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Solution concepts for linear piecewise affine differential-algebraic
equations

Yahao Chen1 and Stephan Trenn2

Abstract— In this paper, we introduce a definition of solu-
tions for linear piecewise affine differential-algebraic equations
(PWA-DAEs). Firstly, to address the conflict between projector-
based jump rule and active regions, we propose a concept called
state-dependent jump path. Unlike the conventional perspective
that treats jumps as discrete-time dynamics, we interpret them
as continuous dynamics, parameterized by a virtual time-
variable. Secondly, by adapting the hybrid time-domain solution
theory for continuous-discrete hybrid systems, we define the
concept of jump-flow solutions for PWA-DAEs with the help
of Filippov solutions for differential inclusions. Subsequently,
we study various boundary behaviors of jump-flow solutions.
Finally, we apply the proposed solution concepts in simulating
a state-dependent switching circuit.

I. INTRODUCTION

Consider a linear piecewise affine differential-algebraic
equation (PWA-DAE) of the form

∆pwa : Eiẋ = Aix+ bi, x ∈ Ωi ⊆ Rn, i = 1, . . . , N, (1)

where x ∈ Rn are the state-variables, Ei, Ai : Rn → Rn,
bi ∈ Rn, N ∈ N+ is the number of DAE modes, {Ωi}
is the set of active regions, where Ωi are convex sets

satisfying
N⋃
i=1

Ωi = Rn. In particular, PWA-DAEs can be

seen as switched DAE control system (see e.g. [16]) by
fixing the switching signal as a state-dependent function and
the inputs as constants; switched DAEs have been proved
to be powerful tools for modeling various physical systems,
including electrical circuits with switching devices [22], [17]
and power grids [7].

Solution analysis and control of ordinary differential equa-
tion (ODE)-based piecewise linear systems have been well-
studied for decades, see e.g., [11], [19] and also [12] for
results on closely related switched ODE systems. Moreover,
there exist fruitful studies on time-dependent switched DAEs,
e.g., in [13], [14], [15], [16], [18]. However, there are far
fewer related results on state-dependent switched DAEs and
particularly on PWA-DAEs. Typically, the focus has been
on studying specific systems rather than establishing a broad
solution framework. For example, in [17], the passivity of
a state-dependent switched DAE-modelled circuit was dis-
cussed, providing insights into a specific application. In [20]
and [1], numerical methods and Modelica tools were utilized,
respectively, to simulate physical examples involving state-
dependent DAEs.
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One challenge in studying PWA-DAE solutions is the
absence of a clear definition of state-dependent jumps to
ensure consistency during mode changes. A related research
area is impulsive systems, particularly state-dependent im-
pulsive systems as reviewed in [26], which can be viewed
as special cases of the general hybrid time-domain systems
framework proposed in [9]. In this framework, the continuous
dynamics (flow) are governed by an ODE (or differential
inclusion) in some regions and a (possibly multivalued) jump
rule in others; the flows and jumps are generally unrelated.
In contrast, a PWA-DAE implicitly defines a consistency
space where the flow occurs, while simultaneously implying
a projector-based jump rule from an inconsistent initial value
to a consistent one. Hence, the jumps in a DAE can be seen
as intrinsic jump rules, whereas those in impulsive systems
are externally imposed. Filippov solutions for discontinuous
DAEs are discussed in [6], [3], but these works primarily
focus on semi-linear and index-1 modes, without involving
jumps.

In Section II, we revisit certain concepts of linear DAEs.
We delve into the issue of state-dependent jumps for PWA-
DAEs in Section III-A. The formulation of jump-flow so-
lutions within the hybrid time-domain and the examination
of their boundary behaviors are provided in Section III-B.
Conclusions and future prospects are given in Section IV.

II. PRELIMINARIES

The following notations will be used throughout the pa-
per. N and R are the natural numbers and real numbers,
respectively. For a matrix M ∈ Rn×m, the kernel (null
space) of M is denoted by kerM , the image of M is
denoted by imM . The identity matrix of size n × n is
denoted by In. The image of a set S ⊆ Rn under M is
MS := {Mx ∈ Rn | x ∈ S } and the pre-image of S under
M is M−1S := {x ∈ Rn | Mx ∈ S }.

