
HAL Id: hal-04708219
https://hal.science/hal-04708219v1

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recurrent Neural Networks Modelling based on
Riemannian Symmetric Positive Definite Manifold

Léa Dubreil, Samy Labsir, Etienne Rouanet-Labé, Gaël Pages

To cite this version:
Léa Dubreil, Samy Labsir, Etienne Rouanet-Labé, Gaël Pages. Recurrent Neural Networks Modelling
based on Riemannian Symmetric Positive Definite Manifold. EUSIPCO, Aug 2024, Lyon, France.
�hal-04708219�

https://hal.science/hal-04708219v1
https://hal.archives-ouvertes.fr


Recurrent Neural Networks Modelling based on
Riemannian Symmetric Positive Definite Manifold

Léa Dubreil∗†, Samy Labsir∗‡, Etienne Rouanet-Labé§, and Gaël Pages†
∗TéSA, cooperative research laboratory in Telecommunications for Space and Aeronautics, Toulouse, France

†Federation ENAC ISAE-SUPAERO ONERA, University of Toulouse, France
‡Department of Signal and Artificial Intelligence, IPSA, Toulouse, France

§Thales Alenia Space, Toulouse, France

Abstract—State estimation with Kalman Filters (KF) regularly
encounters covariance matrices that are unknown or empirically
determined, causing sub-optimal performances. Solutions to lift
these uncertainties are opening up to estimation techniques based
on the hybridization of KF with deep learning methods. In fact,
inferring covariance matrices from neural networks gives rise
to enforcing symmetric positive definite outputs. In this work,
a new Recurrent Neural Network (RNN) model is explored,
based on the geometric properties of the Riemannian Symmetric
Positive Definite (SPD) manifold. To do so, a neuron function is
defined based on the Riemannian exponential map, depending
on unknown weights lying on the tangent space of the manifold.
In this way, a Riemannian cost function is deduced, enabling to
learn the weights as Euclidean parameters with a conventional
Gauss-Newton algorithm. It involves the computation of a closed-
form Jacobian. Through optimization on a simulated covariance
dataset, we demonstrate the possibilities of this new approach
for RNNs.

Index Terms—Deep learning, RNN, Riemannian manifolds,
geometry, covariance matrices.

I. INTRODUCTION

COVARIANCE matrices and their structure have been
a focal point in several problems for a wide range of

fields and related applications. In image processing, it is used
to model and classify data in the context of brain-computer
interfaces [1, 2], medical imagery [3] and action recognition
[4]. Similarly, we find applications in radar [5, 6] for signal
detection. The common denominator of these methods is that
they focus on the exploitation of symmetric positive definite
(SPD) manifold structure.

In literature, taking advantage of the covariance structure
was first issued for a context of parametric estimation. Particu-
larly, it is possible to define an intrinsic Riemannian algorithm
allowing to estimate numerically a Maximum Likelihood
Estimator (MLE). It can be obtained with an estimation algo-
rithm based on Riemannian Gaussian distribution, providing a
dedicated Riemannian gradient algorithm. In [7], it is used to
compute the barycenter associated to covariance matrices data
following a Riemannian Gaussian distribution. Also, in the
case of Euclidean observations, [8, 9] exploit the Riemannian
intrinsic metrics to build a robust covariance estimator for
change detection.

Abstract submitted January 12, 2024 to EUSIPCO 2024, special session.
(Corresponding author: Léa Dubreil, lea.dubreil@tesa.prd.fr)

This work has been supported by the cooperative research laboratory in
Telecommunications for Space and Aeronautics (TéSA).

In the past few decades, the embedding of machine learning
techniques in statistical signal processing has risen in the
context of Riemannian geometry. Enforcing the Riemannian
structure of the covariance matrices in machine learning algo-
rithm has been approached in computer vision, which has been
one of the leading fields [10]. The seminal work in [4] derives
a Riemannian convolutional neural network (CNN) from the
SPD manifold. Other usage of SPD manifold in [1, 2] extract
spatial information in electroencephalograms. Specifically in
[2], they modify the kernel of a Support Vector Machine
(SVM). In [1], they transform two supervised classification
algorithms, Minimum-Distance to Mean (MDM) and Linear
Discriminant Analysis (LDA), with the Riemannian mean and
a direct classification from the tangent space.

