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tA multibody meshfree strategy for the simulation of

highly deformable granular materials

Guilhem Mollon*,†

Univ Lyon, INSA Lyon, CNRS, LaMCoS, F-69621 cedex, Villeurbanne, France

In this paper, a multibody meshfree framework is proposed for the simulation of granular materials under-
going deformations at the grain scale. This framework is based on an implicit solving of the mechanical 
problem based on a weak form written on the domain defined by all the grains composing the granular sam-
ple. Several technical choices, related to the displacement field interpolation, to the contact modelling, and to 
the integration scheme used to solve the dynamic equations, are explained in details. A first implementation 
is proposed, under the acronym Multibody ELement-free Open code for DYnamic simulation (MELODY), 
and is made available for free download. Two numerical examples are provided to show the 
convergence and the capability of the method. 
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1. INTRODUCTION

Granular matter represents a particular class of materials of important interest in a large number of

industrial fields: civil engineering, food industry, pharmaceutical engineering and powder industries

(chemistry, cosmetics, etc.) among others. It is also pivotal in several scientific fields and across

several scales (e.g. geophysics, geomechanics or tribology). When it comes to simulation, two main

approaches are commonly used: continuous and discrete modelling.

-Continuous modelling [1, 2] consists in considering the granular matter as a continuum, with

appropriate mass and momentum conservation laws, and in assigning to this continuum a constitu-

tive model in order for it to reproduce some experimental observations. An appropriate numerical

method such as finite element method (FEM) or finite differences method is then used to solve the

set of partial differential equations so-obtained. This approach presents several advantages: it is sim-

ple to operate; its computational cost remains modest; and the choice of the constitutive law and

of its parameters provides an appreciable freedom to the modeller. In most cases, however, a given

constitutive law fails to cover the whole set of situations that a granular material may encounter

(dense solid-like behaviour in cohesive or cohesionless conditions, dense liquid-like flow, collisional

gas-like behaviour, etc.). Such modelling is hence limited to a given purpose for which enough

experience has been gained and is generally applied in an engineering framework.

-Discrete modelling operates at a smaller scale and consists in predicting the motion of each grain

as a rigid body. This motion is computed by a simple application of the laws of motion, based on the

body forces applied to each grain and on those that appear between contacting grains. Appropriate

resolution schemes, either explicit [3] or implicit [4], are then used to solve this set of stiff differ-

ential equations. Discrete modelling is very intuitive but, for reasons related to computational cost,
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it is usually restricted to limited numbers of grains (i.e. rarely more than a few tens of thousands),

and is a bit less used for engineering applications than continuous modelling. Its use in fundamen-

tal research, however, has made it possible in recent years to gain a much better understanding of

the granular behaviours across the scales [5–7] and in very various conditions [8–10]. Indeed, this

approach is more general than the continuous one because it does not rely on any assumption on

the macroscopic behaviour of the material, which is entirely controlled by the choices made by the

modeller at the grain scale (contact laws and grain shapes).

The success of discrete modelling is related to the fact that, on a macroscopic level, it seems

realistic to assume that most of the deformations are related to relative motions of the grains rather

than to their individual deformations. In this paper, however, we wish to present a numerical frame-

work that makes it possible to take benefit from the main advantages of discrete modelling while

relaxing its main hypothesis. Indeed, in several scientific and industrial applications, assuming that

each grain is an undeformable and unbreakable solid strongly restricts the realism of discrete mod-

elling. If the material composing the grains is brittle (e.g. silicates sands), small deformations of the

grains may be interesting in order to compute their inner stress fields and to predict their possible

breakage [11]. Alternatively, if this material is ductile (e.g. ductile powders, tribological third-body

[12], biological fluids [13], etc.), then the large deformations of each grain might take a part in the

macroscopic deformations that should not be ignored.

The proposed numerical framework to address these questions is a multibody meshfree approach.

It borrows from continuous modelling the idea of user-defined stress–strains relations (albeit at

the grain scale instead of the macroscopic one) but retains the idea of a discrete description of

the material in terms of grains interacting by the means of contacts. In this sense, it shares some

similarities with the multi-particle FEM used in [14–18] to deal with the compression of ductile

powders. The approach proposed hereafter relies on the following technical choices:

- The granular material is composed of a set of individual grains, each of which is delimited by

a closed boundary. The present approach is restricted to two dimensions.

- Each grain is a deformable body, and the displacement field is interpolated on the domain of

each grain using a meshfree description based on a certain number of field nodes with two

degrees of freedom in displacement each.

- Contact forces are computed on the basis of a two-pass node-to-segment formulation, hence

considering the interaction between each field node located on the boundary of a given grain

and the boundaries of the surrounding grains. A smoothed contact element is used, and an

augmented Lagrangian strategy is applied to control the interpenetrations.

- At a given time step, a classical weak-form is considered for the whole problem. Numerical

integration is performed using a Gauss quadrature on a triangular mesh. A Newton–Raphson

scheme is used to account for the nonlinearities related to contacts, large displacements and

possibly material behaviour.

- A stable composite Newmark–Euler scheme is used to solve the dynamic equations.

The remainder of this paper is devoted to the description of these choices. The important ques-

tions related to the appropriate selection of constitutive relations and contact laws in a specified

framework are left for further studies.

2. SHAPE FUNCTIONS AND WEAK FORM

A displacement field is defined on each grain following a meshfree approach analogous to the

classical element-free Galerkin (EFG) method [19]. Despite a slightly larger time cost, this tech-

nique is preferred to finite element interpolation because it provides more robustness under large

deformations, easier adaptive refinement and a smoother representation of the stress fields with a

limited number of nodes [19]. It is thus more appropriate to future evolutions of the code towards

very strong deformations, plasticity localization, grain breakage and fluid coupling, among others.