Each mode of (1) is an affine DAE Eẋ = Ax+b, denoted
by ∆ = (E,A, b). A C1-curve x : [0,∞) → Rn is called
a C1-solution or a flow of ∆ if Eẋ(t) = Ax(t) + b for all
t ∈ [0,∞). A point x0 ∈ Rn is called consistent if there
exists a C1-solution x(·) starting from x0, i.e., x(0) = x0.
The set of all consistent points is called consistency space,
denoted by C. The matrix pair (E,A) is called regular if
det(sE−A) is not identically zero. The regularity of (E,A)
guarantees the existence and uniqueness of C1-solutions of
∆. We assume in the following that all matrix pairs (Ei, Ai)
of (1) are regular. Any DAE ∆ with a regular pair (E,A) can
be always transformed, via two constant invertible matrices
Q and P , into the (quasi-)Weierstrass form [23], [2] ∆̃ =



(QEP−1, QAP−1, Qb):[
In1

0
0 N

] [
ẋ1

ẋ2

]
=

[
A1 0
0 In2

] [
x1

x2

]
+

[
b1
b2

]
, (2)

where A1 ∈ Rn1×n1 and N ∈ Rn2×n2 is a nilpotent matrix
with nilpotency index ν, i.e. Nν−1 ̸= 0 and Nν = 0, where
n1+n2 = n. The index of ∆ is defined to be the nilpotency
index ν of N , thus we have N = 0 for index-1 DAEs. The
matrices Q, P can be constructed with the help of the limits
V ∗ = Vn and W ∗ := Wn [2] of the Wong sequences [25]
of the matrix pencil (E,A), given by,{

V0 = Rn, Vk+1 = A−1(EVk), k ≥ 0,

W0 = {0}, Wl+1 = E−1(AWl), l ≥ 0.
(3)

The consistency projector, the differential selector and the
impulse selector of ∆ are defined [21], [22], [24], respec-
tively, as follows

Π:= P−1

[
In1

0
0 0

]
P, Πdf := P−1

[
In1

0
0 0

]
Q.

and
Πimp := P−1

[
0 0
0 In2

]
Q.

With the help of the above definitions, it can easily be
concluded that the consistency space of ∆ is given by

C = imΠ− {Πimpb} = V ∗ − {Πimpb}

and the C1-solution (flow) starting from a consistent point
x+
0 ∈ C can be expressed by x(t) = eA

df tx+
0 +∫ t

0
eA

df (t−s)Πdfbds, where Adf = ΠdfA is called the flow
matrix.

If the initial point x−
0 /∈ C is not consistent, then a re-

initialization procedure is needed to find a consistent point
x+
0 in order to solve the DAE. One approach to achieve the

consistent initialization is to introduce a jump (an instant
change) from x−

0 to x+
0 ; utilizing (2) and following similar

arguments as in [21], [13], [22] this jump map is uniquely
defined via the projector Π and the selector Πimp by

x+
0 = Πx−

0 −Πimpb ∈ C.

While this jump rule is also valid for DAE systems of
arbitrary index, for non-index-1 DAEs, this jump in general
also induces Dirac impulses in the solution [22]; however,
here we focus only on the impulse-free part of the solution,
the rigorous consideration of the Dirac impulses in the
solutions is a topic of future research.

III. MAIN RESULTS

A. State-dependent jumps and jump sliding behavior

The first problem to discuss is the definition of jumps
for PWA-DAE (1). Consider an inconsistent initial point
x−
0 /∈ Cp and x−

0 ∈ Ωp for an index p ∈ {1, 2, . . . , N}. If we
directly apply the projector Πp to x−

0 and selector Πimp
p to

bp, we obtain the consistent point x+
0 = Πpx

−
0 − Πimp

p bp ∈
Cp. However, in general, x+

0 /∈ Ωp, which means that the
resulting consistent point violates the active region rule.

