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State-dependent preconditioning for the inner-loop in Variational Data Assimilation
using Machine Learning

Victor Trappler∗ † ‡ and Arthur Vidard∗

Abstract. Data Assimilation is the process in which we improve the representation of the state of a physical sys-
tem by combining information coming from a numerical model, real-world observations, and some prior
modelling. It is widely used to model and to improve forecast systems in Earth science fields such as
meteorology, oceanography and environmental sciences. One key aspect of Data assimilation is the analysis
step, where the output of the numerical model is adjusted in order to account for the observational data.
In Variational Data Assimilation and under Gaussian assumptions, the analysis step comes down to solv-
ing a high-dimensional non-linear least-square problem. In practice, this minimization involves successive
inversions of large, and possibly ill-conditioned matrices constructed using linearizations of the forward
model. In order to improve the convergence rate of these methods, and thus reduce the computational
burden, preconditioning techniques are often used to get better-conditioned matrices, but require either the
sparsity pattern of the matrix to inverse, or some spectral information. We propose to use Deep Neural
Networks in order to construct a preconditioner. This surrogate is trained using some properties of the
singular value decomposition, and is based on a dataset which can be constructed online to reduce the
storage requirements.
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Introduction. Numerical models are ubiquitous nowadays as they are used to better understand
and predict complex physical phenomena. In order to improve the accuracy and the predictability
of those modelled systems, real-world data are assimilated into the predictions to provide a better
representation of the true underlying state of the systems studied. In Data Assimilation, this process
is called the analysis step, where we combine different sources of information: the forecast of the
previous time window, the available direct or indirect observations of various physical quantities
within this time window, and some expert knowledge on the modelled processes, such as conservation
and balance laws. Due to the time critical nature of those forecasts, the sheer size of the data
involved, and the large computational power required to run numerical models, Data Assimilation
methods have to be efficient since every improvement in those methods can lead to the use of more
precise or more complex models, for a constant time budget.

In Variational Data Assimilation, the analysis is performed by minimizing a well-chosen objective
function. This optimization can be very expensive since it happens in a high-dimensional space.
Nonetheless, it can be tackled with gradient-based optimization, which boils down to successive
high-dimensional linear system to solve. The speed of convergence of those methods depends on
the condition number of the matrices involved, that is why several studies have been conducted
on the condition number of various Data Assimilation problem, such as in [Haben et al., 2011,
Gürol et al., 2014, Tabeart et al., 2021].

Machine-Learning, on the other hand, has been increasingly applied on various aspects of
Data Assimilation, as reviewed in [Cheng et al., 2023]. Some works focus on the Data Assim-
ilation process, as in [Boudier et al., 2020] where the authors propose a formalism of Data As-
similation, and apply recurrent Neural networks to perform the analysis and prediction steps.
Same goes for [Arcucci et al., 2021]. In [Peyron et al., 2021], an auto-encoder architecture is pro-
posed in order to reduce the dimension of the state vector, and perform the assimilation in a
lower dimensional latent space. Learning the underlying dynamical system is also of big interest.
In [Gottwald and Reich, 2021], the authors propose to use Data Assimilation to learn the time-
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propagator of a dynamical system, while in [Dubois et al., 2020], the dynamics of a Lorenz system
is learned. [Fablet et al., 2020]

In this work, we propose to use Deep Neural Networks (DNN) to construct a preconditioner,
in order to improve the convergence of the Conjugate Gradient algorithm in a Variational Data
Assimilation system. Using ML in Linear Algebra problems has recently found some traction in
some related works: in [Ackmann et al., 2021], the authors build a preconditioner for an implicit
solver, or in [Sappl et al., 2019, Tang et al., 2022], where a preconditioner for conjugate gradient is
built using a convolutional neural network for the former, and a Graph Neural Network in the latter.
In [Luna et al., 2021], the authors proposes to use Neural Networks to improve the first guess in the
GMRES method. Finally, in [Häusner et al., 2023], the authors use an approach similar to ours,
where a sparse factorization of a matrix is learned using Graph Neural Networks and the Frobenius
norm in order to precondition the Conjugate Gradient.

