
HAL Id: hal-04707967
https://hal.science/hal-04707967v2

Preprint submitted on 1 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State-dependent preconditioning for the inner-loop in
Variational Data Assimilation using Machine Learning

Victor Trappler, Arthur Vidard

To cite this version:
Victor Trappler, Arthur Vidard. State-dependent preconditioning for the inner-loop in Variational
Data Assimilation using Machine Learning. 2024. �hal-04707967v2�

https://hal.science/hal-04707967v2
https://hal.archives-ouvertes.fr

State-dependent preconditioning for the inner-loop in Variational Data Assimilation
using Machine Learning

Victor Trappler∗ † ‡ and Arthur Vidard∗

Abstract. Data Assimilation is the process in which we improve the representation of the state of a physical sys-
tem by combining information coming from a numerical model, real-world observations, and some prior
modelling. It is widely used to model and to improve forecast systems in Earth science fields such as
meteorology, oceanography and environmental sciences. One key aspect of Data assimilation is the analysis
step, where the output of the numerical model is adjusted in order to account for the observational data.
In Variational Data Assimilation and under Gaussian assumptions, the analysis step comes down to solv-
ing a high-dimensional non-linear least-square problem. In practice, this minimization involves successive
inversions of large, and possibly ill-conditioned matrices constructed using linearizations of the forward
model. In order to improve the convergence rate of these methods, and thus reduce the computational
burden, preconditioning techniques are often used to get better-conditioned matrices, but require either the
sparsity pattern of the matrix to inverse, or some spectral information. We propose to use Deep Neural
Networks in order to construct a preconditioner. This surrogate is trained using some properties of the
singular value decomposition, and is based on a dataset which can be constructed online to reduce the
storage requirements.

Key words. Variational Data Assimilation, Neural Networks, Preconditioning

Introduction. Numerical models are ubiquitous nowadays as they are used to better understand
and predict complex physical phenomena. In order to improve the accuracy and the predictability
of those modelled systems, real-world data are assimilated into the predictions to provide a better
representation of the true underlying state of the systems studied. In Data Assimilation, this process
is called the analysis step, where we combine different sources of information: the forecast coming
from the previous time window, the available direct or indirect observations of various physical
quantities within this time window, and some expert knowledge on the modelled processes, such
as conservation and balance laws. Due to the time critical nature of those forecasts, the sheer size
of the data involved, and the large computational power required to run numerical models, Data
Assimilation methods have to be efficient since every improvement in those methods can lead to
the use of more precise or more complex models, for a constant time budget.

In Variational Data Assimilation, the analysis is performed by minimizing a well-chosen objective
function. This optimization can be very expensive since it happens in a high-dimensional space.
Nonetheless, it can be tackled with gradient-based optimization, which boils down to successive
high-dimensional linear system to solve. The speed of convergence of those methods depends on
the condition number of the matrices involved, that is why several studies have been conducted
on the condition number of various Data Assimilation problem, such as in [Haben et al., 2011,
Gürol et al., 2014, Tabeart et al., 2021].

Machine-Learning, on the other hand, has been increasingly applied on various aspects of
Data Assimilation, as reviewed in [Cheng et al., 2023]. Some works focus on the Data Assim-
ilation process, as in [Boudier et al., 2020] where the authors propose a formalism of Data As-
similation, and apply recurrent Neural networks to perform the analysis and prediction steps.
Same goes for [Arcucci et al., 2021]. In [Peyron et al., 2021], an auto-encoder architecture is pro-
posed in order to reduce the dimension of the state vector, and perform the assimilation in a
lower dimensional latent space. Learning the underlying dynamical system is also of big interest.
In [Gottwald and Reich, 2021], the authors propose to use Data Assimilation to learn the time-

∗Inria, CNRS, Univ. Grenoble-Alpes, Grenoble-INP, LJK, 38000 Grenoble, France
†AI4Sim, Eviden BDS R&D, Echirolles, France
‡Current Affiliation: École Centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan, 36 Avenue Guy de

Collongue, 69134 Écully, France
Corresponding author: victor.trappler@gmail.com

1

mailto:victor.trappler@gmail.com

propagator of a dynamical system, while in [Dubois et al., 2020], the whole dynamics of a Lorenz
system is learned.

In this work, we propose to use Deep Neural Networks (DNN) to construct a preconditioner,
not necessarily sparse, in order to improve the convergence of the Conjugate Gradient algorithm
in a Variational Data Assimilation system. Using ML in Linear Algebra problems has recently
found some traction in some related works: in [Ackmann et al., 2021], the authors build a precon-
ditioner for an implicit solver, or in [Sappl et al., 2019, Tang et al., 2022], where a preconditioner
for conjugate gradient is built using a convolutional neural network for the former, and a Graph
Neural Network in the latter. In [Luna et al., 2021], the authors proposes to use Neural Networks
to improve the first guess in the GMRES method. Finally, in [Häusner et al., 2023], the authors
manage to learn a sparse factorization of a matrix using Graph Neural Networks and the Frobenius
norm, in order to precondition the Conjugate Gradient.

We will first review the classical method to obtain the inner/outer loop paradigm for optimiza-
tion in order to introduce preconditioning, and then show how preconditioners can improve the
convergence rate of CG, and how those can be constructed in a efficient way.

1. Variational Data Assimilation. In what follows, we will first introduce the common notations
used throughout this work and how the Variational Data assimilation process can be formulated as
sequence of large-scale linear systems to solve.

