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Abstract 

The present work aims to investigate the failure size effect on flattened disks containing an eccentric 

circular hole under mode I loading conditions. For this purpose, uniaxial compression tests are carried 

out on polymethyl methacrylate (PMMA) samples with holes. Depending on the hole radius and 

eccentricity, the energy release rate is either an increasing or decreasing function of the crack length, 

thus affecting the stability of crack propagation. Experimental results are interpreted and discussed 

through the coupled stress and energy criterion of Finite Fracture Mechanics. The approach lies on 

the assumption of a finite crack advance and it is implemented through the numerical estimation of 

the stress field and the Incremental Energy Release Rate functions. Finally, stability and crack speed 

propagation are discussed under the assumption of Linear Elastic Fracture Mechanics. Theoretical 

predictions reveal in agreement with experimental results thus demonstrating that the Coupled 

Criterion effectively captures the failure condition. 
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1. Introduction 

Stress concentrators, such as flaws, holes or notches are present in a large number of engineering 

components and can strongly affect the structural strength. Indeed, acting as stress raisers, they 

decrease the load-bearing capacity, ultimately resulting in reducing the load span for mechanical 

integrity. Different approaches have been proposed in the last few decades to assess the crack 

initiation at stress concentrators. A preliminarily stress-based criterion was proposed by (Neuber 

1936), who formalized the so-called Line Method. This criterion involved calculating a reference 

stress by averaging the stress field over a material unit, thus considering a finite volume. (Peterson 

1938) simplified Neuber’s approach by evaluating the reference stress at a given distance from the 

notch tip. (Taylor 2007), also inspired by the works of (Hashin 1996) and (Kim and Nairn 2000), 

formalized these approaches under the name of Theory of Critical Distances (TCD). The TCD 

criterion introduces a length parameter, which is a material property depending on the (squared) ratio 



between the fracture toughness KIc and the inherent strength, that can be considered equal to the 

ultimate tensile strength c for very-brittle materials such as laminated composites (Whitney and 

Nuismer 1974) and ceramics (Taylor 2004). When the final failure occurs by propagation of pre-

existing micro-defects or plastic deformation, the inherent strength assumes a value larger than c. 

For polymers, the ratio between the inherent strength and c typically is comprised between 1 and 2 

((Taylor 2007), (Cicero et al. 2012)). Many efforts have been conducted to provide a physical meaning 

to the critical distance, correlating it with some microstructural parameters, such as grain size or 

molecular scales (Taylor 2006), (Taylor 2007), (Marsavina et al. 2023). Furthermore, this length 

parameter was evaluated based on statistical models of defect evolution (Vedernikova et al. 2019). 

On the other hand, investigations by (Awerbuch and Madhukar 1985), (Pipes et al. 1979), and (Tan 

1987) showed a dependence of the critical distance on other parameters, such as geometry 

characteristics. To address this issue, the Finite Fracture Mechanics (FFM) approach was introduced 

by coupling a stress requirement and an energy balance involving the Incremental Energy Release 

Rate (IERR) (Leguillon 2002) and (Cornetti et al. 2006). Unlike TCD, the coupled criterion does not 

require any length input parameter but enables determining the initiation crack length which depends 

on loading conditions and geometric features as well. FFM was applied to a wide range of structural 

configurations, providing accurate strength estimations. Focusing on the failure behavior of 

geometries containing a circular hole under uniaxial loading conditions, theoretical studies and 

experimental data were presented by (Li and Zhang 2006), (Sapora et al. 2018), (Leite et al. 2021), 

(Carrère et al. 2021). In such cases, the crack propagation is unstable. On the other hand, this is not 

always the case for biaxial loading conditions, as detected by (Sapora and Cornetti 2018) on the 

experimental results obtained by (Torabi et al. 2017). A comprehensive analysis of crack initiation 

from circular holes under biaxial loadings was presented by (Chao Correas et al. 2023) showing an 

agreement between FFM, Phase Field and Cohesive Zone Model predictions. As a matter of fact, 

using the formalism of (Weißgraeber et al. 2016), the energy release rate function can increase 