A thorough comparison between FEM and meshfree interpolations is provided in [20] in a
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Figure 1. Field nodes and domains of influence on a disc, (a) for a node on the boundary and (b) for a node
inside the domain.

multibody framework and clearly demonstrates that the meshfree method leads to a better accuracy

for a given computation time. Indeed, it is more expensive than FEM at a given number of degrees

of freedom but requires much less degrees of freedom to reach a certain level of accuracy. The main

reason is that it postulates continuous stress fields, which is a property that FEM does not share.

In its initial formulation ([19], inspired by [21]), the EFG method was based on moving least-

square (MLS) shape functions, which present nice smoothness characteristics but do not possess

the Kronecker delta property: Based on some prescribed values at some selected field nodes, each

MLS shape function provides an approximation, not an interpolation. This is the reason of well-

documented complications in enforcement of Dirichlet boundary conditions [22, 23]. In the present

work, however, a large number of contacts are expected to be solved, and interpolating shape func-

tions are easier to handle. The so-called ‘maximum entropy’ class of shape functions [24, 25] is able

to exhibit this property in a weak sense (i.e. only on the boundaries), but it is relatively complex

to handle, especially in the case of non-convex bodies. To replace MLS, another relevant candidate

called radial point interpolation method (RPIM) has been proposed in [26]. Like in MLS, RPIM is

based on a set of N field nodes dispatched on the solid, and each field node is assigned a circu-

lar domain of influence with an appropriate radius. In the present study, this radius is chosen for

each node in order to encompass exactly 20 other field nodes (Figure 1). Then, scalar fields may be

expressed as

u
�

EX
�

D
Xn

iD1
Ri

�

EX
�

� ai C
Xm

j D1
pj

�

EX
�

� bj : (1)

In this expression, EX D .x; y/ is the position of the considered point in a 2D Cartesian frame,

Ri

�

EX
�

are radial basis functions (RBF), n is the number of field nodes for which the position EX

belongs to the influence domain, pj

�

EX
�

are monomials and ai and bj are scalar coefficients. Each

RBF Ri

�

EX
�

is only a function of the distance between the current point of coordinates EX and a

given field node of coordinates EXi . Among many different kinds of existing RBF, we use here a

simple Gaussian function:

Ri

�

EX
�

D r .di / D

8

<

:

exp

�

�
�

3d i

Di

�2
�

if di 6 Di and if EX belongs to the solid

0 otherwise

(2)
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The quantity Di is the radius of the domain of influence of node i , and di is the radial distance of

the current point to this node:

di D









EX � EXi









: (3)

The monomials pj

�

EX
�

are taken in the basis
�

1I xI yI x2I y2I xy
�

, and we hence have m D 6. They

are necessary to ensure reproducibility of displacement fields with polynomial precision. A set of n

shape functions
°

ˆ1

�

EX
�

ˆ2

�

EX
�

: : : ˆn

�

EX
�±

is then obtained by applying the following formula:

h

ˆ1

�
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�

ˆ2

�
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�

: : : ˆn

�
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�

ˆnC1

�
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�

: : : ˆnCm

�

EX
�iT

D

�

R0 Pm

PT
m 0

��1

8

<

:

R
�
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�

p
�

EX
�

9

=

;

(4)

With:
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:::
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5
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EX
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�

: : : Rn

�

EX
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(7)

p
�

EX
�

D
�

1 x y x2 y2 xy
�T

; (8)

where ri

�

dj

�

corresponds to the RBF of field node j applied to the position of field node i . Exam-

ples of interpolating shape functions such obtained are provided in Figure 2. The partial derivatives

of the shape functions are obtained by

Figure 2. Shape functions on a disc, for a node on the boundary and a node inside the domain.
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=
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:

(10)
From this point, any displacement field may be written:

Eu
�

EX
�

D

0

@

ux

�

EX
�

uy

�

EX
�

1

A D

0

@

Pn
iD1 ˆi

�

EX
�

� uxi

Pn
iD1 ˆi

�

EX
�

� uyi

1

A ; (11)

where uxi and uyi are the horizontal and vertical displacements of node i .

In order to solve the dynamic equilibrium equations of a set of grains, a weak form is written in

the classical way on the configuration of reference:

find Eu 2 V such that
Z

�

S
�

Eu
�

W e
�

Ew
�

d� �

Z

�

� Ef � Ewd� �

Z

SN

�!
TN � EwdS �

Z

SC

�!
TC � EwdS

D �

Z

�

�
@2 Eu

@t2
� Ewd� �

Z

�

c
@Eu

@t
� Ewd� 8 Ew 2 V0

: (12)

In this expression, V is the Sobolev space of functions that are square-integrable with a square-

integrable first derivative and respect the prescribed Dirichlet boundary conditions, V0 is the same

space but with homogeneous Dirichlet boundary conditions, � is the domain covered by the union

of the grains, SN is the domain of application of Neumann boundary conditions (i.e. external forces,

noted
�!
TN / and SC is the domain of possible contact surfaces (with associated forces noted

�!
TC /.

Ef represents the body forces (e.g. gravity) and � and c are the material unit weight and damping

in the reference configuration. S
�

Eu
�

is the second Piola–Kirchhoff stress tensor associated with

displacement Eu by the means of a chosen constitutive relation, and e
�

Ew
�

is the Green–Lagrange

strain tensor associated with the virtual displacement Ew. For the sake of simplicity, this weak form

implicitly assumes that Neumann boundary conditions do not vary with the configuration (although

they may evolve in time on a user-defined basis). In the current version of the code, a simple Saint

Venant–Kirchhoff constitutive relation is used, which states the proportionality of the

Green–Lagrange and the Piola–Kirchhoff tensors (with a properly defined fourth-order elasticity

tensor A), even in large deformations:

S
�

Eu
�

D A W E
�

Eu
�

: (13)

Both Eu and Ew are expressed in terms of the meshfree shape functions using Equation (11). The

surface integrations of Equation (12) are performed using a Gauss quadrature on a triangular mesh

just as in FEM (Figure 3). A six-point quadrature is used here. This stage often leads scholars to state

that EFG-related methods are not truly meshfree, but this is not an issue in the current framework

because this mesh is only used for integration but does not affect the connectivity of the nodes.