1.1. Data Assimilation as an optimization problem. We assume that the physical system
studied can be represented as a n-dimensional state vector x ∈ X ⊆ Rn. This state vector might
represent different prognostic variables discretized on a mesh. Let us consider a forward modelM
which maps the state-space onto itself. This operator usually represents the propagation in time of
the state vector.

(1.1)
M : X ⊆ Rn −→ X

x 7−→ M(x)

The output of the forward model (ie a state vector at a later time) often cannot be compared
directly to the observations y. Indeed the observations may come from different sources, and are
sparse and noisy quantities derived from the state. An observation operator H is then required to
map the state vector to the observation space:

(1.2)
H : X ⊆ Rn −→ Y ⊆ Rp

x 7−→ H(x)

In Data Assimilation, variational methods refer to approaches based on the optimization of an
objective function, which measures the misfit between the model prediction and the observations,
with a regularization that models the prior knowledge as a background term xb and B:

(1.3) J(x) =
1

2
∥G(x)− y∥2R−1 +

1

2
∥x− xb∥2B−1

where the Generalized forward model is

G(x) = (H ◦M)(x)(1.4)

and the vector norms are defined for v ∈ Rn and Σ ∈ Rn×n positive definite as ∥v∥2Σ = vTΣv.
From a probabilistic point of view, we can get to the same formulation by making the following

Gaussian assumptions:

y | x ∼ N (G(x), R)(1.5)

x ∼ N (xb, B)(1.6)

which leads to the expression of the objective function of Eq. (1.3) as the negative log posterior
probability of x given y.

2

1.2. Incremental 4D-Var. In some large-scale systems, the Tangent Linear Model (ie the lin-
earization of the model operator) and its adjoint may be available at the cost of proper derivation
and maintenance, and at a computational cost roughly equivalent to the forward model. This means
that we can consider gradient-based optimization methods in order to solve the analysis step.

Starting from a given state x, adding a small perturbation δx gives

J(x+ δx) =
1

2
∥G(x+ δx)− y∥2R−1 +

1

2
∥x+ δx− xb∥2B−1(1.7)

and linearizing G around x gives the incremental version of the cost function

Jinc(x, δx) =
1

2
∥G(x) +Gxδx− y∥2R−1 +

1

2
∥δx+ x− xb∥2B−1(1.8)

=
1

2
∥Gxδx− d∥2R−1 +

1

2
∥δx+ x− xb∥2B−1(1.9)

where d = G(x) − y are the departures from the observations and Gx = HMxMx is the Jacobian
matrix of G evaluated at x. Minimizing the incremental cost function with respect to δx is a
quadratic minimization problem, and the optimal increment δx verifies

(1.10) (GT
xR

−1Gx +B−1)︸ ︷︷ ︸
Ax

δx = −GT
xR

−1d−B−1(x− xb)︸ ︷︷ ︸
bx

and thus requires the resolution of a linear system of dimension n using iterative methods, since the
explicit inversion of such a matrix is unfeasible in practice. A similar derivation can be achieved by
applying Gauss-Newton Algorithm (see for instance [Gratton et al., 2007]), which solves the original
problem via successive approximations of the Hessian matrix of the non-linear optimization problem
by the matrix Ax.

One can also see the incremental formulation as a Bayesian Inverse Linear problem, where we
are looking for the posterior mode (or posterior mean equivalently in this case) of δx | d

d | δx ∼ N (Gxδx,R)(1.11)

δx ∼ N (x− xb, B)(1.12)

and the posterior mean is given by solving Eq. (1.10) and the posterior covariance matrix is

(1.13) Γpost =
(
GT

xR
−1Gx +B−1

)−1
= A−1

x

Optimal approximations of this posterior are studied in [Benner et al., 2018, Spantini et al., 2015].

1.3. Nested loops. Once the optimal increment δx has been computed, the new point of lin-
earization is chosen as x+ δx, and a new approximation can be constructed. This can be repeated
until convergence, or until a specified number of linearizations has been reached.

The whole minimization procedure can be organized in nested loops, as detailed in Figure 2
and Algorithm 1.1.

• The Outer Loop, which requires a run of the forward model G at a point x, and the evaluation
of the Tangent Linear Model Gx in order to get a linearization. The linearization of the cost
function, which implies the Tangent Linear Model, can be obtained by classical methods of
automatic differentiation. The number of outer loops is critical when dealing with highly
non-linear processes ([Bonavita et al., 2018])
• the Inner Loop, where we solve the minimization problem using the TLM (ie successive

quadratic approximations). Once this minimization has been performed, the point of eval-
uation for the Outer Loop is chosen.

3

Figure 1: Illustration of minimization using successive quadratic approximations

Compute linearizationGxg

Guess: xg

Compute departures dxg

Solve iteratively Axgδx = bxg

xg ← xg + δx

Outer

Inner

Figure 2: Inner and outer loop paradigm for optimization

Algorithm 1.1 Pseudocode of the minimization procedure in 4DVar
n← 1
xi ← x0
while i ≤ nouter do ▷ Outer Loop

▷ Direct model and linearization at xi ◁
Evaluate G(xi), J(xi), Gxi

bxi ← −GT
xi
R−1 (G(xi)− y)

Axi ← (GT
xi
R−1Gxi +B−1)

▷ The linear system to solve is Axiδxi = bxi ◁
j ← 0, δx(j) ← 0
while j ≤ ninner or ∥rj∥2 < ϵ do ▷ Inner Loop