We will first review the classical method to obtain the inner/outer loop paradigm for optimiza-
tion in order to introduce preconditioning, and then show how preconditioners can improve the
convergence rate of CG, and how those can be constructed in a efficient way.

1. Variational Data Assimilation. In this section, we will introduce common notations used
throughout this work and how Variational Data assimilation relates to solving large-scale linear
systems.

1.1. Data Assimilation as an optimization problem. We assume that the physical system
studied can be represented as a n-dimensional state vector x ∈ X ⊆ Rn.

Let us consider a forward modelM which maps the state-space onto itself. It usually outputs
the state vector at some time in the future.

(1.1)
M : X ⊆ Rn −→ X

x 7−→ M(x)

The output of this forward model (ie a state vector at a later time) often can not be compared
directly to the observations y. Indeed the observations may come from different sources, and are
sparse and noisy quantities derived from the state. An observation operator H is then required to
map the state vector to the observation space:

(1.2)
H : X ⊆ Rn −→ Y ⊆ Rp

x 7−→ H(x)

In Data Assimilation, variational methods refer to approaches based on the optimization of an
objective function, which measures the misfit between the model prediction and the observations,
with a regularization that models the prior knowledge as a background term xb and B:

(1.3) J(x) =
1

2
∥G(x)− y∥2R−1 +

1

2
∥x− xb∥2B−1

where the Generalized forward model is

G(x) = (H ◦M)(x)(1.4)

and the vector norms are defined for v ∈ Rn and Σ ∈ Rn×n positive definite as ∥v∥2Σ = vTΣv.
From a probabilistic point of view, we can get to the same formulation by making the following

Gaussian assumptions:

y | x ∼ N (G(x), R)(1.5)

x ∼ N (xb, B)(1.6)

which leads to the expression of the objective function of Eq. (1.3) as the negative log posterior
probability of x given y.
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1.2. Incremental 4D-Var. In some large-scale systems, the Tangent Linear Model (ie the lin-
earization of the model operator) and its adjoint may be available, at the cost of proper derivation
and maintenance, and at a computational cost roughly equivalent to the forward model. This means
that we can consider gradient-based optimization methods in order to solve the analysis step.

Starting from a given state x, a perturbation δx gives

J(x+ δx) =
1

2
∥G(x+ δx)− y∥2R−1 +

1

2
∥x+ δx− xb∥2B−1(1.7)

and linearizing G around x gives the incremental version of the cost function

Jinc(x, δx) =
1

2
∥G(x) +Gxδx− y∥2R−1 +

1

2
∥δx+ x− xb∥2B−1(1.8)

=
1

2
∥Gxδx− d∥2R−1 +

1

2
∥δx+ x− xb∥2B−1(1.9)

where d = G(x) − y are the departures from the observations and Gx = HMxMx is the Jacobian
matrix of G evaluated at x. Minimizing the incremental cost function with respect to δx is a
quadratic minimization problem, and the optimal increment δx verifies

(1.10) (GT
xR

−1Gx +B−1)︸ ︷︷ ︸
Ax

δx = −GT
xR

−1d−B−1(x− xb)︸ ︷︷ ︸
bx

and thus requires the resolution of a linear system of dimension n using iterative methods, since the
explicit inversion of such a matrix is unfeasible in practice. A similar derivation can be achieved
by applying Gauss-Newton Algorithm (see for instance [Gratton et al., 2007]), which approximates
the Hessian matrix of the non-linear optimization problem by the matrix Ax.

One can also see the incremental formulation as a Bayesian Inverse Linear problem, where we
are looking for the posterior mode (or mean equivalently in this case) of δx | d

d | δx ∼ N (Gxδx,R)(1.11)

δx ∼ N (x− xb, B)(1.12)

and the posterior mean is given by solving Eq. (1.10) and the posterior covariance matrix is

(1.13) Γpost =
(
GT

xR
−1Gx +B−1

)−1
= A−1

x

Optimal approximations of this posterior are studied in [Benner et al., 2018, Spantini et al., 2015].

