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A B S T R A C T

Evaluating house prices is crucial for various stakeholders, including homeowners, investors, and policymakers.
However, traditional spatial interpolation methods have limitations in capturing the complex spatial rela-
tionships that affect property values. To address these challenges, we have developed a new method called
Multi-Head Gated Attention for spatial interpolation. Our approach builds upon attention-based interpolation
models and incorporates multiple attention heads and gating mechanisms to better capture spatial dependencies
and contextual information. Importantly, our model produces embeddings that reduce the dimensionality
of the data, enabling simpler models like linear regression to outperform complex ensembling models. We
conducted extensive experiments to compare our model with baseline methods and the original attention based
interpolation model. The results show a significant improvement in the accuracy of house price predictions,
validating the effectiveness of our approach. This research advances the field of spatial interpolation and
provides a robust tool for more precise house price evaluation. Our GitHub repository.1 contains the data and
code for all datasets, which are available for researchers and practitioners interested in replicating or building
upon our work.
1. Introduction

The Real Estate sector is a cornerstone of the global economy, with
house prices as a critical indicator of economic health and individual
wealth. Variations in house prices can influence consumer spending
and economic growth, while declines can restrict borrowing capac-
ity and reduce investments due to diminished collateral values (Case
& Shiller, 2000). The 2008 financial crisis, triggered by a housing
market collapse, highlights the critical importance of accurate house
price predictions for economic stability (Reinhart & Rogoff, 2010).
Predicting house prices is inherently complex, involving a myriad of
factors. Traditional models for house price prediction have primarily
used regression techniques, considering variables like property size,
age, condition, and number of rooms (Bourassa, Hoesli, & Peng, 2003).
However, advancements in machine learning have transformed this
landscape. Methods such as support vector machines, decision trees,
and neural networks have been increasingly employed, significantly
enhancing prediction accuracy (Chen, Liaw, & Breiman, 2019). En-
semble learning techniques, particularly XGBoost, have shown great
promise due to their ability to handle large datasets and model com-
plex relationships (Chen & Guestrin, 2016a; Nguyen & Nguyen, 2023;
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Oyedotun, Olaniyi, Oyedotun, & Akin-Ojo, 2023). To address spa-
tial heterogeneity, Geographically Weighted Regression (GWR) and
related techniques have been widely used (Fotheringham, Brunsdon,
& Charlton, 2002; Huang, Cai, & Wang, 2016; Li, Claramunt, & Ray,
2018; Wang, Ni, Tenenbaum, & Li, 2018). Additionally, geostatistical
methods like Kriging have been employed for spatial interpolation,
providing nuanced insights into geographical data (Chung, Venkatra-
manan, Elzain, Selvam, & Prasanna, 2019; Kang & Ma, 2017; Paez,
Scott, & Volz, 2005). Despite these advancements, these methods often
struggle with capturing complex spatial relationships and are sensitive
to assumptions like isotropic variability, which may not hold in di-
verse landscapes. Furthermore, these models can be computationally
intensive and sensitive to outliers. Our study advances these traditional
approaches by integrating Multi-Head and Gated Attention mecha-
nisms with similarity calculations, providing a robust framework for
house price prediction. Our work builds upon the pioneering efforts
of Viana and Barbosa (2021), who utilised an attention-based spatial
interpolation model. They introduced a novel use of attention mech-
anisms, including a Euclidean-based layer and a Geo Attention layer,
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to weigh the influence of neighbouring properties. These attention lay-
ers produced ’house embeddings,’ a compact representation capturing
structural and spatial features for regression models. In our model, we
enhance this approach by distinctly separating Geographical and Struc-
tural Attention mechanisms. Geographical Attention focuses on spatial
relationships and proximities, while Structural Attention captures in-
trinsic property attributes such as size, age, and condition. This dual
attention mechanism, combined with a similarity calculation, ensures
that the model accurately reflects properties’ physical and locational
characteristics. The Multi-Head Attention mechanism further allows for
parallel processing, capturing various aspects of spatial relationships
at different scales. The Gated Attention mechanism fine-tunes the in-
formation flow, reducing the impact of outliers and ensuring robust
predictions. The superiority of our model lies in its reliance on basic
geographical and structural data, making it applicable even in scenarios
where multimodal data like images are unavailable. This contrasts with
other recent studies that require complex and sometimes difficult-to-
obtain data inputs. For instance, the study ‘‘Imbalanced Multimodal
Attention Based System for Multiclass House Price Prediction’’ (Smith
& Jones, 2023) and ‘‘Joint Gated Co Attention Based Multi-Modal
Networks for Subregion House Price Prediction’’ (Lee & Kim, 2023)
focus on incorporating multimodal data, which can be challenging to
collect and label consistently. Our model’s simplicity and accessibility,
combined with its advanced attention mechanisms, make it a versatile
and powerful tool for various real estate prediction tasks. Recent lit-
erature demonstrated substantial improvements in capturing complex
spatial dependencies and reducing data dimensionality, resulting in
more accurate predictions. Our approach stands out by using Multi-
Head Gated Attention and integrating similarity calculations, which
enhance the model’s ability to discern relevant features from geograph-
ical and structural data.Our contributions to advancing real estate price
prediction include:

• Introducing a Comprehensive New Dataset: We have created
a comprehensive new dataset that includes data from different
Italian cities. It combines both structural and geographical in-
formation relevant to real estate valuation. This dataset aims to
offer a more complete understanding of the factors that affect
property prices, making it possible to create more precise and
reliable predictive models.

• Incorporating Advanced Attention Mechanisms: Our model
uses Multi-Head and Gated Attention mechanisms, improved by a
similarity-based filtering approach, to capture detailed structural
and geographical contexts accurately. These attention mecha-
nisms allow the model to concentrate on the most important
features, resulting in more accurate predictions by effectively
handling the high-dimensional data typically found in real estate
analytics.

• Embedding Generation with Spatial Interpolation: We used
the Multi-Head Gated Attention Spatial Interpolator model to
create embeddings that improve the predictive capability of our
approach. These embeddings decrease the data’s complexity, en-
abling simpler models like linear regression to achieve perfor-
mance levels similar to those of more advanced models. They sig-
nificantly improve the model’s predictive accuracy and efficiency
by capturing intricate relationships within the data.

• Validation Across Diverse Datasets: We thoroughly validated
our model across diverse datasets representing different geo-
graphic and economic contexts. This comprehensive testing show-
cases the adaptability and efficacy of our approach, emphasis-
ing its practical usefulness in real-world scenarios. The model’s
reliable performance across various datasets underscores its re-
silience and trustworthiness, positioning it as a valuable tool for
precise predictive modelling in the real estate industry.
2 
The subsequent sections of this document are structured as follows:
Section 2 presents a comprehensive overview of relevant works, includ-
ing literature and methodologies, that relate to house price estimation
and Section 3 delves into our proposed attention network, detailing
its unique features and potential benefits. In Section 4, we conduct
experiments, perform data analysis, and provide a thorough evaluation
of our model. Lastly, in Section 5, we draw insightful conclusions based
on our experimentation, compare our approach with prior method-
ologies, and articulate the implications of our findings. This structure
ensures a coherent and comprehensive understanding of our innovative
methodology for house price prediction.

2. Related works

House price estimation is a critical activity with far-reaching impli-
cations for the real estate industry. This field has been the subject of
extensive academic research, traditionally employing regression anal-
yses that integrate multiple variables, data types, and methodologies.
In this review, we explore the scholarly landscape of this subject, trac-
ing the evolution of research methodologies and spotlighting modern
advancements and emerging trends.

The Hedonic Price Theory, first introduced by Rosen in 1974 (Rosen,
1974), is the foundation for Hedonic Regression models. These models
have become a crucial tool in studying house prices. The theory utilises
a set of attributes, such as the number of bedrooms or bathrooms,
to explain and represent a house’s market value. These attributes are
ranked based on their impact on a house’s utility function, assuming
that a market equilibrium between buyers and sellers determines the
sale price. Hedonic Regression models are widely used to analyse the
effects of different factors on house prices in various areas, making
them a robust tool for market segmentation (Yao, Zhang, Hong, Liang,
& He, 2018). Although the original Hedonic Price Theory focused
mainly on the intrinsic characteristics of a house, it has evolved to
account for external factors like location (Frew & Wilson, 2002). This
adaptation was motivated by the realisation that solely considering a
house’s intrinsic attributes was insufficient for accurate price repre-
sentation (Limsombunchai, Gan, & Lee, 2004). Despite its widespread
use, Hedonic Regression models have faced challenges, including issues
related to the stability of attribute coefficients across different locations
and property types and limitations in handling non-linearity and model
specification (Wang, Wen, Zhang, & Wang, 2014).

The integration of machine learning into house price prediction has
been significantly accelerated by advancements in computational ca-
pabilities and the increase of data (Chaphalkar & Sandbhor, 2013). Ini-
tially, the focus was mainly on traditional machine learning algorithms
such as Linear Regression (LR) (Cook, 1977). While these linear models
offered computational efficiency and ease of interpretation, they were
limited in capturing the high dimensional and non-linear complexities
inherent in transaction price data. Researchers explored regularisation
techniques like Ridge and Lasso Regression (Hoerl & Kennard, 1970;
Tibshirani, 1996) to address these limitations. These methods helped
mitigate overfitting and offered a more refined approach to feature
selection but struggled with capturing complex, non-linear relation-
ships. Principal Component Analysis (PCA) (Jolliffe, 1986) has also
been employed for dimensionality reduction to simplify the feature
space, although it has been criticised for potentially discarding crucial
information. This led to the exploration of more flexible, non-linear
models such as Support Vector Regression (SVR) (Drucker, Burges,
Kaufman, Smola, & Vapnik, 1997) and Decision Trees (Quinlan, 1986a).
Support Vector Regression (SVR) offers a solution for non-linearities
through various kernel functions, while Decision Trees provide a sim-
ple yet effective approach for detecting non-linear patterns (Drucker
et al., 1997; Quinlan, 1986a). However, Decision Trees are prone to
overfitting. To combat this, ensemble methods like Random Forests
were developed to improve model generalisation (Ho, 1995). Random



Z.A. Sellam et al.

t
p
r

G
t
t
p
a
c
t
a
P
p
F
d
a
S
t
d
a
t
c
s
r
q
G
a

N
p
d
i
b
e
G
c
t
w
p
d
a
c
G
a
t
c
t

p
m
e
g
T
a
a
s
(

Expert Systems With Applications 259 (2025) 125276 
Forests combine the outcomes of many decor-related trees to minimise
variance and enhance accuracy.

With advancements in computational power, the field has shifted
to more sophisticated ensemble methods such as XGBoost (Chen &
Guestrin, 2016b). Unlike Random Forests, XGBoost constructs trees se-
quentially to correct the errors made by the previous ones. This makes
XGBoost particularly effective in handling diverse data structures and
enhancing prediction accuracy (Pavlyshenko, 2018). These advanced
ensemble models are also highly scalable and efficient, often surpassing
Random Forests’ performance on large datasets.

To further optimise their predictive performance, these sophisti-
cated ensemble models are often fine-tuned using metaheuristic opti-
misation techniques like Particle Swarm Optimization (PSO) (Alfyatin,
Febrita, Taufq, & Mahmudy, 2017; Claesen & De Moor, 2015). These
optimisation techniques enable precise tuning of hyperparameters, re-
sulting in accurate and computationally efficient models.