δx(j+1) ← ConjugateGradient(Axi , δx
(j))

rj ← Axiδx
(j+1) − bxi

j ← j + 1
δxi ← δx(j)

xi+1 ← xi + δxi
i← i+ 1

4

1.4. Conjugate Gradient. In the inner loop, the matrix Ax cannot be constructed explicitely,
let alone be inverted via direct methods. We can use Krylov-subspace based methods to approxi-
mately solve the linear system, such as GMRES, or Conjugate Gradient which only require matrix-
vectors products. Since the matrix to inverse is symmetric positive definite (spd), we use the
Conjugate Gradient algorithm to solve the linear system (see [Freitag, 2020, Diouane et al., 2024]
for specifics of CG in Data Assimilation) and the error ek = δxk − δx∗ between the computed
increment at the kth step and the true value δx∗ = A−1

x bx can be bounded, giving a rough rate of
convergence

∥ek∥ ≤ 2

(√
κ(Ax)− 1√
κ(Ax) + 1

)k

∥e0∥(1.14)

where κ(Ax) = ∥A−1
x ∥2 · ∥Ax∥2 ≥ 1 = κ(In) is the condition number of the matrix Ax. As this

matrix is symmetric positive definite, this condition number can be written as the ratio between
the largest and smallest eigenvalues:

(1.15) κ(Ax) =
λ1(x)

λn(x)

where the spectrum of Ax: sp(Ax) = (λ1(x), . . . , λn(x)) is sorted in descending order.
It is clear from Eq. (1.14) that a condition number close to 1 leads to a better convergence rate

of the CG algorithm. Since the matrix Ax is fully determined by the problem, its condition number
is not directly adjustable. We can however use a preconditioner in order to improve the condition
number of the problem, and thus improve the convergence rate for this iterative method.

1.5. Preconditioning the Inner Loop. Instead of directly solving the linear system Axδx = b
using iterative methods, one can look for a system which possesses the same solution, ie A−1

x b, but
for which the CG method converges faster. One approach is to left multiply the two sides of the
equation by an invertible matrix of size n× n, say LT giving the linear system (LTAx)δx = (LT b).

In order to conserve the symmetric property of the matrix to inverse and use CG, we can rewrite
the linear system as

(LTAxL)︸ ︷︷ ︸
Ã

(L−1δx)︸ ︷︷ ︸
x̃

= LT b(1.16)

If x̃ ∈ Rn verifies the linear equation Ãx̃ = LT b, the solution of the original linear system can be
retrieved by δx = Lx̃. The new linear system can also be preconditioned if needed, but we focus
here on ”first-level” preconditioning.

The matrix P = LLT is called a preconditioner, while L is sometimes called a split precondi-
tioner, and PAx and LTAxL share the same spectrum. Trivial examples of preconditioners include
P = In and P = A−1

x , but for the former the problem to solve is left unchanged, while for the
latter the solution is found trivially, at the cost of computing directly the inverse of the matrix.
The choice of a preconditioner is largely problem dependent, but some desirable properties can be
listed:

• P should be symmetric and non-singular
• P should be cheap to apply as a linear operator
• P should improve the condition number of Ax in order to improve the convergence of
iterative methods

In data assimilation, given the definition of Ax in Eq. (1.10) , particular choices of L can be useful
to simplify the problem. Indeed, preconditioning the matrix A using L = B−1/2 gives

(1.17) Ã = B−T/2GT
xR

−1GxB
−1/2 + In

In this case, all the eigenvalues of Ã are larger than 1, so its condition number is smaller than its
largest eigenvalue (see [Gürol et al., 2014]).

5

In many cases, one may look for a solution of the linear system in a smaller subspace generated
by the columns of L. This method is often named in the literature Control Variable Transform,
and thus L is not a square matrix. However the two problems are not necessarily equivalent,
and [Ménétrier and Auligné, 2015] studies further the conditions for equivalence. In the case of
sparse matrices, a preconditioner can be found by looking for a product PAx which approximates the
identity matrix. That is the principle of Sparse Approximate Inverse (see [Grote and Huckle, 1997]),
where the preconditioner is found by minimizing ∥In−PAx∥ for P with a prescribed sparsity pattern.

Since the convergence properties of the CG method is dependent on the distribution of the
eigenvalues of the matrix Ax, we will focus on preconditioners constructed using its spectral prop-
erties.

1.6. Spectral preconditioners. We will now drop the subscript x for notation sake, but all
those quantities depend implicitely on the point of linearization x. The main idea behind spectral
preconditioners is to act directly on the eigenvalues of A, by constructing a matrix which will
decrease the r largest eigenvalues of A to some smaller values, thus decreasing the ratio defining
the condition number in Eq. (1.14). The spectral preconditioners introduced here are studied more
generally as Limited Memory Preconditioners in [Tshimanga et al., 2008].

Since A is symmetric positive definite, eigendecomposition and singular value decomposition
are equivalent. Let A = UΛUT be the Singular Value Decomposition (SVD) of A with U = (u1 |
u2 | · · · | un) ∈ Rn×n an orthonormal matrix, and Λ = diag(λ1, . . . , λn) where the λi are all strictly
positive and sorted in descending order.