(positive geometry) or decrease (negative geometry) as the crack grows, depending on the loading 

conditions, radius values and material anisotropy (Felger et al. 2017), (Sakha et al. 2023). In the 

aforementioned works, because of the double symmetry of the structure, the propagation was always 

assumed to be symmetrical. For some geometries, this is not the case. Indeed, when considering a 

configuration presenting an eccentric circular hole or subjected to axisymmetric loading conditions, 

asymmetric crack patterns are expected to occur. In particular, (Rosendahl et al. 2017) investigated 

asymmetric crack initiation at open holes under tensile and in-plane bending loading. Furthermore, 

different asymmetric crack initiation scenarios were explored also by (Doitrand et al. 2021) and by 

(Doitrand and Leguillon 2021) considering pore crack initiation near a free edge. Finally, the work of 



(Kurguzov and Kuznetsov 2024) investigated a Brazilian disk sample presenting a central circular 

hole with two edge radial cracks. In particular, this work analyzed the mixed mode loading induced 

by the rotation of the cracks relative to the vertical axis. Crack initiation in Brazilian disk specimens 

was also investigated in the framework of FFM by (Torabi et al. 2017) and (Doitrand and Sapora 

2020). 

The present study aims to investigate the brittle fracture of eccentric circular holes under pure mode 

I loading conditions experimentally and theoretically. For this purpose, compression tests are carried 

out on disk specimens made of PMMA and weakened by an eccentric circular hole. To catch the 

failure size effect, different hole radii are considered, and experimental results are compared with 

theoretical predictions provided by the FFM approach. The criterion is implemented numerically by 

parametric Finite Element Analyses (FEAs) through finite elements code, discussing asymmetric vs. 

symmetric crack initiation scenarios.  

Finally, crack propagation is investigated through an ultrahigh-speed acquisition camera. This setup 

enables the monitoring of crack length during the stable propagation phase and the determination of 

crack speed during the unstable one. Indeed, depending on the eccentricity and radius values, a locally 

positive/globally negative or locally negative/globally positive configuration can be obtained. 

The paper is organized as follows: the experimental campaign on PMMA samples with a hole and 

related results will be presented in Section 2. The FFM criterion and its numerical implementation, 

considering different crack initiation scenarios, will be introduced in Section 3. Section 4 will show 

the comparison between experimental results and strength estimations, together with considerations 

upon crack propagation stability. Finally, Section 5 will be devoted to some conclusions. 

 

2. Experimental investigation 

Uniaxial compression tests are carried out on disk samples (Fig. 1) obtained by laser-cutting PMMA 

plates. In order to achieve the release of residual stresses resulting from the machining, the samples 

are subjected to a heat treatment for 90 minutes at a temperature of 90 °C, followed by a slow cooling 

process in the oven. All samples are 8 mm thick to ensure plane strain conditions, following the 

relationship t ≥ 2.5 ℓch, ℓch = (KIc/c)
2 being the well-known Irwin’s length. Its value typically ranges 

between 0.2 and 1 mm for PMMA (Taylor 2007), (Seweryn 1994). It is worth noting that under 

uniaxial compression, excluding the contact zones, a tensile stress state is induced along the y-axis, 

(Oxy) being the Cartesian frame of reference centered on the disk (Fig. 1).  

 



 

 

Fig. 1 Geometry of the Disk specimen containing a hole (diameter 2, eccentricity e). 

Two configurations are analyzed in the present study: a circular hole with eccentricity e equal to 0 

and 20 mm. For each of them, four different hole radii  = 0.5, 1, 2 and 4 mm are considered (Fig. 1). 

The external radius R of the disk is fixed and set equal to 40 mm. As highlighted in Fig. 1, the upper 

and lower parts of the disk are slightly flattened to facilitate the positioning of the sample in the testing 

machine. This configuration, where two parallel flat ends substitute the curved jaws, is commonly 

used to guarantee the effectiveness of this test and improve the accuracy of the estimation of the 

tensile strength. Indeed, this loading setup generally guarantees crack initiation at the center of the 

disk avoiding local cracking in the region close to the contact zone. Uniaxial compression is ensured 

by having a fixed platen on one side and a spherically seated one on the other, so that possible (small) 

imperfections in the sample machining for the flat plane have no influence on the prescribed load. 