Therefore, it becomes necessary to introduce a new definition
of jumps for PWA-DAE to address this issue.

To generalize the definition of jumps for nonlinear DAEs,
a novel approach called the “jump path” is proposed in [4].
We now adapt this notion for PWA-DAEs in the present
paper. The key idea is not just to consider the jump map
x−
0 → x+

0 , but instead to introduce a jump path J : [0, a] →
Rn, τ 7→ J(τ), with J(0) = x−

0 and J(a) = x+
0 ∈ C, such

that dJ(τ)
dτ ∈ kerE. The latter condition, which requires the

jump direction to stay in kerE, is inspired by the impulse-
free jump condition x+

0 −x−
0 ∈ kerE, meaning that the jump

does not cause any Dirac impulse, see, for example, [21],
[13], [14] for the distributional solutions theory of DAEs. It
can be proved by the results in [4] that for an index-1 linear
affine DAE ∆, the jump associated with the jump path is
uniquely defined and it coincides with the one defined by
the consistency projector, i.e., J(a) = Πx−

0 −Πimpb.

Define Cpwa :=
N⋃
i=1

(Ci ∩ Ωi) and call it the consistency

space for the PWA-DAE ∆pwa. Note that from any point
x+
0 ∈ Cpwa, there exists a unique maximal C1-solution for

the corresponding activated DAE mode ∆p, where p satisfies
x+
0 ∈ Ωp.

Definition 1 (State-dependent jump path). Consider a PWA-
DAE ∆pwa, an absolutely continuous curve J : [0, a] → Rn

is called a convergent jump path starting from an initial point
x−
0 ∈ Rn if J(0) = x−

0 , ∀τ ∈ [0, a) : J(τ) ∩ Cpwa = ∅,
J(a) ∈ Cpwa and

dJ(τ)

dτ
∈ Cone{f jp

i (J(τ))}, J ∈ Ωi (4)

where Cone{S} denotes the smallest (closed) cone contain-
ing S and

f jp
i (x) := (Πi − I)x−Πimp

i bi.

The change x−
0 → x+

0 := J(a) is called a state-dependent
jump associated with J(τ). If a = ∞ and J(∞) =
lim
τ→∞

J(τ) does not exist, then J(τ) is called a divergent
jump path.

The motivation behind jump rule (4) is to allow the
jumping direction dJ(τ)

dτ = lim
ϵ→0

J(τ+ϵ)−J(τ)
ϵ to depend on

the position J(τ) of the path and to require any inconsistent
point x ∈ Ωp to move towards the consistent initialization
x+ = Πpx−Πimp

p bp for the active mode ∆p, i.e., the moving
direction is (Πpx − Πimp

p bp) − x = f jp
p (x). One should

keep in mind that the jump still happens instantaneously, in
particular, τ is not a real time-variable (it is virtual), but just
describes the position on the jump path. It is not necessary
to specify how fast the path moves, thus we use inclusion
and Cone{f jp

i } in (4) instead of using dJ(τ)
dτ = f jp

i (J(τ)).
To solve (4), it is enough to choose any vector gjpi (J, τ) ∈
Cone{f jp

i (J)} and solve dJ
dτ = gjpi (J, τ). The solutions

from different choices of gjpi are different parametrizations
of the same curve. The simplest choice is gjpi = f jp

i , then
a = ∞. By applying this choice to a single affine DAE mode



∆ = (E,A, b), we have

J(τ) = eA
jpτx−

0 −
∫ τ

0

eA
jp(τ−s)Πimpbds,

where Ajp := Π− I . It follows that x+
0 = J(∞) = Πx−

0 −
Πimpb. This means that Definition 1 is a generalization of the
projectors-based jump rule for affine DAEs to PWA-DAEs.