Truncating the SVD on its r first components gives the low-rank approximation of A:

Ar = UrΛrU
T
r(1.18)

where Ur = (u1 | · · · | ur) ∈ Rn×r, and Λr = diag(λ1, . . . , λr).
Eckart–Young–Mirsky theorem provides another characterization of the low-rank approxima-

tion, in terms of an optimization problem, which will be used in subsection 2.2:

(1.19) min
Ã;rk(Ã)=r

∥A− Ã∥2F = ∥A−Ar∥2F =
n∑

i=r+1

λ2
i

where ∥ · ∥F is the Frobenius matrix norm defined for a matrix D as

∥D∥2F = tr
(
DDT

)
=
∑
i,j

d2ij(1.20)

The different terms of the decomposition of Eq. (1.18) can be used to construct a symmetric
matrix Pα that will act as a preconditioner by treating differently the leading eigenvalues and the
remaining ones:

(1.21) Pα = βIn + Ur(µΛ
α
r − βIr)U

T
r

with
• α the exponent of the eigenvalues to consider
• µ > 0 the value which will affect the r leading eigenvalues
• β > 0 the value which will multiply the n− r other eigenvalues

This type of scaled preconditioners have been studied more thoroughsly from a theoretical point of
view in [Diouane et al., 2024]. We can better understand the effect of this matrix on an arbitrary
vector x ∈ Rn by decomposing it into an element xr ∈ range(Ur), the span of the first r eigenvalues,
and an element x⊥ in its null-space. There exists then w ∈ Rr such that x = xr + x⊥ = Urw + x⊥.
Applying Pα gives

Pαx = (βIn + Ur(µΛ
α
r − βIr)U

T
r)(Urw + x⊥)(1.22)

= Ur (µΛ
α
r)w + βx⊥

6

Figure 3: Illustration of the spectrum of an example spd matrix Ax, and the preconditioned matrix
using Pα for α = −1

thus the components in range(Ur) are multiplied by the diagonal matrix µΛα
r , while the components

in the null-space are multiplied by β.
By construction, Pα is a spd matrix with spectrum

(1.23) spectrum(Pα) = {µλα
1 , . . . , µλ

α
r , β . . . , β}

and Pα/2 is a matrix square root of Pα. Since A and Pα share the same eigenvectors, the spectrum
of the product is

(1.24) spectrum(P T
α/2APα/2) = spectrum(APα) = {µλα+1

1 . . . , µλα+1
r , βλr+1 . . . , βλn}

This spectrum highlights how to set α and β to construct a preconditioner: choosing α = −1 and
β = 1, as in Figure 3, groups the r leading eigenvalues of the matrix product to µ, so by choosing
µ inbetween the smallest eigenvalue λn and λr, the condition number of the preconditioned matrix
APα is less than λr

λn
.

Such a preconditioner can be used to cluster the r leading eigenvalues at µ, and thus improve
the convergence rate in the Conjugate Gradient algorithm. However, a precise computation of the
SVD might be challenging in practice: methods such as the Lanczos iterations require the evalua-
tions of many matrix-vector products (usually more than r). Recently, randomized methods have
been proposed for these kind of computations in data assimilation, see [Daužickaitė et al., 2021].
Those procedures are dependent on the matrix A = Ax at the point of linearization x, so even if
some eigen-information can be reused when the linearization point does not change much, as done
in [Tshimanga et al., 2008], most computations are discarded at the start of a new assimilation
window.

Instead, we propose to use Deep Neural Networks in order to map the state of linearization x
to an approximate low-rank decomposition of Ax which can be used as a preconditioner.

2. Deep Neural Network to construct state-dependent preconditioners.

2.1. Architecture of the Deep Neural Network. In order to construct a preconditioner based
on Eq. (1.21), two elements are needed: we need to approximate Ur by a matrix of size n× r, whose
columns are orthonormal, and a vector of size r, with positive elements to approximate Λr.

We propose to use a Deep Neural Network (parameterized by θ, a vector containing all the
weights and biases of this DNN), say fθ, in order to compute those to produce tensors of appropriate
dimensions. Given x ∈ Rn, this Neural Network outputs both a set of r non-orthonormal vectors
Ũθ(x) ∈ Rn×r, and a vector Λ̃θ(x) ∈ Rr, which are to be postprocessed in order to verify the

7

Figure 4: Schematic representation of the input/output signature of the Neural Network

aforementioned properties. This allows for a flexible choice of the architecture of the DNN, which
can then be chosen in a problem specific manner (CNN for spatially distributed states for instance).

To ensure the orthonormal property of the vectors, we use the QR decomposition on Ũθ(x),
which is numerically stable compared to a classical Gram-Schmidt orthonormalization procedure,
while the positivity of the approximate eigenvalues Λ̃θ(x) is imposed using any function R → R+

elementwise. In this work, we will use a scaled sigmoid function: SM : x 7−→ M
1+e−x , where M can

be chosen as a rough upper bound on the singular values of Ax. This choice allows for bounding the
resulting eigenvalues into an acceptable range, which helps avoid numerical issues during training.
This mapping is summarized Eq. (2.1), and Figure 4.