(Wang and Xing 1999) introduced the flattened Brazilian disk (BD) test and subsequently, the 

influence of the loading angles was investigated by (Wang et al. 2004), (Lin et al. 2016) and (Wu et 

al. 2018). In the present study, the loading angle 2 is set equal to 20°, as typically done in the 

experimental practice (Wang and Xing 1999),(Wu et al. 2018). 

The experimental campaign is performed at a constant displacement rate of 1 mm/min by exploiting 

a Zwick 1455 testing machine. Five samples for each value of eccentricity e and hole radius  are 

considered. Samples are coated with black and white sprays to obtain black freckles. In this way, the 

strain distribution can be monitored during the test using digital image correlation, which is not 

addressed in the present paper. Some specimens broke in the contact zone with the testing machine. 

However, at least three values of the failure loads Pf are obtained for each geometry with failure from 

the hole, as shown in Table 1. The presence of an eccentric hole decreases the strength if compared 
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to the geometry with a central hole. Specifically, for e = 20 mm,  = 0.5 mm and 4 mm, the 

experimental initiation loads are approximately 10% lower than those obtained for e = 0 mm, while 

this difference decreases to around 2% for radii values of 1 and 2 mm. Moreover, the material 

behavior is almost linear and the failure is of brittle character, as evident from the force-displacement 

curves represented in Figs. 2a and b. 

 

Fig. 2 Force-displacement curves related to the configuration with (a) e = 0 mm and (b) e = 20 mm. In both 

figures, for each configuration, only one specimen is presented for the sake of clarity, 

 

e 

[mm]   

 

[mm] 

Pf  

[N] 

 Pf, avg  

[N] 

 

 

0 

0.5 15377 15461 15080 - - 15306  163 

1 12737 11070 11816 - - 11874  682 

2 12238 11888 9014 9070 - 10553  1516 

4 9919 10650 10404 12879 11906 11151  1085 

 

 

20 

0.5 14112 14620 14723 13911 13304 14134  514 

1 12817 10674 11133 12577 - 11462  811 

2 11220 12935 9433 8016 10760 10473  1662 

4 9873 9753 9668 9868 9791 9791  86 

 

Table 1 Compression tests on PMMA holed samples (R = 40 mm): recorded failure loads and standard 

deviations. 

(b)(a)



One broken sample for each configuration is shown in Fig. 3. As evident from these images, crack 

propagates along the y-axis. It is noteworthy that the specimens exhibit stable crack growth before 

the final unstable crack propagation leading to their failure. Only for ( = 2 mm, e = 0 mm) and ( = 

4 mm, e = 0, 20 mm), the crack propagation always reveals unstable. For the samples showing stable 

crack growth, initiation loads Pc are around 2-3% lower than the failure ones Pf.  

 

Fig. 3 Samples after failure considering four different hole radii  = 0.5, 1, 2 and 4 mm, presenting a central 

(a) and eccentric (b) circular hole. 

 

To investigate the crack propagation stability, an ultrahigh-speed acquisition camera Phantom v2012 

is employed with a sample rate of 240000 fps. Thanks to this setup, we were able to track the tip of 

the crack and thus monitor the crack length during the stable crack growth phase.  

e 

[mm]   

 

[mm] 

a1,exp  

[mm] 

a2,exp  

[mm] 

 

0 

 

0.5 0 1.4 0 - - 0.9 0 1.1 - - 

1 2.4 3.2 0 - - 0 0 2.8 - - 

 

20 

 

0.5 1.2 0.6 0 0.9 0 3.5 1.2 0.9 2.0 1.3 

1 1.1 2.1 1.6 0.9 - 0 5.3 4.6 0 - 

2 1.5 3.4 2.1 2.9 2.4 0 0 8.2 8.3 0 

 

Table 2 Experimental crack length values at the end of the stable growth phase. 

