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BLOCKS OF ARIKI-KOIKE ALGEBRAS AND LEVEL-RANK DUALITY

DAVID DECLERCQ AND NICOLAS JACON

Abstract. We study the blocks for Ariki-Koike algebras using a general notion of core for l-partitions. We
interpret the action of the affine symmetric group on the blocks in the context of level rank duality and
study the orbits under this action.

1. Introduction

One of the main (and still open) problem in the modular representation of the symmetric group Sn

(that is over a field k of characteristic p > 0) is the determination of the decomposition matrix. This matrix
describes the decomposition of certain remarkable modules, the Specht modules, into simples via a process of
modular reduction. The rows are indexed by the partitions of n (which naturally index the Specht modules)
where as the columns are indexed by certain partitions, named the p-regular partitions (which index the
simple modules of kSn.) The decomposition matrix is in fact a block diagonal matrix and we may try to
study these “blocks” independently one from the other. This leads to fundamental problems which have
both combinatorial and geometric flavor:

• The distributions of the partitions (and the p-regular partitions) into blocks may be described using
the notion of p-core and p-quotient of a partition. The complexity of the block is measured by a
combinatorial datum, the weight of the block.

• There is a strong relation between some of the blocks by the works and Scopes [15] and Chuang-
Rouquier [3]. In particular, an action of the affine symmetric group on the set of blocks induces
derived equivalences between objects associated to these blocks. In some cases, these equivalences
are Morita equivalences and the associated block decomposition matrices are just the same.

This paper is concerned with the Ariki-Koike algebra which may be seen as a generalization of the group
algebra of the symmetric group. It is in fact a deformation of the complex reflection group of type G(l, 1, n).
This algebra has been intensively studied during the past decades (see [1, 4]). In particular, we still have a
notion of decomposition matrix in this case. The analogues of the Specht modules are this time indexed by
l-tuple of partitions (“l-partitions”), and the set of e-regular partitions by the so called Uglov l-partitions.
A generalized version of the notion of weight has been provided by Fayers in [2] and the distribution into
blocks has been studied by Lyle and Mathas in [10]. More recently, a notion of Scopes equivalence has been
studied by Lyle [9], Webster [17] (in a more general context) and in [14]. In [7], the second author together
with C.Lecouvey have introduced a generalization of the notion of p-core partitions in this context and show
that some of the results known in the case of the modular representation theory of the symmetric group
are still verified in the context of Ariki-Koike algebras. The aim of this paper is to go deeper in the study
of the notion of blocks using this generalized notion of core. We describe precisely the action of the affine
symmetric group using this notion. In particular, generalizing works by Gerber and Lecouvey, we interpret
the induced action on the Uglov l-partitions in the context of level-rank duality, and show that this action
may be obtained using the notion of crystal isomorphism as studied in [7]. We also show that the notion of
Scopes equivalence can be easily generalized in this context using the notion of core. Contrary to the case
of the symmetric group, two blocks with the same weight may not be in the same orbit. We then study and
classify the different orbits under the action. We will see that the generalized notion of core nicely simplify
the different classical properties of blocks.

The paper will be organized as follows. First, we describe the combinatorial notions which are needed
in this paper: this includes the notion of partitions, symbols, abaci, core and quotient (in the case of the
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symmetric group). The third part first generalizes this notion in the context of Ariki-Koike algebras. We
in particular introduce the concept of level rank duality. This section contains several new results on the
generalized core (see Proposition 3.3 and 3.6). In the fourth and fifth part, we study the blocks of Ariki-Koike
algebras and the action of the affine Weyl group together with the analogue of Scopes equivalence (see Prop.
5.1) and we interpret this action using the level-rank duality in Prop. 5.3. The last part is finally devoted
to the classification of the orbits under this action.

2. Partitions, symbols and abaci

In this part, we introduce the combinatorial notions needed to deal with the modular representation
theory of Ariki-Koike algebras and to introduce the notion of blocks.

2.1. Partitions. By definition, a partition of n is a sequence of non increasing positive integers (λ1, . . . , λr)
of total sum n. We denote by:

• Πl the set of all l-partitions, that is, the set of all l-tuples (λ1, . . . , λl) of partitions.
• Π = Π1 the set of all partitions.

For any subset E of Πl and any n ∈ Z≥0, we denote E(n) the set of l-partitions in E with total size n.

2.2. Abaci and symbols. Let m ∈ Z. By definition, a β-set or symbol of charge m ∈ Z is an infinite
sequence of integers X = (βi)i<m such that:

(1) For all i < m, we have βi−1 < βi (that is X is a strictly increasing sequence)
(2) There exists N < m such that for all j ≤ N , we have βj = j.

We denote by Symb(m) the set of symbols of charge m. If m ∈ Z then the symbol X = (βi)i<m such that
βi = i for all i < m is called the trivial symbol of charge m.

If X = Symb(m) and if r ∈ Z, we write X [r] for the symbol (γ)j<r+m ∈ Symb(m + r) such that for all
j < r +m, we have γj = βj−r + r. We write

X ≃ X [r]

This is an equivalence relation on the set of symbols and each equivalence class has at most one element
with a fixed charge.

A symbol may be conveniently represented using its abacus configuration. In this way, we associate to a
symbol X an horizontal runner full of (an infinite number of ) beads numerated in Z. A bead numerated by
a ∈ Z is colored in black if and only if a ∈ Xj . The others are written in white.

Example 2.1. The abacus associated to X = (. . . ,−3,−2,−1, 3, 5, 6) is

1817161514131211109876543210-1-2

. . .

The charge of a symbol X may be conveniently read in the associated abacus as follows. For each black
bead, if there exists a white bead at its left then replace the leftmost one with a black bead and the black
bead itself with a white bead. We obtain the abacus of a trivial symbol. The charge of X is then the charge
of the trivial symbol, that is the number associated with the leftmost white bead.

Example 2.2. Keeping the above example, if we perform the above manipulation, we obtain

1817161514131211109876543210-1-2

. . .

which is the abacus of the trivial symbol of charge 3.

2.3. l-Symbol. An l-symbol is a collection of l β-sets:

X = (X0, . . . , Xl−1)

The multicharge of the symbol is the l-tuple (m0, . . . ,ml−1) ∈ Zl where for all j = 0, . . . , l − 1, the number

mj is the charge of Xj = (βj
i )i<mj

. It will sometimes be convenient in the following to write such a symbol
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from bottom to top, taking into account the gaps between the charges of each symbol (see the example
below).

X =




Xl

...
X1




If X is an l-symbol and if r ∈ N, we write X[r] for the symbol (X1[r], . . . , Xl[r]). Again, we write X ≃ X[r].

Example 2.3. Let us consider the 3-symbol:

X = ((. . . ,−1, 0, 2, 4, 6), (, . . . ,−1, 0, 3, 4), (. . . ,−1, 0, 2, 5)).