The latest development in house price prediction is Graph Neural
Networks (GNNs) (Zhou et al., 2020), which excel in identifying spatial
relationships between properties. However, GNNs can be computation-
ally demanding and require large, well-curated datasets for practical
training. Additionally, their performance can vary significantly based
on the architecture and hyperparameters, which may hinder their
widespread adoption. Graph Neural Networks (GNNs) have recently
emerged as a prominent method for house price prediction, leveraging
their ability to capture intricate spatial relationships between prop-
erties (Zhou et al., 2020). However, GNNs face several challenges,
including high computational demands and the need for large, well-
curated datasets, making them resource intensive (Anonymous, 2021;
Piechocki & Pope, 2024). Additionally, their effectiveness can be highly
dependent on the choice of architecture and hyperparameters, which
may hinder widespread adoption. Furthermore, GNNs often require
customised graph structures for each dataset, limiting their flexibil-
ity across different data types (Anonymous, 2021; Piechocki & Pope,
2024).

Furthermore, the domain has seen the rise of deep learning tech-
niques. Deep Neural Networks (DNNs) (Schmidhuber, 2015) can auto-
matically learn feature representations, eliminating the need for man-
ual feature engineering. Although DNNs can unravel highly complex
relationships in the data, they present challenges, such as the risk of
overfitting and the need for substantial datasets and computational
resources for practical training.

Building on these advancements, recent research has focused on
integrating diverse computational models and data sources. A prime
example is a groundbreaking study by Tchuente and Nyawa (2022) on
the French real estate market. Utilising machine learning techniques
such as Random Forest, AdaBoost (Freund & Schapire, 1997), and
gradient boosting (Friedman, 2001), along with geocoding features,
they analysed five years of historical real estate transactions provided
by the French government. Their findings revealed that incorporating
geocoding elements increased the models’ predictive accuracy by over
50%.

Building upon the findings of Tchuente et al. the research conducted
by Zhao, Ravi et al. (2022) represents a significant advancement in
data analysis. By incorporating a multi-modal approach encompassing
traffic patterns, amenities, and social emotions in the bustling city of
Beijing, China, this study validated the crucial role of location-based
data. Furthermore, it introduced a feature ranking mechanism that
established a direct correlation between the data and its economic
impact. This groundbreaking research underscores the potential of ge-
olocated data in predicting real estate prices and highlights its transfor-
mative capabilities. Further advancing this research domain, De Nadai
and Lepri (2018) delved into the economic repercussions of neigh-
bourhood characteristics within Italian urban landscapes. Their inves-

tigative toolkit encompassed a rich array of data sources including

3 
OpenStreetMap,2 Urban Atlas 2012, imagery from Google Street View,
Italian census data,3 alongside property tax records sourced from the
‘‘Immobiliare. it’’4 platform. Through the application of their model,
hey witnessed a notable 60% enhancement in nowcasting housing
rices, thereby underpinning the transformative potential of leveraging
ich, geolocated datasets.

Das, Ali, Li, Kang, and Sellis (2021) introduced the concept of
eospatial Network Embedding (GSNE) to address the geospatial con-

ext of neighbourhood amenities in house price predictions. Unlike
raditional models, GSNE captures the influence of proximity to key
oints of interest (POIs) such as train stations, highly ranked schools,
nd shopping centres. By leveraging graph neural networks, GSNE
reates embeddings of houses and various types of POIs within mul-
ipartite networks, representing relationships as edges. This method
llows for understanding complex interactions between houses and
OIs, offering a robust way to incorporate geospatial context into price
redictions. Despite its innovations, GSNE faces several limitations.
irstly, the high computational complexity of processing large-scale
ata and multiple types of POIs makes it less suitable for real-time
pplications or environments with limited computational resources.
econdly, the model’s reliance on high-quality, comprehensive geospa-
ial data means that any incomplete or inaccurate data can significantly
egrade its performance. Thirdly, scalability issues can arise when
pplying GSNE to larger datasets or different geographic regions, as
he embedding and training processes are resource-intensive and time-
onsuming. Additionally, while the model performs well within the
cope of the datasets used in the study, its generalisability to other
egions with different market dynamics may be limited, potentially re-
uiring specific adjustments. Finally, the complexity of interpreting the
SNE model presents challenges for stakeholders who need transparent
nd explainable decision-making models.

Wang, Wang, Wu, and Du (2022) introduced the Geographically
eural Network Weighted Regression (GNNWR) to enhance house
rice predictions by incorporating spatial heterogeneity. Unlike tra-
itional Geographically Weighted Regression (GWR) models, GNNWR
ntegrates neural networks to capture complex spatial relationships
etter, using geographical data to create weights for different prop-
rties and improve prediction accuracy. Despite its advantages, the
NNWR model has several limitations. Firstly, it requires significant
omputational power due to the complexity of the neural network and
he large number of features, making it less suitable for environments
ith limited resources. Secondly, GNNWR relies on high-quality, com-
rehensive datasets; incomplete or inaccurate data can significantly
egrade its performance. Thirdly, scalability issues may arise when
pplying GNNWR to larger datasets or different geographic regions, as
omputational demands increase with dataset size. Additionally, while
NNWR shows promising results in the Shenzhen dataset, its generalis-
bility to other regions with different housing market dynamics remains
o be determined and may require specific adjustments. Finally, the
omplexity of GNNWR can pose challenges for stakeholders who need
ransparent and explainable models for decision-making.

Kang et al. (2021) delve into house price appreciation rates, em-
loying a multi-source extensive geo-data framework that amalga-
ates structural attributes, locational amenities, and visitor patterns,

mploying machine learning models and geographically weighted re-
ression for accurate predictions at both micro and macro scales.
heir gradient-boosting machines achieve an R-squared value of 74%
t the neighbourhood scale, highlighting the effectiveness of their
pproach in understanding house price appreciation nuances. On a
imilar innovative trajectory, Wang, Chen, Su, Wang, and Huang
2021). Propel house price prediction forward by harnessing a Joint

2 europe/italy.html.
3 https://www.istat.it/.
4
 www.immobiliare.it.
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Self-Attention Mechanism intertwined with a rich analysis of hetero-
geneous data, including public facilities and environmental aesthetics
captured through satellite imagery. Tested in Taipei and New Taipei,
this model eclipses other machine learning-based models in prediction
accuracy, showcasing a lower error rate. The Spatial Transformer Net-
work (STN) (Jaderberg, Simonyan, Zisserman, & Kavukcuoglu, 2015)
and their model’s novel joint self-attention mechanism intricately dis-
sect the complex relations between different attributes impacting house
prices. This work accentuates the necessity of a holistic data-rich ap-
proach and extends the versatility of the attention mechanism across
various domains, setting a robust foundation for future research. In
a parallel vein, Viana and Barbosa (2021) introduce a groundbreak-
ing framework that melds the spatial essence of real estate with the
structural attributes of houses. Their hybrid attention mechanism or-
chestrates a balanced blend between the Euclidean space of structural
features and the geographic tapestry, crafting them into a unified
predictive model. The inception of a house embedding vector carries
through the regression analysis domain, offering a fresh lens to cap-
ture spatial dependencies. This attention-infused approach heralds a
promising avenue where the convergence of spatial interpolation and
machine learning unravels a richer understanding of housing market
dynamics, further amplifying the potential of attention mechanisms
in elucidating the multifaceted nature of house price predictions. The
related work showcases a trajectory towards crafting more nuanced,
robust, and insightful real estate price prediction models. These models
progressively harness multi-source, geolocated data and sophisticated
machine learning techniques, notably attention mechanisms. This evo-
lution reflects a maturing field poised to address the intricate challenges
inherent to urban landscapes and real estate markets.

3. Methodology

Our proposed methodology aims to create robust house embeddings
by assessing the similarity between a specific house and its neigh-
bouring properties. This approach goes beyond merely considering
individual property attributes and geographical location. Instead, it
encapsulates each house’s local characteristics with its immediate sur-
roundings. Unlike traditional methods, we integrate the geographical
coordinates of the property to refine this embedding further, capturing
the essence of its surroundings and their relation to critical landmarks
or amenities.

Our approach is based on the Attention-Based Spatial Interpolation
(ASI) architecture proposed by Viana and Barbosa (2021). This archi-
tecture creates geographical and Euclidean similarities and emphasises
specific similar points using an attention mechanism. However, more
than a simple attention head may be required to capture differentiated
interrelations. For this reason, our model employs multi-head-gated
attention mechanisms to optimise the extraction of these features and
their interrelationships. Multi-Head Gated Attention allows the model
to capture multiple contexts, such as architectural styles, proximity
to amenities, and other relevant features. Concurrently, the gated at-
tention mechanism controls the flow of information to ensure that
only the most pertinent attributes are considered. This is particularly
useful when there is a significant variance between the target house
and its neighbours, allowing the model to focus on the most critical
similarities or differences. The Euclidean Multi-Head Gated Attention
layer, represented in Fig. 1(A), calculates attention weights for the
structural features of neighbouring houses based on their Euclidean
distance to 𝐴𝑖. Concurrently, the Geographical Multi-Head Gated At-
tention layer in Fig. 1(B) learns the spatial correlations between the
n-nearest geographical neighbours of house i. The output vectors from
both attention layers are concatenated with 𝐴𝑖 and 𝐺𝑖 and fed into a
fully connected neural network, culminating in a regression layer. This
architecture synthesises the influence of the neighbouring houses and
the target house’s attributes into a single vector, termed the ‘‘house
embedding’’ illustrated in Fig. 1.
4 
3.1. Background knowledge

To perform predictive analysis in real estate valuation, it is crucial
to have a solid foundation of knowledge. This field employs a variety of
methodologies and algorithms that are based on fundamental principles
and metrics. Understanding these concepts is essential for accurately
performing advanced analytical techniques. This subsection aims to
clarify some of these key concepts and metrics, providing a starting
point for a deeper exploration and comprehension of the subsequent
methodologies and evaluations.

3.1.1. Similarity calculation
In the intricate landscape of data science, similarity is a criti-

cal underpinning for various algorithms and methodologies. This sub-
subsection aims to illuminate the key metrics ubiquitously employed to
quantify similarity, laying the groundwork for the following analyses.

• Euclidean Distance: A foundational metric in geometry, Eu-
clidean distance provides a straightforward measure of similarity
by calculating the straight-line distance between two points in an
Euclidean space.

𝑑(𝑃1, 𝑃2) =
√

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (1)

• Cosine Similarity: This metric is invaluable in high-dimensional
spaces, measuring the cosine of the angle between two vectors.
It is especially pertinent in text analysis and natural language
processing.

Cosine Similarity = 𝐶 ⋅𝐷
‖𝐶‖ × ‖𝐷‖

(2)

• Jaccard Index: A set-based metric, the Jaccard Index is helpful
for categorical data, quantifying the ratio of the intersection to
the union of two sets.

𝐽 (𝐶,𝐷) =
|𝐶 ∩𝐷|

|𝐶 ∪𝐷|

(3)

• Identity Similarity: This is a binary similarity measure used to
ascertain whether or not two data points are identical. Unlike
continuous similarity measures, the Identity Similarity scores 1
if the data points are similar and 0 if they differ. This measure
is handy in scenarios requiring exact matching or where data is
categorical. Mathematically, it is expressed as:

𝑆(𝑥, 𝑦) =

{

1 if 𝑥 = 𝑦
0 if 𝑥 ≠ 𝑦

(4)

where:
𝑆(𝑥, 𝑦) is the similarity score between data points 𝑥 and 𝑦, and the
score is 1 if the data points 𝑥 and 𝑦 are identical, and 0 if they
are different.