Remark 1. (i) If the mode ∆i is index-1, then dJ
dτ ∈

Cone{f jp
i (J)} ⊆ kerEi, thus the defined state-dependent

jump does not cause Dirac impulses for index-1 modes and
Definition 1 is indeed an adaptation of the impulse-free jump
rule [4] to PWA-DAEs.
(ii) For any jump path J(τ), by a change of variables
τ̃ = φ(τ), where φ : [0, a] → [τ̃0, τ̃1] is a diffeomorphism,
we re-parameterize J(τ) as J̃(τ̃) = J(φ−1(τ̃)) : [τ̃0, τ̃1] →
Rn, it can be seen that J̃ still satisfy (4), i.e., dJ̃

dτ̃ ∈
Cone{f jp

i (J̃)}, so the above definition is invariant under
different parametrizations of the jump path, which means
that given any parametrization of a curve starting from x−

0 ,
we may verify if it is indeed a jump path by directly using
Definition 1.

It is worth to note that the defined jump path could be
divergent or convergent as a PWA ODE system.

Example 1. Consider a PWA-DAE ∆pwa with two modes
with states x = (x1, x2) ∈ R2,

∆1 :
[
1 −1
0 0

] [
ẋ1
ẋ2

]
= [ 0 0

0 1 ] [
x1
x2

] + [ 10 ] ,

∆2 : [ 2 1
0 0 ]

[
ẋ1
ẋ2

]
= [ 0 0

1 0 ] [
x1
x2

]−
[−1

0

]
.

with the active regions 1 given by

Ω1 =
{
x ∈ R2

∣∣ x2 − y2 + γxy ≤ 0
}
, Ω2 = R2 \ Ω2.

The consistency space Cpwa = {0} is a single point. In case

x−
0

x+
0

x1

x2

(a) γ = 1

x−
0

x1

x2

(b) γ = 10

Fig. 1: Red and blue dashed arrows: Jump directions of ∆1 and
∆2, Red and blue lines: C1 and C2, Red and blue regions: Ω1 and
Ω2

(a) γ = 1, we have x+
0 = 0 while in case (b) γ = 10, the

jump path is divergent.

1Clearly, Ω1 and Ω2 are not convex and in order to match our framework
it is necessary to further split both regions into two (convex) parts and
introduce the additional modes ∆3 = ∆1 and ∆4 = ∆2; however, to
avoid unnecessary additional notation, we only consider the system with
two modes instead of four.

In the spirit of Filippov solutions for piecewise ODEs [8],
[5], [11], we may generalize the rule (4) to the following
differential inclusion

dJ(τ)

dτ
∈ F jp(J(τ)),

where F jp is a set valued function defined by

F jp(x) := Cone{f jp
i (x),∀i : x ∈ clo(Ωi) ̸= ∅},

i.e. F jp(x) is the cone consisting of all convex combination
of all possible jump directions.

Jump sliding behavior. Let Spq := clo(Ωp) ∩ clo(Ωq)
be the common boundary of two neighboring active
regions Ωp and Ωq . Then for any point x ∈ Spq \ (Cp∪
Cq) if both the vectors f jp

p (x) and f jp
q (x) point towards

Spq , then there always exists a convex combination
αf jp

p (x)+(1−α)f jp
q (x) ∈ TxSpq for some 0 ≤ α ≤ 1,

where TxSpq is the tangent space of Spq at x ∈ Spq ,
which means that F jp(x)∩TxSpq ̸= ∅ and the jump path
J(τ) approximates a trajectory sliding on the boundary
Spq , which we call the jump sliding behavior of ∆pwa.

Example 2. Consider a PWA-DAE ∆pwa with x =
(x1, x2) ∈ R2 and two modes

∆1 :
[
1 −γ
0 0

] [
ẋ1
ẋ2

]
=

[
0 −1
1 0

]
[ x1
x2

] +
[

0
−1

]
,

∆2 :
[−γ 1

0 0

] [
ẋ1
ẋ2

]
=

[−1 0
0 1

]
[ x1
x2

] +
[

0
−1

]
.