In our current framework, the system evolves in a dynamic
context, yielding time varying data, i.e. time series. In this
situation, not only covariance matrices can be unknown but
also other parameters controlled by a prior evolution model.
The former can be modelled in deep learning by Recurrent
Neural Networks (RNNs), specifically designed to deal with
sequential data [11]. The latter is perfectly represented in
Kalman Filters (KF), assuming Gaussianity and independence.
Thus, the considered problem may involve the hybridization
of RNN with a KF. In applications such as GNSS navigation,
estimating the covariance matrix of the unknown parameters
is often necessary because the uncertainties on the observation
and propagation models are often not-well known. This issue
is due to the fact that our system deals with harsh environments
[12], which creates a mismatched a priori model. One axis of
research is to predict these covariance matrices by a hybridized
RNN-KF, accounting for the change in the observation data.
This solution enables a data-driven approach of uncertainty
characterization, based on observables usually not used in the
empirical models predicting these covariance matrices.

In the conventional Euclidean literature, there exist two
main approaches having the same ambition of embedding
RNNs in KF: KalmanNet [13, 14] and DANSE [15]. Nonethe-
less, these methods do not verify or enforce the properties of
symmetry, positive definiteness of the predicted matrices. After
the prediction stage, they are reconstructed from Euclidean
vectors learned by the RNN. Consequently, the covariance
matrices model is a simplified case and does not fully model
the true correlation of the parameters.

In this work, we propose to overcome the aforementioned

1192ISBN: 978-9-4645-9361-7 EUSIPCO 2024



problem by preserving the geometrical properties of the in-
volved covariance matrices, in order to predict covariance
matrices from temporal data in a RNN. By revising the
implementation of the conventional RNN model, we substitute
Euclidean memory cells with covariance matrix-like cells.
Doing so requires relying on the geometric properties of the
SPD manifold to preserve their structure. The contributions
are twofold. First, we define a novel RNN activation function,
relying on the Riemannian exponential map. Thereby, the
network is designed with covariance memory cell living on
a SPD Riemannian manifold, for each instant. Second, the
learning optimization problem is set up by defining an intrinsic
criterion built from the geodesic distance of the manifold,
depending on weights belonging to a tangent space to these
memory cells. In order to solve it, a closed-form Jacobian
matrix is derived to optimize the network parameters, the
Euclidean weights.

This paper is organized as follows: Section II briefly pro-
vides the background on Riemannian manifold properties.
It is followed by a reminder of conventional RNN and the
development of the proposed Riemannian RNN in section III.
A numerical study is given in section IV. Finally, section V
presents conclusions and future axes of work.

II. RIEMANNIAN MANIFOLD OF SPD MATRICES

This section defines the basic concepts of manifolds (II-A)
and specify them for the case of the SPD manifold (II-B).

A. On Riemannian manifolds

A Riemannian manifold M is a smooth manifold [16]
endowed with a Riemannian metric. For each element X on
the manifold M, there is an inner product ⟨·, ·⟩X defined on
the tangent space TXM that is a bilinear symmetric positive
form. As the latter is a vectorial space with dimension p,
we can define a basis {Ei}pi=1 of TXM. By definition,

∀U ,V ∈ TXM, we have U =
p∑

i=1

uiEi, V =
p∑

i=1

viEi

and the inner product defining the metric

⟨U ,V ⟩X ≜
p∑

i=1

p∑
j=1

uivjgi,j (1)

where gi,j is the element (i, j) of the symmetric matrix
G(X) [16, 17]. Specifically, we consider the Riemannian
manifold to be fitted with a Rao-Fisher metric as in [18, eq. 6].
Intrinsically, the metric (1) permits to measure a length along
a curve on the manifold. Let us consider a curve γ(t) and two
points on that curve such as A = γ(0) and B = γ(1). The
length of the path between A and B is defined by [16] as

