N

N

Computing Thermodynamically Consistent Elementary
Flux Modes with Answer Set Programming

Emma Crisci, Maxime Mahout, Sabine Peres

» To cite this version:

Emma Crisci, Maxime Mahout, Sabine Peres. Computing Thermodynamically Consistent Elementary
Flux Modes with Answer Set Programming. CMSB 2024 - 22nd International Conference Computa-
tional Methods in Systems Biology, Sep 2024, Pise, Italy. pp.80-88, 10.1007/978-3-031-71671-3_7 .
hal-04707880

HAL Id: hal-04707880
https://hal.science/hal-04707880v1

Submitted on 5 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04707880v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computing thermodynamically consistent
Elementary Flux Modes with Answer Set
Programming

Emma Criscit2, Maxime Mahout?®, and Sabine Peres!:2
b) b

L UMR CNRS 5558, Laboratoire de Biométrie et de Biologie Evolutive, Université
Claude Bernard Lyon 1, 69100 Villeurbanne, France.
2 ERABLE, INRIA Lyon Centre, 69100 Villeurbanne, France.
3 LIFEWARE, INRIA Saclay, Palaiseau, France

Abstract. Elementary Flux Modes (EFM) allow the description of the
minimal sets of reactions in a metabolic network under steady-state con-
ditions, representing unique and feasible pathways. They fully charac-
terize the solution space but a combinatorial explosion prevents their
calculation when the network is large. Furthermore, it is not necessary
to calculate all of them, as many of them are not biologically relevant.
Therefore, the software aspefm, which combines the use of Answer Set
Programming and Linear Programming, proposes to integrate different
types of constraints in the EFM computation such as equilibrium con-
stants, Boolean regulatory rules, growth yields and growth medium. The
addition of constraints makes it possible to cut off research pathways
that lead to non-relevant EFMs. The computation of the EFMs of inter-
est significantly reduces the computational time and saves space. In this
article, we have added thermodynamic constraints in terms of the Gibbs
energy of reactions, which constrain metabolite concentrations within a
chosen interval. This constraint is added as a theory propagator and it
reduces the enumeration during the computation. We applied our tool
to the central carbon metabolism of E. coli and showed that the Gibbs
energy constraints suppress a large number of non-relevant EFMs.

Keywords: Metabolic Networks - Elementary flux modes - Logic programming
- Thermodynamics.

1 Introduction

A metabolic network is a set of successive chemical reactions, catalysed by en-
zymes, that result in the production of metabolites required by the cell. The con-
cept of elementary flux mode (EFM) plays a crucial role in their analysis from
a pathway-focused point of view. An EFM is defined as a smallest sub-network
(with respect to reactions set inclusion) that enables the metabolic system to
operate at steady state with all irreversible reactions proceeding in the appro-
priate direction [16]. A major challenge in the computation of EFMs is the large
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number of EFMs associated with large biochemical networks. One approach to
calculating EFMs is to add biological knowledge to restrict the search to biolog-
ically relevant EFMs. The idea is not to enumerate the whole set and then select
the EFMs of interest, but to restrict the search to biologically feasible solutions.
In the double description method [12] which is used by efmtool, only the support
of monotone constraints such as negative transcriptomic Boolean regulations [9],
thermodynamic equilibrium constants [15, 14] and the Gibbs energy [8, 7] could
be integrated into the algorithm. Such constraints significantly reduce the com-
plexity of enumerating EFMs, but may not be sufficient to aid computation in a
genome-scale metabolic model. In previous works, we proposed constraint logic
programming methods based on SAT Boolean satisfiability to enumerate sub-
sets of EFM of biological interest [13,11], but their efficiency suffered from the
complexity of minimizing the size of the solutions searched. Recently, we devel-
oped aspefm [10], a highly efficient software based on Answer Set Programming
(ASP), to search for relevant EFMs respecting different kind of biological con-
straints, such as transcriptomic regulations, equilibrium constants, growth yields
and growth medium.

In this article, we develop the implementation of a new aspefm extension,
called DeltaG Checker. DeltaGChecker specifically checks whether the Gibbs free
energies, or thermodynamics, of reactions are possible. With this new constraint
type, we aim to reduce the total number of EFMs and the complexity of com-
putations. We test our DeltaGChecker on one small-scale metabolic networks
based on Escherichia coli. We observe that the number of EFMs retrieved is
particularly dependent on the minimum and maximum bounds chosen for the
metabolite concentration variables and that the extension does not lose signifi-
cant amounts of computational time.

