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Abstract—Through Wall Radar Imaging aims to see through
walls using electromagnetic waves. Low rank and sparse de-
composition methods have been effective in processing returns
in order to distinguish the wall response from the interior
scene. However, they rely on model assumptions that can be
a poor approximation of the actual physics. In the meantime,
data-driven methods based on Deep Learning can provide an
improvement regarding to this limitation. We thus propose a new
unrolled network inspired by Robust PCA and Convolutional
Sparse Coding which proves to be competitive and especially
efficient in scarce data regimes.

Index Terms—Through Wall Radar Imaging, Localization,
RPCA, CSC, Deep Unrolling.

I. INTRODUCTION

Through Wall Radar Imaging (TWRI) [1] is a field of
research aiming at imaging scenes obstructed to the naked eye
by walls using electromagnetic waves penetrative properties. It
may be used in the context of surveillance or monitoring [2].
We focus here on the detection and localization of stationary
targets.

In recent years, methods using the optimization framework
of low rank and sparse decomposition methods, i.e. Robust
PCA (RPCA), have shown their effectiveness on TWRI local-
ization [3], [4]. However, the signal model remains a simplified
approximation of the actual undergoing physics: dispersive
walls, anisotropic targets, clutter, etc., are not considered. With
this in mind, Deep Learning (DL) methods have recently been
successfully used on TWRI [5], [6] by directly learning more
complex models from the data. These models require many
labeled samples in order to extract a meaningful model which
can be limiting in practice.

A possible remedy is to rely on more structured neural net-
work architectures such as unrolled ones, in order to combine
the best of both worlds. Unrolled networks are constructed
by converting a fixed number of iterations of an optimization
algorithm into the layers of a neural network. The first unrolled
network was developed in the case of sparse coding via the
Iterative Shrinkage Thresholding Algorithm (ISTA) algorithm
and coined Learned ISTA (LISTA) [7]. It emphasized the
gain in runtime of obtaining the same sparse codes as the
underlying optimization algorithm.

Subsequently, other works showed the improved perfor-
mance of such unrolling methods by departing from the

original optimization algorithm [8]. They benefit from their
structure by having fewer parameters, better efficiency w.r.t.
data samples and more generalization power than generic
deep networks. Already, works have emerged on Convolutional
Sparse Coding (CSC) [9], [10] and RPCA [11]-[13].

This paper proposes a new unrolled network sourced from
the underlying physical model of TWRI used in RPCA which
we mix with CSC [14]. This bridges the gap between generic
data-driven DL models and optimization methods. It allows
the method to be interpretable and more efficient in using data
samples, which is important in TWRI where measurements are
scarce.

Section II presents the signal model as well as RPCA
and CSC optimization frameworks. Section III presents the
proposed deep unrolling method while Section IV studies its
performance on simulated measurements.

II. RPCA AND CSC MODELS FOR TWRI
A. Frequency model and RPCA methods

A widely used model for 2D TWRI [15] consists of a
stepped-frequency radar acquiring an M frequency signal
(usually in L-band) at N positions (usually a few dozen) along
the wall to penetrate with the displacement axis being parallel
to the wall. The returned signal for the m*" frequency and n‘"
position is expressed as follows:

K
yr(m,n) = Z o) exp (—jwpm ()

k=1
R P
+ZZ () exp(—jwmih)

where P denote the number of targets, K the number of
reverberations in the wall and R the number of multipaths.
Moreover, a&f” and qu;k) stand for the complex overall reflec-
tivity and round-trip delay for the wall returns associated with
the k*" reverberation, while 0,(,) and T‘,E n denote those related
to the pt" target, i*" multipath, and n'" radar position.