LB
A(γ) =

∫ 1

0

⟨γ̇(t) , γ̇(t)⟩1/2γ(t) dt , (2)

with γ(t) ∈ Tγ(t)M the tangent vector of γ(t). Consequently,
the travelled distance is defined by the path which minimizes
the length (2) on the geodesic γ(t) (the curve that minimizes
the length [16]), resulting in the distance

d (A,B) = min
γ

LB
A(γ) . (3)

For geodesically complete manifolds [16], there exists a
geodesic γ(t) going from A = γ(0) ∈ M to B = γ(1) ∈ M,
with the associated tangent vector V ∈ TAM. In this case,
the exponential map is defined by

expA (V ) = γ(1). (4)

B. Specification of the SPD manifold

Concepts defined for SPD manifolds are recalled in Fig.
1. The Riemannian SPD manifold consists in the set of
n × n symmetric positive definite matrices S+(n) ≜ {M ∈
Mn×n(R) ,M = M⊤ ,x⊤Mx > 0,∀x ∈ Rn \ {0}}.
The associated tangential space of each point on the manifold
is the set of n × n symmetric real matrices [19] S(n) ≜
{∀M ∈ Mn×n(R)|M = M⊤}. For more information
on SPD manifolds, the reader can refer to [19]. Given two
points (A,B) ∈ S+(n) and their respective tangential spaces
TAS+(n) ≜ S(n) and TBS+(n) ≜ S(n), the distance is
specified from its definition as in [19, eq. 3.10-3.12] with the
matrix logarithm log

d(A ,B) = ∥ log (A− 1
2BA− 1

2 )∥F . (5)

Similarly, the Riemannian exponential map is expressed on
with the matrix exponential exp the SPD manifold

B ≜ expA (V ) (6)

= A
1
2 exp

(
A− 1

2V A− 1
2

)
A

1
2 . (7)

In Riemannian geometry when the point B is in the neigh-
bourhood of A, there is a local diffeomorphism [16, 19]
of the exponential map from the manifold to the tangential
space defined by the inverse map logA (B) = exp−1

A (V ) and
recalled in Fig 1.

Fig. 1. Representation of the SPD manifold S+(n) with its associated tangent
space at point A of symmetric real square matrices S(n). The distance
between A and B is computed along the geodesic γ(t).

III. PROPOSED RIEMANNIAN RNN

This section presents the proposed RNN modelling on the
Riemannian SPD manifold to predict covariance matrices.
First, we recall the classical Euclidean modelling of RNN
in III-A. Then, we introduce the geometrical modelling by
defining a new RNN activation function depending on the
RNN’s weight parameters lying on the tangent space of the
SPD manifold in III-B. Finally, we describe the algorithmic
strategy to learn the network parameters in III-C.

1193



A. Reminder on RNN neuron and activation function

As illustrated in Fig. 2, a RNN is characterized by temporal
hidden states {ht}Tt=1 ∈ Rd sequentially connecting each node
cell. At each epoch, the latter is modelled by the neuron
function f (8). It depends on a data input xt ∈ Rn and
unknown weight and bias parameters θh =

[
W h bh

]
∈

Rn×(n+d+1). The output of each node cell is propagated in
a second non-linear function g (9) which provides the RNN
output ot at each instant t, based on another set of parameters
θo =

[
V o bo

]
∈ Rn×(n+d+1). In both equations, the

activation function σt introduces non-linearity to the linear
transformations. In literature, this function is by default an
hyperbolic tangent [11]. Fig. 2 represents these equations for
one instant t.

ht ≜ f(ht−1,xt;θh) = σt

(
W h

[
ht−1

xt

]
+ bh

)
, (8)

ot ≜ g(ht;θo) = σt (V oht + bo) . (9)

Fig. 2. RNN cell for one epoch. The yellow block represents the neuron
function f(ht−1,xt;θt). The grey block is the output function g(ht;θo).