(a) (b) 

 = 0.5 mm  = 1 mm 

 = 2 mm  =  mm 

 = 0.5 mm  = 1 mm 

 = 2 mm  =  mm 



Images are acquired with a 128 pixels (H)  256 pixels (V) resolution and the measurement 

uncertainty is assessed at  1 pixel, equivalent to approximately  0.2 mm. Considering the 

configuration with a central hole, the crack lengths at the end of the stable growth phase are shown 

in Fig. 4a for two samples with  = 0.5, 1 mm. For these radius values, an asymmetric crack 

propagation was observed experimentally. Crack length values are reported in Table 2 where a1,exp 

denotes the experimental length of the crack propagating from the top of the hole whereas a2,exp 

indicates the bottom one. 

Analogously, the crack lengths for three geometries with an eccentric hole are depicted in Fig. 4b. 

These configurations underwent asymmetric crack growth, occurring either from both the top and 

bottom of the hole or exclusively from the top side. 

 

Fig. 4 Crack lengths at the end of the stable growth phase for the configuration characterized by 

(a) e = 0 mm and (b) e = 20 mm. (c) Average values of the crack speed during the final unstable propagation. 

To complete the experimental analysis, the ultrahigh-speed camera is used also to determine the crack 

speed during the final unstable crack growth. The average values of the crack speed are reported in 

Fig. 4c. Considering the geometries with e = 0 mm, the average crack speed ranges between 450 m/s 

and 550 m/s as  varies. On the other hand, for e = 20 mm, the average crack speed approaches 700 

m/s for  = 0.5 mm, while it decreases to 500 m/s for all other . These values are lower than the 

Rayleigh’s speed, which is equal to 860 m/s considering the PMMA properties reported in Table 3. 



The mechanical properties of PMMA are reported in Table 3. Young’s modulus E as well as Poisson’s 

ratio  are estimated following ASTM D638-14 standard code. Instead, the ultimate tensile strength 

c is derived from the bending strength b. Bending tests are particularly useful for brittle materials 

that might not perform well in tensile tests due to their proneness to premature fracture from a ‘defect’ 

generated during the machining. Indeed, the stress distribution along the sample during a bending test 

enables a more controlled failure mode. The bending strength is evaluated through three-point 

bending tests on three plain specimens with dimensions 74 mm8 mm20 mm (spanheightwidth). 

The tensile strength is determined as b / 1.072, extrapolating the correlation factor proposed by 

Baldassari et al. (2023) (Baldassari et al. 2023), who investigated the size effect on flexural strength 

of plain specimens as function of the dimensionless structural size h/ℓch, where h is the height of the 

sample. This value of the correlation factor is valid for sufficiently high h/ℓch ratios when the beam 

slenderness tends to infinity. 

c [MPa] b [MPa] E [GPa]  

67.1  4.8 72.0  5.1 2.69  0.03 0.35  0.014 

 

Table 3 Measured PMMA mechanical properties, from left to right the material strength, the bending stress at 

failure, Young’s modulus and Poisson’s ratio. 

3. Finite Fracture Mechanics  

3.1 Crack initiation scenarios 

For a BD test on a plain circular sample, for a fixed radius, the biaxial stress ratio  = yy(y/R)/xx(y/R) 

varies along the y-axis. Indeed, the tensile stress xx remains approximately constant, while the 

compressive stress yy varies, reaching its minimum –3xx at the center of the disk. All in all, we 

have: 
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According to Eq. (1), the biaxial stress ratio  is equal to −3 for y = 0 and it decreases moving far 

from the center (reaching −4.3 for y/R = 0.5). 

Considering the presence of a circular hole with its center located along the y axis and with radius 

small compared to the radius of the disk, the stress concentration factor Kt can be expressed as 3−. 



This value of Kt can be obtained by considering the (Kirsch 1898) solution for a circular hole in an 

infinite slab subjected to remote biaxial loading, as presented by (Sapora and Cornetti 2018). 