We discretize these returns across a grid with dimensions
(N, N,) that cover the scene yielding a dictionary denoted
;. For the i*" multipath scheme and the n'" transceiver
position, the (n,,n.,i)"" column of this dictionary describes

(D



Cross range

A
v

A
o
<
Z
Targef =
&
5

v

Wall
Radar
V=== V=== >V
Fig. 1: Scene description
the return from a point target located at the (n,,n. )" pixel via

the 7** multipath. Its associated delay T(n) n2)m AN in turn be

obtained by geometric considerations [15]. For example, for
the direct path, we may use Snell’s law as the signal undergoes
two refractions through a homogeneous wall (see Figure 1)
whose angle we can retrieve via some root-finding method. To
factorize this into an overall model for all returns, we make
the assumption that both the target and wall reflectivities are
non-dispersive and anisotropic. This gives the data matrix of
radar returns Yy € CM*N as:

Y;=L;+%;(In ®@vec(Ry))) (2)

where ® denotes the Kronecker product. Here:

e Lyc CMX*N  the matrix of front wall returns, which ex-
hibits a low-rank structure since wall returns are invariant
along the displacement axis.

e« Ry € CNeN=xR containing the amplitude of scene
returns across the R multipaths on a grid of size N, x IV,
associated with the dictionary W, € CM*NaN-EN which
contains the expected returns at those positions of point
targets. Ry is sparse due to the presence of few targets.
This sparsity is structured (by row) since all multipaths
represent the same underlying scene and should activate
together.

Then TWRI aims to recover Ry via the measurements Y .

We may tackle this via the RPCA framework [16]:
pon Bl A+ ARl 3
st. Y=L+ ¥(Iy@vec(Ry))
||I-]l,, denotes the nuclear norm, which is the sum of singular
values and is the convex envelope of the rank. ||-||, ; denotes
the 5 ; norm, a structured sparse norm [17] across inultipath.
It may be solved via the Alternating Directions Method of
Multipliers (ADMM), as in [16]. This was extended to handle
heterogeneous noise in a method coined Huber-Kronecker
RPCA (HKRPCA) [4] and to a riemannian framework [18].

B. Image domain and CSC

In the previous section, we showed a matrix dictionary
on the raw frequency signal matrix. Unfortunately, it results

in heavy operations in memory storage as well as computa-
tion time and may not work well with dispersive walls and
anisotropic scattering. We investigate a convolutional method
for lighter computations. This implies working in the image
domain, where targets returns are localized and can be matched
to convolutional kernels. We use the Back-Projection (BP)
method [1, Section 3.5.1] in order to transform the raw data
into an image. The features of the BP image allow us to extract
meaningful and well-grounded representations of the data. We
adopt the CSC framework as the image retains the low rank
and sparse properties of the signal matrix after BP. Our CSC
model on the image Y € RP=*P= resulting from BP on Yy,
may then be written as:

K
min_ pl|L||, + A ) |IRk|
La{Rk}szl ];1 '
X« “4)

s.t.Y:L+Z\I/k*Rk
k=1

where * denotes a convolution. Moreover, {®¥;}£ | is a col-
lection of K convolutional filters and {Ry}£&_, is a collection
of sparse activation maps (the same size as the input BP image
Y) that we aim to retrieve. Along with L, they decompose the
BP image in low rank and sparse components.

In our case, we do not know the filters, so we opt to
learn them. We may achieve this via a kind of convolutional
neural network (CNN). There is in fact a close connection
between CNN and CSC, as evidenced in [19]. Taking this
into account, we will link the aforementioned optimization
method to a deep learning one via the framework known as
deep unrolling [8], which unrolls a fixed number of iterations
of an iterative optimization algorithm and transpose them to
layer of a network.

I1I. DEEP UNROLLING METHODS
A. Source algorithm: a composite PGD for CSC/RPCA

We thus need an iterative optimization method to unroll into
a network. We may rewrite the CSC model (4) as a classical
sparse coding problem in Lagrangian form via vectorization
and the use of a concatenation of Toeplitz matrices denoted
W, which contains shifted replicas of the filters {W}X .
Adding a low rank component L, this gives a mix between
CSC and RPCA:

1
min —[fvec(Y — L) — ¥, vee(Re) 3+ ARy +#lL, )
with R. 2 [Ry,...,Rx]| the concatenation of the K sparse
activation maps. This optimization program may be compacted

using a composite variable [11]:
min f(z) +

where z = [vec(L)”, vec(R.)T]T , K = [I, ¥.] and f(z) =
p|| L, +Al|Rc||; whose proximal [20] is separable in its com-
ponents and thus computable as prox f(z) = [prox,_ ()T,

prox|.; (Re)"]". The gradient of the differentiable part is

1
SlIvee(Y) — Kall; 6)



readily known as K (vec(Y) — Kz). We may then apply a
step of Proximal Gradient Descent (PGD) [20], re-separate the
components of z and return to the original convolutional form,
giving at iteration (n + 1):

LD = prox, (L™ — a(Y LW - 3" @, «R{))
k

R = proxy ., (REY — a({®1} + (Y — LMW = 3" @, «RY))
k

(7

where « is some step-size and we define {¥,} x X £
[Aip(¥q) * X, ..., flip(Px) * X] where flip reverses entries
along both dimensions [9].