B. Riemannian RNN model

In the following, we propose to adapt the model in Fig. 2
to change the hidden states ht to covariance matrices Ht of
dimension n×n, instead of Euclidean vectors. Thus, it requires
to modify the way they are handled throughout the RNN cell.

First, without considering the input vector xt, we define a
model that ensures that the input/output pair belongs to the
space of SPD matrices. Using the exponential map defined
in (6), we can define an input-free model. Let there be
two covariance matrices hidden states Σt ∈ S+(n) and
Ht−1 ∈ S+(n). By defining the weight matrix W h lying on
the tangent space S(n) at Ht−1, the proposed generalization
of the neuron function (8) on the SPD manifold yields

Σt = expHt−1
(W h). (10)

To take into account the contribution of the input vector xt,
we integrate it by using an operation generalizing the notion
of addition law in Euclidean spaces. It can be handled by the
group action (11). More precisely, an element Y lying on
the group of symmetric matrices S(n) can be associated to
an element Z of M. The result provides an new element in
S+(n) and can be written as a function g : S(n)× S+(n) →
S+(n) with the group action yielding

g (Y ,Z) = Y ZY ⊤. (11)

First, we transform the input vector into a weighted symmetric
matrix

Xt = π−1 (W xxt) . (12)

In (12), the function π−1 is the symmetrization function, which
is the inverse of the π function

π :

{
S(n) → Rp

A 7→ a = vech(A)
with p = n(n+1)

2 , (13)

with vech : S(n) → Rp being the half vectorization applicable
to symmetric matrices. Then, incorporating (12) through the
group action (11) in the input-free neuron function (6) yields
the completed neuron function

f(Ht−1,xt;θ) = XtΣtX
⊤
t , (14)

which can be detailed in
f(Ht−1,xt;θ) = π−1 (W xxt)H

1
2
t−1

exp
(
H

− 1
2

t−1W hH
− 1

2
t−1

)
H

1
2
t−1π

−1 (W xxt)
⊤
. (15)

The network parameters vector is defined by θ =[
W h W x

]⊤ ∈ Rn×(n+p) with W h ∈ S(n) and W x ∈
Rp×n. The overall network is thus expressed as in Fig. 3, for
one instant t.

Fig. 3. Riemannian RNN neuron cell for one instant t. The yellow blocks rep-
resent the network neuron function f(Ht−1,xt;θ). The network parameters
θ are used via the dashed lines in different sub-cells of the neuron function.

C. Learning problem
Let us derive the method to learn the RNN Euclidean

parameters θ. Considering that the set of inputs/outputs is
D = {xt ,Ot} ∀t ∈ J1, T K as defined in Fig. 3, learning
the parameters can be achieved by resolving the following
geometric least-squares optimization problem

(P) :min
θ

T∑
t=1

d
(
Ot, Ôt

)2

(16)

⇔ (P) :min
θ

T∑
t=1

∥ log
(
O

− 1
2

t f (Ht−1,xt;θ)O
− 1

2
t

)
∥2F .

(17)

The problem (17) is based on the geodesic distance defined
in (5). For concision of writing, we consider that g (θ) =

O
− 1

2
t f (Ht−1,xt;θ)O

− 1
2

t and we underline that Ot = Ht,
as shown in Fig. 3. Plus, the log function being symmetric,
we can reformulate the problem into a vectorization of the
criterion in a Euclidean norm. It yields

(P) :min
θ

T∑
t=1

∥vec (log (g (θ))) ∥2 (18)

⇔ (P) :min
θ

T∑
t=1

∥ϕ (θ) ∥2 , (19)

1194



with vec : M(n) → Rn2

the vectorization function of
squared matrices. Equation (18) being a quadratic problem, the
optimisation can be resolved using a Gauss-Newton algorithm
[20]. Thus, we compute the Jacobian matrix