The use of a triangular mesh mapped on the initial positions of the field nodes and of a constant

number of Gauss points per integration cell ensures that the density of the Gauss points is somewhat

proportional to that of the field nodes in any part of the system. Because the spatial rates of variations

of the shape functions are related to this density, such a method ensures at least that the integration

is performed in a consistent manner over the whole system. However, the choice of the proper

fineness of this mesh and of the proper order of integration inside each cell, in relation with the size

of the domains of influence of the field nodes, is an open topic that would deserve a comprehensive

parametric study. This issue is kept for future studies.

5



Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 3. Typical mesh used for integration on the disc of Figures 1 and 2, with six Gauss points per triangle.

The result of these operations is a highly nonlinear system of equations in terms of the nodal

displacements, velocities and accelerations, which has to be linearized for solving. The obtained

tangent system has the general form:

KıU D R: (14)

In this expression, K is a 2N � 2N consistent tangent matrix (which, in a dynamic framework,

will contain elements originating from stiffness in the bulk and at contacts, from mass and from

damping), R is the 2N �1 residual vector (also called ‘unbalanced forces vector’, containing internal

forces, body forces, external forces, contact forces, inertial forces and damping forces), and ıU is

an unknown 2N � 1 vector of displacement increment. Of course, both K and R are dependent

on the nodal displacements, velocities and accelerations at the previous time step, as well as on

the predicted displacements (in the Newton–Raphson sense) at the current time step. N is the total

number of field nodes. Apart from the quantities related to contacts and to dynamic terms, the

expressions of K and R are rather classical in an FEM framework (e.g. [27]), and their detailed

expressions in the proposed meshfree framework are provided in Appendix A.

3. CONTACT MODELLING

If a large number of grains are to be simulated, this numerical framework is expected to be rather

costly in terms of computation time. For this reason, it seems reasonable to try to limit as much

as possible the number of field nodes contained in each particle. In the bulk of each grain, smooth

stress fields are available without using too many field nodes, thanks to the use of meshfree shape

functions. However, difficulties do arise at the boundaries of the grains, where contact conditions

may be difficult to handle if the contours are represented only by linear segments connecting a

small number of field nodes. Important angularities might appear at the boundaries, having two

main consequences: (i) The standard contact element based on linear shape functions on boundary

segments is often found to miss convergence, and (ii) the standard one-pass node-to-segment algo-

rithm, based on a somewhat arbitrary choice of a master and a slave body, is not sufficient to prevent

local interpenetrations.

To solve the first issue, a local regularization of angular sections of the grains boundaries seems

necessary. A simple technique was proposed by Zavarise and De Lorenzis [28], which allowed to

remain in the framework of a classical linear contact shape function. However, a more comprehen-

sive and reliable solution is offered by the smoothed contact elements proposed by Nguyen et al.

[29] and detailed in [30]. This approach is based on a classical 2D node-to-segment contact mod-

6
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Figure 4. Smooth contact element; (a) position of the slave node and of the master segment; (b) Determina-
tion of the closest point and of the normal gap.

elling, into which the boundary of the master body is represented locally by a smooth spline with

a compact support. The first stage is a broad proximity detection, in a manner similar to what is

performed in usual DEM codes: for a given grain, a list of close grains is determined, for example,

using a sweep-and-prune algorithm [31]. Then, for each couple of potentially contacting grains, a

close proximity detection is performed, in a manner similar to common FEM codes. Suppose we

attribute to one grain the role of slave body and to the other the role of master body: This stage

consists in determining for each boundary node of the slave body (i.e. slave node) the potentially

contacting boundary segment of the master body (i.e. master segment). A box-search [32] algorithm

is used here to accelerate this detection. The resulting situation is provided in Figure 4(a) for an

illustrative case: For a given slave node Ps1, the closest master node is Pm1, and the proper master

segment is either ŒPm0Pm1� or ŒPm1Pm2�. Choosing between these two possibilities is straightfor-

ward if classical linear elements are used (it is just a matter of point-to-line distance computation),

but we are using here a different type of contact element, and both segments should be considered

as potential master segments for Ps1. For the sake of clarity, we focus on the segment ŒPm1Pm2�,
keeping in mind that both segments will be checked. The proximity of sharp angles (in points Pm1

and Pm2/ that the slave node may cross during the time step if large slip occurs leads to replace

the segment ŒPm1Pm2� by a spline, more specifically by a cubic Hermite polynomial (Figure 4(b)).

Each point of this spline is defined by a parameter � and has the following coordinates:
²

x .�/ D
P3

iD0 xmi � Ni .�/

y .�/ D
P3

iD0 ymi � Ni .�/
with � 1 6 � 6 1 (15)

The contact shape functions Ni .�/ are given by:
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

N0 .�/ D �
.�2�1/.��1/

16

N1 .�/ D .1��/
2

C
.�2�1/.��1/

8
C

.�2�1/.�C1/

16

N2 .�/ D .1C�/
2

�
.�2�1/.��1/

16
�

.�2�1/.�C1/

8

N3 .�/ D
.�2�1/.�C1/

16

(16)
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Such a spline has two major properties: It is entirely defined by the current positions .xmi ; ymi / of

the four master nodes Pm0, Pm1, Pm2 and Pm3, and it is C1-regular with the neighbouring splines

(defined in the same way) at the two master nodes Pm1 and Pm2 (i.e. at � D �1 and � D 1/.