Then we can write it as follows:

X =




. . . −1 0 2 5

. . . −1 0 3 4

. . . −1 0 2 4 6




Then the associated multicharge is (4, 3, 3). The 3-symbol

Y = ((. . . , 0, 1, 2, 3, 5, 7, 9), (. . . , 0, 1, 2, 3, 6, 7), (. . . , 0, 1, 2, 3, 5, 8))

has multicharge (7, 6, 6) and we have Y = X[3] so that X ≃ Y.

An l-symbol X = (X0, . . . , Xl−1) can be conveniently represented using its abacus configuration. In this
way, we associate to each Xj from j = 0 to l− 1 an abacus as above and we write them from bottom to top
so that the bead in the same column are numerated by the same integer. We call the associated object an
l-abacus (or simply abacus if l = 1).

Example 2.4. Let l = 3 and let us consider the following 3-symbol:

X = ((. . . ,−1, 0, 2, 4, 6), (. . . ,−1, 0, 3, 4), (. . . ,−1, 0, 2, 5)).

The associated 3-abacus is:

20191817161514131211109876543210. . .

. . .

. . .

. . .

We can recover the associated multicharge by moving the black beads at the left in each runner.

2.4. Symbol of a multipartition. To each symbol X = (βi)i<m (and thus to each abacus) of charge m we
can canonically associate a partition λ(X) = (λ1, . . . , λr) such that for all i ≥ 1, we have λi = βm−i+ i−m.
Note that if k >> 1 then λk = 0. Regarding the abacus associated to the set of β-numbers, the parts of the
partition are easily obtained by counting the numbers of white beads at the left of each black bead.

Example 2.5. Let X := (. . . ,−1, 0, 3, 4, 6, 8). The associated charge is m = 5. Then we have λ(X) =
(4, 3, 2, 2). The abacus configuration gives:

20191817161514131211109876543210. . .

. . .

It is easy to see that λ(X) = λ(Y ) if and only if X ≃ Y . Conversely, to any partition (λ1, . . . , λr), we can
associate a set of β-numbers (and thus an abacus). Let m ∈ Z. Then we define

Xm(λ) = (βi)i<m

where for all i = 1, . . . ,m, we have βm−i = λi − i +m. Note that for all (m1,m2) ∈ Z2, we have Xm1(λ) ≃
Xm2(λ).

To each l-symbol X = (X0, . . . , Xl−1), we can associate an l-ipartition λ(X) = (λ(X0), . . . , λ(Xl−1))
attached to this symbol together with a multicharge s(X) ∈ Zl which is the multicharge of the symbol.

3



Reciprocally, to each multipartition λl = (λ0, . . . , λl−1) 1 and multicharge s = (s0, . . . , sl−1), one can attach

an l-symbol Xs(λl) = (Xs0(λ0), . . . , Xsl−1(λl−1)).

Example 2.6. Let X = ((, . . . , 0, 3, 4), (, . . . , 0, 1, 2, 5)) then we have λ(X) = ((2, 2), (2)) and s(X) = (3, 4).
The abacus configuration gives:

20191817161514131211109876543210. . .

. . .

. . .

2.5. Core and quotient. With all these notions in mind, we will now be able to define the core and the
quotient of a partition. We fix m ∈ Z. Importantly, our notion of e-quotient will depend on this choice. Let
e ∈ N and let n ∈ N and let λ ∈ Π(n).

First recall that we can associate to λ a set of β-numbers Xm(λ). As usual, we take

Xm(λ) = (β1, . . . , βn).

We then define;

X = (X0, . . . , Xe−1),

where for all j ∈ {0, . . . , e− 1}, Xj is the set of increasing integers obtained by reordering the set :

{k ∈ N | j + ke ∈ Xm(λ)}

We denote

Z
e[m] := {(s0, . . . , se−1) ∈ Z

e |
∑

1≤i≤e−1

si = m}

Let λe be the multipartition and se := (s0, . . . , se−1) ∈ Ze[m] be such that Xse(λe) = X2. We denote

τe(λ) = (λe, se).

We will use the following definitions:

• The e-partition λe is the e-quotient of (λ,m).
• Let λ◦ be such that X(λ◦) = Xs(∅). It is known as the e-core partition of (λ,m).
• The pair (λ◦,m) ∈ Π × Z is the e-core of (λ,m) (this notations seems to be strange but it will be
convenient to use it in order to be consistent with our generalizations later in the paper).

• We see that the datum of this partition is equivalent to the datum of se. It will be in fact convenient
for our purpose to also name the multicharge se ∈ Ze[m] itself as the e-core multicharge of λ and
this is what will be done in the rest of the paper.

In fact, the notion of e-core partition does not depend on m but the e-quotient does.

Example 2.7. Let λ = (6, 3, 2, 1, 1). Take e = 3. We have:

X0(λ) = (. . . ,−7,−6,−4,−3,−1, 1, 5).

Then the associated abacus is given as follows:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

The associated 3-abacus is :

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

1The notation λ
l has not to be confused with λl which is the lth component of λ. It will be convenient to use this notation

in the following
2the notation λe has not be be confused with the eth part of a partition. It is convenient to use this notation because of

the level rank duality which will be define later
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Each runner of the above 3-abacus corresponds to an abacus which itself corresponds to a partition. The
3-partition associated to this is the 3-quotient:

(∅, (2), (1)).

To obtain the associated 3-core, we move all the black beads at the left end of each runner, we obtain the
following 3-abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

We obtain the multicharge (0,−1, 1) which is thus the e-core multicharge of (λ, 0). We then come back to
the 1-abacus associated to this 3-abacus :

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

We have λ◦ = (3, 1) which is the e-core partition of (λ, 0). The e-core of (λ, 0) is λ◦, 0).

We say that a partition λ is an e-core partition if the e-core partition of λ is λ itself. We denote by Cor(e)
the set of e-cores partitions. The discussion above shows that there is a bijection between Cor(e) and Ze[m].

Given a m ∈ Z, an e-partition (λ0, . . . , λe−1) and an e-core λ◦ partition (or an element in Z
l[m]), there is

a unique pair (λ,m) ∈ Π× Z with e-quotient λ and e-core λ◦.

Example 2.8. Take the 3-charge s = (0, 1,−1) (which is of sum m = 0), the abacus associated to Xs(∅) is

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

and we have X(λ◦) = Xs(∅) for λ◦ = (2) (which is thus a 3-core). We are interested to find the partition
with 3-core (2) and 3-quotient ((2, 1), (2), (2, 1, 1)). Then, we simply move the black beads in the above
abacus to obtain the abacus of X(0,1,−1)((2, 1), (2), (2, 1, 1)). We obtain:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

Now, we perform the associated 1-abacus:

76543210-1-2-3-4-5-6-7-8-9-10-11-12-13. . .