Therefore, we have  Kt = 6 for e = 0 mm and Kt = 7.3 for e = 20 mm. It is noteworthy that these values 

hold true for low /R ratios. If not, the stress concentration increases and thus a correction factor 

needs to be considered. Furthermore, considering an eccentric hole located over the x-axis, the stress 

concentration on the top of the hole is larger with respect to the bottom side for sufficiently large /R 

ratios.   

As discussed in the previous section, the configurations investigated in the present study differ from 

the Brazilian disk geometry since two parallel flat ends are machined. Considering the geometries 

with a central circular hole, the stress distribution along the loading diameter is almost identical to 

the BD configuration and Kt = 5.8. This value increases to 6.2 for  = 4 mm due to the finite size 

effect. Taking into account the geometries with e = 20 mm, the discrepancy in the stress distribution 

is larger and it increases with the radius. Indeed, the hole is closer to the contact zone and therefore 

the influence of the flattened ends is higher. For  = 0.5 mm, Kt is equal to 6.7 whereas its value 

increases for higher /R ratios up to 8.5 for  = 4 mm. 

Based on experimental observations and theoretical considerations regarding the stress concentration 

factors, different crack initiation scenarios are investigated for the analyzed geometries.  

 

Fig. 5 Possible scenarios for crack initiation include: asymmetric crack initiation from the top (a) of the hole 

edge, (b) symmetric crack initiation, and (c) asymmetric crack initiation simultaneously from both the top and 

bottom of the hole. 

Considering the configurations characterized by e = 0 mm, a symmetric crack initiation (starting from 

the hole edge along the y-axis, see Fig. 5b) should be preferred over an asymmetric one, as more 
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convenient from an energetic point of view (Sapora et al. 2018). In the present study, however, both 

scenarios will be investigated, for the sake of completeness. Analogously, taking into account the 

geometries with an eccentric hole, two distinct scenarios are analyzed: asymmetric crack initiation 

from the top of the hole edge (Fig. 5a) and asymmetric crack initiation from both the top and the 

bottom of the hole (Fig. 5c). For each scenario, crack initiation will be evaluated according to the 

FFM approach.  

3.2 Finite Fracture Mechanics  

Following the coupled FFM approaches, stress and energy requirements have to be simultaneously 

fulfilled for brittle crack initiation to take place. The stress condition, as originally proposed by 

(Leguillon 2002), states that the normal stress must exceed the ultimate tensile strength c over a 

finite distance ℓ. The approach can be also developed considering an average stress requirement, as 

suggested by (Cornetti et al. 2006). Considering the crack initiation scenarios presented in Figs. 5a 

and b this stress condition leads to the following expression: 

 
( ) ( )xx xx 1 1 c

0

1
s ds  =   (2) 

                                                                                                                                               

where xx is the tensile stress and s1 is the coordinate starting from the hole edge along the critical 

crack path.  

Considering the asymmetric crack initiation case (Fig. 5c), condition (2) needs to be satisfied for both 

the top and bottom crack advances, ℓ1 and ℓ2, respectively, as proposed by (Rosendahl et al. 2017). 

The following condition is thus obtained: 

 
( ) ( )  

i

xx i xx i i c

i 0

1
i 1,2s ds  =     (3) 

 

On the other hand, the energy balance derives from the energy conservation principle between the 

states before and after crack nucleation over a finite distance and it involves: the variation of the 

external work forces (ΔWext) and of kinetic energy (ΔWk), elastic strain energy (ΔWel) and crack 

surface creation energy (GIc ℓ). This is expressed as: 

 
k el Ic ext +  + = W W G W  (4) 

 



It is worth mentioning that the energy dissipated through non-linear mechanisms is not considered in 

Eq. (4). 