2 Computation of EFMs compatible with thermodynamic
constraints

A metabolic network is represented by a stoichiometric matrix S € RIMIXIRI,

where |M| and |R| are the numbers of metabolites and reactions, respectively.
Each element S,,, denotes the stoichiometric coefficient of metabolite m in
reaction 7. The steady-state condition is expressed as S - v = 0, where v € RI*
is a flux vector. A flux mode v satisfies two conditions S-v = 0 and v; > 0 for all
i € irrev, where irrev is the set of indices corresponding to irreversible reactions.
An Elementary Flux Mode (EFM) e is a flux mode with minimal support, where
the support is defined as supp(e) = {r € N : e, # 0}. Depending on the size
of the metabolic network, there may be a combinatorial explosion in the search
for EFMs. Even if it could be possible to enumerate billions of EFMs, for some
networks, analysing in post-processing all the EFMs would be time-consuming.
aspefm allow us to directly find the EFMs of interest, by exploring only solutions
that satisfy the constraints. Several types of constraints can be added, including
the so-called linear constraints, referring to the field of linear programming.
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By analogy, our thermodynamics extension DeltaG Checker checks the Gibbs
free energies of reactions by using linear programming. Linear programming al-
lows the algorithm to check whether a given support of an EFM in construction
(the set of active reactions in the EFM) satisfies these thermodynamic con-
straints. To determine if an EFM is thermodynamically feasible, the extension
finds a set of metabolite concentrations that satisfies the thermodynamic con-
straints.

2.1 Thermodynamics of chemical reactions and Formulation in LP

Thermodynamics is the study of energy transformations that occur within me-
chanical systems. In thermodynamics, chemical reactions are analysed from an
energetic perspective, in order to predict whether a given reaction is favorable
or unfavorable.

In this article, we will focus on the second law of thermodynamics, expressed
through the Gibbs free energy equation, which provides a criterion for determin-
ing the spontaneity and direction of chemical reactions [1].

The Gibbs free energy of formation (ArpG’) of metabolites is calculated us-
ing the Gibbs free energies of formation in their standard states (ApG’®), the
molar gas constant, R and the temperature, T. The standard state is thus at
the metabolite level. The free energy of formation denoted ApG’ is the Gibbs
energy associated with the formation of one mole of a substance from its con-
stituents in their standard states at a reference pressure and temperature. In
other words, it is the energy required to form one mole of a substance from its
most stable components. The sign of ArG,. gives the direction of the reaction 7.
If the calculated ARG, is strictly negative, the reaction is thermodynamically
favorable under current conditions. Conversely, if AgrG,. is positive, the reaction
is unfavorable or requires additional energy to make it possible. Thus, no EFM
can therefore have reactions in that direction. Finally, if the energy ArG,. is null,
this means that the reactants and products are in thermodynamic equilibrium.

The thermodynamic constraints can be expressed as a linear program (1).
The principle behind this linear program is to find a set of metabolite concentra-
tions such that thermodynamics is respected throughout the metabolic network.
The objective function will thus be expressed as the minimisation of 0, i.e. no
attempt is made to minimise or maximise a function. Constraints on chemical re-
actions are tested for a set of active reactions in the metabolic network, support
of a potential EFM e.

min 0
st AgrG, <0, Vre supp(e)
M
ARG, = Y S ArGl, (1)

m=1

ApG,, = ApGp + RT'In(Cp /Cy), Co=1M
In (Cin/Co) < In (Cy, /Co) < In (C1ox/Ch)
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Finally, the linear program verifies that all reactions contributing to an

EFM (present in the support), are simultaneously feasible and consistent with a
metabolome with given error bounds C" and C%®.
The integration of Gibbs free energy into EFM calculations has already been im-
plemented as an extension to efmtool [17] in the thermodynamics EFM analysis
(tEFMA) [7,8]. tEFMA proposes to add the same thermodynamic constraints
in the same LP form. tEFMA uses the double description algorithm [12], which
is an incremental method and does not enumerate solutions one-by-one. More-
over, it can integrate only support monotone constraints during the computation.
Filtering EFMs with multiple constraints during enumeration is promising for
finding EFMs of interest in large networks. In this article, we integrate this linear
program into aspefm, which allows additional constraints to be combined simul-
taneously and can enumerate solutions one-by-one. The aspefm tool defines a
logic program in ASP to be solved using a modified version of the clingo|LP|
solver, making use of high-performance state-of-the-art SAT-solving techniques,
as well as expressive IBM CPLEX linear constraints [10].