(2.1)

Rn −→ R(n+1)r −→ Rn×r × Rr −→ Rn×r × Rr
+

x
DNN7−→ fθ(x)

split7−→ (Ũθ(x), Λ̃θ(x))
qr,SM7−→

(
qr(Ũθ(x)), SM

(
Λ̃θ(x)

))
= (Uθ(x),Λθ(x))

Given the output of fθ and a postprocessing using QR and SM , the Neural Network-based
low-rank reconstruction of rank r is

Aθ(x) = Uθ(x)Λθ(x)Uθ(x)
T(2.2)

=
r∑

i=1

λ
(i)
θ (x)u

(i)
θ (x)

(
u
(i)
θ (x)

)T
(2.3)

with Uθ(x) =
(
u
(1)
θ (x) | · · · | u(r)θ (x)

)
. Using the decomposition, a split preconditioner can be defined

as using Eq. (1.21) for β = 1 and α = −1/2:

(2.4) Lθ(x) = In + Uθ(x)
(
µΛθ(x)

−1/2 − Ir

)
Uθ(x)

T with µ ≥ 1

In theory, if the DNN provides the optimal low-rank approximation of Ax, choosing µ = 1 would
allow to group all the r first eigenvalues to 1, thus reducing the condition number of the matrix.
In practice, the DNN only produces an approximation of the eigenvectors and of the eigenvalues,
meaning that there is a risk to worsen the condition number. Experiments have shown that choosing

µ ∈ [mini λ
(i)
θ (x),maxi λ

(i)
θ (x)] helps to account for the approximation error due to the DNN. This

is further discussed in section 3.

8

2.2. Loss function definition using Frobenius norm approximation. Neural networks are pa-
rameterized by θ ∈ RN, which combines all the weights and biases of the individual neurons of fθ.
To set this parameter, one need to define an appropriate metric which is then optimized. Given the
Eckart–Young–Mirsky theorem Eq. (1.19), which defines the SVD in terms of an optimization prob-
lem and the reconstruction defined in Eq. (2.2), we define the loss for a single state of linearization
xi as

(2.5) Lexplicit(θ;xi) = ∥Aθ(xi)−Axi∥2F

where this term would be minimal if Aθ(xi) is the low-rank approximation of Axi .
This loss requires the evaluation of the norm of the difference of two n×n non-sparse matrices,

which brings several challenges. Constructing the matrix Axi is computationally expensive, since
in most differentiated computer codes, this matrix is only accessible as an operator. In Data
Assimilation especially, given the definition of Ax in Eq. (1.10), computing δx 7→ Axδx requires the
applications of two linear (with respect to the second argument) operators: The Tangent Linear
operator

(2.6) TL : (xi, δx) 7−→ Gxi · δx

and the adjoint operator

(2.7) Adj : (xi, y) 7−→ GT
xi
· y

From a computational point of view, applying one of those operators is within the same order
of magnitude of complexity as the forward model G. Obviously, in order to construct the full
Jacobian matrix Ax, one could apply the linear operator to each vector ei of the canonical basis
since Ax = (Axe1 | . . . , , | Axen), but this is impractical since it requires n evaluations, on top of the
large memory requirements needed to store the matrix Ax for a single linearization point.

Same goes for the matrix Aθ(x): constructing the full matrix is hard from a storage point of
view, even though using it as a linear operator is cheaper since it requires only r dot products of
n-dimensional vectors as seen from Eq. (2.3),

Since we are only interested in the Frobenius norm of the difference of the operators, we can
instead directly estimate it using statistical estimators. Let D be a real matrix of size n × n. Its
squared norm ∥D∥2 can be rewritten as the expectation of a vector norm using the linearity of the
trace and expectation operator:

Eξ

[
∥Dξ∥2

]
= Eξ

[
tr
(
DξξTDT

)]
= tr

(
Eξ

[
ξξT
]
DTD

)
= ∥D∥2F(2.8)

where ξ ∼ N (0, In). Given a matrix Z ∈ Rn×k whose k columns z(j) are sampled from a standard
Gaussian distribution, we can use a Monte-Carlo estimator of the expectation:

(2.9)
1

k
∥DZ∥2F =

1

k

k∑
j=1

∥Dz(j)∥2 estimator of ∥D∥2F

Other estimators of this norm using random samples are studied in [Gudmundsson et al., 1995,
Gratton and Titley-Peloquin, 2018], while in [Indyk et al., 2019], the authors use ML to construct
the matrix to evaluate.

Using Eq. (2.9), for a state-vector xi in the training dataset and z
(1)
i , . . . z

(k)
i i.i.d. samples of a

standard Gaussian random variable, an estimate of the matrix norm of Eq. (2.5) is

Lexplicit(θ;xi) ≈ L(θ;xi) =
1

k

k∑
j=1

∥Aθ(xi)z
(j)
i −Axiz

(j)
i ∥

2(2.10)

9

where Aθ(xi) is defined as in Eq. (2.2). We can also use the same estimator in order to estimate
the norm of Ax as 1

k

∑k
j=1 ∥Axz

(j)∥2, which is an estimate of the sum of all its eigenvalues squared.
This can be used in order to normalize the loss in Eq. (2.10), and can be interpreted as the fraction
of unexplained variance, by analogy with classical Principal Components Analysis:

(2.11) Lrelative(θ, xi) =
L(θ;xi)

1
k

∑k
j=1 ∥Axiz

(j)
i ∥2

2.3. Construction and storage of the training dataset. In order to train the Neural Network,
the construction of a dataset is needed in order to optimize the loss function defined in Eq. (2.10).
Each element (indexed by i) in this dataset consists of three elements: a state xi which is used for

the linearization, a random matrix Zi = (z
(1)
i | · · · | z(k)i) ∈ Rn×k whose components are iid and

normally distributed, and finally the evaluation of this sample by the matrix of interest: AxiZi.
The training dataset is then

Dtraining =
{
(xi, Zi,AxiZi)) ∈ Rn × Rn×k × Rn×k s.t. 1 ≤ i ≤ Ntraining

}
(2.12)

However, we do not have to store all the training set in memory: Zi is independent of xi, and can
be sampled when needed, and Axi depends only on xi.