The active regions are Ω1 = {x ∈ Rn | γ(x1 − x2) ≥ 0}
and Ω2 = R2 \Ω1. By a direct calculation, we get f jp

1 (x) =[
−1 0
− 1

γ 0

]
x+

[
1
1
γ

]
and f jp

2 (x) =
[
0 − 1

γ

0 −1

]
x+

[
1
γ

1

]
. The bound-

ary of Ω1 and Ω2 is S12 =
{
(x1, x2) ∈ R2

∣∣ x1 = x2

}
. It

can been seen in Fig. 2 that both f jp
1 (x) and f jp

2 (x) point
towards S12 and there exists α ∈ (0, 1) s.t. αf jp

1 (x) +
(1 − α)f jp

2 (x) ∈ TxS12 whenever x1 ≥ 1 and x2 ≥ 1.
Thus starting from any inconsistent point x−

0 =
[
x−
10

x−
20

]
∈

S12 ∩ {x ∈ R | x1 ≥ 0, x2 ≥ 0}, there exists a jump sliding
behavior. As seen from Fig 2, the jump sliding behavior J(τ)
converges to (1, 1) (implying that x+

0 = (1, 1) is the resulting
consistent point) if γ > 1, and J(τ) diverges if γ < −1.

Ω1

Ω2

x1

x2

(a) γ > 1

Ω2

Ω1

x1

x2

(b) γ < −1

Fig. 2: Red and blue dashed arrows: Jump directions of ∆1 and
∆2, Red and blue lines: C1 and C2, black dashed line with arrows:
Jump sliding modes.

B. PWA-DAE jump-flow solution on hybrid time domain

Starting from a consistent point x+
0 ∈ Cpwa, there exists

a C1-solution x(t) of the active mode ∆p, where p satisfies



x+
0 ∈ Ωp ∩Cp. It is conceivable that x(t) may exit Cpwa at a

certain time t = tk, i.e., x(t−k ) /∈ Cpwa. In such instances, a
consistency re-initialization, represented as a jump x(t−k ) →
x(t+k ) ∈ Cpwa, should be determined following the guidelines
outlined in Definition 1. Consequently, a complete trajectory
of a PWA-DAE entails a hybrid behavior that incorporates
both jump and flow dynamics. Given that these dynamics
are characterized using both the real-time variable t and
the virtual variable τ , we customize the hybrid time-domain
framework proposed in [10], [9] for PWA-DAE solutions.

Definition 2 (PWA-DAE hybrid time domain). A subset

E =
⋃
j

({tj}×[τj , τj+1])∪([tj , tj+1]×{τj+1}) ⊂ R≥0×R≥0

is called a PWA-DAE hybrid time domain if it is a union
of finite or infinite sequence of indexed intervals {tj} ×
[τj , τj+1] and [tj , tj+1] × {τj+1}, j = 0, 1, 2, . . . , for some
ordered sequences 0 ≤ τ0 ≤ τ1 ≤ . . . and 0 ≤ t0 ≤ t1 ≤ . . .
in R. In the case of a finite numbers m+ 1 of intervals, the
last intervals are allowed to be half-open, i.e., [τm, τ ) or
[tm, T ) with τ and T finite or equal to ∞.

Remark 2. A distinction between Definition 2 and the
original definition of hybrid time-domain in [10] is the
discrete time-sequence j becomes a continuous virtual time-
interval [τj , τj+1]. This adaptation is necessitated by the
nature of the state-dependent jump, which, as previously
discussed, embodies an absolutely continuous dynamic. Fig-
ure 3 illustrate the typologies of these two distinct definitions.

t

j

t1 t2 t3

1

2

3

(a)

t

τ

t1 t2 t3

τ1

τ2

τ3

(b)

Fig. 3: (a). A hybrid time domains E defined in [10], [9], where
E is the union of [0, t1] × {0}, [t1, t2] × {1}, [t2, t3] × {2} and
[t3,∞)× {3}. (b). A PWA-DAE hybrid time domains E which is
the union of ({0} × [0, τ1]) ∪ ([0, t1]× {τ1}), ({t1} × [τ1, τ2]) ∪
([t1, t2]× {τ2}), ({t2} × [τ2, τ3]) ∪ ([t2, t3]× {τ3}).