. . .

which is the abacus of the partition (8, 5, 5, 2, 2, 2, 2, 1, 1, 1). This is the desired partition.

2.6. Nodes. Assume that λl is an l-partition and fix sl = (s0, . . . , sl−1). We can define its Young diagram

[λl] := {(a, b, c) | a ≥ 1, c ∈ {0, . . . , l− 1}, 1 ≤ b ≤ λc
a} ⊂ Z>0 × Z>0 × {1, . . . , l}.

The elements in [λl] are called the nodes of λl. The content of a node γ = (a, b, c) of λl is the element
b− a+ sc of Z and the residue is the content modulo eZ. We say that:

• the node (a, b, c) ∈ [λl] is a removable j-node if [λl]\{(a, b, c)} is the Young diagram of a well defined
l-partition and if b− a+ sc ≡ j + eZ that is, the residue of (a, b, c) is j + eZ.

• (a, b, c) ∈ N2 is an addable j-node if [λl]⊔{(a, b, c)} is the Young diagram of a well defined l-partition
and if b− a+ sc ≡ j + eZ that is, the residue of (a, b, c) is j + eZ.

Consider the associated symbol X := Xs
l

(λl) and the associated l-abacus. Then note that
5



• A removable i-node γ in λl in component c is canonically associated to a black bead in the runner c
numbered by an element j such that j − 1 is occupied with a white bead. We have j ≡ i+ eZ. The
abacus associated to the l-partition µl obtained by removing this node is obtained by exchanging
the white and the black bead.

• An addable i-node γ in λ
l in component c is canonically associated to a white bead in the runner c

numbered by an element j such that j + 1 is occupied with a black bead. We have j ≡ i+ eZ. The
abacus associated to the l-partition µl obtained by adding this node is obtained by exchanging the
white and the black bead.

Example 2.9. Keep Example 2.6 with λl := ((2, 2), (2)) and sl = (3, 4) and take e = 4. We write the Young
diagram with the residue in each box associated with its node:

(
3 0

2 1
, 0 1 )

We have two removable 1-nodes : (2, 2, 0) and (1, 2, 1). They are associated to two black beads numbered
by 5 in runner 1 and 3 in runner 0. We have two addable 1-node : (1, 3, 0) and (3, 1, 0) which are associated
to white beads numbered by 1 and 5 in runner 0. We have also one addable 2-node (1, 3, 1) and one addable
3 node (2, 1, 1) associated with white beads numbered by 6 and 3.

3. Multipartitions and combinatorial Level-rank duality

We have already seen how one can associate to each partition its e-core and its e-quotient. In this part,
we introduce a variation of these notions, defined by Uglov [16] and we study the case of l-partitions.

3.1. A variant of the notion of core and quotient. In [16], Uglov has given a variant of the notion of
core and quotient. Assume that λ is a partition. First, Assume that we get the set

Xm(λ) = (βi)i<m.

For all j < m, we write

βj = cj + edj + elmi

where ci ∈ {1, . . . , e}, di ∈ {0, . . . , l − 1} and mi ∈ Z. Then we set Xd to be the set of increasing integers
obtained by reordering the set :

{cj + emj | dj = d}.

We obtain an l-symbol

(Xl−1, . . . , X0),

which will be called the Uglov l-symbol. From this, we can associate to a partition λ an l-partition λl together
with an l-multicharge sl ∈ Zl[m], and of course, one can do the reverse process. We denote τ l(λ,m) = (λl, sl),
τ l is a thus a bijection from the set of all partitions to the set Πl × Zl[m].

Example 3.1. Let λ = (6, 3, 2, 1, 1) and l = 2 and e = 3, we have:

X0(λ) = (. . . ,−7,−6,−4,−3,−1, 1, 5).

with abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

The associated l-symbol is :

((. . . ,−3,−1, 2), (. . . ,−3,−1, 1))

with abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

and we thus get τ l(λ) = (((3, 1), (2, 1)), (0, 0)).
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3.2. Relations between the two notions of quotients. Assume that we have a partition λ and that
τ l(λ) = (λl, sl), τe(λ) = (λe, se). Then one can go easily from the abacus of τ l(λ) to the abacus of τe(λ)

and reciprocally. To do that, start with the abacus associated to (λl, sl)

• We define a rectangle on the l-abacus, containing e beads in each abacus. This rectangle starts with
the beads numbered with 0 and finishes with the beads numbered with e − 1. We get a rectangle
with el beads, then again define a second rectangle with the beads numbered with e to the beads
numbered by 2e− 1 an so on, even with the beads marked with negative integers.

• Rotate each rectangle 90 degree anticlockwise.
• We get a new e-abacus, which is the e-abacus of (λe, se).

Example 3.2. We keep the above example:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .. . .. . .

and then after rotation:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

which is the 3-abacus of the 3-quotient of λ, as expected.

3.3. Nodes again. Let λ be a partition and write τ l(λ) = (λl, sl). Let τe(λ) = (λe, se) and denote the
associated symbol by :

(X0, . . . , Xe−1).

Assume that there exists i ∈ {0, . . . , e − 2} such that j ∈ Xi and such that j /∈ Xi+1. Let us consider
the symbol Y = (Y0, . . . , Ye−1) such that Yk = Xk if k 6= i, i + 1, Yi = Xi \ {j} and Yi+1 = Xi+1 ∪ {j}.
The associated abacus is obtained by moving the black bead numerated by j from the ith runner to the
i + 1th one. We obtain the e-symbol which is itself associated to the multipartition µl is obtained from λl

by removing a node with residue i + eZ. Reciprocally, adding a node i + eZ with residue consists in doing
the above manipulation on abacus/symbol.

If now j ∈ Xe−1 and j − l /∈ X0, on can consider Y = (X0 ∪ {j − l}, . . . , Xe−1 \ {j}). The associated
abacus is obtained by moving the black bead numerated by j from the e+ 1th runner to the 0th one at the
place j − l. Then we have the e-abacus associated to an l-partition µl is obtained from λl by removing a
node with residue 0 + eZ. Reciprocally, removing a node with residue 0 + eZ consists in doing the above
manipulation on abacus/symbol.

3.4. Size. The following result is implicit in Uglov [16] and Yvonne’s papers [18]. We give a formal proof
for the convenience of the reader as such a proof seems not to appear in the literature.3

Proposition 3.3. Assume that λ is a partition and that τ l(λ) = (λl, sl) and τe(λ) = (λe, se). Assume that

µ is a partition and that τ l(µ) = (µl, sl) and τe(λ) = (µe, se). Assume in addition that |µl| = |λl|. Then we
have |µe| = |λe|.