Algorithm 2.1 Pseudocode for the generation of a batch for online training

for 1 ≤ i ≤ nbatch do
Sample and store Zi = (z

(1)
i | . . . | z

(k)
i) ∈ Rn×k with z

(j)
i ∼ N (0, In) iid for 1 ≤ j ≤ k

Compute and store AxiZi ∈ Rn×k

xi+1 ← New state generated from xi

The method to generate a batch of nbatch samples is summarized Algorithm 2.1. In order to train
a Deep Neural Network, the constructed batches should be representative enough of the whole state
space. To get appropriate diversity in the states used to build the batch, we propose to generate the
new state iteratively by advancing the current state using the numerical modelM with a randomly
generated lead time, large enough so that the xi used for the batch are not too correlated, and by
potentially adding a small random perturbation before propagation.

3. Application to a Shallow Water Assimilation system.

3.1. Shallow Water equations and Data Assimilation setting. The Shallow Water equations
describe the motion of large bodies of water, for which the horizontal scale is larger than the vertical
scale which is the case for rivers, seas and oceans. They consist in PDEs obtained by vertically
averaging the Navier-Stokes equations. In this application, the variables of interest are the deviation
of sea surface height η around a mean height η0, the velocity u in the x-direction, and v, the velocity
in the y-direction.

(3.1)


∂η
∂t +

∂(η0+η)u
∂x + ∂(η0+η)v

∂y = 0
∂u
∂t − ξv + ∂B

∂x = ν∆u− cbu+ τx
ρ0η0

∂v
∂t + ξu+ ∂B

∂y = ν∆v − cbv

Those equations are discretized using a Arakawa C-grid of 64×64 cells, on a square domain of size
Lx = Ly = 1800km, meaning that the three prognostic variables are η ∈ R64×64, u ∈ R63×64 and v ∈
R64×63. Once flattened and concatenated, the state vector is then x = (η, u, v) ∈ R12160. Explicitely
storing the Gauss-Newton matrix would require 4.7GB (without exploiting the symmetry).

We consider the modelM that simulates the evolution of the state vector with a lead time of
T corresponding to 2 days.

(3.2)
Rn −→ Rn

M : xt 7−→ M(xt) = xt+T

10

The cost function is defined as in Eq. (1.3)

(3.3) J(x) =
1

2
∥(H ◦ G)(x)− y∥2R−1 +

1

2
∥x− xb∥2B−1

where H(x) = H((η, u, v)) = η, R = I642 , meaning that only the free-surface height is observed.
The background state xb ∈ Rn is computed as the average of states obtained during a previous
simulation with a large lead time.

3.2. Neural Network Architecture. For this problem, the state vector represents three spatial
variables, arranged on a regular grid. By padding the u and the v component, we can reshape the
state vector as a tensor of shape (64, 64, 3), ie like an image with 3 channels. Each of those com-
ponents is scaled so that each channel has approximately unit variance. Because of this image-like
structure, we can use Neural Network architecture well-suited for such data, such as Convolutional
Neural Networks (CNN) or U-Nets. We found that using a U-Net architecture, with transformers
instead of CNN for the subsampling step has shown good results for this problem.

3.3. Dataset and training. The training dataset is constructed according to Eq. (2.12), where
Ntraining = 1000 states of linearization have been sampled, and k = 100 random vectors have been
used for matrix-vector products.

3.4. Numerical Results. We trained a DNN whose architecture allows us to get rtrain = 2000
approximate singular vectors and values, sorted by descending singular value. Based on this, we
can compare the preconditioners obtained using a different numbers of retained vectors (denoted
as ”rank”, even though Pα is full-rank) : r = 1000, 1900 and 2000. For each of those, different
values of µ have been chosen: either it is set to a fixed value, or it is set to the smallest eigenvalue
provided by the DNN. For r = 1000, mini λ

(i) ≈ 160, for r = 1900, mini λ
(i) ≈ 145, and finally, for

r = 2000, mini λ
(i) ≈ 2. The matrices to inverse have their leading eigenvalues close to 20000, and

show approximatively an exponential decay.
In order to compare numerical results, we started from a base state xbase. We generated the

”truth” by perturbating and advancing the base state using the numerical model a random number
of time steps. Is is then used to generate observations using H and by adding an observation noise.
The state of linearization (xi) is chosen in a similar way, by perturbating the base state.

Algorithm 3.1 Pseudocode for the numerical experiment

x† ← xbase + small perturbation
x1 ← xbase + small perturbation
for 1 ≤ i ≤ N do

▷ Generate Observations ◁
Advance the truth x† by a random number of time steps
Compute observations y ← H(x†) + ϵ
▷ Form the Linear system ◁
Linearize the forward model at xi to form the GN linear operator Axi

Compute bxi using the departures G(xi)− y and the background
▷ Preconditioned CG ◁
Use the DNN to compute Lθ(xi)
Use CG for the linear system Axi , bxi with Lθ(xi) as preconditioner, to get δxi
▷ Modify the linearization step ◁
xi ← xi + δxi

Since we are solving iteratively a system of the form Axδx = b (the subscript i is dropped for
convenience), the quantity of interest chosen to track the convergence of the Conjugate Gradient
method is often the L2 norm of the residual ej = Axδx

(j) − b. However, the CG method does not
guarantee a monotonic decrease of the Euclidian norm of the residuals ∥ej∥2, nor its energy norm
∥ej∥A, which can explain some oscillations in some visualizations.

11

Figure 5: Number of iterations needed to reach the norm threshold. Dotted line indicates the
number of iterations for the unprecondition problem.