• Gaussian Kernel: Also known as the Radial Basis Function (RBF)
with Gaussian form, this metric is a cornerstone in non-linear
data transformations. Unlike other metrics that measure distance
directly, the Gaussian Kernel calculates similarity by mapping the
original data points into a higher dimensional space through a
Gaussian function. This allows it to capture complex, non-linear
relationships between data points. Mathematically, it is expressed
as:

𝐾(𝑥, 𝑦) = exp
(

−
‖𝑥 − 𝑦‖2

2𝜎2

)

(5)

The parameter 𝜎 controls the spread of the Gaussian function,
thereby influencing the similarity measure. A smaller 𝜎 will result
in a narrower Gaussian function, making the similarity measure
more sensitive to the distance between data points.

These metrics serve as the backbone for various algorithms and offer
a nuanced understanding of how data points relate to each other in
complex spaces, with the Gaussian Kernel standing out for its ability to
capture non-linear relationships.
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Fig. 1. Architecture representation of the multi-head gated attention-based interpolation. (A) Represent the Euclidean interpolation block based on the multi-head gated Attention.
(B) Represent the geo-interpolation block based on the Multi-Head Gated attention.
3.1.2. Spatial interpolation
Spatial interpolation is a critical technique for predicting unknown

values at unobserved locations based on known values at observed
locations, finding applications in diverse fields such as geostatistics,
environmental science, and real estate. The effectiveness of spatial
interpolation is intrinsically tied to the choice of similarity measures.
For instance, Euclidean distance can be employed in a straightforward
approach like ‘‘inverse distance weighting’’ (IDW) (Shepard, 1968),
where the influence of a neighbouring point on the interpolated value
is inversely proportional to its Euclidean distance from the target
location. On the other hand, the Gaussian Kernel (You, Pang, Cao,
& Luo, 2017) offers a more nuanced approach by transforming the
Euclidean distance into a measure of similarity, thereby capturing
complex, non-linear spatial relationships. This is especially useful in ad-
vanced geostatistical methods like kriging (Matheron, 1969). Therefore,
the choice between straightforward measures like Euclidean distance
and more complex ones like the Gaussian Kernel can significantly
impact the quality of spatial interpolation, exemplifying the broader
applicability and importance of similarity measures in data science.

3.1.3. Attention mechanisms
Attention mechanisms (Vaswani et al., 2017) have emerged as a

cornerstone in many deep learning models, predominantly in sequence-
to-sequence tasks such as machine translation and speech recognition.
The essence of Attention is to emulate the human ability to focus
on specific segments of input data, much like how we selectively
concentrate on some aspects of a visual scene or a conversation. Among
the diverse attention mechanisms, Soft Attention is a mechanism that
computes a weighted sum of all input values. These weights, indicative
of the relevance of each input, are typically determined using a soft-
max function, ensuring a normalised distribution where the weights
sum up to one. The continuous nature of these weights makes soft
5 
Attention inherently differentiable, rendering it particularly amenable
to gradient-based optimisation techniques (Bahdanau, Cho, & Bengio,
2014). On the other hand, intricate Attention operates more selectively.
Instead of distributing focus across all inputs, it zeroes in on a specific
subset, effectively sidelining the others. Given its discrete selection
process, traditional backpropagation struggles with optimising intricate
Attention. Yet, this challenge is surmountable with techniques like
the reinforce algorithm (Mnih, Heess, & Graves, 2014). The Gated
Attention mechanism (Zhang et al., 2018) bridges the gap between
these two. It adeptly amalgamates information from diverse sources
and employs gating tools to ascertain the relevance of each source. This
approach can be perceived as a harmonious blend of the soft and hard
attention paradigms, encapsulating the strengths while mitigating their
limitations (Luong, Pham, & Manning, 2015).

3.2. Attention block

The Attention Block is the computational nucleus of our architec-
ture, designed to intricately capture the spatial relationships essential
for precise house price prediction. As delineated in Fig. 1, this block
comprises two main components: the Geo Multi-head Gated Attention
and the Euclidean Multi-head Gated Attention. Each of these compo-
nents consists of several key stages, contributing to generating their
respective geo- and Euclidean-gated attention vectors. Fig. 2 elucidates
the fundamental principles for calculating the Geo and Euclidean at-
tention mechanisms. In the initial stage, represented by Fig. 2(A), the
Distance Calculation Block computes the distance between the target
house and its neighbours. The nature of this distance is contingent
on the specific attention mechanism in play, be it Geo or Euclidean.
The Similarity Calculation Block, as depicted in Fig. 2(B), transforms
these distances into similarity scores. A Gaussian kernel function is
employed for Geo Attention, while alternative kernel functions may
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Fig. 2. Comprehensive overview of the Gated Multi-head Attention mechanism within the Attention Block. (A) depicts the initial computation of geodesic and Euclidean distances,
serving as the foundation for subsequent attention calculations. (B) illustrates the Similarity Function, which transforms these foundational distances into similarity scores. (C)
shows the core Multi-Head Gated Attention Block, where these similarity scores derive gated attention weights across multiple heads. (D) Highlights the Aggregated Attention Head,
consolidating the gated attention weights from all heads into a singular vector. (E) represents the aggregation of multiple gated attentions for each weighted sum. (F) Indicates
the Final Attention Vector.
be used for the Euclidean variant. The subsequent component is the
multi-head gated Attention, illustrated in Fig. 2(C). This block leverages
the similarity scores to derive attention weights, which are then gated
to modulate their influence. The entire process is executed across
multiple heads, capturing various facets of the spatial relationships
between the target house and its neighbours. Next, the aggregated
attention head, represented by Fig. 2(D), consolidates the outputs from
all attention heads into a single vector. This is achieved through a
weighted sum, where the weights are adaptively learned during train-
ing. If the architecture employs multiple attention mechanisms, such
as Geo and Euclidean, their aggregated attention heads are combined
further. Following this, Fig. 2(E) illustrates the Final Aggregation Block.
Aggregated normalised gating weights are computed using a softmax
function in this stage. After that, the weighted sums produced from
each attention head are multiplied by these normalised weights. This
aggregation is performed separately for the Geo and Euclidean at-
tention mechanisms, resulting in their aggregated attention vectors.
Finally, the vector produced from this aggregation process is the final
attention vector, as depicted in Fig. 2(F). In summary, the Attention
Block encapsulates the Multi-head Geo Gated Attention and the Eu-
clidean Multi-head Gated Attention, generating their respective Geo
and Euclidean Gated Attention Vectors.

3.2.1. Geo multi-head gated attention
The Geo Multi-head, Gated Attention mechanism, is designed to

capture the spatial relationships between a target house and its neigh-
bouring properties. This involves using a Gaussian kernel function to
calculate geographic similarity scores between the target house and its
neighbours.

Eq. (6) demonstrates how the geographic score between the target
house 𝐺𝑖 and its neighbouring house 𝐺𝑖,𝑗 is computed:

𝑠(𝐺𝑖, 𝐺𝑖,𝑗 ) = exp
(

−geo_dist(𝐺𝑖, 𝐺𝑖,𝑗 ) × 𝜌
)

(6)

The geodesic distance, geo_dist(𝐺𝑖, 𝐺𝑖,𝑗 ), represents the shortest path
over the Earth’s surface, measured along the surface curvature. This
distance can be calculated using the Haversine formula, which accounts
for the Earth’s spherical shape:

geo_dist(𝐺𝑖, 𝐺𝑖,𝑗 ) = 2𝑟 arcsin
⎛

⎜

⎜

⎝

√

sin2
(

𝛥𝜙
2

)

+ cos(𝜙1) cos(𝜙2) sin
2
(𝛥𝜆

2

)
⎞

⎟

⎟

⎠

(7)

Here, 𝑟 is the Earth’s radius (mean radius = 6371 km), 𝛥𝜙 = 𝜙2−𝜙1
is the difference in latitude between the two points in radians, and
𝛥𝜆 = 𝜆2 − 𝜆1 is the difference in longitude between the two points
in radians. 𝜙 and 𝜙 are the latitudes of the two points in radians,
1 2

6 
and 𝜆1 and 𝜆2 are the longitudes of the two points in radians. Here,
𝜌 = 𝜎2

2 is a scaling factor, where 𝜎 is a parameter controlling the
width of the Gaussian kernel. The geodesic distance, geo_dist(𝐺𝑖, 𝐺𝑖,𝑗 ),
as previously defined, represents the shortest path over the Earth’s
surface between the target house 𝐺𝑖 and its neighbouring house 𝐺𝑖,𝑗 .
The vector of similarity scores 𝐿 is formed by aggregating the similarity
scores 𝑠(𝐺𝑖, 𝐺𝑖,𝑗 ) for all neighbours 𝐺𝑖,𝑗 of the target house 𝐺𝑖. The
equation represents the aggregation :

𝐿 =
𝑛
∑

𝑗=1
𝑠(𝐺𝑖, 𝐺𝑖,𝑗 ) (8)

This vector 𝐿 is then transformed into a hidden representation 𝐻 ′

through a fully-connected layer, as described in Eq. (9):

𝐻 ′ = 𝑊 ′ ⋅ 𝐿 + 𝑏′ (9)

In this equation, 𝑊 ′ and 𝐵 are the learned weights and bias terms,
respectively. The attention weights 𝑎geo are computed using a softmax
layer, as formulated in Eq. (10):

𝑎geo(𝐺𝑖, 𝐺𝑖,𝑗 ) =
exp(𝐻 ′

𝑗 )
∑𝑛

𝑗′=1 exp(𝐻
′
𝑗′ )

(10)

Then, using our defined gated attention mechanism (Eq. (11)), we
apply it to the attention weights:

Gate(𝑥) = 𝜎(𝑊𝑔 ⋅ 𝑥 + 𝑏𝑔) (11)

Subsequently:

𝑎′geo(𝐺𝑖, 𝐺𝑖,𝑗 ) = Gate(𝑎geo(𝐺𝑖, 𝐺𝑖,𝑗 ))⊙ 𝑎geo(𝐺𝑖, 𝐺𝑖,𝑗 ) (12)

where:

• 𝑥 is the input value, in this case, the original attention weight
𝑎geo(𝐺𝑖, 𝐺𝑖,𝑗 ).

• 𝑊𝑔 represents the learned weight matrix associated with the gate.
• 𝑏𝑔 denotes the bias term.
• 𝜎 is the sigmoid function, ensuring the output value of the gate

lies in the [0,1] range.

With this, the Geo Gated Attention Vector 𝑣ggeo(𝐺𝑖) is computed as
a weighted sum of the features of the neighbouring houses using the
modified attention weights 𝑎′geo:

𝑣ggeo(𝐺𝑖) =
𝑛
∑

𝑗=1
𝑎′geo(𝐺𝑖, 𝐺𝑖,𝑗 )[𝐺𝑖,𝑗 ⊕𝐴𝑖,𝑗 ⊕ 𝛥𝑑𝑖,𝑗 ⊕ 𝑦𝑖,𝑗 ] (13)

In this equation, 𝛥𝑑𝑖,𝑗 represents the geographic distance between
house 𝑖 and its neighbour 𝑗. Similarly, 𝑦 signifies the price of the
𝑖,𝑗
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neighbour 𝑗, and ⊕ denotes the concatenation operation. The dimen-
ionality of 𝑣geo(𝐺𝑖) is derived from the summation of dimensions where
𝑖,𝑗 ∈ R2, 𝐴𝑖,𝑗 ∈ R𝑇 , 𝛥𝑑𝑖,𝑗 ∈ R1, and 𝑦𝑖,𝑗 ∈ R1. Consequently,

the vector 𝑣geo(𝐺𝑖) can be viewed as a weighted sum of vectors 𝐺𝑖,𝑗 ,
concatenated with 𝛥𝑑𝑖,𝑗 and 𝑦𝑖,𝑗 , and weighted using the normalised geo
gated attention coefficients which are determined during the training
process.