Considering a displacement controlled test (ΔWext = 0)  under quasi-static loading conditions 

(ΔWk  0), Eq. (4) rewrites analogously to Griffith’s criterion G  GIc (Griffith 1921) in which the 

ERR G is replaced by the Incremental Energy Release Rate (IERR) Ginc: 
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Taking into account the asymmetric crack initiation case (Fig. 5c), Eq. (5) needs to be modified to 

consider the variation of elastic strain energy ΔWel related to crack advances ℓ1 and ℓ2: 

 
( )

( ) ( )el el 1 2

inc 1 2 Ic

1 2

0,0 ,
,

W W
G G

−
= 

+
 (6) 

 

Under linear elastic assumptions, the stress is proportional to the prescribed displacement U, whereas 

the potential energy is proportional to the square value of U. Coupling the two conditions above, 

provided by Eqs. (2) and (5), and considering a monotonically increasing function Ginc(ℓ), a system 

of two equations in two unknowns is obtained: 

 ( ) ( )
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where A and k are functions solely dependent on the material properties and specimen geometry. The 

procedure developed to determine the functions k and A, for each analyzed configuration, will be 

described in Section 3.3. The two unknowns of the system i.e., the crack initiation length ℓc and the 

critical applied displacement Uc, are obtained by solving an implicit equation: 

 ( ) ( )
2
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2

c Ic

k A
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=  (8) 

On the other hand, considering the asymmetric crack initiation case, coupling Eqs. (3) and (6) yields: 
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In this case, the unknowns are represented by the critical displacement Uc and the top and bottom 

critical crack advances ℓc1 and ℓc2, respectively. The system (9) is solved numerically considering the 

minimum value of Uc satisfying the equations. 



3.3 Finite element analyses 

The functions k and A, related to the averaged stress field and IERR, respectively, are here determined 

through 2D FEAs by ABAQUS code. Exploiting the symmetry of the structure and of the loading, 

only half of the geometry is modeled. Linear plane strain elements with 4 nodes are used. To obtain 

accurate results, following a convergence analysis, the minimum mesh size is set equal to 0.005 mm 

at the hole edge. The details of the mesh are shown in Fig. 6. 

For each analyzed geometry and crack initiation scenario, the stress field and IERR functions along 

the critical crack path are obtained from k and A which are calculated applying a unit displacement. 

As stated in Section 3.1, considering the configurations characterized by a central hole, both 

asymmetric and symmetric crack initiation are investigated (Fig. 5a, b). The IERR is computed using 

Eq. (5) by exploiting the ‘unbuttoning’ method: Dirichlet boundary conditions on nodes along the 

crack path are successively released allowing the calculation of the elastic strain energy Wel as 

function of the crack length. 

 

Fig. 6 Finite element model corresponding to the geometry characterized by e = 20 mm and  = 4 mm. 

Instead, taking into account the geometries with e = 20 mm, two different scenarios are analyzed: 

asymmetric single crack initiation from the top (Fig. 5a) and asymmetric double crack initiation either 

from the top and the bottom of the hole (Fig. 5c). In the latter case, to compute the IERR function 

Ginc(a1, a2) the variation of potential energy ΔWel(a1, a2) is determined by following the subsequent 

steps for each geometry: 

- Different top crack lengths a1 are considered ranging between 0 and [Rcos(10°) – (e + )] 

(the top ligament size), spaced equally of 0.1 mm. For each of these crack lengths, the nodes 

U = 1 mm 



along the bottom crack path are unbuttoned allowing the calculation of the potential energy 

Wel as function of bottom crack length. In this way, the blue surface in Fig. 7a is obtained. 

- In the same way, different bottom crack lengths a2 are considered ranging between 0 and 

[Rcos(10°) + (e − )] (the bottom ligament size), equally spaced of 0.1 mm. For each of these 

crack lengths, the nodes along the top crack path are unbuttoned allowing the calculation of 

the elastic strain energy Wel as function of the top crack length. In this way the red surface in 

Fig. 7a is computed.  

- Finally, for each couple of top and bottom crack length values (a1, a2), the maximum IERR 

value is considered, thus obtaining the function Ginc(a1, a2) plotted in Fig. 7b. 

 

Fig. 7 Geometry characterized by e = 20 mm and  = 2 mm: (a) blue/red IERR function for a fixed 

bottom/top crack, considering nodes unbuttoning along the top/bottom crack path; (b) Ginc(a1, a2) function 

obtained taking into account the maximum IERR value for each (a1, a2). 

3.4 Stability discussion 

Considering the central hole configurations, the IERR functions for symmetric and asymmetric crack 

propagation, obtained by applying a unit displacement as boundary condition, are reported in Fig. 8. 