The so-called closest point Pc , defined on the spline by a parameter �c , is found by minimizing

the distance to the slave node Ps1. A simple Newton–Raphson (NR) scheme is used for this purpose,

because there is no closed-form for this minimization. The scheme starts from an arbitrary value of

� between �1 and 1 (for example �.0/ D 0/ and applies recursively the following formula:

�.iC1/ D �.i/ � r .i/=r 0.i/
: (17)

The residual r .i/ in this scheme is the dot product of the current vector
�����!
Ps1P

.i/
c and a tangent vector

to the spline at P
.i/
c , that is,

r .i/ D
�

x
�

�.i/
�

� xs1

�

� x
0

�

�.i/
�

C
�

y
�

�.i/
�

� ys1

�

� y0

�

�.i/
�

: (18)

The derivation of r 0.i/
is straightforward, as well as the first and second derivatives of the coordinates

x and y:
²

x0 .�/ D
P3

iD0 xmi � N 0
i .�/

y0 .�/ D
P3

iD0 ymi � N 0
i .�/

(19)

²

x00 .�/ D
P3

iD0 xmi � N 00
i .�/

y00 .�/ D
P3

iD0 ymi � N 00
i .�/

(20)

If the final value of �c is outside the interval Œ�1; 1�, it means that the chosen master segment

(ŒPm1Pm2� in our illustrative case) is inadequate and the other one (ŒPm0Pm1�/ should be tested. In

the previous NR scheme, a limited number of iterations are usually necessary to achieve conver-

gence, but it should be pointed out that a very high precision in the determination of �c is desirable

in order to achieve global convergence of the main problem. In the current version of the code,

a target value of 10�16 for the residual r .i/ has been found to ensure global convergence without

slowing too much the computations. When the closest point Pc is obtained, it is straightforward to

compute the current gap g and the normal and tangent vectors at the contact: The tangential vector
�!
tc is obtained by normalizing the vector of coordinates

h

x
0

.�c/ ; y0 .�c/
i

, and the normal vector
�!nc

is obtained by a �=2 rotation of
�!
tc .

In the current version of the code, frictionless contacts without adhesion are considered, and an

augmented Lagrangian strategy is used (e.g. [33, 34]). Hence, the contact force is directed along the

outward normal direction Enc and is expressed by

TC D< �� � k � g > : (21)

In this expression, <> are the Macaulay brackets (only retaining a positive value of their argument),

k is a contact stiffness penalizing interpenetration of the slave and master bodies, g is the computed

gap (negative in case of interpenetration, positive otherwise) and � is a Lagrange multiplier obtained

from a previous stage (negative for repulsive force, positive for attractive force) and taken as a

constant. Because an NR scheme will be used for solving the problem, both a force vector and a

consistent tangent matrix are needed. For a given contact, the elementary versions Rce and K ce

of this vector Rc and this matrix K c will concern seven nodes (Ps0, Ps1, Ps2, Pm0, Pm1, Pm2 and

Pm3/, that is, 14 degrees of freedom. Their expressions are given in [30]:

Rce D TC AsBn (22)

K ce D K c1 C K c2 C K c3 C K c4; (23)

with the expressions of As , Bn, K c1, K c2, K c3 and K c4 provided in Appendix B. These local con-

tributions are added to the contact vector Rc and tangent contact matrix K c of the whole problem

8
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using the usual summation techniques. In a manner similar to classical DEM codes, wall elements

are also used to ensure boundary conditions, and a wall-contact element is developed. Because it is

very similar to that described previously, the details are provided in Appendix C.

As pointed out earlier, because of the possible presence of sharp angles in all grains, the one-

pass node-to-segment is usually not sufficient to prevent large interpenetrations, whatever the choice

of the role attributed to each member of a contacting couple of grains (i.e. master or slave). An

example is provided in Figure 5, for which any distribution of the roles will lead to ignoring some

penetration of a node in a grain. Hence, a two-pass node-to-segment approach is chosen, in order to

restore symmetry and to avoid this kind of situation. Basically, it simply consists in computing Rce

and K ce for all the boundary nodes of all the grains, instead of only doing so if these nodes belong

to slave bodies in relation to a given master body. Hence, in the previous formalism, each node may

successively occupy the position of a slave and of a master node. The two-pass strategy is known to

induce some locking in the NR convergence, but this phenomenon was found to remain moderate

in the present case (even in presence of very large deformations of the grains). In future versions of

the code, modern approaches such as the mortar elements may be used to accelerate convergence.

4. TIME INTEGRATION SCHEME

The time stepping scheme developed to deal with the multibody meshfree problem exposed in the

previous sections is based on a composite implicit dynamic scheme for which NR iterations are

nested in the augmentation loops of the augmented Lagrangian procedure. The very first stage of

this procedure is to compute the mass matrix M and the initial stiffness matrix K i 0 (i.e. tangent

stiffness matrix for zeros deformation) using the meshfree shape functions detailed in Section 2 and

Appendix A. The damping matrix is then computed using the classical Rayleigh approach:

C D ˛M C ˇK i 0; (24)

where ˛ and ˇ respectively control the damping at low and high frequencies and are material depen-

dent. Initial values of field nodes positions, displacements, velocities and accelerations are stored in

2N � 1 vectors X , U , U 0 and U 00. Lagrange multipliers are set to zero for all boundary nodes of

each grain, and a time step �t is chosen.

As explained in [35], the classical Newmark implicit integration scheme with the so-called trape-

zoidal rule is sometimes found to be unstable in the case of strongly non-linear problems for which

dynamic equilibrium is searched at each time step. This is the case in the present study. The back-

ward differential formula (BDF) is not completely appropriate either, because the BDF-1 scheme

is only first-order accurate, and higher-order BDF schemes require a fixed time step (which pre-

vents time-refinement in case of no-convergence of the NR loops). Also, according to Hauret and

Le Tallec [36], the popular Hilber-Hughes-Taylor scheme seems to lose some of its advantages in

highly nonlinear problems.