3.2.2. Euclidean multi-head gated attention
The Euclidean Multi-head Gated Attention mechanism is precisely

engineered to emphasise the most relevant structural similarities be-
tween a target house and its neighbouring properties. This mechanism
employs the Euclidean distance to compute the similarity scores be-
tween the target house and its neighbours. The Euclidean distance
between the target house 𝐴𝑖 and a neighbouring house 𝐴𝑖,𝑗 is computed
as shown in Eq. (14):

𝑑(𝐴𝑖, 𝐴𝑖,𝑗 ) =

√

√

√

√

√

𝑇
∑

𝑝=1
(𝑎𝑖,𝑝 − 𝑎𝑖,𝑗,𝑝)2 (14)

where 𝑑(𝐴𝑖, 𝐴𝑖,𝑗 ) is the Euclidean distance indicating similarity between
houses based on structural attributes, 𝐴𝑖 represents the structural fea-
tures of the target house 𝑖, 𝐴𝑖,𝑗 denotes the structural features of the 𝑗th
neighbouring house to 𝑖, 𝑎𝑖,𝑝 and 𝑎𝑖,𝑗,𝑝 are specific structural attributes
of houses 𝑖 and 𝑗, respectively, and 𝑇 is the total number of structural
attributes considered.

After computing the Euclidean distances, we construct a vector of
similarity scores 𝐿, which is then transformed into a hidden represen-
tation 𝐻 through a fully connected layer, as described in Eq. (15):

𝐻 = 𝑊 ⋅ 𝐿 + 𝑏 (15)

In Eq. (15), 𝑊 and 𝑏 are the learned weights and bias terms,
respectively. The attention weights 𝑎euc are computed using a softmax
layer, as formulated in Eq. (16):

𝑎euc(𝐴𝑖, 𝐴𝑖,𝑗 ) =
exp(𝐻𝑗 )

∑𝑛
𝑗′=1 exp(𝐻𝑗′ )

(16)

The essence of the gated attention mechanism is to refine the
attention weights by introducing an additional modulation step. This
modulating factor, or ‘‘gate’’, is typically represented as a value be-
tween 0 and 1 and is applied element-wise to the attention weights. The
purpose is to amplify or diminish the original attention values based on
the model’s learned parameters.

Given this, the gated attention can be defined as:

Gate(𝑥) = 𝜎(𝑊𝑔 ⋅ 𝑥 + 𝑏𝑔) (17)

where:

• 𝑥 is the input value, in this case, the original attention weight
𝑎euc(𝐴𝑖, 𝐴𝑖,𝑗 ).

• 𝑊𝑔 represents the learned weight matrix associated with the gate.
• 𝑏𝑔 denotes the bias term.
• 𝜎 is the sigmoid function, ensuring the output value of the gate

lies in the [0,1] range.

Subsequently, the gated attention mechanism can be formalised as:

𝑎′euc(𝐴𝑖, 𝐴𝑖,𝑗 ) = Gate(𝑎euc(𝐴𝑖, 𝐴𝑖,𝑗 ))⊙ 𝑎euc(𝐴𝑖, 𝐴𝑖,𝑗 ) (18)

Here, ⊙ denotes element-wise multiplication. Thus, the attention
weight is modulated by its gating value, allowing the model to allocate
attention more selectively to houses exhibiting the most congruent
features.
 i

7 
The Vector with Euclidean Gated Attention, denoted as 𝑣geuc(𝐴𝑖),
represents a cumulative weighted mix of attributes from the surround-
ing homes. This process uses the gated attention coefficients 𝑎′euc and
is illustrated in Eq. (19):

𝑣geuc(𝐴𝑖) =
𝑛
∑

𝑗=1
𝑎′euc(𝐴𝑖, 𝐴𝑖, 𝑗)⊙ [𝐴𝑖,𝑗 ⊕ 𝑦𝑖,𝑗 ] (19)

Within Eq. (19), 𝑦𝑖,𝑗 defines the price of the 𝑗th neighbouring home
f house 𝑖, while ⊕ denotes the concatenation action. The size of
euc(𝐴𝑖) stands at 𝑇 + 1 given that 𝐴𝑖,𝑗 resides in R𝑇 and 𝑦𝑖,𝑗 is part
f R1. The composition of 𝑣euc(𝐴𝑖) involves initially multiplying the

combined vector [𝐴𝑖,𝑗 ⊕ 𝑦𝑖,𝑗 ] for each 𝑗th neighbour of house 𝑖 by its
espective gated attention coefficient 𝑎′euc(𝐴𝑖, 𝐴𝑖,𝑗 ), producing an indi-
idual weighted vector for every 𝑗th neighbour. An overall summation
s then applied to these vectors for all 𝑛 adjacent homes to house 𝑖.
onsequently, the elements within 𝑣euc(𝐴𝑖) represent a comprehensive
eighted sum of the structural attributes and the valuations of the
earby homes of house 𝑖. The gated attention coefficients undergo
efinement during the learning phase.

.2.3. Final aggregation block
The final aggregation stage shown in Fig. 2E involves collecting

nd combining the attention vectors from each head of the attention
echanism and applying the gated attention based on the normalised

ates weights and biases. It is important to note that this process is
nique for each attention mechanism, namely Geo and Euclidean, and
t results in the formation of two separate aggregated attention vectors.

To ensure the effectiveness of the attention mechanism in both
eo and Euclidean interpolation, it is crucial to normalise the gating
eights and biases using a softmax function, as shown in Eq. (20). By
ormalising the gating weights and biases, they fall within the range of
to 1, which makes them more easily interpretable.

atenorm,𝑖 =
exp(Gate_weights𝑖 + Gate_bias𝑖)

∑𝑛
𝑗=1 exp(Gate_weights𝑗 + Gate_bias𝑗 )

(20)

After normalising the gating weights and biases, we perform
element-wise multiplication with each attention and then aggregate
them. The resulting vector that shows the aggregated gated geographic
attention, denoted as 𝑣agg_ggeo, is presented in Eq. (21).

𝑣agg_ggeo =
𝑛
∑

𝑖=1
gatenorm, geo,𝑖 ⊙ 𝑣ggeo,𝑖 (21)

where gatenorm, geo,𝑖 represents the softmax-normalised gating weights
and biases, and 𝑣geo,𝑖 refers to the attention vectors from the Geo
attention heads.

In a similar vein, the aggregated gated Euclidean attention vector
𝑣agg_geuc is represented by Eq. (22):

𝑣agg_geuc =
𝑛
∑

𝑖=1
gatenorm, euc,𝑖 ⊙ 𝑣geuc,𝑖 (22)

Here, gatenorm, euc,𝑖 signifies the softmax-normalised gating weights,
and 𝑣geuc,𝑖 portrays the gated attention vectors emergent from the
uclidean attention heads.

In conclusion, the consolidated Geo attention vector 𝑣agg_ggeo and
the Euclidean attention vector 𝑣agg_geuc are computed using an element-

ise multiplication between the softmax-normalised gating weights
nd their corresponding attention vectors as illustrated in Fig. 2F
erived from the Geo and Euclidean attention heads, respectively. This
pproach ensures an accurate integration of the significance associ-
ted with each feature and reflects the complex spatial relationships

nherent within the Geo and Euclidean contexts.
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3.3. House embeddings

Embeddings are a pivotal component in contemporary machine-
learning architectures, especially in scenarios that involve manipulating
high-dimensional or categorical variables. In the realm of real estate
price prediction, the utility of embeddings is accentuated for the en-
coding of categorical attributes such as neighbourhood classifications,
types of properties, and associated amenities into a continuous vector
space (Smith & Doe, 2021). These continuous embeddings can capture
intricate relationships between disparate categories, thereby augment-
ing the predictive efficacy of the machine learning model (Mikolov
et al., 2013; Pennington, Socher, & Manning, 2014). The transforma-
tion from a sparse, high-dimensional feature space to a dense, lower-
dimensional vector space has found applications across a multitude of
domains, ranging from natural language processing to recommendation
engines and graph-based machine learning algorithms (Cai, Zheng, &
Chang, 2017; Devlin et al., 2018; Koren, Bell, & Volinsky, 2009; Peters
et al., 2018). However, effectively utilising embeddings necessitates
meticulous tuning and validation to mitigate the risk of overfitting and
ensure robust generalisation on unseen data (Chiu & Korhonen, 2019).
In the present study, as delineated in Fig. 1, we introduce a novel
methodology for generating house embeddings. Initially, two distinct
Multi-Head Gated Attention mechanisms are employed: one geograph-
ically oriented (Geo Multi-Head Gated Attention) and another focused
on structural attributes (Euc Multi-Head Gated Attention). The Geo
Multi-Head, Gated Attention mechanism leverages the geographical
coordinates of proximate properties, while the Euc Multi-Head Gated
Attention mechanism utilises the structural attributes of neighbouring
properties. The vectors generated from these attention mechanisms
are concatenated with the original geographical (𝐺𝑖) and structural
(𝐴𝑖) attributes of the property. This concatenated vector is propa-
gated through a hidden neural layer to synthesise the final house
embeddings. This intricate methodology enables the model to assim-
ilate geographical and structural nuances, enhancing its predictive
capabilities.

3.4. Regression layer

For the empirical component of our study, we employed a diverse
set of regression algorithms, each optimised through rigorous cross-
validation techniques. The algorithms were selected based on their
suitability for our dataset’s specific characteristics and the computa-
tional resources at our disposal. Below is an exhaustive list of the
algorithms utilised:

• Linear Regression (LR): Utilised with default hyperparameters
as implemented in the scikit-learn library (Pedregosa et al., 2011).
This algorithm serves as a baseline model for our study.

• Random Forest (RF): An ensemble of decision trees, optimised
using grid search and k-fold cross-validation. Hyperparameters
such as the number of trees were varied, with tests conducted for
50, 100, 200, 700, and 1000 trees (Breiman, 2001).

• LightGBM (LGBM): A gradient boosting framework that uses
tree-based learning algorithms. Hyperparameters including the
number of trees (50, 100, 200), the number of leaves (3, 4, 5,
100, 300), and the learning rate (0.03, 0.05, 0.07, 0.1) were
fine-tuned (Ke et al., 2017).

• Extreme Gradient Boosting (XGB): An optimised distributed
gradient boosting library, fine-tuned through cross-validation.
Parameters such as minimum child weight, gamma, subsample,
column sample by the tree, learning rate, and maximum depth
were adjusted (Chen & Guestrin, 2016a).

• Categorical Boosting (CatBoost): An algorithm specifically de-
signed for handling categorical variables. The depth parame-
ter was optimised, with tests conducted for depths of 8 and
10 (Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018).
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• K-Nearest Neighbors (KNN): A distance-based algorithm, opti-
mised by adjusting the number of neighbours, with tests con-
ducted for 10 and 15 neighbours (Cover & Hart, 1967).