Jϕ(θ) =
∂ϕ(θ)

∂θ
. (20)

To perform this computation, we decompose W h and W x

with the symmetric generator matrices Gi and non square
generator matrices Ei, respectively yielding

W h =
p∑

i=1

wh,iGi and W x =
q∑

i=1

wx,iEi , (21)

with q = np and wh,1:p = [wh,1, . . . , wh,p], wx,1:q =
[wx,1, . . . , wx,q] the coefficient vectors of their weight matrices
W h and W x after decomposition in their respective base
generator. Consequently, the Jacobian matrix in (20) gives

Jϕ(θ) =
[

∂ϕ(θ)
∂wh,1:p

∂ϕ(θ)
∂wx,1:q

]
, (22)

1) Derivative w.r.t. W h: To differentiate with regards to the
weights applied to the memory cell, we consider the decom-
position in base generator as expressed in (21). Consequently,
one can write, for l ∈ J1, pK, that

∂ϕ (θ)

∂wh,l
= vec

(
∂g (θ)

∂wh,l
g (θ)

−1

)
(23)

= vec
(
H

− 1
2

t GlX
θ
t Σt

(
Xθ

t

)T

H
− 1

2
t g (θ)

−1

)
(24)

with Xθ
t ≜ Xt is defined to highlight its dependence on θ.

2) Derivative w.r.t. W x: Similarly to the derivative w.r.t.
W h, we use the decomposition in (21). For l ∈ J1, qK, the
derivative is expressed as

∂ϕ (θ)

∂wx,l
= vec

(
∂g (θ)

∂wx,l
g (θ)

−1

)
. (25)

By using the expression in (15), it yields

∂ϕ (θ)

∂wx,l
= vec

(
2H

− 1
2

t π−1 (Elxt)Σt(
Xθ

t

)T

H
− 1

2
t g (θ)

−1

)
. (26)

IV. NUMERICAL EXPERIMENTATION

In this section, we perform a numerical study to validate
the proposed RNN model defined in section III-B with the
Gauss-Newton algorithm derived in section III-C. To this
end, we set up two numerical tests: proof of convergence in
IV-B1, robustness to the observation noise standard deviation
in IV-B2.

A. Data generation

The dataset D = {xt ,Ot}Tt=1 simulated for our numerical
validation is based on a mismatched version of the geometric
model described in (27)-(28) where the dependence on the
weight parameters of xt is not explicit. In this way, we can
test the proposed modelling. More precisely, we generate a
noisy temporal series of covariance matrices {Ot}Tt=1 such as

D =

{
[xt]i∈J1,NK ∼ U (0, 1)

Ot = Ht = N tΣtN
⊤
t

, (27)

with


Σt = H

1
2
t−1 exp

(
H

−1
2

t−1W hH
−1
2

t−1

)
H

1
2
t−1

N t = π−1 (n) , n ∼ N
(
0, σ2

nI
)

θ =
[
W h W x

]
=

[
1n×n 1p×n

] . (28)

The parameters of simulation are H0 = exp (δIn) , δ = 0.1,
T = 100, and σn = 10−2.

B. Evaluation and results

The considered simulations consist of performing a conven-
tional Gauss-Newton algorithm to find the weights parameters
θ̂ that minimizes problem (18) for one node of the Riemannian
RNN. To assess the capabilities of the proposed Riemannian
RNN, we first validate this performance in terms of precision,
then study its robustness in terms of convergence speed of the
algorithm. The latter is characterized for different values of
observation noise variance.

1) Algorithm performance: For covariance sizes of N =
{2, 4}, we study the convergence of the criterion ϕ (θ)
throughout the iterations of the Gauss-Newton. To achieve
that, we initialize the Gauss-Newton algorithm with W 0

h =
(1 + err)W h and W 0

x = (1 + err)W x, with err = 0.5,
being the initial error factor considered and i = 10, the number
of Gauss-Newton iterations. We notice in Fig. 4 that in less
than 3 iterations, the criterion is stable and is floored for both
values of N . Convergence is fast in terms of iterations of
the Gauss-Newton, demonstrating that the algorithm chosen is
appropriately optimizing the cost function defined in (19).