1.3. Nested loops. Once the optimal increment δx has been computed, the new point of lin-
earization is chosen as x+ δx, and a new approximation can be constructed. This can be repeated
until convergence, or until a specified number of linearizations has been reached.

The whole minimization procedure can be organized in nested loops, as detailed in Figure 2
and Algorithm 1.1.

• The Outer Loop, which requires a run of the forward model G at a point x, and the evaluation
of the Tangent Linear Model Gx in order to get a linearization. The linearization of the cost
function, which implies the Tangent Linear Model, can be obtained by classical methods of
automatic differentiation. The number of outer loops is critical when dealing with highly
non-linear processes ([Bonavita et al., 2018])
• the Inner Loop, where we solve the minimization problem using the TLM (ie successive

quadratic approximations). Once this minimization has been performed, the point of eval-
uation for the Outer Loop is chosen.
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Figure 1. Illustration of minimization using successive quadratic approximations

Compute linearizationGxg

Guess: xg

Compute departures dxg

Solve iteratively Axgδx = bxg

xg ← xg + δx

Outer

Inner

Figure 2. Inner and outer loop paradigm for optimization

Algorithm 1.1 Pseudocode of the minimization procedure in 4DVar
n← 1
xi ← x0
while i ≤ nouter do ▷ Outer Loop

▷ Direct model and linearization at xi ◁
Evaluate G(xi), J(xi), Gxi

bxi ← −GT
xi
R−1 (G(xi)− y)

Axi ← (GT
xi
R−1Gxi +B−1)

▷ The linear system to solve is Axiδxi = bxi ◁
j ← 0, δx(j) ← 0
while j ≤ ninner or ∥rj∥2 < ϵ do ▷ Inner Loop

δx(j+1) ← ConjugateGradient(Axi , δx
(j))

rj ← Axiδx
(j+1) − bxi

j ← j + 1
δxi ← δx(j)

xi+1 ← xi + δxi
i← i+ 1
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1.4. Conjugate Gradient. In the inner loop, the matrix Ax cannot be constructed explicitely
let alone be inverted. We can use Krylov-subspace based methods to approximately solve the linear
system, such as GMRES, or Conjugate Gradient which only require matrix-vectors products. Since
the matrix to inverse is symmetric positive definite, we use the Conjugate Gradient algorithm to
solve the linear system [Freitag, 2020] and the error ek = δxk−δx∗ between the computed increment
at the kth step and the true value δx∗ = A−1

x bx can be bounded, giving a rough rate of convergence

∥ek∥ ≤ 2

(√
κ(Ax)− 1√
κ(Ax) + 1

)k

∥e0∥(1.14)

where κ(Ax) = ∥A−1
x ∥2 · ∥Ax∥2 ≥ 1 = κ(In) is the condition number of the matrix Ax. As this

matrix is symmetric positive definite, this condition number can be written as the ratio between
the largest and smallest eigenvalues:

(1.15) κ(Ax) =
λ1(x)

λn(x)

where the spectrum of Ax: sp(Ax) = (λ1(x), . . . , λn(x)) is sorted in descending order.
It is clear from Eq. (1.14) that a smaller condition number leads to a better convergence rate of

the CG algorithm. Since the matrix Ax is fully determined by the problem, its condition number
is not directly adjustable. We can however use a preconditioner in order to improve the condition
number of the problem, and thus improve the convergence rate for this iterative method.

Since we are solving iteratively a system of the form Axδx = b (the subscript i is dropped for
convenience), the quantity of interest chosen to track the convergence of the Conjugate Gradient
method is often the L2 norm of the residual ej = Axδx

(j) − b. However, the CG method does not
guarantee a monotonic decrease of the euclidian norm of the residuals ∥ej∥2, nor its energy norm
∥ej∥A, which can explain some oscillations in some visualizations.

1.5. Preconditioning the Inner Loop. Instead of directly solving the linear system Axδx = b
using iterative methods, one can look for a system which possesses the same solution, ie A−1

x b, but
for which the CG method converges faster. One approach is to left multiply the two sides of the
equation by an invertible matrix of size n× n, say LT giving the linear system (LTAx)δx = (LT b).