• Decision Tree (DT): A basic tree-based model, optimised by
adjusting the maximum depth parameter, with tests conducted for
a depth of 9 (Quinlan, 1986b).

• Support Vector Machines (SVM): A kernel-based algorithm
suitable for linear and non-linear problems. Parameters ‘C’ and
’gamma’ were fine-tuned using cross-validation (Cortes & Vapnik,
1995).

• Regression Layer (RL): This layer serves as the terminal compo-
nent of our attention-based neural network model, generating the
final housing price prediction based on the feature map (house
embeddings) obtained from preceding layers.

This empirical analysis aims to comprehensively evaluate the se-
lected algorithms, thereby elucidating the relative merits and demerits
in the context of housing price prediction.

4. Experimentation

This section presents the experimentation methodology adopted for
our house price prediction task, including the specifics of the dataset
preparation, model implementation, training, and evaluation process.

4.1. Dataset

In the experimental section, we utilised several datasets from differ-
ent cities across various parts of the world to showcase the effectiveness
of our model.

1. Italian (IT) Dataset: We obtained our dataset of Italian (IT)
properties from Immobiliare. It is a well-known real estate plat-
form in Italy. To collect the data, we designed a web scraper
that extracted information from eight different cities: Genoa,
Milan, Turin, Rome, Bologna, Florence, Naples, and Palermo. We
filtered the data to include only five types of properties, such as
apartments and penthouses, while excluding outliers like farms,
buildings, and properties under construction. This ensured that
the dataset was representative and coherent. We then conducted
a thorough cleaning process to eliminate outliers. This process
helped us eliminate data entry errors and rare property types,
resulting in a consistent dataset suitable for analysis. To enrich
the dataset, we added geographical data points. We included
precise longitude and latitude coordinates for each property
listing and leveraged OpenStreetMap to enhance each listing
with Points of Interest (POI) data. This provided more profound
insights into the property’s surroundings, which could be sig-
nificant in assessing its value. The final IT dataset comprises
30,918 property listings spread across eight significant cities
in Italy. Each listing includes 19 distinct features that capture
structural attributes, such as surface area, year of construction,
and geographical details.

2. Beijing (BJ) Dataset: This dataset consists of 28,550 real estate
transactions in Beijing and is sourced from the H4M study (Zhao,
Shi et al., 2022). It includes 25 features, which range from
structural attributes like surface area and year of construction
to geographical elements such as district location and Point Of
Interest (POI) information. The features are detailed in Table 1.

3. Kings County (KC) Dataset: Sourced from the GitHub5 In the
repository associated with the ‘‘Attention-Based Interpolation’’
paper, there is a dataset representing the Kings County, USA
housing market. This dataset comprises 21,650 house samples

5 https://github.com/darniton/ASI.

https://github.com/darniton/ASI
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Table 1
Summary of datasets.
Dataset Price range Number of samples Number of features

IT (Italian) (60 000 to 720 000) Euro 30,918 24
BJ (Beijing) (5500 to 170 000) Yuan 28,550 26
KC (Kings county) (75,000 to 7,700,000) Dollar 21,650 18
POA (Porto Alegre City) (70,000 to 1,168,324) Reais 15,368 7
characterised by 19 distinct features. These features encompass
structural and geographical attributes and are detailed in a
separate table, Table 1.
It is important to note that the prices in this dataset are provided
in a log-scaled format.

4. Porto Alegre City (POA) Dataset: Derived from the repository
provided by Vianna and Barbosa, this dataset focuses on Brazil’s
Porto Alegre City housing market. It includes 15,368 house
samples, each described by six features, similar to the KC dataset.
The features are outlined in Table 1.
It is essential to recognise that the prices in this dataset are
provided in a log-scaled format.

4.2. Model configuration

Our model was developed in a Python 3.7 environment, using
TensorFlow 2.5 as the backend for the Keras framework. The model
was executed on a system with an Intel Core i5-13700K CPU and an
NVIDIA GeForce RTX 3070 GPU. We used cross-validation and grid
search techniques for hyperparameter tuning to achieve optimal results
with regression algorithms such as XGBoost and RandomForest. For our
custom model, we fine-tuned the hyperparameters using a validation
subset of the data to obtain the best possible embedding representation
and predictive performance. The hyperparameters and their values are
summarised in Table 2, and we describe each hyperparameter and its
significance below.

• n-nearest: Specifies the number of nearest neighbours to con-
sider. The best values were 40 for IT, 60 for KC, 60 for POA, and
30 for BJ.

• sigma (𝜎): Controls the width of the Gaussian kernel. Optimal
values were 2 for IT, 2 for KC, 2 for POA, and 10 for BJ.

• nodes: Represents the number of nodes in the hidden layers. The
best values were 60 for IT, 60 for KC, 60 for POA, and 60 for BJ.

• Num_heads: Specifies the number of attention heads in the
model. Optimal values were 8 for IT, 8 for KC, 4 for POA, and
4 for BJ.

• Num_geo: Indicates the number of geographical features to con-
sider. The best values were 30 for IT, 30 for KC, 10 for POA, and
15 for BJ.

• Num_euc: Represents the number of Euclidean dimensions for
distance calculations. The best values were 25 for IT, 30 for KC,
15 for POA, and 15 for BJ.

• LR (Learning Rate): Controls the step size during optimisation.
Optimal values were 0.001 for IT, 0.008 for KC, 0.001 for POA,
and 0.001 for BJ.

• batch size: Specifies the number of samples per batch during
training. Optimal values were 32 for IT, 250 for KC, 32 for POA,
and 250 for BJ.

• act func (Activation Function): Either Rectified Linear Unit
(ReLU) or Exponential Linear Unit (ELU) was used. ELU was
optimal for all datasets.

• hidden act function (Hidden Layer Activation Function): The
activation function for the hidden layers was either ReLU, ELU,
regression, or linear. The linear function was optimal for all
datasets.

• similarity function: We used the Gaussian Kernel and Identity
function to compute similarities between data points. The Identity
function was optimal for IT and POA, while the Gaussian Kernel
was optimal for KC and BJ (see Table 2).
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4.2.1. Evaluation metrics
After training, the model was evaluated using standard regression

metrics such as Root Mean Squared Error (RMSE) and Mean Absolute
Error (MALE). These metrics serve specific purposes in assessing the
model’s performance:

• RMSE (Root Mean Squared Error): Provides a measure of the
model’s prediction error, penalising more significant errors more
severely than smaller ones. It is advantageous when significant
errors are undesirable in the prediction task.

• MALE (Mean Absolute Logarithmic Error): This metric ex-
presses the average magnitude of the relative errors between
predicted and actual values while disregarding their direction. It
is beneficial when dealing with exponential growth, or underes-
timation is more critical than overestimation.

These metrics collectively offer a comprehensive evaluation of the
model’s performance in predicting house prices, allowing for the as-
sessment of the model’s accuracy and its goodness of fit to the actual
data.

4.3. Results and interpretation

In our evaluation, we consider the average and best performance
metrics to comprehensively view each model’s capabilities. The average
performance metrics are derived from 10-fold cross-validation, indi-
cating how the model will likely perform on unseen data. It gives us
a more generalisable performance measure by mitigating the risk of
the model overfitting to a particular subset of the data. On the other
hand, the best performance metrics are extracted using grid search
techniques. These values demonstrate the optimal performance that
the model can potentially achieve under ideal hyperparameter settings.
Including both types of metrics allows for a balanced understanding of
the model’s robustness and potential for excellence. It helps identify the
most consistently high-performing models and those with the capacity
for superior performance under the right conditions.

4.3.1. Base models benchmark
Table 3 provides an exhaustive evaluation of multiple machine-

learning models In an exhaustive evaluation of machine learning mod-
els on real estate datasets from Italy (IT), King’s County (KC), Porto
Alegre City in Brazil (POA), and Beijing (BJ), the best performance
was consistently demonstrated by XGBoost (XGB). Specifically, XGB
recorded the best MALE values of 0.1350 in IT, 0.1160 in KC, 0.1613
in POA, and 0.0723 in BJ. Notably, the average performance for XGB
was stable and closely aligned with these best values, indicating high
reliability across diverse geographic datasets. CatBoost and LightGBM
also performed strongly, closely trailing XGB in each dataset. For
instance, CatBoost had the best MALE values of 0.1362 in IT, 0.1131
in KC, 0.1793 in POA, and 0.0782 in BJ. LightGBM posted the best
MALE deals of 0.1381 in IT, 0.1164 in KC, 0.172 in POA, and 0.0790
in BJ. The average performances of CatBoost and LightGBM were also
impressively stable and nearly matched their respective best values.
Conversely, Support Vector Machines (SVM) significantly underper-
formed, with its best MALE values being 0.4072 in IT, 0.1331 in KC,
0.2232 in POA, and a dismal 0.2234 in BJ. K-Nearest Neighbors (KNN),
a traditional algorithm, also lagged, particularly in the BJ dataset,
where it posted a best MALE of 0.1116. In summary, XGB takes the lead

across all datasets regarding best and average performance metrics,
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Table 2
The best hyperparameters that were chosen based on a grid search method to train our model on IT, KC, POA and BJ datasets.
HP values General values Datasets

IT KC POA BJ

N-nearest 5, 10, 15, 60 40 60 60 30
Num_geo 20, 25, 30, 35, 40, 45, 50, 55, 60 30 30 10 15
Num_euc 20, 25, 30, 35, 40, 45, 50, 55, 60 25 30 15 15
Num_heads 1,2,4,8,12,15 8 8 4 4
Sigma(𝜎) 2, 5, 10, 15, 20 2 2 2 10
Nodes 5, 10, 15, 60 60 60 60 60
LR [0.001–0.01] 0.001 0.008 0.001 0.001
Batch size 250, 300, 400, 500 32 250 32 250
Act func Relu and ELU ELU ELU ELU ELU
Hidden act func Relu, ELU, regression and linear Linear Linear Linear Linear
Similarity function Identity and Gaussian kernel Identity Gaussian kernel Identity Gaussian kernel
Table 3
Benchmark the datasets on state-of-the-art machine learning models. The average value is referred to k-fold cross-validation with k = 10.

Model IT KC POA BJ

MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

LR 0.385 0.388 76 224 76 241 0.1924 0.1925 205 460 209 330 0.2610 0.2611 152 861 153 775 0.2394 0.2396 20 551 20 558
KNN 0.247 0.248 84 637 85 163 0.1501 0.1513 174 046 175 628 0.2065 0.2078 122 521 123 113 0.1116 0.1121 12 093 12 149
DT 0.197 0.205 69 085 70 423 0.1583 0.1608 158 937 178 296 0.2163 0.2195 127 382 128 915 0.0936 0.0954 10 155 10 409
RF 0.1502 0.1508 51 774 52 147 0.1245 0.1251 133 933 136 993 0.1716 0.1731 105 183 105 975 0.0784 0.0794 8369 8475
SVM 0.4072 0.4074 128 634 128 781 0.1331 0.1336 149 265 152 675 0.2232 0.2246 126 911 128 191 0.2234 0.2237 20 652 20 668
LGBM 0.1381 0.1384 46 183 46 492 0.1164 0.1175 122 116 126 076 0.172 0.177 104 928 106 705 0.0790 0.0796 8070 8152
CatBoost 0.1362 0.1368 45942 46233 0.1131 0.1141 120 351 123077 0.1793 0.1775 105 984 106 593 0.0782 0.0785 7995 8066
XGB 0.1350 0.1358 46 008 46 396 0.1160 0.1167 119479 124 459 0.1613 0.1634 100212 101614 0.0723 0.0744 7713 7836
closely followed by CatBoost and LightGBM, which also show highly
stable average performances. Conversely, SVM and traditional models
like KNN are less effective, particularly in complex, geographically
diverse datasets.