Definition 3 (PWA-DAE hybrid arc). A function x : E →
Rn defined on a PWA-DAE hybrid time-domain is called
a PWA-DAE hybrid arc if for each j = 0, 1, 2, . . . , the
function τ 7→ x(tj , τ) by fixing tj is absolutely continuous
on the interval Iτj := {τ | (tj , τ) ∈ E } and the function
t 7→ x(t, τj+1) by fixing τj+1 is absolutely continuous on
the interval Itj := {t | (t, τj+1) ∈ E }.

Now with the help of the above two definitions, we can
define the jump-flow solution of a PWA-DAE from any initial

point (consistent or not). Recall and define the following
jump and flow vector fields

f jp
i (x) = (Πi − I)x−Πimp

i bi, fdf
i (x) := Adf

i x+Πdf
i bi

and define

F jp(x) := Cone{f jp
i (x),∀i : x ∈ clo(Ωi) \ Ci},

F df(x) := Conv{fdf
k (x),∀k : x ∈ clo(Ωk) ∩ Ck}

+Cone{f jp
i (x),∀i : x ∈ clo(Ωi) \ Ci},

where Conv{S} denotes the (closed) convex hull of S.

Definition 4 (Jump-flow solutions). A PWA-DAE hybrid arc
x : E → Rn is a jump-flow solution of ∆pwa starting from
an initial point x0 ∈ Rn if x(0, 0) = x0 and the following
conditions are satisfied:
(Jump Condition) For each j ∈ N such that Iτj has non
empty interior:

dx(tj , τ)

dτ
∈ F jp(x(tj , τ)) for almost all τ ∈ Iτj ,

x(tj , τ) /∈ Cpwa for all τ ∈ [min Iτj , sup I
τ
j ),

(Flow Condition) For each j ∈ N such that Itj has non
empty interior:

dx(t, τj+1)

dt
∈ F df(x(t, τj+1)) for almost all t ∈ Itj ,

x(t, τj+1) ∈ Cpwa for all t ∈ [min Itj , sup I
t
j),

Remark 3. (i) In contrast to the definitions outlined in [10],
[9], the jump condition and flow condition in Definition 4
exhibit a symmetric structure. This symmetry arises from the
fact that the jumps considered here are also characterized by
absolutely continuous dynamics as the flows. However, it is
worth noting that the definitions of F jp and F df are not
symmetry, which is because the consideration of the jump-
flow sliding behaviors discussed below.

(ii) In solving the differential inclusion within the (Jump
Condition), our objective is to identify a specific map-
ping Gjp ∈ F jp. Notably, if we were to set Gjp =
Conv{f jp

i (x),∀i : x ∈ clo(Ωi) \ Ci}, the jump path defined
by dx

dτ ∈ Gjp would be parameterized over [0,∞). However,
since the jump path in (Jump Condition) is required to
be parameterized over Iτj , we may choose Gjp(x, τ) =

Conv{f jp
i (x)

(
dφj

dτ

)−1

,∀i : x ∈ clo(Ωi) \ Ci}, where
φj : [0,∞) → Iτj represents a change of variables.

Recall that Spq denotes the boundary shared by both Ωp

and Ωq . For any x ∈ Spq∩Cp∩Cq , meaning x is a consistent
point for both ∆p and ∆q on the boundary of Ωp and Ωq

respectively, we have F df(x) = αfdf
p (x) + (1 − α)fdfq(x)

for α ∈ [0, 1]. If fdf
i (x) and fdf

j (x) point towards Spq , then
it is evident that a flow sliding behavior will emerge when
considering the Filippov solution of the differential inclusion
in the (Flow Condition).

A challenge arises when x ∈ (Spq ∩ Cp) \ Cq , meaning x
is consistent for one mode ∆q but not for another mode



x1

x2

Fig. 4: Red arrows and blue dashed arrows: Flow directions of ∆1

and jump direction of ∆2, black line: Jump-flow solutions.