Proof. For x = l or x = e and 0 ≤ i ≤ e− 1, we set Ni(ν, x) to be the number of i-nodes for the x-partition
ν. Let λ◦ be the common e-core of λ and µ. By [7, Prop. 2.22], we have:

|λ| − l|λ◦| = |λl|+ elN0(λ
l, l),

and

|µ| − l|λ◦| = |µl|+ elN0(µ
l, l).

3We thank C.Lecouvey for discussion on this proof
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So we have
|µ| − elN0(µ

l, l) = |λ| − elN0(λ
l, l)

Now, as λ◦ is the e-core of µ and of λ, we have:

|µ| = e|µe|+ |λ◦|

and
|λ| = e|λe|+ |λ◦|

So we obtain that:
e|µe| − elN0(µ

l, l) = e|λe| − elN0(λ
l, l)

So we need to show that N0(µ, l) = N0(λ, l). By [18, (W1)-(W4) p. 57], for all 0 ≤ i ≤ e− 1, we have:

Ni(λ
l, sl)−Ni(µ

l, sl) = N0(λe, se)−N0(µe, se)

So summing over all 0 ≤ i ≤ e− 1 leads to :

|µl| − |λl| = e(N0(λe, se)−N0(µe, se))

We deduce N0(λe, se) = N0(µe, se). By [18, Proof of Prop. 3.24] (see also [8, Lemma 3.4.1]), we have that

N0(λe, se)−N0(µe, se) = N0(λ
l, sl)−N0(µ

l, sl)

We thus have N0(λ
l, sl) = N0(µ

l, sl)), as desired.
�

3.5. Generalized Core. We end this section by defining a notion of core for the l-partitions, as done in
[7]. We fix sl ∈ Zl[m] and an associated l-partition λl, we here see how one can generalize the notion of core
and quotient for this multipartition. To do this, we set:

A
l

e := {(s1, . . . , sl) ∈ Z
l | ∀(i, j) ∈ {1, . . . , l}, i < j, 0 ≤ sj − si ≤ e},

Al
e := {(s1, . . . , sl) ∈ Z

l | ∀(i, j) ∈ {1, . . . , l}, i < j, 0 ≤ sj − si < e}.

Definition 3.4. Let sl ∈ Al
e, we say that the pair (λl, sl) is a an e-core if this pair satisfies the following

property. Let (X0, . . . , Xl) be its associated l-symbol then we have

X0 ⊂ X1 ⊂ . . . Xl−1 ⊂ X0[e]

Remark 3.5. In [7], the definition is a little bit more general by considering arbitrary multicharges.

Of course such an e-core is canonically associated with the partition (τ l)−1(λl, sl), but also with a multi-

charge se ∈ Ze[m] which is defined as τe(τ
l)−1(λl, sl) = (∅, se)

Now, we explain how one can obtain the core of an l-partition together with its multicharge. First, by
[7], one can assume that

sl ∈ Al
e

We compute the core of the l-partition λl as follows. We consider the (e, sl)-abacus (X0, . . . , Xl−1) of λ
l. An

elementary operation on this abacus is defined as a move of one black bead from one runner of the abacus
to another satisfying the following rule.

(1) If this black bead is not in the top runner, then we can do such an elementary operation on this
black bead only if there is no black bead immediately above (that is in the same position on the
runner just above). In this case, we slide the black bead from its initial position, in a runner i, to
the runner i+ 1 located above in the same position.

(2) If this black bead is in the top runner in position x, then we can do such an elementary operation
only if there is no black bead in position x− e on the lowest runner.

At the end (that is, when we cannot perform any further operations, by construction, we obtain an l-abacus
which is canonically associated with an l-symbol

(L0, . . . , Ll−1)

satisfying:
L0 ⊂ L1 ⊂ . . . ⊂ Ll−1 ⊂ L0[e].
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this corresponds to an l-partition µl and a multicharge vl ∈ A
l

e such that (µl,vl) is an e-core. This is

called the e-core of (λl, sl). By the discussion aboce, we see that doing an elementary operation consists

in removing a removable node in the associated e-partition. Thus, if the number w(λl) which is number
of elementary operations needed to reach this core is also the size of this e-partition and this is called the
weight of (λl, sl). As a consequence a core is a partition (with its multicharge) with weight 0. We have the
following proposition which give a nice characterization of cores:

Proposition 3.6. Let sl ∈ Al
e and λl ∈ Πl then we have λ ∈ C

l(e, sl) if and only if for all i ∈ {0, . . . , e−1},
we are in one of the following two situation :

• λl admits no addable i-node
• λl admits no removable i-node

Proof. Take the e-abacus of (λl, sl). and assume that λ
l admits an addable i-node. Assume that it is on

component c ∈ {0, . . . , l − 1}. Thus, we have a black bead numbered by j ∈ Z such that j ≡ i − 1 + eZ
in component c and a white bead in component c numbered by j + 1. As a consequence, all the bead in
component k > c numbered by j and all the beads numbered by j − te with t > 0 are blacks. On the other
hand, the bead in component k < c numbered by j + 1 and all the beads numbered by j + 1+ te with t > 0
cannot be black. This implies that there are no removable i-nodes. If λl admits a removable i-node, the
proof is similar.

�

Example 3.7. Tale λ = ((3, 1), (2, 1) with e = 3 and s = (0, 0). We have

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

We have λe = (∅, (2), (2)) thus the weight of λ is 3 and the e-core multicharge is (0,−1, 1) with abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

The l-abacus of the associated e-core multipartition is :

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

The e-core multipartition is thus ((1), (2)) with multicharge (−1, 1).

4. Blocks of Ariki-Koike algebras

In this section, we recall the main objects around the modular representation theory of Ariki-Koike
algebras. We refer to [1, 4] for details. Then we use our previous combinatorial definition to describe the
notion of blocks for Ariki-Koike algebras as already stated in [7] and explore basic properties around them.

4.1. Ariki-Koike algebras. Let n ∈ N, l ∈ N, e ∈ N>1 and let sl = (s1, . . . , sl) ∈ Z
l. We set ηe :=

exp(2iπ/e). The Ariki-Koike algebra Hs
l

n (η) is the unital associative C-algebra with

• generators T1, . . . , Tn−1,
9



• relations:

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 (i = 1, ..., n− 2),

TiTj = TjTi (|j − i| > 1),

(T0 − ηs1)(T0 − ηs2)...(T0 − ηsl) = 0,

(Ti − η)(Ti + 1) = 0 (i = 1, ..., n− 1).

The representation theory of Hs
l

n (η) is controlled by its decomposition matrix. For all λl ∈ Πl; one can

associate a certain finite dimensional Hs
l

n (η)-module Sλ called a Specht module. For each M ∈ Irr(Hs
l

n (η)),

we have the composition factor [Sλl

: M ]. The matrix:

D := ([Sλl

: M ])
λ∈Πl(n),M∈Irr(Hs

l
n (η)

is the decomposition matrix.