2.2 DeltaGChecker extension to aspefm

Thermodynamic constraints require additional data, including the standard Gibbs
free energies of formation ApG!> and the allowable concentration ranges for
each metabolite, and can be found in the database as Equilibrator [5]. The
minimum and maximum concentrations for each metabolite are user-defined.
Users can base their choices on their own experimental data or from relevant
databases. To retrieve the thermodynamic data, we developed a script using the
well-documented Equilibrator API. In particular, we used the following stan-
dard conditions recommended by Equilibrator: a pH of 7.4, an ionic strength of
0.25M and a temperature of 298.15K [2]. More details on input data require-
ments, API scripts, file transformation utilities, and code for aspefm and the
new DeltaGChecker extension are available in our GitLab repository:
https://gitlab.inria.fr/erable/aspefm.

The DeltaGChecker extension is directly integrated into the EFMs calcula-
tion of aspefm. In the SAT resolution algorithm of aspefm, EFMs are constructed
reaction by reaction, as partial supports. A partial support is defined here as an
unfinished sketch of an EFM support in the constraint propagation. By eval-
uating the thermodynamic constraints on partial supports, the DeltaGChecker
extension ensures that any added reactions in the EFM retain their its feasi-
bility. The linear program solver CPLEX (1) is called for each partial support
constructed and the feasibility of the ARG, energies for the calculated metabo-
lite concentration variables constrained by the min/max concentration bounds is
checked [4]. If the linear program has no solutions, then the thermodynamics for
that partial set of active reactions is considered not respected. The invalidation
of thermodynamics leads to the addition of 'mogoods’ in the SAT resolution,
which cut off the search for certain EFM search branches. In the case of aspefm
and DeltaGChecker, nogoods are added for sets of reactions that are incompat-
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ible with each other. For rest of the resolution, the branches explored will not
consider the forbidden sets of reactions together.

3 Application to central carbon metabolism of E.col:

The aim, with a simple model as FE.coli from the published model [3], is to show
that the extension encoding thermodynamic constraints can restrict us to only
relevant EFMs by eliminating those for which it is impossible to find a metabolite
concentration solution. When validating the thermodynamic extension, the idea
is to specify for each metabolite an interval around the reference value associated
with the metabolite (to be found in the literature) and to compare the number
of associated EFMs. In other words, if the percentage is x, then each metabolite
will be assumed to have a concentration within a range of values between :

(2)

0 <2 <100, forallx in percentage
Cref X (]- - ﬁ) S Cref é Cref X (]- + ﬁ)

Thus, the higher the percentage, the less the metabolites are constrained
in their concentration as they have a wider range of values, i.e. the solver has
more freedom in choosing the optimal concentration set to find. Increasing the
percentage range directly reduces the constraints on thermodynamics. In the
rest of the study, we will compare the EFMs found in aspefm with and without
the use of thermodynamics, to show how the new extension reduces the number
of relevant EFMs. The metabolic network of E.coli consists of 55 reactions, 46
metabolites and 1658 EFMs without any constraint.

3.1 Selection of EFMs of thermodynamic interest in E.col:

In this E. coli model, some metabolite concentrations were unknown. We first
set their reference values to 1075 M. Relevant EFMs (satisfying thermodynamic
constraints) were found only from 50% onwards, increasing to 99% where we
reached 1658 EFMs, matching the number without thermodynamic constraints
(Fig. 1).

Instead of setting a reference concentration for the metabolite that does not
have one, we then set the predefined interval from 10~7 to 1 M as in tEFMA. Tt
can be seen that with the interval set for metabolite concentrations, more EFMs
are obtained than with the use of a reference concentration, e.g. for 75 percent,
100 times more EFMs are obtained with the imposed interval. This is because
the fixed interval is large, so less thermodynamic stress is applied.

Even though about 15 percent of the metabolite concentrations were un-
known, we were successfully able to limit the computation to thermodynamically
consistent EFMs by setting default reference concentrations or default bounds.
Therefore, we highlight that knowing the concentrations for all the metabo-
lites in the metabolic model might not always be necessary. In summary, the
DeltaGChecker extension efficiently reduces the amount to only relevant ther-
modynamics EFMs by incorporating thermodynamic constraints. However, for
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these constraints to be effective, the concentration intervals provided must be
sufficiently stringent.

