 30
minutes, q2 with the 0.5 GB profile shows a slight delay in
processing events (the equivalent of 1.6 s worth of pending

records), illustrating the difficulty of running even stateless
queries at large-scale and high-throughput with Flink under
memory constraints. We do not observe this behavior for
other setups, including stateful q11 with all profiles.
For q5, for readability, we present separately the 100%

rate and the two other rates for the two considered profiles
(2 GB and 4 GB). The 100% rate is sustained in both cases
but with 2 GB per TS, we observe temporary instabilities.
Resulting pending records are, however, later absorbed by
the job indicating that the saturation point is not reached.
With 4 GB the query is very stable while in both cases, we
observe chaotic behavior in terms of throughput for 120%
and 150%, meaning the saturation point was reached.

For q8 we consider only the 100% and 150% cases for read-
ability. Interestingly, we can see the impact of long-term
instabilities that StreamBed can account for in the model (i.e.,
as these show earlier on small-scale jobs than on large-scale
ones with high parallelisms for the concerned operators).
Here, while the query is initially able to process 150% of the
requested rate for a time, we observe that pending records
gradually accumulate and provoke instabilities, making the
query non-sustainable. The reason is that the working set
of the query fits for a time dependent on the total memory
before introducing congestion. We observe this effect both
with 2- and 4-GB profiles.

Overall, the predictions are accurate, with a slight over-
provisioning in some cases as can be expected with our 110%
over-provisioning factor, positively answering (RQ3).

(RQ4) Capacity planning: cost. Table 4 presents the results
of a run of the RE for each of the five queries, with the
number of calls to the CO and CE, the training time, and
the resulting models. The training by the RE uses 9 (for q1)
to 16 (for q11) calls to the CO. These calls result in 10 to 20
calls to the CE, as not all CO calls require evaluating a single-
task configuration that is already in the cache. The complete
duration of a CO call is about 24-minute longwhen the single-
task configuration did not run, and about 13-minute when it
did (for q5 and q8 a CO call always takes 18minutes, as single-
task configurations are tested first as part of the corners to
bootstrap 𝐷). The CO optimization itself takes about 100 ms,
while BO steps at the RE level have a negligible duration
(<1 ms). In total, the total training duration ranges from
139 minutes for q1 to 252 minutes for q5. These durations
are reasonable considering the costs and scale of the target
production deployments, answering favorably (RQ4).

9 RELATEDWORK
We review work on DSP performance analysis, modeling,
and prediction, and on capacity planning for other contexts.
We omit a discussion of the large body of work on elastic
scaling of DSP engines but refer to existing surveys [10, 36].
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DSP Benchmarking. The first class of systems targets the
in-situ performance evaluation of DSP using benchmarking
methodologies. In contrast with StreamBed, these systems
target the deployment of a query at a production scale and
do not intend to extrapolate from small-scale deployments.
StreamBench [29] proposes a set of benchmark programs for
Apache Storm and Apache Spark Streaming. Theodolite [22]
is a benchmarking framework for Flink and Kafka Streams.
Theodolite implements different search strategies piloting
tests with varying CPU budgets, verifying if service-level
objectives (SLO) are met for each of them, and forming a
scalability profile. The binary search strategy resembles the
method used in the CE, although it applies to several, inde-
pendent runs. Neither works provide a solution to decide on
the configuration (level of parallelism) of each operator of a
query, which must be set by the user. Rafiki [34] allows deter-
mining such configurations by piloting a series of runs and
gradually increasing the parallelism of each operator based
on observed backpressure metrics. Gadget [5] is a benchmark
suite targeting the performance of the storage subsystem in
DSP, e.g., RocksDB [14] and alternatives.

DSPmodeling Another class of work proposes tomodel the
DSP queries, their performance, and their scalability. Truong
et al. [44] use queueing theory to build a performance model
of a specific query and its individual operators. Complemen-
tarily, MEAD [37] models the arrival of events at different
operators using Markovian Arrival Processes to better pre-
dict performance after scale-out under bursty event patterns.
The modeling of queries can enable proactive, predictive sca-
ling and scheduling operations [28]. Twitter’s Caladrius [25]
models for this purpose the performance of parallel ope-
rators in Apache Heron using piecewise linear regression.
These works do not take into account the sub-linear scaling
behavior of complex queries.
Some authors propose to model the performance and re-

source usage of queries based on general characteristics,
learning from a large set of queries and identifying a general
model, e.g., mixture-density networks [27] or zero-shot cost
models [1, 1, 21]. These approaches require initial training
using a large set of queries (typically, several thousands). As
no dataset of real queries of this size exists, the authors have
to resort to synthetic, randomly-generated queries that may
not represent real workloads.

Capacity planning. The need to plan the configuration or
scale of computing infrastructure is obviously not limited
to DSP. Higginson et al. [23] discuss the applicability of re-
source forecasting techniques based on machine learning for
clustered database systems. URSA [47] is a capacity planning
and scheduling system for database platforms, modeling the
response of a database workload to provided resources and
deriving just-sufficient resource specifications automatically.

These works do not rely on controlled, small-scale testing
and extrapolation as proposed by StreamBed.

10 CONCLUSION
We presented StreamBed, a capacity planning system for
stream processing allowing to derive scaling and configu-
ration decisions for large-scale Flink jobs from a series of
controlled, small-scale runs of a target query. StreamBed
permits to estimate accurately the needed capacity to run
sustainably very large-scale queries without the need to exe-
cute them on actual production infrastructure or to build
less accurate and expensive generic models. Moreover, it can
identify cheap configurations able to run non-linear scaling
queries that the state-of-the-art elastic scaler DS2 is not able
to converge to. Our work opens several interesting perspec-
tives that we intend to explore in our future work. First, we
would like to consider the integration of synthetic data gen-
eration and upscaling mechanisms, as it exists for relational
databases [39]. Second, we observed that some queries have
a clearly sub-linear scaling profile, while elastic scaling so-
lutions generally consider linear scaling assumptions. The
models generated by StreamBed, or some of its methodolo-
gies, could guide the development of more accurate elastic
scalers for such queries.

Artifact availability: The code of StreamBed together with
all material allowing the reproduction of our experiments is
available at the companion repository:
https://github.com/CloudLargeScale-UCLouvain/StreamBed/.
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