For these reasons, a reliable scheme, apparently inspired by Bank et al. [37] and detailed in [35]

in a mechanical framework, is used here. It consists in dividing each step �t in two equal sub-steps

�t=2. In the first one, the Newmark trapezoidal rule is applied, while in the second one, a three-

points Euler backward formula is employed. More specifically, let us assume that the displacement
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vector tU , the velocity vector t PU and the acceleration vector t RU are known at a time step t . In the

first sub-step, the following relations hold:

tC�t=2 PU D t PU C
�t

4

�

t RU C tC�t =2 RU
�

(25)

tC�t=2U D tU C
�t

4

�

t PU C tC�t=2 PU
�

(26)

The displacement tC�t=2U at the end of the sub-step is obtained using an NR scheme of the form

of Equation (14), which is detailed later on in this section. Nodal velocities tC�t=2 PU and accelera-

tions tC�t=2 RU are then directly obtained by the application of Equations (25) and (26). The second

sub-step relies on the following relations:

tC�t PU D
1

�t
tU �

4

�t
tC�t=2U C

3

�t
tC�tU (27)

tC�t RU D
1

�t
t PU �

4

�t
tC�t=2 PU C

3

�t
tC�t PU (28)

Again, the final displacement tC�tU is obtained after NR iterations, and the velocities and

accelerations are directly obtained by Equations (27) and (28).

For each of these two sub-steps, the convergence is obtained by applying several NR iterations

nested in augmentation loops. More specifically, starting from known values of U , PU , RU and of

the Lagrange multipliers at all the boundary nodes of each grain, an NR scheme is performed.

In this scheme, the Lagrange multipliers are considered as constant. The dynamic terms used for

the computation of the tangent matrix and of the residual vectors depend on the sub-step and are

provided in Appendix D. When this scheme has converged, the Lagrange multipliers are augmented,

that is, each multiplier � is replaced by � < �� � k � g >. In this expression, k is the contact

stiffness, and g is the gap of the corresponding contact. Then, a new NR scheme is performed,

followed by a new augmentation, and so on. The augmentation loops are stopped when, at a given

augmentation stage, the maximum gap (for which there is contact, i.e., for which � < 0/ in absolute

value is smaller than some prescribed value.

This classical scheme (see [33, 34] for example) ensures a complete control on dynamic equilib-

rium and on interpenetrations between grains, with a larger robustness and ease of implementation

than the strict use of Lagrange multipliers in the tangent system. The price to pay, however, is an

increase of the number of iterations at each time step. This is especially the case if very small gaps

are targeted, because of some convergence locking phenomena related to the two-pass contact algo-

rithm. A good way to accelerate convergence while using relatively large time steps is to use a rather

small value k0 of the contact stiffness k (e.g. of the order of magnitude of the material Young mod-

ulus) but to increase this stiffness by a certain factor ˛k (e.g. equal to 2) at each augmentation loop.

Of course, k should be reset to its initial value k0 at the beginning of each sub-step. This technique

seems to counteract the effect of the two-pass contact algorithm without degrading the robustness.

The whole solver is summarized in the flowchart of Figure 6.

5. EXAMPLES

A prototype version of the code called Multibody ELement-free Open code for DYnamic simulation

(MELODY) was implemented in a MATLAB [38] environment in order to evaluate the convergence

of the NR loops inside an implicit scheme. This implementation is available for download at http://

guilhem.mollon.free.fr. A first example of simulation involves the fall and bouncing of a single

circular grain on a fixed horizontal wall. The material parameters (Young modulus, Poisson coef-

ficient, density, damping coefficients) are set in order for the bouncing to imply a somewhat large
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Figure 6. Main algorithm of the code.

Table I. Parameters of the two numerical examples.

Example 1 Example 2

Number of bodies 1 100
Diameters (mean; standard deviation) (2; 0) (17.6; 3.2)

Young modulus 106 Pa 103 Pa
Poisson coefficient 0.49 0.49

Density 1 000 kg/m3 1 kg/m3

Alpha Rayleigh damping 0.01 0.01
Beta Rayleigh damping 0.1 0.1

Number of nodes 105 9 761
Number of integration cells 172 16 444
Number of Gauss points 1 032 98 664
Shape functions RPIM RPIM
Neighbours in the influence domain 20 20

Penalization factor 108 104

Prescribed residual norm 10�12 10�12

Prescribed maximum gap 10�12 10�6

Time step Variable (Figure 8) 0.2 s
Number of time steps Variable (Figure 8) 1 800
Simulated time 3 s 360 s
Computation time A few minutes Š 3 weeks

The computation times were obtained on a single CPU in a MATLAB
environment.
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Figure 7. Vertical position along time of the upper (A) and lower (B) field nodes of a bouncing disc with
damping and associated velocity fields.

deformation of the grain and a stabilization under gravity after a few oscillations (Table I). Figure 7

shows the velocity field and the deformed shape of the disc at several stages of the simulation, as

well as two curves showing the vertical positions of points A and B, located at the upper and lower

extremities of the grain. The stability of the numerical scheme is further assessed in Figure 8, which

focuses on the vertical motion of point B for t > 2s. This time corresponds to a period for which this

point is supposed to remain still, thanks to the damping applied to the disc material. More specifi-

cally, a target contact gap of 10�12 is chosen, meaning that the vertical position of point B should

remain in this order of magnitude. The composite scheme (Figure 8(d–f)) described in Section 4 is

compared with a classical Newmark scheme with trapezoidal rule (Figure 8(a–c)), with two different

time steps for each integrator. These time steps are chosen in order for the comparison to be fair, that

is, the time step used for the Newmark scheme is half that used for the composite scheme (because

the latter divides each time step in two equal sub-steps). The results clearly show the superiority of

the composite scheme. Figure 8(d) demonstrates that the vertical position of point B remains below

10�12 in absolute value, which is consistent with the chosen target gap. In turn, the vertical veloc-

ity remains lower than 2.10�10, and the vertical acceleration remains lower than 3.10�7, both in

absolute value. This demonstrates an excellent stability of the simulation. In contrast, the classical

Newmark scheme shows some clear signs of instability. In Figure 8(a), it appears that the vertical

position of point B locally exceeds 10�5, meaning a temporary loss of contact. This is related to

strong oscillations of the velocity and acceleration signals (Figure 8(b–c)).