0 2 4 6 8 10
Gauss-Newton iterations i

0

20000

40000

60000

80000

C
ri
te
ri
on

 v
al
ue

 ϕ
(θ
) f
or
 N

=
2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
ri
te
ri
on

 v
al
ue

 ϕ
(θ
) f
or
 N

=
4

1e6

Fig. 4. Convergence test: criterion value as function of iterations i for
covariance size n = {2, 4}, noise variance σn = 10−2 and T = 100
samples.

2) Test of robustness: The second test studies the robustness
of the optimization algorithm firstly to the observation noise
standard deviation. Considering that the latter takes its values
in σn ∈ [10−3, 10−1], we simulate 1000 Monte-Carlo for
a covariance size of n = {2, 4}, and draw the number of
the iterations necessary to converge. In Fig. 5, we observe
that the number of iterations is increasing along with the
observation variance. Nevertheless, it is worth noting that this
increase becomes almost negligible for high standard deviation
values which demonstrates a degree of robustness in terms of
optimization.

1195



0.00 0.02 0.04 0.06 0.08 0.10

Standard deviation of observation noise σn

2.5

3.0

3.5

4.0

M
e
a
n
it
e
ra
ti
o
n
s
i n = 2

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Standard deviation of observation noise σn

3.0

3.2

3.4

3.6

3.8

M
e
a
n
it
e
ra
ti
o
n
s
i n = 4

Fig. 5. Robustness test: mean Gauss-newton iterations as a function of
observation noise standard deviation σn, for T = 100 observations and
covariance size n = {2, 4}.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we proposed a novel RNN modelling, based on
Riemannian geometry of SPD matrices. It allows to preserve
geometrical constraints on the covariance matrices predicted
by the network. The Riemannian RNN has demonstrated to
be optimizable on Euclidean spaces with a standard Gauss-
Newton algorithm. Having the learning problem thus formu-
lated enables future work on a full network training, based
on Euclidean optimization. They point of our method is the
Euclidean structure of the unknown parameters. Thus, it can
be learned using a conventional gradient algorithm without
the need for Riemannian optimization. Besides, the model has
proven to be robust to certain levels of noise (σn < 10−1).
Having a non convex and quadratic criterion, the execution
time of the optimization increases along with the covariance
size n. In fact, these Riemannian-based methods are subject
to computational complexity and numerical instability due
to the bad conditioning of high dimensions SPD matrices
[21]. Perspectives of improvement can be inspired from ro-
bust dimension reduction for SPD matrices, which has been
researched in [22, 23]. This could lead to an enhancement
of the aforementioned model. Future works on the model
will focus on two axes: (1) consider the output equation (9)
to be refined in Riemannian way; (2) estimate the neuron
function parameters following an unsupervised paradigm to
be consistent with an unsupervised dynamic framework in the
context of GNSS navigation.

REFERENCES

[1] Alexandre Barachant et al. “Multiclass Brain–Computer Interface
Classification by Riemannian Geometry”. In: IEEE Transactions on
Biomedical Engineering 59.4 (2012), pp. 920–928.

[2] Alexandre Barachant et al. “Classification of covariance matrices using
a Riemannian-based kernel for BCI applications”. In: Neurocomputing
112 (2013), pp. 172–178.

[3] Maria Sayu Yamamoto et al. “Novel SPD Matrix Representations
Considering Cross-Frequency Coupling for EEG Classification Using
Riemannian Geometry”. In: 2023 31st European Signal Processing
Conference (EUSIPCO). 2023, pp. 960–964.

[4] Zhiwu Huang and Luc Van Gool. “A Riemannian Network for SPD
Matrix Learning”. In: Thirty-First AAAI Conference on Artificial
Intelligence (AAAI-17). 2017, pp. 2236–2242.