∆p. In such cases, the flow rule dx(t,τ)
dt = fdf

p (x(t, τ))

should be followed for ∆p, while the jump rule dx(t,τ)
dτ ∈

Cone{f jp
q (x(t, τ))} should be respected for ∆q . Describing

the sliding behavior on (Spq ∩Cp)\Cq becomes challenging
as it involves two dynamics described by different variables,
t and τ . The (Flow Condition) actually provides a solution
with the assistance of the definition of F df .

Jump-flow sliding behavior. In the case that both
vector fields fdf

p (x) and f jp
q (x) point towards (Spq ∩

Cp) \ Cp, there exists β > 0 such that

F df(x) ∋ fdf
p (x) + βf jp

q (x) ∈ TxSpq (5)

for x ∈ Spq , the system follows a jump-flow sliding
behavior defined by

dx(t, τj+1)

dt
= fdf

p (x(t, τj+1)) + βf jp
q (x(t, τj+1)).

Example 3. Consider a PWA-DAE ∆pwa on R2 with two
modes

∆1 : [ 1 0
0 1 ]

[
ẋ1
ẋ2

]
=

[−1 −1
−1 1

]
[ x1
x2

] + [ 00 ] ,

∆2 : [ 1 0
0 0 ]

[
ẋ1
ẋ2

]
= [ 1 0

0 1 ] [
x1
x2

] + [ 10 ] .

Clearly, ∆1 is an ODE, i.e., an index-0 DAE and ∆2 is an
index-1 DAE. The active regions are

Ω1 =
{
(x1, x2) ∈ R2

∣∣ x1 > x2

}
, Ω2 = R2 \ Ω1.

Thus S12 =
{
(x1, x2) ∈ R2

∣∣ x1 = x2

}
. For each x ∈

S12 \ {0} in the first quadrant, there exists β > 0 such
that fdf

1 (x) + βf jp
2 (x) ∈ TxS12 = im [ 11 ], where fdf

1 (x) =[−x1−x2
−x1+x2

]
and f jp

2 (x) =
[

0
−x2

]
. There exists a jump-flow

sliding behavior from x0 as shown in Fig 4.

Now we discuss the boundary behaviors of PWA-DAE. For
any boundary Spq of two neighboring active regions Ωp

and Ωq , there are basically the following different boundary
behaviors possible:
(a) Flow-flow crossing, sliding or repelling if Spq∩Cp∩Cq ̸=
∅, the active vector fields are fdf

p and fdf
q .

(b) Jump-jump crossing, sliding or repelling if Spq \ (Cp ∪
Cq) ̸= ∅, the active vector fields are f jp

p and f jp
q .

(c) Jump-flow crossing, sliding or repelling if (Spq ∩ Cp) \
Cq ̸= ∅, the active vector fields are fdf

p and f jp
q .

The crossing behaviors happen when the corresponding
active vector fields fdf

p (or f jp
p ) point towards Spq and fdf

q (or
f jp
q ) point away from Spq . The sliding behaviors are present

when both fdf
p (or f jp

p ) and fdf
q (or f jp

q ) point towards Spq .

The repelling behaviors are present when both fdf
p (or f jp

p )
and fdf

q (or f jp
q ) point away from Spq , the solution can be

continued in a non-unique way, it can leave the boundary
into either of the adjacent regions or it can also slide along
the boundary.

Example 4. Consider an RLC electric circuit with two
switches K1 and K2, an inductor L, a capacitor C and two
resistors R1 and R2. Depending on the situations the two

L

iL=x1

K1

Is

CvC=x2

R2

R1

+−Vs

K2

Fig. 5: A switching RLC circuit

switches, the circuit can be modeled by a PWA-DAE ∆pwa

via Kirchhoff’s law. The states are x = (x1, x2), where
x1 = iL is the current of L and x2 = vc is the voltage
of C, ∆pwa has four DAE modes ∆i, i = 1, 2, 3, 4.