Analyzing the symmetric crack initiation scenario, the functions Ginc(a) are monotonically increasing 

for all considered radii (Figs. 8a,b) thus leading to positive geometries. Therefore, the crack initiation 

length ℓc and the critical applied displacement Uc, provided by the FFM approach, are obtained by 

solving Equation (8).  

(a)

v 

(b)

v 



 

Fig. 8 IERR functions related to e = 0 mm: (a)  = 0.5 mm, 1 mm and (b)  = 2 mm, 4 mm. Thick lines refer 

to the symmetric case, whereas thin lines represent the asymmetric scenario. 

Instead, taking into account the asymmetric case, the IERR functions present a local maximum and 

minimum as a varies. Thus, following the terminology proposed by (Weißgraeber et al. 2016), 

(Sapora and Cornetti 2018), these configurations are locally negative and globally positive. In Fig. 

8(a), considering Ginc(a) for  = 0.5 mm, a* denotes the crack length corresponding to the local 

maximum of the function, whereas a** indicates the other crack length that leads to the same IERR 

value. Considering the FFM approach, denoting by ℓs the generic solution of system (7), two 

situations can occur: 

1- ℓs < a* or ℓs > a**: in this case ℓc = ℓs. FFM predictions are thus obtained by solving system 

(7), as previously discussed for a positive configuration. 

2- a* < ℓs < a**: in this case ℓc = a*, since no crack can develop within the range between a* and 

a**. In such a case, the stress condition remains fulfilled and the FFM criterion is expressed 

by imposing ℓc = a* in the energy balance (4) (Mantič 2009). 

Considering the geometries characterized by an eccentric hole, function Ginc(a) related to crack 

initiation from the top of the hole is reported in Fig. 9. In this case, the geometries are locally positive 

and globally negative for all the radii values. Thus, as discussed previously, if ℓs < a* FFM predictions 

are provided by solving system (7) considering ℓc = ℓs, whereas if ℓs > a* the FFM criterion is 

expressed by imposing ℓc = a* in the energy balance (4). Finally, taking into account the crack 

initiation scenario from both the top and the bottom of the hole, Ginc(a1, a2) is depicted in Fig. 7b. In 

this case the analysis is more complex since the IERR function is represented from a surface and not 

a curve. Thus, to evaluate the positivity/negative of the configuration, the derivative of Ginc(a1, a2) 

should be evaluated for each couple of top and bottom crack length values (a1, a2). 

(b) (a) 

a* a** 



 

Fig. 9 IERR functions related to geometries with an eccentric hole considering  

crack propagation from the top of the hole. 

Once crack initiation is predicted by FFM, crack propagation stability can be assessed using the 

concepts of Linear Elastic Fracture Mechanics (LEFM). Considering a globally positive/locally 

negative configuration, for cracks with length a up to a* or larger than a**, the incremental release 

rate is smaller than the differential counterpart, as depicted in Fig. 10. All nucleated cracks with a 

length a > a** are unstable since they are associated with a positive derivative of the differential 

energy release rate. For a crack with length equal to a*, the values of G and Ginc coincide and the 

derivate of the former is negative, therefore the crack propagation is stable. Finally, taking into 

account a finite crack a shorter than a*, unstable crack propagation will take place since G > GIc. 

While growing, the crack can reach a point where the differential energy release rate is lower than 

the critical energy release rate GIc, resulting thus in a crack arrest.  

 

Fig. 10 G and Ginc curves related to a globally positive/locally negative configuration. 
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Increasing the loading, the crack will propagate in a stable way up to a length a', corresponding to the 

local minimum of G, and then, for a > a', unstable crack propagation will take place leading to the 

failure of the sample. Fig. 10 illustrates a possible crack arrest scenario. As stated previously, the 

crack ℓc propagates at least up to a crack length of ℓc+a0 where the differential energy release rate is 

equal to the critical one. For longer cracks G < GIc, however, since an excess of energy is available 

during crack propagation up to ℓc+a0 (Area A in Fig. 10), further crack growth can take place. If this 

excess of energy is available for additional crack propagation a+ depends on both structural 

configuration and dynamic fracture effects, as discussed by (Leguillon and Martin 2013). Defining 

the fraction of excess energy available for further crack propagation as , the maximum crack 

advancement ℓc+a+ can be assessed by comparing the energy used for crack propagation with the 

available fraction of excess energy: 

 

( ) ( )

0
c c

0
c c

Ic Ic

a a

a

G a G da G G a da

++ +

+

 − = −         (10) 

where the integral at the left hand side represents area A in Fig. 10, whereas the integral at the right 

hand side corresponds to area B. 