In order to conserve the symmetric property of the matrix to inverse and use CG, we can rewrite
the linear system as

(LTAxL)︸ ︷︷ ︸
Ã

(L−1δx)︸ ︷︷ ︸
x̃

= LT b(1.16)

If x̃ ∈ Rn verifies the linear equation Ãx̃ = LT b, the solution of the original linear system can be
retrieved by δx = Lx̃. The new linear system can also be preconditioned if needed, but focus here
on ”first-level” preconditioning.

PAx and LTAxL share the same spectrum, and the matrix P = LLT is called a preconditioner
while L is sometimes called a split preconditioner. Trivial examples of preconditioners include
P = In and P = A−1

x , but for the former the problem to solve is left unchanged, while for the
latter the solution is found trivially, at the cost of computing directly the inverse of the matrix.
The choice of a preconditioner is largely problem dependent, but some desirable properties can be
listed:

• P should be symmetric and non-singular
• P should be cheap to apply as a linear operator
• P should improve the condition number of Ax in order to improve the convergence of
iterative methods

In data assimilation, given the definition of Ax in Eq. (1.10) , particular choices of L can be useful
to simplify the problem. Indeed, preconditioning the matrix A using L = B−1/2 gives

(1.17) Ã = B−T/2GT
xR

−1GxB
−1/2 + In
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In this case, all the eigenvalues of Ã are larger than 1, so its condition number is smaller than its
largest eigenvalue (see [Gürol et al., 2014]).

In many cases, one may look for a solution of the linear system in a smaller subspace generated
by the columns of L. This method is often named in the literature Control Variable Transform,
and thus L is not a square matrix. However the two problems are not necessarily equivalent,
and [Ménétrier and Auligné, 2015] studies further the conditions for equivalence. In the case of
sparse matrices, a preconditioner can be found by looking for a product PAx which approximates the
identity matrix. That is the principle of Sparse Approximate Inverse (see [Grote and Huckle, 1997]),
where the preconditioner is found by minimizing ∥In−PAx∥ for P with the given sparsity pattern.

Since the convergence properties of the CG method is dependent on the distribution of the
eigenvalues of the matrix Ax, we will focus on preconditioners constructed using its spectral prop-
erties.

1.6. Spectral preconditioners. We will now drop the subscript x for notation sake, but all those
quantities depend implicitely on the point of linearization x. The spectral preconditioners intro-
duced here are studied more generally as Limited Memory Preconditioners in [Tshimanga et al., 2008].
The idea is to construct a matrix which will reduce the r largest eigenvalues of A to some values
smaller.

Since A is symmetric positive definite, eigendecomposition and singular value decomposition
are equivalent. Let A = UΛUT be the Singular Value Decomposition (SVD) of A with U = (u1 |
u2 | · · · | un) ∈ Rn×n an orthonormal matrix, and Λ = diag(λ1, . . . , λn) where the λi are all strictly
positive and sorted in descending order.

Truncating the SVD on its r first components gives the low-rank approximation of A:

Ar = UrΛrU
T
r(1.18)

where Ur = (u1 | · · · | ur) ∈ Rn×r, and Λr = diag(λ1, . . . , λr).
Eckart–Young–Mirsky theorem provides another characterization of the low-rank approxima-

tion, in terms of an optimization problem, which will be used in subsection 2.1:

(1.19) min
Ã;rk(Ã)=r

∥A− Ã∥2F = ∥A−Ar∥2F =

n∑
i=r+1

λ2
i

where ∥ · ∥F is the Frobenius matrix norm defined for a matrix D as

∥D∥2F = tr
(
DDT

)
=
∑
i,j

d2ij(1.20)

Based on the decomposition Eq. (1.18), we can define for µ and β > 0 the symmetric matrix

(1.21) Pα = βIn + Ur(µΛ
α
r − βIr)U

T
r

with
• µ > 0 the shift which will affect the r leading eigenvalues
• β > 0 the value which will multiply the n− r other eigenvalues