Number of EFMs as a function of the interval around the fixed value, E. coli model
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Fig. 1. Evolution of the number of EFMs selected as a function of metabolite concen-
tration constraints, in E.coli. Abscissa are percentages of interval around the reference
concentration values.

4 Conclusion

The DeltaGChecker extension gives aspefm a strong advantage in finding rel-
evant EFMs. The addition of thermodynamic constraints significantly reduces
the number of EFMs in most cases, provided the system has enough constraints.
Our DeltaGChecker extension determines, for a potential EFM support, whether
there exists a set of metabolite concentrations such that the system satisfies the
thermodynamic constraints. The extension has been tested on the E. coli model,
and we have shown that it reduces the number of EFMs, by an order of magni-
tude, allowing faster post-processing analysis.

It should be noted that at the scale of the applications studied, the aim
is mainly to reduce the number of EFMs, rather than to reduce the computa-
tion time at all costs. For larger networks, where the combinatorial explosion is
strong, it will be important to know whether the extension actually multiplies
computation time or reduces it. For this reason, we have performed additional
analysis on the computational time (Appendix 5.1). We have concluded that the
extension has a certain cost in computation time, but this time could proba-
bly be worthwhile on larger networks. In the case of large networks, where in
some cases the aim is simply to enumerate EFMs of interest, the idea of using
thermodynamic constraints to avoid traversing certain paths, and thus reduce
computation, seems promising. Further extensions will be developed in the fu-
ture, in particular to incorporate kinetic and enzyme concentration constraints.
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5 Appendix

5.1 Computation times on E.col:

The thermodynamic extension makes it possible to reduce the number of EFMs
of interest, and therefore the post-processing search, but it’s interesting to look
at and compare what the extension can bring to processing. The extension re-
duces the number of paths used to search for EFMs, and therefore saves time
on paths that we know to be thermodynamically infeasible. On the other hand,
the extension will waste time on path traversal, because for each EFM support
tested, it will be necessary to check whether the support has a concentration set
solution that validates the thermodynamics, which implies running the CPLEX
solver. So, for the extension to be cost-effective in terms of computation time,
the absence of some non-thermodynamically feasible EFM paths would have to
be beneficial in terms of the computation time added to test whether each par-
tial support has a thermodynamically feasible solution.

This figure shows the same percentages used in the previous study (Fig. 2).
It was seen that the lower the percentage, the more the extension restricted the
number of EFMs of interest, so that the extension must have had an impact on
the paths taken by the EFMs. As the percentage increased, the number of EFMs
of interest increased, approaching the number found by aspefm without the ad-
dition of the extension, due to the fact that the thermodynamic constraints were
not strong enough. We note that in the case of the E.coli model, computation
times of aspefm oscillates between 25.6 and 28.4 seconds while not increasing
with the percentage as would be expected; time within and outside the exten-
sion remains approximately constant. Surprisingly, filtering out more solutions
had no effect on the computation time. This result might be explained by the
fact that the network is not large enough, i.e. the time saved by not traversing
certain paths is not visible at this scale. Overall, when removing the times taken
by the extension, we find that the differences in time are almost all attributable
to the extension, with a time difference of around ~ 2 seconds (on average 17.51
against 15.56).
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Time execution of ASPEFM and thermodynamic extension for the E.coli model

mmmm aspefm with DGChecker off
H aspefm + DGChecker
Em aspefm alone

DGChecker alone

Percentage of interval around fixed value

0 5 10 15 20 25 30
Computation Time (s)

Fig. 2. Evaluation of aspefm computation times for E. coli depending on percent-
ages around the selected intervals; 1) aspefm with DGChecker off: aspefm times for
computing E.coli model EFMs without using extension DeltaGChecker; 2) aspefm +
DG Checker: aspefm times for computing E. coli model EFMs using the DeltaG Checker
extension, for each percentage around the fixed concentration value; 3) aspefm alone:
for each percentage, portion of time spent computing aspefm solutions, without check-
ing thermodynamics; 4) DGChecker alone: for each percentage, portion of time spent
checking thermodynamics in the DeltaGChecker extension.

This is a promising result, and we hope that computation times for our
filtering procedure will be able to scale to larger networks.
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