4.2. Parametrizing the simple modules. The study of the parametrization of the simple modules for
Ariki-Koike algebras have a long story and there are different way to solve this. We here use the concept of
basic sets, notion that we quickly recall. There exists a natural pre-ordrer ≺

s
l on the set of l-partitions (see

[4]). Then by [4], it can be shown that there exists a subset Φs
l

(n) ⊂ Πl(n) and a bijective map

F : Irr(Hs
l

n (η)) → Φs
l

(n)

such that for all M ∈ Irr(Hs
l

n (η)) we have

[SF(M) : M ] = 1 and [Sµ : Mi] 6= 1 only if µ ≺
s
l F(M)

The set Φs
l

(n) thus gives a natural indexation for the set of simple modules. These l-partitions are known
as Uglov l-partitions. If sl ∈ Al

e, then they are known as FLOTW l-partitions and they have an easy non
recursive definition. This is not the case in general. However, one can go from one parametrization to
another thanks to an easy algorithm that we will describe later.

4.3. Uglov l-partitions. Let us give a quick definition of the set of Uglov l-partitions. For two nodes, we
write γ <(sl,e) γ

′ if we have b− a+ sc < b′ − a′ + sc′ or if b− a+ sc = b′ − a′ + sc′ and c < c′.

Let λl be an l-partition. We can consider its set of addable and removable i-nodes. Let wi(λ
l) be the

word obtained first by writing the addable and removable i-nodes of λl in increasing order with respect to
≺(e,sl) next by encoding each addable i-node by the letter A and each removable i-node by the letter R.

Write w̃i(λ
l, sl) = ApRq for the word derived from wi by deleting as many subwords of type RA as possible.

wi(λ
l, sl) is called the i-signature of (λl, sl) and w̃i(λ

l) the reduced i-signature of (λl, sl) . The addable

i-nodes in w̃i(λ
l, sl) are called the normal addable i-nodes. The removable i-nodes in w̃i(λ

l, sl) are called the

normal removable i-nodes. If p > 0, let γ be the rightmost addable i-node in w̃i(λ
l, sl). The node γ is called

the good addable i-node. If q > 0, the leftmost removable i-node in w̃i(λ
l, sl) is called the good removable

i-node. Note that this notion depends on the order ≺e,sl and thus on the choice of s ∈ Zl.
The set of Uglov l-partitions is defined recursively as follows.

• We have ∅ := (∅, ∅, . . . , ∅) ∈ Φs
l

.

• If λl ∈ Φs
l

with λl 6= ∅, there exist i ∈ {0, . . . , e− 1} and a good removable i-node γ such that if

we remove γ from λl, the resulting l-partition is in Φs
l

. We then denote f̃i.λ
l = µl, or equivalently

ẽi.µ
l = λl

4.4. Affine symmetric groups. Let S̃r be the affine symmetric group. This is the Coxeter group with a
presentation by

(1) generators : σi, i = 0, . . . , r − 1,
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(2) relations, for all indices i and j (which are read modulo e):

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi (if i− j 6 1 + rZ)

σ2
i = 1

The extended affine symmetric group Ŝr is the semi-direct product S̃r ⋊ 〈τ〉 where 〈τ〉 ≃ Z where the

product is defined by the relation τσi = σi+1τ . Then then Ŝr, is generated by τ and the σi for i = 1, . . . , r−1.
We will now consider two types of action:

(1) We have that Ŝe, acts faithfully on Ze (at the left) as follows: for any se = (s0, . . . , se−1) ∈ Ze, we
have that

σc.se = (s0, . . . , sc−1, sc, . . . , se−1) for c = 1, . . . , l− 1 and
τ.se = (se−1 + l, s0, . . . , se−2)

Note that we have

σ0.s = (se−1 + l, s1, . . . , se−2, s0 − l)

(2) We have that Ŝl acts faithfully on Z
l (at the left) as follows: for any sl = (s0, . . . , sl−1) ∈ Z

l, we
have that

sl.σc = (s0, . . . , sc−1, sc, . . . , sl) for c = 1, . . . , l − 1 and
sl.τ = (s1, . . . , sl−1, s0 + e)

Note that we have

sl.σ0 = (se−1 − e, s1, . . . , sl−2, s0 + e)

If sl and s′
l
are in the same orbit modulo the action of Ŝl, then the Ariki-Koike algebras Hs

l

n (η) and

Hs
′l

n (η) are isomorphic. This induces a bijection:

Ψs
l→s

′l

: Φs
l

→ Φs
′l

.

In fact, this bijection is the restriction of a bijection:

Ψs
l→s

′l

: Πl → Πl

which has been described in [6] and may be described just by describing two types of bijections :

Ψs
l→s

l.τ and Ψs
l→s

l.σi

Proposition 4.1 (J-Lecouvey [7]). For all sl = (s0, . . . , sl−1) ∈ Zl and λl ∈ Φs
l

we have

Ψs
l→s

l.τ (λl) = (λ1, . . . , λl−1, λ0).

Now assume that i ∈ {1, . . . , l − 1}, then we will describe Ψs
l→s

l.σi . We have

Ψs
l→s

l.σi(λ) = (λ0, . . . , λ̃i, λ̃i−1, . . . , λl−1)

and we explain now how one can obtain (λ̃i, λ̃i−1) from (λi−1, λi). To do this, consider te symbol associated

with λl:

(X0, . . . , Xl−1)

The description of the bijections essentially rests on the following basic procedure on the pair (Xi−1, Xi).
Let Xi−1 = [x1, . . . , xr] and Xi = [y1, . . . , ys] . We compute from (Xi−1, Xi) a new pair (X ′

i−1, X
′
i) with

X ′′
i = [x′

1, . . . , x
′
r] and X ′

i−1 = [y′1, . . . , y
′
s] of such sequences by applying the following algorithm :

• Assume r ≥ s. We associate to y1 the integer xi1 ∈ Xi−1 such that

(4.1) xi1 =

{
max{x ∈ Xi | y1 ≥ x} if y1 ≥ x1

xr otherwise
.

We repeat the same procedure to the ordered pair (Xi−1 \ {xi1}, Xi \ {y1}). By induction this yields
a subset {xi1 , . . . , xis} ⊂ Xi−1. Then we define X ′

i−1 as the increasing reordering {xi1 , . . . , xis} and
X ′

i as the increasing reordering of Xi−1 \ {xi1 , . . . , xis} ⊔Xi.
11



• Assume r < s. We associate to x1 the integer yi1 ∈ Xi such that

(4.2) yi1 =

{
min{y ∈ Xi+1 | x1 ≤ y} if x1 ≤ ys
y1 otherwise

.