We can better understand the effect of this matrix by decomposing a vector x ∈ Rn, into an element
xr ∈ range(Ur), the span of the first r eigenvalues, and an element x⊥ in its null-space. There exists
then w ∈ Rr such that x = xr + x⊥ = Urw + x⊥. Applying Pα gives

Pαx = (βIn + Ur(µΛ
α
r − βIr)U

T
r )(Urw + x⊥)(1.22)

= Ur (µΛ
α
r )w + βx⊥

thus the components in range(Ur) are multiplied by the diagonal matrix µΛα
r , while the components

in the null-space are multiplied by β.
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Figure 3. Illustration of the spectrum of an example spd matrix Ax, and the preconditioned matrix using Pα for
α = −1

By construction, Pα is a spd matrix with spectrum

(1.23) sp(Pα) = {µλα
1 , . . . , µλ

α
r , β . . . , β}

and Pα/2 is a matrix square root of Pα. Since A and Pα share the same eigenvectors, the spectrum
of the product is

(1.24) sp(P T
α/2APα/2) = sp(APα) = {µλα+1

1 . . . , µλα+1
r , βλr+1 . . . , βλn}

Choosing α = −1 and β = 1, as in Figure 3, shifts the r leading eigenvalues of the matrix product
to µ, so by choosing µ inbetween the smallest eigenvalue λn and λr, the condition number of the
preconditioned matrix APα is less than λr

λn
.

Such a preconditioner can be used to cluster the r leading eigenvalues at µ, and thus improve the
convergence rate in the Conjugate Gradient algorithm. However, a precise computation of the SVD
might be challenging in practice: methods such as the Lanczos iterations require the evaluations
of multiple matrix-vector products (usually more than r). Recently, randomized methods have
been proposed for these kind of computations in data assimilation, see [Daužickaitė et al., 2021].
Such kind of procedures are dependent on the matrix A = Ax at the point of linearization x, so
even if some eigen-information can be reused when the linearization point does not change much
([Tshimanga et al., 2008]), most computations are discarded at the start of a new assimilation
window.

Instead, we propose to use Deep Neural Networks in order to map the state of linearization x
to an approximate low-rank decomposition of Ax which can be used as a preconditioner.

2. Deep Neural Network to construct state-dependent preconditioners. In order to construct
a preconditioner based on Eq. (1.21), we need a matrix of size n×r, whose columns are orthonormal
to approximate Ur, and a vector of size r, with positive elements to approximate Λr. We propose
to use a Deep Neural Network, parameterized by θ, in order to compute those quantities. Given
x ∈ Rn, the Neural Network outputs both a set of r non-orthonormal vectors Ũθ(x) ∈ Rn×r, and
a vector Λ̃θ(x) ∈ Rr of positive approximated eigenvalues. To ensure the orthonormal property
of the vectors, we use the QR decomposition, which is numerically stable compared to a classical
Gram-Schmidt orthonormalization procedure, while the positivity of the approximate eigenvalues
is imposed using any function R → R+ elementwise. In this work, we will use a scaled sigmoid
function: x 7−→ M

1+e−x , where M can be chosen as a rough upper bound on the singular values of
Ax. This mapping is summarized Eq. (2.1), and Figure 4.

(2.1)
Rn −→ R(n+1)r −→ Rn×r × Rr

+

x
DNN7−→ fθ(x)

split7−→ (Uθ(x),Λθ(x)) =
(
qr(Ũθ(x)), exp

(
Λ̃θ(x)

))
7



Figure 4. Schematic representation of the input/output signature of the Neural Network

Given the output of fθ, the Neural Network-based low-rank reconstruction of rank r is

Aθ(x) = Uθ(x)Λθ(x)Uθ(x)
T(2.2)

=

r∑
i=1

λ
(i)
θ (x)u

(i)
θ (x)

(
u
(i)
θ (x)

)T
(2.3)

with Uθ(x) =
(
u
(1)
θ (x) | · · · | u(r)θ (x)

)
, and a split preconditioner can be defined as in Eq. (1.21) for

β = 1 and α = −1/2:

(2.4) Lθ(x) = In + Uθ(x)
(
µΛθ(x)

−1/2 − Ir

)
Uθ(x)

T with µ ≥ 1

In theory, if the DNN provides the optimal low-rank approximation of Ax, choosing µ = 1
would allow to shift all the r first eigenvalues to 1, thus reducing the condition number of the
matrix. In practice, the DNN only produces an approximation of the eigenvectors and of the
eigenvalues, meaning that there is a risk to worsen the condition number. Experiments have shown

that choosing µ chosen between mini λ
(i)
θ (x) and maxi λ

(i)
θ (x) helps to account for the approximation

error due to the DNN. This is further discussed in section 3.

2.1. Loss definition and norm estimation. Neural networks are parameterized by θ ∈ RN,
which combines all the weights and biases of the individual neurons of fθ. To set this parameter,
one need to define an appropriate metric which is then optimized. Given the Eckart–Young–Mirsky
theorem Eq. (1.19), which defines the SVD in terms of an optimization problem and the reconstruc-
tion defined in Eq. (2.2), we define the loss for a single state of linearization xi as

(2.5) Lexplicit(θ;xi) = ∥Aθ(xi)−Axi∥2F

where this term would be minimized for Aθ(xi) as the low-rank approximation of Axi .
This loss requires the evaluation of the norm of the difference of two n×n non-sparse matrices,

which brings several challenges. Constructing the matrix Axi is computationally expensive, since
in most differentiated computer codes, this matrix is only accessible as an operator. In Data
Assimilation especially, given the definition of Ax in Eq. (1.10), computing δx 7→ Axδx requires the
applications of two linear (with respect to the second argument) operators: The Tangent Linear
operator

(2.6) TL : (xi, δx) 7−→ Gxi · δx
8



and the adjoint operator

(2.7) Adj : (xi, y) 7−→ GT
xi
· y

From a computational point of view, applying one of those operators is within the same order
of magnitude of complexity as the forward model G. Obviously, in order to construct the full
Jacobian matrix Ax, one could apply the linear operator to each vector ei of the canonical basis
since Ax = (Axe1 | . . . , , | Axen), but this is impractical since it requires n evaluations, on top of the
large memory requirements needed to store the matrix Ax for a single linearization point.

Same goes for the matrix Aθ(x): constructing the full matrix is hard from a storage point of
view, even though using it as a linear operator is cheaper since it requires only r dot products of
n-dimensional vectors as seen from Eq. (2.3),

Since we are only interested in the Frobenius norm of the difference of the operators, we can
instead directly estimate it using statistical estimators. Let D be a real matrix of size n × n. Its
squared norm ∥D∥2 can be rewritten as the expectation of a vector norm using the linearity of the
trace and expectation operator:

Eξ

[
∥Dξ∥2

]
= Eξ

[
tr
(
DξξTDT

)]
= tr

(
Eξ

[
ξξT
]
DTD

)
= ∥D∥2F(2.8)

where ξ ∼ N (0, In). Given a matrix Z ∈ Rn×k whose k columns z(j) are sampled from a standard
Gaussian distribution, we can use a Monte-Carlo estimator of the expectation:

(2.9)
1

k
∥DZ∥2F =

1

k

k∑
j=1

∥Dz(j)∥2 estimator of ∥D∥2F

Other estimators of this norm using random samples are studied in [Gudmundsson et al., 1995,
Gratton and Titley-Peloquin, 2018], while in [Indyk et al., 2019], the authors use ML to construct
the matrix to evaluate.