Figure 5 shows the number of iterations needed to reach the threshold of 10−7 for the euclidian
norm of the residuals or when 2000 iterations of CG has been reached (whichever comes first)
for the different preconditioners constructed using DNN, with a variable number of approximate
eigenpairs retained, and with different value of the parameter µ. This shows that in most cases,
the preconditioner helps reach the threshold in fewer iteration than the baseline, especially for a
lower value of r. Furthermore, we can see that for r = 1000 eigenpairs, the choice of µ has a limited
influence on the number of iterations needed. For a larger number of eigenpairs retained (ie larger
r), the performances are much more dependent on the the value of µ, and might even reach worsen
the performances (for instance r = 2000 and µ as the minimum of the approximated eigenvalues)
The comparison of the L2 norm of the residuals for the different problems is shown Figure 6, which
leads to similar conclusion. For good combinations of the parameters r and µ, we could reduce the
number of iterations required to reach the threshold by roughly 30%. However, when too many
eigenpairs are kept, the performances decrease.

This counterintuitive result can be explained. It is worth noting that due to the form of the
reconstruction Eq. (2.3), the individual contribution of each eigenpairs gets smaller and smaller,
making them more and more difficult to approximate. We can see on Figure 7 some examples
of eigenvectors that the DNN outputs. The eigenvector corresponding to a rank i = 1500 does
not show any discernible pattern, in contrast with the other eigenvectors, with lower rank. A bad
estimation of the eigenpairs might worsen the quality of the preconditioner since any error would
get amplified by taking its inverse (through the negative exponent α). We can see this effect on the
preconditioners built with r = 2000, the whole estimated spectrum. Some of the smallest eigenvalues
are not well represented by the Neural Network, and this worsen the preconditioning effect of Pα,
compared to r = 1000 or r = 1900, and the influence of the shift parameter µ is amplified. Indeed,
µ helps mitigate this issue due to the approximation error of the Deep Neural Network, by forcing
the resulting eigenvalues to be larger than 1, which acts as a lower bound for the eigenvalues of the
original matrix.

Conclusion and perspectives. In this work, we focused on the problem of data-driven precon-
ditioning of non-sparse parameterized matrices. In a Data Assimilation context, more specifically
in the incremental formulation of 4D-Var, multiple resolution of high-dimensional linear systems
have to be performed. For computational reasons, only a limited number of iterations of Conjugate
Gradient can be done. In order to improve the rate of convergence of this iterative solving method,
we propose to use Deep Neural Networks to get an approximation of the largest eigenpairs of the

12

matrix to inverse, and then use those to precondition the linear system.
We applied this method to an academic assimilation system of moderate size. Based on the

image-like structure of the state vector, we used an architecture based on U-Nets to construct a
surrogate. Numerically, using this preconditioner allows for reducing the number of matrix-vector
products required to reach a convergence threshold. The number of eigenpairs to use is up to the
user, but a bad approximation of the eigenpairs can lead to bad performances if the parameter µ is
too small.

Compared to traditional preconditioning methods, training such a neural network can be done
in a almost non-intrusive way. Once trained, this can be used as a first-level preconditioner, and
thus traditional randomized methods can be applied to improve furthermore the convergence rates.

We focused on an assimilation system where the observation operator H is linear and constant
for all assimilation windows. In this case, the dependence on the state variable comes only from the
Tangent Linear model. Because of this, the learned eigenpaires are tied to this constant observation
operator (and covariance matrices of the errors). However, if those quantities were to be uniquely
dependent on the state, the whole construction of the dataset and the training does not need any
modification. One possible improvement of this method would be to consider a changing observation
operator, and the DNN would take as input both the state of linearization, and the observation
operator.

Acknowledgement. This work has been funded within the France Relance Economic plan, and
has been jointly done between Eviden and Inria.

13

Figure 6: Norm of the residuals as a function of the iteration number during CG, depending on the
number of retained vectors r and shift parameter µ as defined in Eq. (2.4)

14

(a)

(b)

(c)

(d)

Figure 7: Example of estimated eigenpairs (i = 1, 10, 500, 1500) at a linearization point

15

REFERENCES

[Ackmann et al., 2021] Ackmann, J., Düben, P., Palmer, T., and Smolarkiewicz, P. (2021). Machine-Learned Pre-
conditioners for Linear Solvers in Geophysical Fluid Flows. In EGU General Assembly Conference, pages
EGU21–5507.

[Arcucci et al., 2021] Arcucci, R., Zhu, J., Hu, S., and Guo, Y.-K. (2021). Deep Data Assimilation: Integrating Deep
Learning with Data Assimilation. Applied Sciences, 11(3):1114.

[Benner et al., 2018] Benner, P., Qiu, Y., and Stoll, M. (2018). Low-rank computation of posterior covariance matrices
in Bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 6(2):965–989.

[Bonavita et al., 2018] Bonavita, M., Lean, P., and Holm, E. (2018). Nonlinear effects in 4D-Var. Nonlinear Processes
in Geophysics, 25(3):713–729.

[Boudier et al., 2020] Boudier, P., Fillion, A., Gratton, S., and Gürol, S. (2020). DAN – An optimal Data Assimilation
framework based on machine learning Recurrent Networks. arXiv:2010.09694 [cs, eess].

[Cheng et al., 2023] Cheng, S., Quilodran-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor,
D., Iooss, B., Brajard, J., Xiao, D., Janjic, T., Ding, W., Guo, Y., Carrassi, A., Bocquet, M., and Arcucci,
R. (2023). Machine learning with data assimilation and uncertainty quantification for dynamical systems: A
review.