We repeat the same procedure to the ordered sequences Xi−1 \ {x1} and Xi \ {yi1} and obtain a
subset {yi1 , . . . , yir} ⊂ Xi. Then we define X ′

i as the increasing reordering {yi1 , . . . , yir} and X ′
i−1

as the increasing reordering of Xi \ {yi1 , . . . , yir} ⊔ U.

Proposition 4.2 (J-Lecouvey [7]). Under the above notation, if λl ∈ Φs
l

, then we have µl = Ψs
l→s

l.σi(λl)
where the el-symbol of µl is (X0, . . . , X

′
i, X

′
i−1, . . . , Xl−1).

4.5. Blocks. By definition, two l-partitions λl and µl lie in the same ordinary block if there exists a sequence
(M1, . . . ,Mr) of simple FHs

n(η)-modules and a sequence of l-partitions (λ[1], . . . ,λ[r + 1]) with λ[1] = λl,
λ[r + 1] = µl and for all i ∈ {1, . . . , r}, we have [Sλ[i] : Mi] 6= 0 and [Sλ[i+1] : Mi] 6= 0. The ordinary blocks
are the thus equivalence classes under the above equivalence class. Thus, we have a partition of the set of
l-partitions by the ordinary blocks:

Πl(n) = B1 ⊔ . . . ⊔ Br.

Similarly, we have a notion of modular blocks : two l-partitions in Φs
l

(n) are in the same ordinary block if

and only there exist a sequence of (M1, . . . ,Mr) of simple Hs

n(η)-modules with F(M1) = λl and F(Mr) = µl

and a sequence of l-partitions (λ[1], . . . ,λ[r + 1]) λ[1] = λl, λ[r + 1] = µl such that we have [Sλ[i] : Mi] 6= 0
and [Sλ[i+1] : Mi] 6= 0. Hence a block may be think as a couple (B,B) where B is a set of l-partitions and
B is a set of Uglov l-partitions. We have B ⊂ B. So the datum of the ordinary block suffices to obtain the
modular blocks. We will now see in details how one can describe these blocks. The following is the main
Theorem of [7].

Theorem 4.3. Let sl ∈ Al
e then Two l-partitions λl and µl are in the same block if and only if they have

the same e-core. Moreover, all the l-partitions in the same block have the same weight which is thus called
the weight of the block.

This theorem shows that one can also parameterize a block with its core and its weight. A block thus
may be denoted B(se, w) where se ∈ Ze[m] denotes the e-core multicharge. We write

B(se, w) = (B,B)

if B is the associated ordinary block and B is the associated modular block.

Example 4.4. Assume that l = 2, s = (−1, 1) and e = 4. Thanks to [8], one can compute the associated
decomposition matrix. It is given as follows:

Φ(0,1)(4) = {(∅, (4)), ((1), (2, 1)), ((1, 1), (1, 1)), ((1), (3)), ((1, 1), (2)), ((2), (1, 1)),

((2), (2)), ((2, 1), (1)), ((2, 1, 1), ∅), ((2, 2), ∅), ((3), (1)), ((3, 1), ∅), ((4), ∅)}.
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((4), ∅)
(((3), (1))
(∅, (4))
((3, 1), ∅)
(((2), (2))
((2, 2), ∅)
((1), (3))
((2, 1), (1))
((2, 1, 1), ∅)
((2), (1, 1))
((1, 1), (2))
((1), (2, 1))
((1, 1), (1, 1))
(∅, (3, 1))

((1, 1, 1), (1))
(∅, (2, 2))

((1, 1, 1, 1), ∅)
(∅, (2, 1, 1))
((1), (1, 1, 1))
(∅, (1, 1, 1, 1))




1 . . . . . . . . . . . .
. 1 . . . . . . . . . . .
. . 1 . . . . . . . . . .
1 . . 1 . . . . . . . . .
. 1 . . 1 . . . . . . . .
. . . . . 1 . . . . . . .
1 . 1 . . . 1 . . . . . .
. . . . . . . 1 . . . . .
. . . 1 . . . . 1 . . . .
. . . . . . . . . 1 . . .
1 . . 1 . . 1 . . . 1 . .
. . . . . . . . . . . 1 .
. . . . . 1 . . . . . . 1
. . 1 . . . 1 . . . . . .
. . . 1 . . . . 1 . 1 . .
. . . . 1 . . . . . . . .
. . . . . . . . 1 . . . .
. . . . . . 1 . . . 1 . .
. . . . . . . . . . . . 1
. . . . . . . . . . 1 . .




We see that we have the following ordinary blocks:

B1 = {((4), ∅), (3, 1), ∅), ((1), (3)), ((1, 1), (2)), ((2, 1, 1), ∅), ((1, 1, 1), (1)), ((1, 1, 1, 1), ∅), (∅, (2, 1, 1))

, (∅, (1, 1, 1, 1), (∅, (4))), (∅, (3, 1))}

B2 = {((3), (1)), ((2), (2)), (∅, (2, 2))}

B3 = {((2, 2), ∅), ((1, 1), (1, 1)), ((1), (1, 1, 1))}

B4 = {((1), (2, 1)))}

and thus the following modular blocks :

B1 = {((4), ∅), ((3, 1), ∅), ((1), (3)), ((1, 1), (2)), ((2, 1, 1), ∅)(∅, (4)))}

B2 = {((3), (1)), ((2), (2))}

B3 = {((2, 2), ∅), ((1, 1), (1, 1))}

B4 = {((1), (2, 1)))}

One can check that:

B((1, 0, 0, 0), 2)) = (B1,B1), B((0, 1, 1,−1), 1) = (B2,B2),

B((2, 1,−1,−1), 1)) = (B3,B3), B((2, 0, 1,−1), 0) = (B4,B4),

5. Action of the affine Weyl group on blocks

We now see how the affine symmetric group acts on the set of blocks and develop this action thanks to
our parametrization of blocks.

5.1. Action on the set of e-cores. Assume that sl ∈ Zl[m]. There is an action of Ŝe on the sets of blocks

{B(se, w) | se ∈ Z
e[m], w ∈ N}

Let se ∈ Ze[m], then we define:

σ.B(se, w) = B(σ.se, w)

We obtain an action on the set of blocks. In the two following section, we see how one can give two actions
on the set of partitions and on the set of l-partitions which are compatible with this action.
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5.2. Action on ordinary blocks. Let λl ∈ Πl(n). Let j ∈ {0, 1 . . . , e− 1}. Let

{γ1, . . . , γk},

be the set of addable j-nodes of λl. Let

{η1, . . . , ηs},

be the set of removable j-nodes of λl. Then we define

σi.λ
l := µl,

where

[µl] = [λl] ∪ {γ1, . . . , γk}} \ {η1, . . . , ηs}.