4.3.2. Experimental results for our model
Throughout our study, we conducted tests to compare our model

with other models such as ASI, ANN, ASI + Multi-Head, and ASI + Gat-
ing. The dataset was divided into three subsets: 70% for training, 20%
for testing, and 10% for validation. The performance metrics of our
model, ASI, ANN, ASI + Multi-Head, and ASI + Gating, were compared
across four different datasets from Italy (IT), King’s County (KC), Porto
Alegre (POA), and Beijing (BJ) and are shown in Table 4. Our model
outperformed the ASI model in the IT dataset with a lower MALE of
approximately 1.52% and a lower RMSE of 0.36% (0.1312 and 45,797,
respectively). In the KC dataset, our model showed a remarkable 13.3%
improvement in RMSE compared to the ASI model, translating to a
lower RMSE of approximately 107,993 compared to ASI’s 124,557.
Our model also performed better than the ASI model in the POA and
BJ datasets, achieving lower MALE and RMSE values. These results
demonstrate the versatility and accuracy of our model across differ-
ent datasets and locations. Our model incorporates Multi-Head Gated
Attention mechanisms, allowing it to interpret various spatial cues and
enhance predictive accuracy. The Gated Attention mechanism stood out
in the MALE metric, consistently outperforming other models. Simi-
larly, the Multi-Head Attention mechanism significantly reduced RMSE,
effectively handling complex spatial relationships and minimising error
rates. Additionally, compared to the ASI + Multi-Head and ASI +
Gating models, our model consistently showed improvement in the IT,
KC, POA, and BJ datasets. The advanced Multi-Head Gated Attention
architecture was crucial in improving overall predictive accuracy across
all metrics and datasets. In conclusion, our model displayed superior
performance compared to the ASI, ANN, ASI + Multi-Head, and ASI +
Gating models. Incorporating the advanced Multi-Head Gated Attention
mechanism proved to be a critical factor in enhancing overall predictive
accuracy.
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4.3.3. Experimental results for embeddings generated by our model and ASI
model in comparison to raw data

The benchmarking results presented in Table 5 provide a compre-
hensive assessment of different machine learning models using various
data sources, including raw data, ASI embeddings, and the proposed
Multi-Head Gated Attention Spatial Interpolator model ‘‘Ours’’. The
analysis focuses on two main error metrics: Mean Absolute Logarithmic
Error (MALE) and Root Mean Square Error (RMSE) across four regions
(IT, KC, POA, BJ). When utilising raw data, XGBoost (XGB) consistently
outperforms other models across all regions. For example, in the IT
region, XGB achieves the lowest MALE of 0.1350 and an RMSE of
46,008, highlighting its strong performance with unprocessed data.
Similarly, in the KC region, XGB records a MALE of 0.1160 and an
RMSE of 119,479, again outperforming other raw data models. The
introduction of ASI embeddings generally enhances the performance
of the models, especially those based on gradient-boosting techniques.
However, models using ASI embeddings still do not surpass the perfor-
mance of XGBoost on raw data, suggesting that raw data coupled with
powerful models like XGBoost can still capture significant predictive in-
sights. The proposed ‘‘Ours’’ model demonstrates significant superiority
over raw data and ASI embeddings across most models and regions.
In the KC region, Logistic Regression (LR) with ‘‘Ours’’ embeddings
achieves a MALE of 0.1103 and an RMSE of 106,954, outperforming
both the raw data and ASI embeddings. Similarly, CatBoost with ‘‘Ours’’
embeddings in the IT region records a MALE of 0.1320 and an RMSE
of 45,708, better than raw and ASI embeddings. Moreover, the ‘‘Ours’’
model consistently delivers superior results in the POA and BJ regions.
For instance, in the POA region, XGBoost with ‘‘Ours’’ embeddings
achieves a MALE of 0.1392 and an RMSE of 92,677, indicative of robust
performance across different data representations.

4.3.4. Experimental results for our model house embeddings using cross-
validation

In our experiment, we wanted to see how custom house embed-
dings generated by our Multi-Head Gated Attention model would affect
the performance of various baseline machine learning models. These
embeddings were created based on structural and geographical in-
formation and enhanced the feature space for algorithms like Linear
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Table 4
Performance evaluation of our model against the ASI model, ANN, Multi-head only, and Gating attention only models.
Model IT KC POA BJ

MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓

ANN 0.197 67 835 0.2231 127 900 0.2212 125 961 0.239 19 565
ASI 0.133 46 473 0.112 124 557 0.139 93 818 0.075 7934
ASI + Multi-Head 0.135 46 347 0.113 109 302 0.138 92 073 0.75 7900
ASI + Gating 0.132 46 835 0.111 112 839 0.140 93 001 0.075 8002
Ours 0.1312 45797 0.110 107993 0.136 92020 0.073 7797
Table 5
Benchmarking the embeddings of different models and the raw data on state-of-the-art machine learning models..

Data source Method IT KC POA BJ

MALE RMSE MALE RMSE MALE RMSE MALE RMSE

Raw

LR 0.385 76 224 0.1924 205 460 0.2610 152 861 0.2394 20 551
SVM 0.4072 128 634 0.1331 149 265 0.2232 126 911 0.2234 20 652
LGBM 0.1381 46 183 0.1164 122 116 0.172 104 928 0.0790 8070
CatBoost 0.1362 45 942• 0.1131 120 351 0.1793 105 984 0.0782 7995
XGB 0.1350• 46 008 0.1160• 119 479• 0.1613• 100 212• 0.0723• 7713•

ASI

LR 0.1543 49 081 0.1142 109 117 0.1455 94 081 0.0877 8488
SVM 0.1497 49 431 0.1163 141 977 0.1441 95 399 0.1441 95 399
LGBM 0.1410 47 882 0.1215 133 608 0.1502 97 131 0.0798 8123
CatBoost 0.1384• 47088• 0.1171 132 122 0.1425• 93562• 0.0774 8032
XGB 0.1417 47 932 0.1203 129 802 0.1483 94 407 0.0755 7967

Ours

LR 0.1317 45 837 0.1103• 106954• 0.1369 91 725 0.0732• 7779•
SVM 0.1743 58 977 0.1103• 107 389 0.1357• 91719• 0.0778 8332
LGBM 0.1324 45 885 0.1138 111 551 0.1384 92 383 0.0742 7835
CatBoost 0.1320• 45708• 0.1130 110 481 0.1367 91 784 0.0735 7806
XGB 0.1324 45 961 0.1147 108 644 0.1392 92 677 0.0739 7822
Table 6
Benchmark the datasets on state-of-the-art machine learning models on the generated embeddings from our model. The average value is referred to k-fold cross-validation with k
= 10.

Model IT KC POA BJ

MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

LR 0.1317 0.1318 45 837 45 868 0.1103 0.1104 106954 107133 0.1369 0.1372 91 725 91 848 0.0732 0.0733 7779 7786
KNN 0.1352 0.1354 46 648 46 761 0.1208 0.1211 123 235 125 010 0.1398 0.1402 92 032 92 369 0.0767 0.0770 7980 8015
DT 0.1347 0.135 46 007 46 160 0.1353 0.1412 142 731 154 575 0.1501 0.1512 97 704 98 387 0.0752 0.0756 7853 7879
RF 0.1323 0.1325 45 921 45 995 0.1146 0.1151 112 588 115 852 0.1388 0.1396 92 623 93 243 0.0741 0.0742 7843 7864
SVM 0.1743 0.1745 58 977 59 188 0.1103 0.1103 107 389 108 700 0.1357 0.1359 91719 91796 0.0778 0.0779 8332 8344
LGBM 0.1324 0.1327 45 885 45 930 0.1138 0.1141 111 551 112 994 0.1384 0.1387 92 383 92 617 0.0742 0.0744 7835 7854
CatBoost 0.1320 0.1321 45708 45752 0.1130 0.1136 110 481 113 174 0.1367 0.1373 91 784 91 976 0.0735 0.0737 7806 7814
XGB 0.1324 0.1325 45 961 46 021 0.1147 0.1152 108 644 112 332 0.1392 0.1397 92 677 93 003 0.0739 0.0740 7822 7834
Regression, KNN, Decision Tree, Random Forest, SVM, LightGBM, Cat-
Boost, and XGBoost. We evaluated the models’ performance using four
different geographical datasets: Italy (IT), King’s County (KC), Porto
Alegre (POA), and Beijing (BJ), and assessed the Best and Average
MALE and RMSE scores.

Our results showed that our custom embeddings significantly posi-
tively impacted the predictive performance of the baseline models. For
example, when the CatBoost model was augmented with our custom
embeddings, it achieved the lowest RMSE score in the IT dataset at
45,708, outperforming even our original Multi-Head Gated Attention
model. However, we found that the improvement magnitude was in-
consistent across all datasets. The IT dataset, which combines data from
various cities with significant geographical and Euclidean distances
between them, showed only a modest enhancement of around 1.3% in
RMSE when deploying CatBoost with custom embeddings compared to
the baseline.

4.4. Discussion

We discovered that the unique spatial complexities inherent in
each dataset could impact the effectiveness of the custom embeddings.
For instance, in the KC dataset, CatBoost with custom embeddings

demonstrated significant gains over its baseline, whereas, in IT, the
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improvements were more restrained. We also found that even simpler
models like Linear Regression could benefit substantially from the
enriched feature space the embeddings provide. In the IT dataset,
the best MALE improved by approximately 65.8%, the average MALE
improved by approximately 66.0%, the best RMSE improved by ap-
proximately 39.8%, and the average RMSE improved by approximately
39.8%. In the CatBoost model for the IT dataset, the best MALE
improved by approximately 2.4%, and the average MALE improved
by approximately 2.9%. The best RMSE improved by approximately
0.5%, and the average RMSE improved by approximately 1.0%. This
indicates a positive trend in reducing MALE and RMSE values, which
is crucial for achieving better model performance in predictive tasks
like house price prediction. In the KC dataset, the implementation of
custom embeddings reflected varying degrees of improvement across
different machine-learning models. The CatBoost model illustrated an
enhancement in the best MALE value by approximately 5%, although
the average MALE value experienced a minor deterioration by approxi-
mately 0.44%. On the brighter side, a more noticeable improvement
was observed in the RMSE values, where the best RMSE value im-
proved by approximately 8.20%, and the average RMSE value improved
by approximately 8.04%. The POA dataset manifested a significant
leap in performance metrics upon integrating custom embeddings.
Specifically, the CatBoost model, when augmented with custom embed-

dings, demonstrated a robust improvement in both MALE and RMSE
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values. The best MALE value improved by an impressive margin of
approximately 23.77%, while the average MALE value improved by
approximately 22.66%. Concurrently, the RMSE metrics also exhibited
substantial enhancements, with the best RMSE value improving by
approximately 13.40%, and the average RMSE value improving by
approximately 13.45%. In the BJ dataset, we observed that models
trained on embeddings generally perform better on average values,
reflecting a more consistent performance across varying data points.
However, the best values achieved in MALE and RMSE metrics were
slightly better when models were trained on original data. This suggests
that while embeddings generally enhance model performance, there
might be specific instances or datasets where traditional feature sets
could yield better or comparable results.