Using Eq. (2.9), for a state-vector xi in the training dataset and z
(1)
i , . . . z

(k)
i i.i.d. samples of a

standard Gaussian random variable, an estimate of the matrix norm of Eq. (2.5) is

L(θ;xi) =
1

k

k∑
j=1

∥Aθ(xi)z
(j)
i −Axiz

(j)
i ∥

2(2.10)

where Aθ(xi) is defined as in Eq. (2.2). We can also use the same estimator in order to estimate
the norm of Ax as 1

k

∑k
j=1 ∥Axz

(j)∥2, which is an estimate of the sum of all its eigenvalues squared.
This can be used in order to normalize the loss in Eq. (2.10), and can be interpreted as the fraction
of unexplained variance, by analogy with classical Principal Components Analysis:

(2.11) Lrelative(θ, xi) =
L(θ;xi)

1
k

∑k
j=1 ∥Axiz

(j)
i ∥2

2.2. Dataset Construction. In order to train the Neural Network, the construction of a dataset
is needed in order to optimize the loss function defined in Eq. (2.10). Each element (indexed by i)
in this dataset consists of three elements: a state xi which is used for the linearization, a random

matrix Zi = (z
(1)
i | · · · | z(k)i ) ∈ Rn×k whose components are iid and normally distributed, and

finally the evaluation of this sample by the matrix of interest: AxiZi. The training dataset is then

Dtraining =
{
(xi, Zi,AxiZi)) ∈ Rn × Rn×k × Rn×k s.t. 1 ≤ i ≤ Ntraining

}
(2.12)

However, we do not have to store all the training set in memory: Zi is independent of xi, and can
be sampled when needed, and Axi depends only on xi.
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Algorithm 2.1 Pseudocode for the generation of a batch for online training

for 1 ≤ i ≤ nbatch do
Sample and store Zi = (z

(1)
i | . . . | z

(k)
i ) ∈ Rn×k with z

(j)
i ∼ N (0, In) iid for 1 ≤ j ≤ k

Compute and store AxiZi ∈ Rn×k

xi+1 ← New state generated from xi

The method to generate a batch of nbatch samples is summarized Algorithm 2.1. In order to train
a Deep Neural Network, the constructed batches should be representative enough of the whole state
space. To get appropriate diversity in the states used to build the batch, we propose to generate the
new state iteratively by advancing the current state using the numerical modelM with a randomly
generated lead time, large enough so that the xi used for the batch are not too correlated, and by
potentially adding a small random perturbation before propagation.

3. Application to a Shallow Water Assimilation system.

3.1. Shallow Water equations and Data Assimilation setting. The Shallow Water equations
describe the motion of large bodies of water, for which the horizontal scale is larger than the vertical
scale which is the case for rivers, seas and oceans. They consist in PDEs obtained by vertically
averaging the Navier-Stokes equations. In this application, the variables of interest are the deviation
of sea surface height η around a mean height H0, the velocity u in the x-direction, and v, the velocity
in the y-direction.

(3.1)


∂η
∂t +

∂(H0+η)u
∂x + ∂(H0+η)v

∂y = 0
∂u
∂t − ξv + ∂B

∂x = ν∆u− cbu+ τx
ρ0h0

∂v
∂t + ξu+ ∂B

∂y = ν∆v − cbv

Those equations are discretized using a Arakawa C-grid of 64×64 cells, on a square domain of size
Lx = Ly = 1800km, meaning that the three prognostic variables are η ∈ R64×64, u ∈ R63×64 and v ∈
R64×63. Once flattened and concatenated, the state vector is then x = (η, u, v) ∈ R12160. Explicitely
storing the Gauss-Newton matrix would require 4.7GB (without exploiting the symmetry).

We consider the modelM that simulates the evolution of the state vector with a lead time of
T corresponding to 2 days.

(3.2)
Rn −→ Rn

M : xt 7−→ M(xt) = xt+T

The cost function is defined as in Eq. (1.3)

(3.3) J(x) =
1

2
∥(H ◦ G)(x)− y∥2R−1 +

1

2
∥x− xb∥2B−1

where H(x) = H((η, u, v)) = η, R = I642 , meaning that only the free-surface height is observed.
The background state xb ∈ Rn is computed as the average of states obtained during a previous
simulation with a large lead time.

3.2. Neural Network Architecture. For this problem, the state vector represents three spatial
variable, arranged on a regular grid. By padding the u and the v component, we can reshape the
state vector as a tensor of shape (64, 64, 3), ie like an image with 3 channels. Each of those com-
ponents is scaled so that each channel has approximately unit variance. Because of this image-like
structure, we can use Neural Network architecture well-suited for such data, such as Convolutional
Neural Networks (CNN) or U-Nets. We found that using a U-Net architecture, with transformers
instead of CNN for the subsampling step has shown good results.