[5] Marc Arnaudon, Frédéric Barbaresco, and Le Yang. “Riemannian
Medians and Means With Applications to Radar Signal Processing”.
In: IEEE Journal of Selected Topics in Signal Processing 7.4 (Aug.
2013), pp. 595–604.

[6] Xiaoqiang Hua et al. “Log-Euclidean Metric-Based Signal Detector
with Manifold Filter and Matrix Information Geometry”. In: 2020
IEEE 20th International Conference on Communication Technology
(ICCT). 2020, pp. 1208–1212.

[7] Paolo Zanini et al. “Parameters estimate of Riemannian Gaussian
distribution in the manifold of covariance matrices”. In: 2016 IEEE
Sensor Array and Multichannel Signal Processing Workshop (SAM).
2016, pp. 1–5.

[8] Florent Bouchard et al. “Riemannian Framework for Robust Co-
variance Matrix Estimation in Spiked Models”. In: ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2020, pp. 5979–5983.

[9] Florent Bouchard et al. “Riemannian geometry for compound Gaussian
distributions: Application to recursive change detection”. In: Signal
Processing 176 (Nov. 2020), p. 107716.

[10] Pavan Turaga and Anuj Srivastava. Riemannian Computing in Com-
puter Vision. Jan. 2016.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. ISBN: 978-0-262-33737-3.

[12] Antonio Angrisano, Salvatore Gaglione, and Antonio Maratea. “A
comparison between resistant GNSS positioning techniques in harsh
environment”. In: 2018 European Navigation Conference (ENC). 2018,
pp. 140–147.

[13] Guy Revach et al. “Unsupervised Learned Kalman Filtering”. In:
2022 30th European Signal Processing Conference (EUSIPCO). 2022,
pp. 1571–1576.

[14] Guy Revach et al. “KalmanNet: Neural Network Aided Kalman
Filtering for Partially Known Dynamics”. In: IEEE Transactions on
Signal Processing 70 (2022), pp. 1532–1547.

[15] Anubhab Ghosh, Antoine Honoré, and Saikat Chatterjee. “DANSE:
Data-driven Non-linear State Estimation of Model-free Process in Un-
supervised Learning Setup”. In: 2023 31st European Signal Processing
Conference (EUSIPCO). 2023, pp. 870–874.

[16] Xavier Pennec. “Intrinsic Statistics on Riemannian Manifolds: Basic
Tools for Geometric Measurements”. In: Journal of Mathematical
Imaging and Vision 25.1 (2006), pp. 127–154.

[17] Manfredo Perdigão do Carmo. Riemannian Geometry. Birkhäuser
Boston, 1992.

[18] Salem Said et al. “Riemannian Gaussian Distributions on the Space
of Symmetric Positive Definite Matrices”. In: IEEE Transactions on
Information Theory 63.4 (2017).

[19] Alexander Smith et al. “Data Analysis using Riemannian Geometry and
Applications to Chemical Engineering”. In: Computers and Chemical
Engineering 168 (2022).

[20] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer Series in Operations Research and Financial Engineering.
Springer New York, 2006. ISBN: 978-0-387-30303-1.

[21] Rajendra Bhatia. Positive Definite Matrices. Princeton Series in Ap-
plied Mathematics. Princeton (N.J.): Princeton University Press, 2007.
ISBN: 978-0-691-12918-1.

[22] M. Congedo et al. “A closed-form unsupervised geometry-aware
dimensionality reduction method in the Riemannian Manifold of SPD
matrices”. In: 2017 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE, 2017,
pp. 3198–3201.

[23] Alireza Davoudi, Saeed Shiry Ghidary, and Khadijeh Sadatnejad.
“Dimensionality reduction based on Distance Preservation to Local
Mean (DPLM) for SPD matrices and its application in BCI”. In:
Journal of Neural Engineering 14.3 (2017).

1196