Building upon our previous results in Tables 3, 4 and 6 our model,
based on Multi-Head Gated Attention, consistently outperforms the
baseline models across multiple datasets. This superiority is particularly
noteworthy as the model excels in spatial interpolation tasks and
enhances the performance of other state-of-the-art machine learning
models when its embeddings are used. One of the key advantages of
our model over the attention-based interpolation model is the ability to
capture multiple contexts from each head and control the flow of the
information so that it will consider the most similar neighbours through
the use of Multi-Head Gated Attention.

4.4.1. Abelation study
In this research, an ablation study was conducted to rigorously

evaluate the impact of different model configurations on predictive per-
formance across several diverse datasets: IT (data from 8 cities in Italy),
KC (King County, USA), POA (Porto Alegre, Brazil), and BJ (Beijing,
China). The study compares the effectiveness of using roftend attention
embeddings (approximated by the ASI), and multi-head gated attention
(MHGA) embeddings (as represented by the ‘‘Ours’’). Additionally, the
study explores the individual contributions of Multi-Head and Gating
Attention mechanisms when applied separately and their combined
effect in the MHGA model. Raw Data vs. Single-Head Attention Embed-
dings Raw data represents unprocessed features, which often include
noise and irrelevant information in real-world datasets. This baseline
performance highlights the inherent difficulties in making predictions
without any feature refinement or focusing on relevant aspects of the
data. For instance, the MALE values observed with raw data, such as
0.1350 in the IT dataset and 0.1613 in the POA dataset, reflect the
challenges of handling diverse urban data from multiple cities with
varying characteristics. The high RMSE values further underscore the
inefficiencies of relying on raw data, which often contains a complex
mix of noise and patterns that are difficult for models to disentangle.
The comparison between raw data and single-head attention embed-
dings reveals the critical importance of basic feature engineering and
selective focus mechanisms in machine learning. Single-head attention,
as implemented in the ASI model, enables the model to concentrate
on specific aspects of the data, resulting in moderate improvements in
predictive accuracy. However, the MALE values for the ASI model, such
as 0.1384 in IT and 0.1425 in POA, indicate that while single-head
attention can capture certain relationships within the data, it cannot
fully model the complexities present in datasets representing multiple
cities. This limitation highlights the challenges of single-perspective
approaches in urban analytics, where multi-dimensional data is the
norm. Including Multi-Head or Gating Attention mechanisms within the
ASI model leads to significant performance improvements, as evidenced
in Table 4. For example, the Multi-Head mechanism enhances the
model’s ability to capture complex patterns, improving MALE and
RMSE values in the KC dataset. Similarly, the Gating mechanism im-
proves the model’s focus on relevant information, as demonstrated
in the IT dataset. Combining both mechanisms in the MHGA model
yields the most substantial performance gains across all datasets. The
Multi-Head mechanism enables the model to consider multiple facets

of the data simultaneously, which benefits datasets with diverse and
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complex patterns. On the other hand, the Gating mechanism improves
model performance by selectively filtering the most informative fea-
tures. Combining both mechanisms in the MHGA model results in
superior performance across all datasets, highlighting the synergistic
effect of multiple attention heads with a gating mechanism. Introduc-
ing the Multi-Head Gated Attention (MHGA) mechanism significantly
improves the model’s capacity to understand and predict complex
patterns within the data. By combining multiple attention heads with
a gating mechanism, MHGA produces more refined and informative
embeddings, outperforming other model configurations across various
datasets. The comparison between single-head and multi-head gated
attention embeddings demonstrates the effectiveness of advanced at-
tention mechanisms in predictive modelling, particularly in datasets
with diverse urban environments. The MHGA embeddings consistently
deliver the best performance across all tested datasets, showcasing
their robustness and generalisability. The ablation study confirms that
Multi-Head Gated Attention embeddings provide the best performance
compared to other configurations, emphasising their effectiveness in
capturing the complex, multi-dimensional relationships inherent in
urban environments. These findings suggest that advanced attention
mechanisms like MHGA are essential for achieving high accuracy and
robustness in predictive modelling of complex, heterogeneous datasets,
with significant implications for urban development, policy-making,
and decision-making contexts.

4.4.2. Comparison of predictive performance: XGBoost model on raw data
vs. our model across datasets

The violin plots in Fig. 3 provide a detailed comparison of the actual
house price predictions from the XGBoost model trained on raw data,
and forecasts from our Multihead Gated Attention Spatial Interpolation
(MGASI) model across four distinct datasets: IT, BJ, KC, and POA. Each
subplot, labelled (A) through (D), represents the performance on a
specific dataset, enabling a clear and comprehensive evaluation of the
model’s predictive accuracy and ability to capture the variability in the
data.

In the IT dataset Fig. 3A, which includes data from 8 cities, shows
a mean of 266,067.63 and a median of 239,000.00, with a standard
deviation of 150,185.41, indicating moderate variability. The XGBoost
model trained on raw data closely aligns with these values, achieving a
mean of 266,485.18 and a median of 242,684.66. However, the slightly
reduced standard deviation of 141,220.41 suggests that the XGBoost
model does not fully capture the variability in the data. In contrast,
our model achieves a mean of 265,289.10 and a median of 239,667.55,
with a standard deviation of 143,203.24, closer to the actual data’s
spread. This suggests that while both models perform well, our model
better captures the inherent variability, making it more robust for
predictive tasks.

In the BJ dataset Fig. 3B, the actual data presents a mean of
66,282.44 and a median of 61,920.50, with a standard deviation of
26,026.37. The XGBoost model’s predictions show a mean of 66,110.85
and a median of 63,005.94, with a slightly lower standard deviation of
24,322.90, indicating a slight limitation in capturing the true variability
of the data. However, our model matches the mean (66,396.96) and
median (62,985.21) and maintains a higher standard deviation of
24,634.84, demonstrating a better representation of the data’s distribu-
tion. Although the XGBoost model shows strong performance in certain
parts of the dataset, particularly in central tendency, our model’s
overall performance across the entire dataset, especially in capturing
variability, is superior. The KC dataset Fig. 3C exhibits significant
variability, with a high standard deviation of 369,439.92. The XGBoost
model, with a mean of 537,451.61 and a median of 456,826.44, shows
a lower standard deviation (344,344.83), suggesting that it under-
estimates the variability present in the actual data. In contrast, our
model aligns closely with the actual data’s mean (542,832.32) and
median (454,579.30), achieving a standard deviation 356,626.95. This

indicates that while the XGBoost model may perform slightly better
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Fig. 3. Violin plots comparing the distribution of actual values, predictions from the XGBoost model trained on raw data, and predictions from our Multihead Gated Attention
Spatial Interpolation (MGASI) model across four datasets: (A) IT, (B) BJ, (C) KC, and (D) POA. Each plot visualises each dataset’s central tendency (mean and median) and
variability (standard deviation), with distinct markers to differentiate between models. A diamond, the median by a square, and the standard deviation by error bars with circles
at the ends represent the mean. The letters in the top-left corners correspond to the sections in the discussion where a detailed analysis of each dataset is provided.
in specific areas, particularly in central tendency, our model more
effectively captures the data’s overall spread, making it a better choice
for comprehensive predictive modelling. Finally, in the POA dataset
Fig. 3D, characterised by moderate variability and unique feature inter-
actions, shows a mean of 442,377.86 and a median of 397,346.50, with
a substantial standard deviation of 226,075.18. The XGBoost model,
with a mean of 434,289.39 and a median of 383,942.19, shows a
reduced standard deviation of 200,204.55, suggesting an oversimpli-
fication of the data’s distribution. Our model, however, achieves a
mean of 436,788.16, a median of 393,850.25, and a standard deviation
of 203,397.77, which is closer to the actual data’s variability. This
underscores the effectiveness of our model in capturing the complex
patterns in the data, aided by the attention mechanisms’ ability to
handle intricate dependencies. In summary, while the XGBoost model
demonstrates more robust performance in specific parts of the datasets,
particularly in central tendency metrics, our model consistently shows
better average performance across all datasets. Our model’s superior
ability to capture both the central tendencies and the inherent vari-
ability of the actual data demonstrates its robustness and reliability in
predictive tasks. The enhanced performance of our model is a direct
result of the multi-head gated attention mechanism, which improves
its ability to capture complex, multidimensional patterns in the data,
making it an essential tool for high-precision predictive modelling.

4.4.3. Spatial and structural analysis
The present study introduces a Multi-Head Gated Attention model

that exhibits superior performance compared to baseline models when
applied to various datasets, including IT and POA. This model utilises
distinct weights and biases within each attention head to capture
various contextual relationships within the data, showcasing its excep-
tional capabilities in spatial interpolation tasks. This approach provides
a more comprehensive understanding of the underlying spatial dy-
namics. Our model’s multi-head gated attention mechanism exceeds
traditional singular attention approaches by integrating various spatial
and structural features from the data. This integration is essential as
it moderates the influence of outliers, which is expected in a vast and
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diverse metropolis like Beijing, where extreme data points can skew
the analysis. By employing this sophisticated mechanism, the model
ensures the delivery of accurate and nuanced house price predictions
that genuinely reflect the complex intricacies of Beijing’s housing mar-
ket, setting a new benchmark for robustness and reliability. The box
plots in Fig. 4(a,b) effectively illustrate each dataset’s spatial and struc-
tural features. Specifically, Fig. 4(b) reveals that Kings County (KC)
has a compact urban form, indicated by a median geodesic distance
of just under 0.65 km, which is also supported by a low median
normalised Euclidean distance shown in Fig. 4(a), highlighting high
structural homogeneity among houses. In contrast, Beijing (BJ) portrays
a more dispersed housing structure with a median geodesic distance
of approximately 0.45 km, as indicated in Fig. 4(b), and a median
normalised Euclidean distance of roughly 0.150, as shown in Fig. 4(a).
These distances indicate a significant variation in structural features,
suggesting a housing landscape that includes densely packed urban
areas and more spread-out suburban or peri-urban zones. The Italian
(IT) region demonstrates a median geodesic distance of around 0.50
km, reflecting less uniformity and greater architectural diversity, as
further evidenced by a median normalised Euclidean distance of around
0.110. Moving to Porto Alegre (POA), the dataset displays a distinctive
spatial composition, with a median geodesic distance that suggests
moderately dense housing and a median normalised Euclidean distance
of approximately 0.100. This places POA in a unique position between
the densely packed environment of KC and the varied spatial arrange-
ments of BJ and IT. The moderate variation in POA’s housing structures
signifies an urban design that merges densely built areas with open
suburban spaces, reflecting its rich historical development and cultural
diversity. Employing the multi-head gated attention mechanism for the
POA dataset allows for an in-depth exploration of the city’s complex
architectural styles and spatial dynamics. When juxtaposed with the
consistent architecture of KC and the diverse spatial distributions of BJ
and IT, our model’s multifaceted approach yields a deep understanding
of the nuances within POA’s urban clusters and the distinctive nature of
its rural homes. As a result, our model stands out as a sophisticated and
precise analytical tool, uniquely equipped to navigate and predict the
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Fig. 4. Analysis of Geodesic and Euclidean Distances Among the 60 Nearest Houses Across Datasets a Highlights the variation in quantiles of the average geodesic distance (in
km) for the 60 nearest houses across the four datasets, reflecting the spatial proximity of residences. b Represents the distribution in quantiles of the average normalised Euclidean
distance for the 60 nearest houses, taking into account the structural features of the houses. Min–max normalisation was employed to standardise the distance values due to the
diverse attributes of the houses in each dataset.
intricate dynamics of the housing market with extraordinary accuracy
and insight.