One can easily perform the computation using the abacus configuration. Let us consider the e-symbol
Xse(λe) = (X0, . . . , Xe−1).

(1) if 1 ≤ i ≤ e− 1. Then we have

Xσi.se(µe) = (X0, . . . , Xi, Xi−1, . . . , Xe−1)

(2) if i = 0 then we have:

Xσi.se(µe) = (Xe−1[l], . . . , X1, . . . , Xe−2, . . . , X0[−l])

5.3. Action on modular blocks. We now give an action of the set of Uglov l-partitions Φs
l

. This is given

as follows. Let λl ∈ Φs
l

. We give the definition of σi ⋆ λ
l. We set :

εi(λ
l) = max(i ≥ 0, f̃k

i .λ
l 6= 0),

ϕi(λ
l) = max(i ≥ 0, ẽki .λ

l 6= 0).

Then we set

σi ⋆ λ
l =

{
ẽ
ϕ(λl)−ε(λl)
i λl if ϕ(λl) ≥ ε(λl),

f̃
ε(λl)−ϕ(λl)
i λl if ϕ(λl) ≤ ε(λl).

Contrary to the above case, it is not easy to see that the action is well defined and this comes in fact from
a general result proved by Kashiwara [11].

Consider the reduced i-signature of λl.

A . . .A︸ ︷︷ ︸
εi(λl)

R . . . R︸ ︷︷ ︸
ϕi(λl)

There exists m ∈ N such that the number of black beads in runner i−1 is equal to εi(λ
l)+m and the number

of black beads in runner i is equal to ϕi(λ
l) +m (the number m corresponds to the number of occurrences

“RA” we need to remove to reach the reduced signature from the signature). If we look at the i-signature

of σi ⋆ λ
l, we now have:

A . . .A︸ ︷︷ ︸
ϕi(λl)

R . . . R︸ ︷︷ ︸
εi(λl)

and the number of black beads in runner i− 1 is ϕi(λ
l) +m where as the number of black beads in runner

i is εi(λ
l) +m. We conclude that

σi(B,B) = (σi.B, σi ⋆B)

It is important to note that the above action is not the restriction of the action on partitions to the
set of Uglov l-partitions, this is not even true for the set of e-regular partitions ! We see in the action
on the partition that an e-regular partition is not necessarily sent to an e-regular partition (for example

σ2(3, 2, 1, 1) = (2, 2, 2, 1, 1) for p = 3). However, if λl is an Uglov l-partition then σi ⋆ λ
l and σi(λ

l) have
the same size. Thus, the weight of the two partitions are the same and this implies that the action on Uglov
l-partitions also preserves the weight.
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5.4. Chuang-Rouquier equivalences. The above action has an interpretation in terms of the determina-
tion of blocks. In [3], Chuang and Rouquier have shown that the action of the affine symmetric group on the
set of ordinary blocks induces an equivalence of derived categories between these blocks. This equivalence is
even a Morita equivalence in some cases: Assume that we have

B(se, w) = (B,B)

then we say that B(se, w) is an i-Scopes block if for all µl ∈ B, µl admits no addable i-nodes. If B(se, w)
is an i-Scopes block then B(se, w) and σiB(se, w) are Morita-equivalent. The following result is an easy
extension of what happens in the case l = 1. Such result has been already studied by Lyle [9], Webster [17]
and recently by Li and Tan [14] but without our notion of generalized core.

Proposition 5.1. Let se = (s0, . . . , se−1) ∈ Ze[m]. Let 0 ≤ i ≤ e− 1 . Denote B(se, w) = (B,B) a block of
our Ariki-Koike algebra. The following assertions are equivalent.

(1) For all µl ∈ B, µl admits no addable i-nodes.
(2) We have

si − si−1 ≥

{
w if i = 1, . . . , p− 1

w + e if i = 0

Proof. Assume that se = (s0, . . . , se−1) satisfies the conditions in (2). Assume for example that si−si−1 ≥ w.
If µl is in B, then the e-abacus of µl is obtained from the associated to se by doing w elementary moves.
Because of the above condition, this implies that in this abacus, if we have a bead in runner i − 1 then we
must have one in runner i. As a consequence, we do not have any addable i-node in µl. If s0− se−1 ≥ w+ e,
this is the same proof.

Assume now that si − si−1 < w then in λl, one can perform e elementary moves in the runner i− 1 with
the rightmost bead. We see that the resulting partition must have an addable i-node.

�

Remark 5.2. Assume that B satisfies one of the above property . Let B be the associated modular block.
Let λl ∈ B then λl has no removable i-nodes. So we have σi ⋆ λ = σiλ.

5.5. Explicit description. One of the main result of this paper is to give an interpretation of the action
on the modular blocks via the level-rank duality. In fact, such an interpretation has already been given in
[12] in the case l > 1 using the crystal basis theory (and for i 6= 0). Here, we give a purely combinatorial

proof which is also available for l = 1 and i = 0. We will use the following notation, for an l-partition λl

and se ∈ Ze, we set λ∗ = (λl−1, λ0, . . . , λl−2) and s∗e = (se−1 + l, s0, . . . , se−2).

Proposition 5.3. Assume that 0 ≤ i ≤ e − 1. Let λ ∈ Π and let

τ l(λ) = (λl, sl), τe(λ) = (λe, se)

Assume that λl is an Uglov l-partition. For i = 1, . . . , e− 1, we have:

(τ l)−1(σi ⋆ λ
l) = τ−1

e (Ψse→se.σi(λe))

For i = 0, we have: (
(τ l)−1(σ0 ⋆ λ

l
)
)∗ = τ−1

e (Ψs
∗

e→((se).σ1)
∗

((λe)
∗)

Proof. Let
Xl := (X0, . . . , Xl−1)

be the l-symbol associated to (λl, sl), and consider the e-symbol associated to (λe, se):

Y = (Y0, . . . , Ye−1).

Recall that one can go from one abacus to the other thanks to the procedure described in §3.2.
Assume that 0 ≤ i ≤ e− 1. We want to compute σi ⋆ λ

l. So we need to look at the set of removable and
addable i-nodes of λl. In Xl, the removable i-nodes correspond to elements α ∈ Xk (for all 0 ≤ k ≤ l − 1)
such that α ≡ i + eZ and α − 1 /∈ Xk. The addable i-nodes corresponds to elements α ∈ Xk (for all
0 ≤ k ≤ e− 1) such that α+ 1 ≡ i+ eZ and α+ 1 /∈ Xk.

Thus, one can also determine the addable and removable i-nodes of λ in Y .
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• If i 6= 0, the removable i-nodes correspond to elements in α ∈ Xi such that α /∈ Xi−1, the addable
i-nodes correspond to the elements α ∈ Xi−1 such that α /∈ Xi.