A second example (detailed in Table I) is proposed in order to evaluate the ability of the implicit

scheme to converge in case of large numbers of grains, of large deformations and of dynamic situ-

ations. A sample of 100 grains with sand-like shapes is generated using the ‘Packing2D’ algorithm

(described in [39] and available for download at http://guilhem.mollon.free.fr), and field nodes are

positioned using the meshing tool proposed by Persson and Strand [40]. An average number of 97

field nodes are used in each grain, with a minimum number of 24 for the smallest grain. As described

in [39], the initial sample is generated in a square domain, without any contact between the grains

and with the four surrounding walls. This situation is shown in Figure 9(a). The grains are first

compacted under gravity (Figure 9(b)) and are submitted to uniaxial compression (i.e. the upper

wall moves down, Figure 9(c)). The sample is then submitted to biaxial shearing at constant volume
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Figure 8. Vertical position, velocity and acceleration of node B between t5 and t6, for two different time
steps; (a–c) Newmark trapezoidal rule; (d–f) composite Newmark–Euler integration scheme.

(i.e. the lateral walls are moved horizontally, and the position of the vertical wall is adjusted in order

for the volume of the domain to remain constant, Figure 9(d)). Figure 10 shows the evolution of

the number of boundary nodes in a contact state during simulation. In the gravitational deposition

stage, this proportion goes from 0% to 13% (with some oscillations related to the damping of kinetic

energy), and it reaches about 37% after the uniaxial compression phase. During shearing and relax-

ation stages, the proportion of contacting boundary nodes remains rather constant, between 35% and

40%. During all this simulation, the implicit solver finds convergence with the expected quadratic

rate, despite the strong nonlinearities brought by the large number of contacts, the large displace-

ments and large deformations and the dynamic terms. This excellent robustness is directly related
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Figure 9. Sample of 100 grains submitted to mechanical solicitations. (a) Step 0: initial state; (b) Step 600:
compaction under gravity; (c) Step 900: uniaxial vertical compression; (d) Step 1600: biaxial shearing at

constant volume.

Figure 10. Proportion of boundary nodes in a contact state during the different stages of the simulation.

to the rigorous derivation of a consistent stiffness matrix at each iteration (Appendices A–D), to

the use of an augmented Lagrangian strategy coupled with smooth contact elements and to the sta-

bility of the chosen composite time integrator. The shear stress field obtained at the end of the

compaction phase is provided in Figure 11 and demonstrates the quality of the solution in terms

of smoothness.
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Figure 11. Shear stress at the end of the compaction under gravity (Step 600).

6. CONCLUSION AND PERSPECTIVES

In this paper, a numerical framework has been proposed in order to simulate the behaviour of highly

deformable granular materials. Each grain is considered as a deformable body. The displacement

field on each grain is interpolated by the means of meshfree shape functions, and the interactions of

each body with its neighbours are dealt with using a node-to-segment smooth contact elements with

C1-continuity on the whole grains contours. A classical Newton–Raphson scheme nested in aug-

mentation loops is applied to solve at each time step this nonlinear problem, enforcing prescribed

conditions on the maximum force residual and contact interpenetration. Time integration is per-

formed using a composite Newmark–Euler scheme, ensuring stability while keeping the possibility

to refine the time steps in case of lack of convergence. The framework is applied on two examples

to demonstrate its potential.

As mentioned in the previous section, the current version of the code is developed in a

MATLAB environment, under the acronym MELODY, and is available for free download at

http://guilhem.mollon.free.fr. This prototype version made it possible to demonstrate the feasibility

of the method, and a more efficient implementation in compiled language may now be considered.

The computational cost (Table I) is very high in the prototype version because of the use of an

interpreted language. Future evolutions towards a rewritten version of the code in a compiled lan-

guage, some optimizations of the proximity and contact detections and some relevant parallelization

routines might increase the computational efficiency by a couple of decades.

To the author’s best knowledge, experimental results of the compression and shear of highly

deformable frictionless granular materials with local measurements (e.g. grains kinematics) are not

available in the scientific literature, preventing an experimental validation of the method. It seems

that, at the moment, the only way to validate the code and to quantify its accuracy is to perform a

convergence-in-mesh study (or, more appropriately, a study of the convergence in nodal density).

Also, comparisons may be made with DEM codes in the limit of very rigid grains, and with FEM

codes in the limit of small numbers of grains. This work is kept for future studies.

Besides the issues of computational efficiency and accuracy, a large number of improvements

might be interesting for practical use of the code in a scientific or industrial context:

- The Rayleigh damping currently used is not objective, that is, it is frame dependent. Indeed,

Rayleigh damping is usually used in the context of linear structures and is not adapted to large

displacements because it tends to damp rigid body motions. Hence, an objective formulation

of the damping matrix will have to be performed, with updating of this matrix at each iteration

(e.g. [41]). Failing this, the code is currently restricted to undamped systems, or to quasi-static

situations for which the damping is only used to dissipate kinetic energy.
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- As an alternative to the previous point, a full viscoelastic constitutive model may be consid-

ered. Hyperelasticity with a condition of incompressibility would also be welcome, because

solids subjected to very large deformations often exhibit this behaviour. In the long run, imple-

mentation of plasticity seems necessary, as well as phenomena such as localized deformations

and grain breakage.

- It will be necessary to develop contact elements with tangential forces, including phenomena

such as friction and adhesion, which are pivotal to the proper modelling of granular behaviours.

The spline elements presented in the present study seem to be a good basis for this perspective.

- Multi-physics coupling will be made possible in the proposed framework, involving, for exam-

ple, heat creation and conduction or electrical phenomena. A rigorous fluid–grain coupling is

also considered in order to deal with complex fluids, such as grease and biological fluids.