The improvements highlighted in Table 4 emphasises the progress
made by our model compared to the ASI model. Our model achieved
improvements of 1.35% and 1.46% in MALE and RMSE, respectively,
for the IT dataset, 1.79% and 13.34% for the KC dataset, 2.16% and
1.92% for the POA dataset, and 2.67% and 1.73% for the BJ dataset.
These results demonstrate the superiority of our model across different
datasets and spatial configurations. The multi-head gated attention
mechanism played a significant role in achieving these improvements.
It captures diverse contextual relationships within the data by lever-
aging weights and biases in each head, especially when dealing with
regions with a more varied architectural landscape and pronounced
geographical diversity. The improvements in the KC dataset are signif-
icant, as it has a high degree of architectural uniformity. However, the
model could still capture minute differences and nuances, leading to a
13.34% improvement in RMSE. For the BJ dataset, which has a more
dispersed housing layout and a vast spatial range, the model achieved
a 2.67% improvement in MALE and a 1.73% improvement in RMSE,
highlighting the model’s ability to accurately capture the essence of
each area despite the considerable differences in spatial dynamics and
architectural styles. The advances in the IT dataset were also notewor-
thy, with the model achieving a 1.35% improvement in MALE and a
1.46% improvement in RMSE despite the unique spatial layout of the
region compared to KC. These results demonstrate the robustness and
reliability of our model in providing accurate predictions against the
ASI model across diverse datasets and spatial configurations.

4.4.4. Embeddings performance
In Table 6, we present a comparative analysis of our model em-

beddings against the benchmarks outlined in Table 3. Additionally, the
results from the regression layer of our model are presented in Table
Table 4. The results underline the substantial advancements made
by our model and the generated embeddings. Rigorous evaluations
across various validation sets demonstrate the superior performance
of our model in handling complex spatial datasets. Furthermore, the
efficiency of the generated embeddings emphasises our model’s role in
reducing data complexity so that simple models like linear regression
can outperform ensembling models.

In the IT dataset, our model achieved a Mean Absolute Logarithmic
Error (MALE) of 0.1312 and a Root Mean Square Error (RMSE) of
45,797. These results represent a 2.89% improvement in MALE and a
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0.46% improvement in RMSE over the best baseline model, XGBoost,
which recorded a MALE of 0.1350 and an RMSE of 46,008.

Furthermore, the embeddings in our model outperformed the re-
gression layer of our model and the base benchmarking in terms of
RMSE, with the Catboosting model achieving the best result of 45,708.
This indicates a slight improvement over our model’s performance.

These results can be attributed to the challenging nature of pre-
dicting housing prices accurately in this dataset, where various factors
come into play. Our model’s success suggests that its embeddings effec-
tively capture the price variations associated with the diverse housing
landscape, as evident from the wide distribution of Euclidean distances
in Fig. 4(a). This distribution reflects the influence of different cities
in one dataset, especially Italian towns, which exhibit various housing
structures from the south to the north of Italy.

Transitioning to the KC dataset, our model displayed a MALE of
0.110 and an RMSE of 107 993. This corresponds to a percentage
improvement of 2.81% and 10.27% in MALE and RMSE, respectively,
compared to the best baseline model, CatBoost. CatBoost had a MALE
of 0.1131 and an RMSE of 120 351. However, the embeddings seem to
mark the best results over our model, and the base benchmarking with
0.1103 MALE value and 106 954 RMSE scored in the linear regression
model shows an improvement in comparison to our model in both
metrics, further emphasising the power of our generated embeddings.

Furthermore, the significant improvement observed in the Kings
County (KC) dataset demonstrates our model’s enhanced capability in
dense housing and architectural uniformity regions. Our model boosts
the prediction accuracy for the most relevant houses and creates diverse
contextual frameworks that underscore the interrelationships between
houses, even in areas of uniformity. Additionally, creating embed-
dings encapsulating these relationships further improves the model’s
performance.

Our model exhibits exceptional performance on the Porto Alegre
(POA) dataset, achieving the lowest Mean Absolute Logarithmic Error
(MALE) at 0.136 and Root Mean Square Error (RMSE) at 92,020. This
performance surpasses the XGBoost baseline’s MALE of 0.1613 and
RMSE of 100,212, indicating a 15.67% improvement in MALE and
an 8.17% improvement in RMSE. The model’s superior embeddings
are instrumental in this achievement, effectively streamlining intricate
urban data for linear regression without losing essential details, as
indicated in Tables 6 and Table 4. Fig. 4(a,b) potentially reveal the
spatial complexity of POA, with its moderately dense urban fabric inter-
twined with suburban and rural patches. Despite this diversity posing
challenges for predictive models, our embeddings adeptly encode these
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complexities, effectively representing the multifaceted housing styles
and values within POA. Our model’s predictive precision stems from its
algorithmic sophistication and nuanced understanding of the region’s
unique urban tapestry.

Lastly, base benchmarking for the Beijing (BJ) dataset performs
better than our model’s regression layer. However, our embeddings
demonstrate better results, suggesting they are more generalised than
the base benchmarking outcomes. The embeddings score the best MALE
of 0.072 and the best RMSE of 7713, compared to 0.073 and 0.0732
MALE and 7797 and 7779 RMSE with our model and linear regression
model using our embeddings, respectively. Our embeddings’ average
values from cross-validation are 0.0733 MALE and 7786 RMSE, while
the base benchmarking average values are 0.074 MALE and 7836
RMSE, showing a close similarity to the embeddings.

Examining the housing market in Beijing presents several chal-
lenges, including managing diverse and often extreme data points
typical of a large metropolis. The median distance to the nearest 60
homes in Beijing, as depicted in Fig. 4(b), is approximately 0.45 km,
highlighting an extensive and varied housing layout. The city’s diverse
architectural styles add another layer of complexity to the dataset. Our
model, equipped with a Multi-Head Gated Attention mechanism, is
adept at handling these challenges. This mechanism effectively regu-
lates the influence of outliers, ensuring a nuanced and accurate rep-
resentation of Beijing’s housing landscape. The embeddings generated
by our model are particularly noteworthy for their ability to generalise
across Beijing’s diverse housing market. While the base benchmarking
results provide valuable insights, our model’s embeddings capture a
broader range of intricacies, ensuring they are statistically sound and
meaningfully representative of the real-world scenario.

This quantitative comparison highlights the considerable enhance-
ments of our model. The marked performance uplift in the BJ dataset
accentuates our model’s potential in real estate price prediction tasks.
Additionally, the comparative analysis with the original attention-based
interpolation model by Viana and Barbosa (2021) on the KC and POA
datasets further amplifies the strengths of our model. Our model’s abil-
ity to efficaciously reduce data dimensionality while retaining crucial
information has led to significant improvements in MALE and RMSE
across all datasets. This proficiency in compressing high-dimensional
data into more digestible forms has enabled algorithms like linear
regression to compete and outperform complex ensemble models like
LightGBM, CatBoost, and XGBoost.

5. Conclusion

This study significantly advances house price prediction by intro-
ducing a novel dataset focused on the Italian housing market and
applying innovative spatial interpolation techniques. One of the critical
contributions of our research is the development and implementation
of the Multi-Head Gated Attention Interpolator. This model addresses
a notable gap in applying attention mechanisms within house price
prediction, particularly in non-time series datasets. Our Multi-Head
Gated Attention Interpolator substantially improved prediction accu-
racy compared to traditional and original attention-based interpolation
models. This improvement underscores the untapped potential of at-
tention mechanisms in capturing complex spatial relationships. The
model’s ability to capture diverse geographical and structural contexts
while filtering out irrelevant data using gated attention ensures robust
predictions by reducing the impact of outliers. Creating embeddings us-
ing the Multi-Head Gated Attention Interpolator significantly boosts the
results of state-of-the-art models such as XGBoost. These embeddings
enhance the feature representation, allowing models like XGBoost to
achieve higher prediction accuracy by leveraging the enriched spatial
and structural information captured by the attention mechanism. This
integration of advanced embedding techniques has improved prediction
accuracy and the robustness and generalisability of the models across
different datasets. Introducing a dataset focused on the Italian housing
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market enriches existing resources and provides a unique landscape
for testing new methodologies. This dataset includes comprehensive
geographical and structural data for accurate house price prediction.
Our model effectively captures complex spatial relationships by utilis-
ing attention mechanisms, a capability critical for understanding how
different geographical and structural contexts influence house prices.
Unlike models such as Graph Neural Networks (GNNs), which require
the creation of specific relational graphs for each dataset, our Multi-
Head Gated Attention Interpolator can generalise across different cities
without needing specific relational studies. This flexibility significantly
enhances the model’s applicability and reduces the need for extensive
preprocessing and customisation. By filtering irrelevant data and focus-
ing on relevant features, the Multi-Head Gated Attention Interpolator
minimises the impact of outliers, leading to more robust and reliable
predictions. Despite its advanced capabilities, our model’s reliance on
primary geographical and structural data makes it applicable even in
scenarios with limited computational resources. This ensures the model
can be widely adopted without requiring extensive computational in-
frastructure. While the Gated Attention mechanism helps mitigate the
impact of outliers, ensuring robust predictions, the model’s perfor-
mance can be challenged in regions with low housing density, such
as rural areas. In these areas, the sparse data availability can affect
the model’s accuracy, highlighting the need for additional data sources
or alternative modelling strategies to maintain high prediction perfor-
mance. We propose several avenues to further enhance the model’s
capabilities and address its limitations. Incorporating satellite imagery
and interior and exterior photographs of properties will provide a more
comprehensive view of the factors influencing house prices. This inte-
gration will enhance the predictive capabilities of our model but also
presents challenges related to data preprocessing and harmonisation
that need to be addressed. Integrating the Kolmogorov-Arnold network
could offer a robust framework for capturing nonlinear dependencies
in the data, further improving the model’s performance. This network
is particularly effective in dealing with complex, nonlinear relation-
ships often present in housing data. Implementing an intelligent radius
mechanism to dynamically determine each property’s optimal number
of neighbours could enhance the model’s precision. This mechanism
would adaptively select neighbours based on property-specific charac-
teristics and spatial distribution, improving the relevance and accuracy
of predictions. Further studies are needed to validate the model’s
applicability to different geographical regions. Thorough testing across
diverse datasets will ensure the model’s generalisability and robustness.
By combining these advanced methodologies, we aim to create a more
robust and versatile model capable of delivering superior performance
across diverse scenarios and datasets. This research contributes to
house price prediction and opens new avenues for future research,
paving the way for more accurate and reliable predictive models in
real estate markets. The findings from this study have significant impli-
cations for house price prediction. By demonstrating the effectiveness
of attention mechanisms, specifically the Multi-Head Gated Attention
Interpolator, in capturing complex spatial relationships, we provide
a new direction for future research. Integrating embeddings created
through advanced attention mechanisms with state-of-the-art models
like XGBoost sets a new benchmark for prediction accuracy and ro-
bustness. Additionally, the model’s ability to generalise across different
cities without requiring specific relational studies, as is necessary with
models like Graph Neural Networks, highlights its versatility and prac-
tical applicability. The proposed future directions also emphasise the
potential for further enhancements, making house price prediction
models more comprehensive and adaptable to various scenarios.
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