• If i = 0, the removable i-nodes correspond to elements in α ∈ X0 such that α − e /∈ Xe−1, the
addable i-nodes correspond to the elements α ∈ Xe−1 such that α+ e /∈ X0. I

Set se := (t1, . . . , te−1). Assume that i 6= 0. Because both the action of σi and Ψse→se.σi are involutive,
one can assume that ti−1 ≤ ti. This means that we have more removable i-nodes than addable. We perform
the algorithm for the computation of Ψse→se.σi(λe). In the associated e-symbol, we consider the couple

(Xi−1, Xi). Take the i-signature wi(λ
l, sl) and read it from left to right. Then one may easily obtain the

i-signature of (τ l)−1 ◦ τe(Ψ
se→se.σi(λe)) from wi(λ

l, sl) by applying our algorithm. In this way, one can
define pairs between some of the letters R and A exactly as in the algorithm. We will say that a letter R or
A is a marked if it is in pair with another letter. Let us first assume that there are now occurence of type
RA in this word so that the i-signature is equal to the reduced i-signature:

A . . .A︸ ︷︷ ︸
εi(λl)

R . . . R︸ ︷︷ ︸
ϕi(λl)

We here have ϕi(λ
l) ≥ εi(λ

l). So by our algorithm for computing the bijections, the nodes associated to

the letters A are in pairs with the nodes associated to the εi(λ
l) rightmost R. Then, if we want to compute

Ψse→se.σi(λe), we need to change the nodes that are not associated with any pairs from removable to addable
nodes. The resulting signature is:

A . . .A︸ ︷︷ ︸
ϕi(λl)

R . . . R︸ ︷︷ ︸
εi(λl)

which is what we wanted. Now, assume that we have an occurence of type RA in the i-signature. We see
that the associated letters are marked and that, moreover the other letters in the i-signature are marked if
and only if they are marked in the reduced signature. This suffices to conclude by induction on the number
of occurences RA. In the case i = 0, we keep exactly the same reasoning.

�

6. Orbits of blocks

At the moment, all the main result for the symmetric groups seem to be generalized in the case of Ariki-
Koike algebras. However, this is not really the case. When l = 1, the action is transitive. When l > 1,
this is no more the case. This explain the result found in [13] that two blocks of the same weight are non
necessarily derived equivalent.

6.1. Orbits of blocks. We already know that the action of the affine symmetric group preserves the weight.

So one may assume that B(se, w) = (B,B) and B(s′e, w) are two blocks. We write sl and s′
l
for the assoiated

two l-multicharges, that is the l-multicharge such that for λl ∈ B we have τ l(λl, sl) = τe(∅; se) and the same
for s′e.

First assume that se and s′e are in the same orbit modulo the action of the affine symmetric group. For all
i = 0, . . . , l−1, we have that the l-multicharge associated to σi.(se) is se so the two l-multicharges associated
to se and s′e are the same.

Reciprocally, assume that se and s′e are such that the two multicharges associated to se and s′e are the
same. If we look at the l-abacus of se, the action of the affine symmetric group only consists in exchanging
the beads in the column numbered with c with the one number with c + 1 where c ≡ i + eZ. Looking at
these abaci, we consider the infinite sequences given by the number of black beads in each column from left
to right . There exists σ and σ′ such that the sequences associated to σ.se and σ′.se are both decreasing
sequences. As the associated l-multicharges are the same, the associated l-multipartitions must be the same,
this implies that σ.se = σ′.se and thus that se and s′e are in the same orbit. So we may conclude:

Proposition 6.1. B(se, w) and B(s′e, w) are in the same orbit if and only if the associated l-multicharges
of se and s′e are the same

So now, it is a natural question to ask which types of l-multicharges appear in the above proposition.
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6.2. Orbits. Assume that we get a multicharge sl ∈ Al
e[m], we want to classify the orbits under the action

of the affine symmetric group on the set of blocks for the Ariki-Koike algebras associated with this l-

multicharge. Assume tat B(se, w) and B(s′e, w
′) are two blocks of the Ariki-Koike algebra Hs

l

n (η)). If

B(se, w) and B(s′e, w
′) are in the same orbit then we must have w = w′. In addition, if (λ, sl) and (λ′, s′l)

are the associated e-core l-partitions, we must have sl = s′
l
.

Reciprocally, Assume that (λl, sl) is an e-core l-partition. Then there exists σ ∈ S̃e such that σ.λl = ∅.

This implies that, under the above notation, if w = w′ and sl = s′
l
, then B(se, w) and B(s′e, w

′) are in the
same orbit.

So now, our aim is to find all the multicharge s′
l
such that (λl, s′

l
) appears as a e-core for this Ariki-

Koike algebra, for all n ≥ 0. More precisely, There is a multicharge s′
l
and an l-partition λl such that

(τ l)−1(λl, sl) = (τe)
−1(∅, se). We want to classify these multicharges s′

l
We claim that this is exacly:

A
l

e[m]

First, by [7, Prop. 2.11], we know that we indeed have s′
l ∈ A

l

e[m]. Now assume that we get sl =

(s0, . . . , sl−1) in A
l

e[m]. We denote s′
l
= (s0, . . . , sl−1).

To do this, we start with the empty l-partition together with the multicharge sl. We need to show that

there exists λl such that the l-multicharge associated to the e-core multicharge of (λl, sl) is s′
l
. To do this,

we argue algorithmically. First, we start with the l-abacus of (∅, sl) and we move black beads in this abacus
to obtain the desired abacus using the following algorithm. We start to study the runner l−1: If sl−1 = s′l−1,
then we consider runner l − 2 and so on. If sl−1 < s′l−1, Let j be maximal such that sj > s′j and sj−1 6= sj
(recall that

∑
0≤i≤l−1 si =

∑
0≤i≤l−1 s

′
i = m). we move the rightmost black bead in runner j to a position

sl−1 + 1. Then, we continue this process changing sl with the (s0, . . . , sj − 1, . . . , sl−1 + 1).
Assume that sl−1 > s′l−1 then there exists k such that sl−1 = sl−1 = . . . = sk > sk−1. Note that sk > s′k.

Moreover, there exists j such that sj < s′j . We choose sj maximal for this property. Then we move the
rightmost black bead of runner k to the position sj+1+e. We then continue this process bu considering the
l-partition (s0, . . . , sj+1, . . . , sl−1+1). At the end, by construction, the l-partition has the desired property.

Here is an example: let l = 5 and e = 7, we take sl = ((−3,−1, 0, 0, 4) and sl
′
= (−2,−2, 0, 1, 3). We

start with the l-abacus of (∅, sl):

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .. . .

The algorithm then gives the following abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .. . .

The new multicharge is sl = ((−3,−1, 0, 1, 3)
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109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .

. . .

. . .

. . .. . .. . .

The new multicharge is sl = (−2,−2, 0, 1, 3), as desired.
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