B. Proposed network: LCRPCA

We are ready to propose an unrolling of the optimiza-
tion scheme outlined in (7) which we will call Learned
Convolutional Robust PCA (LCRPCA). This is similar in
spirit to Corona [11] which considers unrolling RPCA algo-
rithms. However, we include a genuine dictionary (with several
kernels/filters per dictionary) and stay closer to the source
algorithm (by not decoupling the dictionaries in the L and
R steps). The (n + 1)™ layer of our proposed method is:

L+ — ProX, .|, (L(") + wo (Y—L(")— Z Wg'?k) * R,(Cm))
k

Rgn+1) = pI‘OXMl‘H1 (Rgn) + {W;’Lk)} * (Y—L(n)— Z W;TLIC) * R,(Cn)))
k
®)

where we define {Wo .} * X £ [Wa 1% X,..., Wy g * X].

The filters {Wy ;} are introduced to allow for some more
flexible encoding-decoding structure than Eq. (7) suggests.
This is summed up graphically in Figure 2.

At the end of the network, the image Y is reconstructed
and the detection map R, is obtained via the overall sparse
component on which we apply the sigmoid operator, denoted
o, to get a (soft) binary map. This allows to capture precisely
the shape of the targets via the pattern inscribed in the filters:

Y=L+ ZWM «Ry, Ry= U(Z Wi *Ry) (9
k k

The network will learn on training data the set of filters
{W1 1} and {Wy .} as well as the scalars wq and p, A.

As for all RPCA methods, we aim at finding components L
and R that faithfully reconstruct the data. We do not consider
ground truths for L which would necessitate the empty scene.
Additionally, a crucial point is that we have access to the
ground truth of the scene on the train data, which we leverage
during training to enhance the detection map of the network
outputs.

Thus, the loss £ used during training is a weighted sum
of two components: a reconstruction loss in the form of
an Euclidean distance and a detection loss as seen in [5]

in the form of the Cross-Entropy plus the Dice Coefficient
(also known as Fl-score). It is used to cope with class
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Fig. 2: LCRPCA architecture at [*" layer

imbalance as the target class contains much fewer pixels than
the background one:

HY - YHQF + CE(Rq, Ry)

L(Y,Ry) = 5 p

+ (1 - DC(R4, Ra))
(10)

where CE is the cross-entropy loss and DC is the Dice co-

efficient. Here, (Y, Ry) is the network output while (Y, Rg)

is the reference.

IV. SIMULATION STUDY
A. Setting

The dataset for training is collected via GprMax [21]
simulations. We consider metallic cylinders varying in radius
(5 — 10 cm) in number (1 — 3 targets in one scene) and
in position. We generate 330 different scenes with the same
dispersive wall via the multi-pole Debye model [22]. Indeed,
dispersivity [1, Section 2.2] is a limitation of the model in
Section II which assumes that the target and walls are non-
dispersive [15, Section 3.1]. The data-driven structure of deep
neural networks may be able to alleviate this phenomenon.

Each scene is then added with 10 different draws of
a heterogeneous student-t noise (10 - 30 dB and 2.5-5
d.f). We then have a dataset of 3300 noised returns. The
Train/Validation/Test dataset sizes are respectively 2400,800
and 100. We use a learning rate of 0.001 for 30 epochs and
the Adam optimizer. Finally, we initialize (i.e. we feed the
first layer of the network) with L=Yand Ry = {0}64,

In the following sections, our method LCRPCA is used with
K = 64 filters, 6 layers of size 2x (7x7),2x(5x5),2Xx(3x3)
which implies that filters are not shared across layers. The
maximum rank of the low-rank component is fixed to 5 in
order to use randomized SVD, which stabilizes the gradient
when backpropagating the loss through the proximal of the
nuclear norm. Indeed, it avoids zero or repeated singular values
which make the gradient non-finite. For comparison, we use
HKRPCA and Corona which we adapted to our 2D setup as
well as the method of [5] that relies on a U-Net with attention.