- A challenging long-term purpose is to extend this code to the 3D case, in order to take

advantage of 3D realistic grains generators developed in previous studies [42, 43]. A full 3D

code will also make it possible to simulate realistic granular situations for which top of the

range measurements was performed, using, for example, the recent progress in X-ray micro-

tomography techniques [44]. This may allow future progress in a better understanding of

granular behaviours in complex situations.

APPENDIX A: UNBALANCED FORCES VECTOR, CONSISTENT TANGENT MATRIX,

AND MASS MATRIX

The consistent tangent matrix used in Equation (14) is the sum of several terms:

K D K i C K c C K dyn: (A.1)

K c is the contribution of the contacts (described in Section 3 and Appendix B), and K dyn is the

contribution of dynamic effects and depends on the chosen integration scheme (Section 4). Hence,

this appendix focuses on the computation of Ki, which is the classical ‘tangent stiffness matrix’

accounting for the constitutive model and for the large deformations and displacements effects in

the body. The computation of the mass matrix M is also covered here. In the same manner, the

whole residual vector is the sum of several terms:

R D Ri C Rf C Rn C Rc C Riner C Rdamp; (A.2)

where Ri corresponds to the internal forces, Rf to the body forces, Rn to the external forces

(Neumann boundary conditions), Rc to the contact forces, Riner to the inertial forces and Rdamp to

the damping forces. The contact forces are dealt with in Section 3 and Appendices B and C, and

the dynamic (inertial and damping) forces are covered in Section 4 and Appendix D. Hence, this

appendix only deals with the terms Ri , Rf and Rn.

As explained in Section 2, a Gauss quadrature integration is used to compute the four surface

integrals of Equation (12). The term
R

�
S

�

Eu
�

W e
�

Ew
�

d� is related to K i and Ri , while the other

surface integrals only require the computation of the mass matrix M . For the computation of K i

and Ri , each Gauss point of the mesh has the following contributions:

K ie D
�

BT
t ABt C G T Bp

�

weJe; (A.3)

Rie D
�

BT
t S

�

weJe; (A.4)

where we is the weight of the Gauss point in the quadrature used for the current triangular element,

and Je is the Jacobian of the affine transform from the reference triangle to the current triangular

element. A is the 3 � 3 elasticity matrix. It is simply a rewriting of the elasticity tensor A, which is

kept constant in the present study because a Saint Venant–Kirchhoff constitutive model is chosen.

S is the second Piola–Kirchhoff stress tensor, given in engineering notation by

S D
�

Sxx; Syy ; Sxy

�T
D AE : (A.5)
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E is the Green–Lagrange strain tensor, obtained in a classical way from the gradient tensor F :

E D

2

4

Exx

Eyy

2Exy

3

5 D
1

2

2

4

F 2
xx C F 2

yx � 1

F 2
yy C F 2

xy � 1

FxxFxy C FyyFyx

3

5 (A.6)

The term G is expressed in the following manner:

G D

2

6

6

4

ˆ1;x 0 ˆie,x 0 ˆne,x 0

ˆ1;y 0 ˆie,y 0 ˆne,y 0
� � � � � �

0 ˆ1;x 0 ˆie,x 0 ˆne,x

0 ˆ1;y 0 ˆie,y 0 ˆne,y

3

7

7

5

(A.7)

In this expression, the partial derivatives of the shape functions at the Gauss point are computed

using Equations (9) and (10), and the index 1 6 ie 6 ne indicates that the only shape functions

considered in the expression are those that contribute to the Gauss point (i.e. those for which the

Gauss point belongs to the domain of influence). The displacements (obtained from the result .i�1/U

of the previous NR iteration) of the nodes associated with these shape functions are stored in the

2ne � 1 column vector:

U e D
�

ux1 uy1 � � � uxie uyie � � � uxne uyne

�T
: (A.8)

We then define a 4 � 1 vector H D GU e D ŒH1H2H3H4�T , and the gradient tensor F is given by

F D

�

H1 C 1 H2

H3 H4 C 1

�

D

�

Fxx Fxy

Fyx Fyy

�

: (A.9)

The matrix Bt is the sum of two terms Be and Bu:

Be D

2

4

ˆ1;x 0 ˆie,x 0 ˆne,x 0

0 ˆ1;y � � � 0 ˆie,y � � � 0 ˆne,y

ˆ1;y ˆ1;x ˆie,y ˆie,x ˆne,y ˆne,x

3

5 (A.10)

Bu D

2

4

H1ˆ1;x H3ˆ1;x H1ˆne,x H3ˆne,x

H2ˆ1;y H4ˆ1;y � � � H2ˆne,y H4ˆne,y

H1ˆ1;y C H2ˆ1;x H3ˆ1;y C H4ˆ1;x H1ˆne,y C H2ˆne,x H3ˆne,y C H4ˆne,x

3

5 :

(A.11)
Finally, the matrix Bp is expressed by

Bp D

2

6

4

Sxxˆ1;x C Sxyˆ1;y 0 Sxxˆne,x C Sxyˆne,y 0
Sxyˆ1;x C Syyˆ1;y 0 : : : Sxyˆne,x C Syyˆne,y 0

0 Sxxˆ1;x C Sxyˆ1;y 0 Sxxˆne,x C Sxyˆne,y

0 Sxxˆ1;x C Sxyˆ1;y 0 Sxxˆne,x C Sxyˆne,y

3

7

5
:

(A.12)

The elementary 2ne � 2ne tangent matrix K ie of the current Gauss point should be added to

the global tangent stiffness matrix K i , at the 2ne appropriate positions of the concerned degrees

of freedom. The same operations should be performed for the elementary 2ne � 1 residual vector