3.3. Dataset and training. The training dataset is constructed according to Eq. (2.12), where
Ntraining = 1000 states of linearization have been sampled, and k = 100 random vectors have been
used for matrix-vector products.
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3.4. Numerical Results. We chose to train a DNN for rtrain = 2000, and compare the pre-
conditioners obtained using different numbers of retained vectors: r = 1000, 1900 and 2000. For
each of those, different values of µ have been chosen: either it is set to a fixed value, or it is set
to the smallest eigenvalue provided by the DNN. For r = 1000, mini λ

(i) ≈ 160, for r = 1900,
mini λ

(i) ≈ 145, and finally, for r = 2000, mini λ
(i) ≈ 2. The matrices to inverse have their leading

eigenvalues close to 20000, and show approximatively an exponential decay.
In order to compare numerical results, we generated the true states by advancing the model

using a random number of time steps. Based on this true state, observations are generated by
applying the observation operator and adding a sampled noise.

Figure 5. Number of iterations needed to reach the norm threshold. Dotted line indicates the number of iterations
for the unprecondition problem.

Figure 5 shows the number of iterations needed to reach the threshold of 10−7, or when 2000
iterations has been reached (whichever comes first) for the different preconditioners constructed
using DNN.

Figure 6 shows the comparison of the L2 norm of the residuals for the unpreconditioned problem,
which acts as a baseline, and the preconditioned problem using a state-dependent preconditioner,
depending on the number of retained vectors (denoted as the rank r, even though Pα is full-rank).
It is worth noting that due to the form of the reconstruction Eq. (2.3), the individual contribution
of each eigenpairs gets smaller and smaller, making them more and more difficult to approximate.
This in turn might worsen the quality of the preconditioner because of the negative exponent α/
We can see this effect on the preconditioners built with r = 2000, the whole estimated spectrum.
Some of the smallest eigenvalues are not well represented by the Neural Network, and this worsen
the preconditioning effect of Pα, compared to r = 1000 or r = 1900, and the influence of the shift
parameter µ is amplified. Indeed, µ helps mitigate this issue due to the approximation error of the
Deep Neural Network, by forcing the resulting eigenvalues to be larger than 1, which acts as a lower
bound for the eigenvalues of the original matrix.

This parameter is chosen whether with the fixed values µ = 100, 200, 500, or automatically
set to the minimum of the eigenvalues mini λ

(i) used to construct the preconditioner. If the Deep
Neural Network represents well the whole spectrum used, setting the shift to mini λ

(i) is a sensible
choice for performances, and the number of iterations required to reach the threshold is decreased
by roughly 30%.

Conclusion and perspectives. In this work, we focused on the problem of data-driven precondi-
tioning of non-sparse parameterized matrices. In a Data Assimilation context, more specifically in
the incremental formulation of 4D-Var, the inner loops refer to the iterations of Conjugate Gradient
to solve a high-dimensional linear system which depends on the point of linearization. In order to
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Figure 6. Norm of the residuals depending on the CG iteration, number of retained vectors r and shift parameter µ

improve the rate of convergence of Conjugate Gradient, we propose to use Deep Neural Networks
to get an approximation of the largest eigenpairs of the matrix to inverse, and then use those to
precondition the linear system.

We applied this method to an academic assimilation system of moderate size. Based on the
image-like structure of the state vector, we used an architecture based on U-Nets to construct a
surrogate. We have shown that using this preconditioner, we could reduced the number of matrix-
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vector products required to reach a convergence threshold. Compared to traditional preconditioning
methods, training such a neural network can be partly done in a almost non-intrusive way. Once
trained, this can be used as a first-level preconditioner, and thus traditional randomized methods
can be applied to improve furthermore the convergence rates.

Acknowledgement. This work has been funded within the France Relance Economic plan, and
has been jointly done between Eviden and Inria.
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