[Daužickaitė et al., 2021] Daužickaitė, I., Lawless, A. S., Scott, J. A., and van Leeuwen, P. J. (2021). Randomised
preconditioning for the forcing formulation of weak constraint 4D-Var. Quarterly Journal of the Royal Meteo-
rological Society, 147(740):3719–3734.

[Diouane et al., 2024] Diouane, Y., Gürol, S., Mouhtal, O., and Orban, D. (2024). An Efficient Scaled spectral
preconditioner for sequences of symmetric positive definite linear systems. (arXiv:2410.02204).

[Dubois et al., 2020] Dubois, P., Gomez, T., Planckaert, L., and Perret, L. (2020). Data-driven predictions of the
Lorenz system. Physica D: Nonlinear Phenomena, 408:132495.

[Freitag, 2020] Freitag, M. A. (2020). Numerical linear algebra in data assimilation. GAMM-Mitteilungen,
43(3):e202000014.

[Gottwald and Reich, 2021] Gottwald, G. A. and Reich, S. (2021). Combining machine learning and data assimilation
to forecast dynamical systems from noisy partial observations. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31(10):101103.

[Gratton et al., 2007] Gratton, S., Lawless, A. S., and Nichols, N. K. (2007). Approximate Gauss–Newton Methods
for Nonlinear Least Squares Problems. SIAM Journal on Optimization, 18(1):106–132.

[Gratton and Titley-Peloquin, 2018] Gratton, S. and Titley-Peloquin, D. (2018). Improved Bounds for Small-Sample
Estimation. SIAM Journal on Matrix Analysis and Applications, 39(2):922–931.

[Grote and Huckle, 1997] Grote, M. J. and Huckle, T. (1997). Parallel Preconditioning with Sparse Approximate
Inverses. SIAM Journal on Scientific Computing, 18(3):838–853.

[Gudmundsson et al., 1995] Gudmundsson, T., Kenney, C. S., and Laub, A. J. (1995). Small-Sample Statistical
Estimates for Matrix Norms. SIAM Journal on Matrix Analysis and Applications, 16(3):17.

[Gürol et al., 2014] Gürol, S., Weaver, A. T., Moore, A. M., Piacentini, A., Arango, H. G., and Gratton, S. (2014).
B -preconditioned minimization algorithms for variational data assimilation with the dual formulation: B
-preconditioned minimization algorithms. Quarterly Journal of the Royal Meteorological Society, 140(679):539–
556.

[Haben et al., 2011] Haben, S., Lawless, A., and Nichols, N. (2011). Conditioning and preconditioning of the varia-
tional data assimilation problem. Computers & Fluids, 46(1):252–256.

[Häusner et al., 2023] Häusner, P., Öktem, O., and Sjölund, J. (2023). Neural incomplete factorization: Learning
preconditioners for the conjugate gradient method.

[Indyk et al., 2019] Indyk, P., Vakilian, A., and Yuan, Y. (2019). Learning-Based Low-Rank Approximations.
[Luna et al., 2021] Luna, K., Klymko, K., and Blaschke, J. P. (2021). Accelerating GMRES with Deep Learning in

Real-Time.
[Ménétrier and Auligné, 2015] Ménétrier, B. and Auligné, T. (2015). An Overlooked Issue of Variational Data As-

similation. Monthly Weather Review, 143(10):3925–3930.
[Peyron et al., 2021] Peyron, M., Fillion, A., Gürol, S., Marchais, V., Gratton, S., Boudier, P., and Goret, G. (2021).

Latent Space Data Assimilation by using Deep Learning. arXiv:2104.00430 [cs, math].
[Sappl et al., 2019] Sappl, J., Seiler, L., Harders, M., and Rauch, W. (2019). Deep Learning of Preconditioners for

Conjugate Gradient Solvers in Urban Water Related Problems.
[Spantini et al., 2015] Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., and Marzouk, Y. (2015). Optimal

low-rank approximations of Bayesian linear inverse problems. arXiv:1407.3463 [math, stat].
[Tabeart et al., 2021] Tabeart, J. M., Dance, S. L., Lawless, A. S., Nichols, N. K., and Waller, J. A. (2021). New

bounds on the condition number of the Hessian of the preconditioned variational data assimilation problem.
[Tang et al., 2022] Tang, Z., Zhang, H., and Chen, J. (2022). Graph Neural Networks for Selection of Preconditioners

and Krylov Solvers. In NeurIPS 2022 Workshop: New Frontiers in Graph Learning.
[Tshimanga et al., 2008] Tshimanga, J., Gratton, S., Weaver, A. T., and Sartenaer, A. (2008). Limited-memory

preconditioners, with application to incremental four-dimensional variational data assimilation. Quarterly
Journal of the Royal Meteorological Society, 134(632):751–769.

16

	Variational Data Assimilation
	Data Assimilation as an optimization problem
	Incremental 4D-Var
	Nested loops
	Conjugate Gradient
	Preconditioning the Inner Loop
	Spectral preconditioners

	Deep Neural Network to construct state-dependent preconditioners
	Architecture of the Deep Neural Network
	Loss function definition using Frobenius norm approximation
	Construction and storage of the training dataset

	Application to a Shallow Water Assimilation system
	Shallow Water equations and Data Assimilation setting
	Neural Network Architecture
	Dataset and training
	Numerical Results