Rie as well in order to construct the global vector of internal forces Ri . Because K i and Ri are

displacement dependent, it is necessary to recompute them at each iteration of the NR solver, which

would imply to compute the first derivatives of the shape functions a tremendous number of times in

a simulation. A good way to speed up the computations is to compute only once the values and first

derivatives of the shape functions
�

ˆie; ˆie,x; ˆie,y

�

16ie6ne
at each Gauss point of the integration

mesh and to store these values in memory. They may then be conveniently called when needed

during simulation and also during post-processing (e.g. stress fields plotting).
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The surface integrations related to the mass matrix M and the body forces Rf are performed on

the same basis, that is, using an elementary mass matrix M e and an elementary body force vector

Rfe for each Gauss point, with

M e D �eweJe

2

6

6

6

6

6

6

4

ˆ1ˆ1 0 : : : ˆ1ˆne 0

0 ˆ1ˆ1 0 ˆ1ˆne

:::
: : :

:::

ˆneˆ1 0 : : : ˆneˆne 0

0 ˆneˆ1 0 ˆneˆne

3

7

7

7

7

7

7

5

(A.13)

Rfe D weJe

�

fx ˆ1 fyˆ1 : : : fxˆne fyˆne

�T
; (A.14)

where �e is the unit weight of the material at the Gauss point, and
�

fx; fy

�

are the components of

the body force density. After assembling, the mass matrix M such obtained is used to compute the

damping matrix C , and both of them are used to compute the dynamic (i.e. inertial and damping)

nodal forces, as explained in Section 4. Finally, the nodal forces Rn related to prescribed Neu-

mann boundary conditions are integrated on the relevant segments of the grain boundaries in the

usual manner.

APPENDIX B: CONTACT FORCES VECTOR AND ASSOCIATED CONSISTENT

TANGENT MATRIX

As derived in Section 3, the contribution of a given slave node to the global force vector concerns

seven nodes (Ps0, Ps1, Ps2, Pm0, Pm1, Pm2 and Pm3/, that is, 14 degrees of freedom. This ordering

is followed in the following equations. The terms used in Equations (22) and (23) are given in [30]

and provided hereafter with minor typos corrected and notations adapted to the present work:

K c1 D �
TC Asg

x02 C y02

h�

nxx
00

C nyy
00

�

D C Bn;�

i

�
h�

nxx
00

C nyy
00

�

D C Bn;�

iT

(B.1)

K c2 D �TC As

h

�Bn;�DT � DBT
n;� �

�

nxx
00

C nyy
00

�

DDT
i

(B.2)

K c3 D kAsBnBT
n (B.3)

K c4 D �0:5TcBn .A0 C A1/T (B.4)

with,

D D
Bt C gBn;�

x02 C y02 � gnxx
00

� gnyy
00

(B.5)

Bn D �
�

0 0 � nx � ny 0 0 nxN0 nyN0 nxN1 nyN1 nxN2 nyN2 nxN3 nyN3

�T

(B.6)

Bt D �
h

00 � x
0

� y
0

0 0 x
0

N0 y
0

N0 x
0

N1 y
0

N1 x0N2 y0N2 x0N3 y0N3

iT

(B.7)

Bn;� D
�

0 0 0 0 0 0 nxN 0
0 nyN 0

0 nxN 0
1 nyN 0

1 nxN 0
2 nyN 0

2 nxN 0
3 nyN 0

3

�T
(B.8)

A0 D
�

t0x t0y � t0x � t0y 0 0 0 0 0 0 0 0 0 0
�T

(B.9)
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A1 D
�

0 0 � t1x � t1y t1x t1y 0 0 0 0 0 0 0 0
�T

(B.10)

The terms
�

nx; ny

�

,
�

t0x; t0y

�

and
�

t1x; t1y

�

are, respectively, the coordinates of the outward nor-

mal vector of the master body
�!nc and of the unit tangent vectors

�!
ts0 and

�!
ts1 linking the slave nodes

(Figure 4(b)). The contact shape functions Ni and their first derivatives N 0
i are evaluated at the con-

tact point Pc , using the local coordinate �c . This is also the case of the first and second derivatives

of the coordinates of Pc , namely,
�

x
0

; y0

�

and
�

x
00

; y00

�

, using Equations (19) and (20). g is the

signed gap, k is the contact stiffness and TC is the contact force given by Equation (21). Finally, As

is the surface onto which the contact force TC is applied and is given by

As D .Ls0 C Ls1/ =2; (B.11)

where Ls0 and Ls1 are the distances between the relevant slave nodes (Figure 4(b)).

APPENDIX C: WALL CONTACT ELEMENT

The wall contact element introduced in this appendix is basically a simplified version of the element

described in Appendix B. It is based on the use of Equations (22) and (23), with

K c1 D K c2 D Œ0�6�6 (C.1)

K c3 D kAsBnBT
n (C.2)

K c4 D �0:5TcBn .A0 C A1/T (C.3)

and

Bn D �
�

0 0 � nx � ny 0 0
�T

(C.4)

A0 D
�

t0x t0y � t0x � t0y 0 0
�T

(C.5)

A1 D
�

0 0 � t1x � t1y t1x t1y

�T
: (C.6)

The six degrees of freedom implied in this element are those of the three slave nodes presented

in Figure 4. The elementary tangent matrix and force vector such obtained are added to the global

tangent system accordingly.

APPENDIX D: DYNAMIC TERMS

As explained in Appendix A, the consistent tangent matrix K and the residual vector R used in the

tangent system of Equation (14) are composed of several terms:

K D K i C K c C K dyn (D.1)

R D Ri C Rf C Rn C Rc C Riner C Rdamp: (D.2)

The terms K i , Ri , Rf and Rn are detailed in Appendix A, and the contact terms K c and Rc

are given in Appendices B and C. The dynamic terms K dyn, Riner and Rdamp are scheme dependent.

Hence, their expressions are different in each of the two sub-steps that are used in the composite

scheme proposed by Bathe [35]. In the first sub-step, when a Newmark trapezoidal rule is used on a

�t=2 interval, the following formulas apply:
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where tC�t=2U .i�1/ is the displacement obtained from the previous NR iteration. However, in the

second sub-step, a Euler backward rule is applied, and the following formulas are used:
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