K1

K2 Open Closed

Down ∆1 ∆2

Up ∆4 ∆3

The four modes are, respectively, given by,

∆1 :
[

L R2C
L
R1

−C

] [
ẋ1
ẋ2

]
=

[
0 −1
−1 0

]
[ x1
x2

] + [ 00 ] ,

∆2 :
[

L
R1

−C

0 0

] [
ẋ1
ẋ2

]
=

[−1 0
0 1

]
[ x1
x2

]−
[

0
Vs

]
,

∆3 : [ 0 0
0 0 ]

[
ẋ1
ẋ2

]
= [ 0 1

1 0 ] [
x1
x2

] +
[−Vs

Is

]
.

∆4 :
[
L R2C
0 0

] [
ẋ1
ẋ2

]
=

[
0 −1
1 0

]
[ x1
x2

] +
[

0
Is

]
.

We assume for the simplicity of calculations that L = 1A,
C = 1F , R1 = R2 = 1Ω, Is = 4A and Vs = −4V . The
active regions are chosen, respectively, as

Ω1 =
{
x ∈ R2

∣∣ x1 ≤ 0, x2 < 0
}
,

Ω2 =
{
x ∈ R2

∣∣ x1 < 0, x2 ≥ 0
}
,

Ω3 =
{
x ∈ R2

∣∣ x1 > 0, x2 ≥ 0
}
.

Ω4 =
{
x ∈ R2

∣∣ x1 ≥ 0, x2 < 0
}
,

By calculations, we have fdf
1 (x) =

[
−x1−x2

2
x1−x2

2

]
, f jp

2 (x) =[−x2−4
−x2−4

]
, f jp

3 (x) =
[−x1−4
−x2−4

]
, f jp

4 (x) =
[−x1−4

x1+4

]
, these

vector fields are drawn below in their active regions.
It can be seen in Figure 6 that there are four boundary

behaviors, namely, jump-jump sliding for x1 > 0, x2 = 0;
jump-jump crossing for x1 = 0, x2 > 0; jump-flow crossing
for x1 < 0, x2 = 0; jump-flow sliding for x1 = 0, x2 < 0.

In Figures 7a and 7b, we draw the jump-flow solution
x(t, τ) = (x1(t, τ), x2(t, τ)) from the initial point (1, 4.75).
The solution is defined on E = ({0} × [0, τ1]) ∪ ([0, t1] ×
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-4

-4

-3

-3

-2
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-1
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1
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4
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5

5

Ω1

Ω2 Ω3

Ω4

C2

C4

C3

Fig. 6: Jump-flow solutions of the circuit

{τ1}) ∪ ({t1} × [τ1, τ2]) ∪ ([t1,∞) × {τ2}), where τ1 =
τ2 = 3.95 and t1 = 3.14 is the real time that the solution
reaches x1 = 0 via the flow. The (Jump Condition) on
Ω2 and Ω3 are chosen as dx

dτ = f jp
2 (x) and dx

dτ = f jp
3 (x),

respectively. The solutions for the jump-flow sliding behavior
dx
dt = fdf

1 (x)+βf jp
4 (x), β > 0, are calculated by a MATLAB

ODE solver.

τ

t

x1

1 3 5 7

-5

-3

-1

1
2

τ1 = τ2

t1

(a) The hybrid arc x1(t, τ)

τ

t

x2

1 3 5 7

-3

-1

1

3

τ1 = τ2

t1

(b) The hybrid arc x2(t, τ)

Fig. 7: Evolution of solutions in (hybrid) time.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we present a solution framework for PWA-
DAEs. We redefine state-dependent jumps as continuous
dynamics in line with the active region rule. Leveraging
hybrid time-domain techniques, we establish a well-defined
concept of jump-flow solutions, which have various sliding
and crossing boundary behaviors. This solution framework
offers a foundation for future studies on the stability and sta-
bilization of DAEs under state-dependent switching signals.
Furthermore, we aim to explore its applicability in linear
complementarity systems.
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