B. Visualization

We show the imaging results where target positions are
highlighted with red circles. In Figure 3, we show on the
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(a) HKRPCA L

(c) LCRPCA L

(b) Corona L

(d) BP-RPCA R (e) HKRPCA R (f) Corona R

(g) U-Net Ry (h) LCRPCA Ry

Fig. 3: Sample results. First row: low rank components.
Second row: sparse components. Third row: detection maps

first row the low rank components L which are supposed to
capture wall returns (the U-Net model does not have a low
rank component and is thus not shown). We see that the one
of HKRPCA (3a) is more complex, with some sprawl on the
side. The one of Corona (3b) has more ghosts while the one of
LCRPCA (3c) is cleaner We then have sparse components on
the second row, which are supposed to capture target returns.
The one resulting of RPCA on the BP image, which is the
input of the DL methods, is in Figure 3d. The one of HKRPCA
may be seen in Figure 3e, where we see some ghosts behind
the true targets. The dispersive wall also has the effect of
defocusing the detection. The sparse component of Corona
(3f) is cleaner but retains a small ghost. Finally, in the last row
(Figures 3g and 3h) we have the detection maps of LCPRCA
and U-Net which are quite similar.

Then, we may look at some components of the network with
the scalars learned in Figure 4. We see how allowing them to
vary can bring adaptivity.

C. Performance comparison

We move on to the quantitative evaluation with Receiver
Operating Characteristic (ROC) and Precision-Recall curves.
The legends are enhanced with the Area Under the Curve
(AUC) of the ROC and the Average Precision (AP). We see
the same ordering of the methods in the two graphs 5 and 6,
with the U-Net followed by LCPRCA then Corona and RPCA
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Fig. 5: ROC (FPR in log scale) with full training data

methods last. We then compute the same metrics but with 10 %
of the training data in Figures 7 and 8. The U-Net performance
backs down to the level of LCRPCA and even falls off at the
tail end of the curves. LCRPCA is better both in AUC and
AP. This highlights the better efficiency of our method under
a restricted training regime which is an interesting property in
our application where data is scarce.

We also show in Table I the Target to Clutter Ratio (TCR)
of the methods. On the first row, we see when the DL methods
are trained on 100% of the data where we see the same
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Kl
(9]
<
a 0.4
—— rpca (AP = 0.22)
Icrpca (AP = 0.97)
021 — unet (AP = 0.97)
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004 — hkrpca (AP = 0.05)
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 6: Precision-Recall with full training data



1.0 A
0.8
]
©
o
@ 0.6
2
E=
wn
&
5 0.4 1
g rpca (AUC = 0.85)
Icrpca (AUC = 0.99)
0.2 —— unet (AUC = 0.90)
57/ — corona (AUC = 0.79)
0.0 1 —— hkrpca (AUC = 0.95)

-14 -12 -10 -8 -6 -4 -2 0
False Positive Rate

Fig. 7: ROC (FPR in log scale) with scarce training data

1.0 1
0.8
c 0.6 1
o
k]
o
o
o 0.4
—— rpca (AP = 0.22)
Icrpca (AP = 0.85)
0-29 — unet (AP = 0.80)
—— corona (AP = 0.07)
004 — hkrpca (AP = 0.05)
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 8: Precision-Recall with scarce training data

TCR (dB) HKR- BP- Co- U-Net LCR-

PCA RPCA rona PCA
full training 18.46 19.52 32.01 41.40 39.93
data

scarce training 18.46 19.52 12.60 33.78 33.64
data

TABLE I: TCR with different trainings

ordering. The next row is with 10% of the data and shows
how LCRPCA and the U-Net get closer. LCRPCA has lost
6dB in TCR while the U-Net has lost 8dB. Corona, the other
DL method generating a low-rank component, totally collapses
with a 20dB loss in TCR. Note that the U-Net has 8,650,474
trainable parameters while LCRPCA has 21, 656.

V. CONCLUSION

This paper presents a deep unrolling of RPCA mixed with
CSC for TWRI localization of targets. It showed competitive
performance, especially under restricted training data. There
remain open questions about handling several unknown walls
as well as cluttered environments, which we may hope to
tackle by extending this method.
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