Hence, considering Eq. 10, the excess of energy, whether sufficiently high, can lead to unstable crack 

propagation, bypassing the region where G is lower than GIc with a negative derivative, and thus the 

stable crack growth phase. 

Crack re-initiation examples resulting from an excess of kinetic energy in dynamic fracture scenarios 

are presented by (Ravi-Chandar and Knauss 1984), who discussed crack initiation and growth under 

dynamic loadings. Furthermore, (Chao Correas et al. 2024) developed a comprehensive comparison 

between quasi-static and dynamic approaches regarding multi-ligament fracture conditions, showing 

the limitations of the quasi-static hypothesis. 

4 Predictions vs Experimental Results 

4.1 Crack initiation 

FFM predictions are now compared with the experimental data presented in Section 2. To implement 

the FFM approach, the critical value of the Energy Release Rate GIc is first evaluated by minimizing 

the standard deviation between the experimental data and FFM failure estimations related to the 

configurations presenting a central hole (e = 0 mm). Accordingly, GIc is estimated equal to 

0.16 MPamm (160 J/m2). This value will be implemented later on in this section for blind predictions 

on samples related to e = 20 mm. 



It is worth mentioning that the above value for GIc, considering  Young’s modulus and Poisson’s ratio 

reported in Table 3, corresponds to a critical stress intensity factor KIc = (GIcE/(1−2)) = 

0.7 MPam. Exploring the scientific literature, (Berto et al. 2013) and (Cicero et al. 2018) obtained a 

value of KIc = 2.04 MPam testing Single edge Notch Bending (SENB)  specimens containing U‐

shaped  notches. Similarly, (Taylor 2007) and (Sapora et al. 2023) observed high values of the fracture 

toughness equal to 2.23 MPam and 2.15 MPam respectively. (Seweryn et al. 1997) and (Seweryn 

and Łukaszewicz 2002), considering V-notched samples, respectively found KIc = 1.37 MPam and 

KIc = 1.202 MPam. Additionally, similar values of the fracture toughness ranging between 1.3 and 

2 MPam were observed also by (Sapora et al. 2018), (Torabi et al. 2017), (Leite et al. 2021) and 

(Seldén 1987) who tested compact tension specimen. Lower values were obtained by (Dunn et al. 

1997), who determined KIc = 1.02 MPam using SENB specimens with an initial crack machined 

with a sharp razor blade, and by (Choi and Salem 1993) that obtained an average value of the fracture 

toughness equal to 1.08 MPam exploiting an indent strength method. Analogously, a value of KIc  

1.0 MPam for PMMA was obtained also by (Li and Zhang 2006) and (Zhang et al. 2014). 

Furthermore, low values of the fracture toughness ranging between 0.54 MPam and 0.92 MPam 

were obtained by minimizing the deviation between FFM predictions and experimental results for 

different geometries and loading conditions (Doitrand et al. 2019), (Doitrand et al. 2021), (Duminy 

et al. 2024). 

 

Fig. 11 FFM predictions vs experimental initiation loads for e = 0 mm (a) and e = 20 mm (b). 

Based on these observations and considering the typical fracture toughness values 

0.7 MPam  KIc   1.6 MPam indicated for PMMA by (Lampman 2003), it can be stated that the 

value implemented in this study, KIc = 0.7 MPam, falls within the typical range measured for 

(b) (a) 



PMMA. For all analyzed configurations, considering the material properties c and GIc, the solution 

of system (7) ℓs results in values lower than a*. Thus, based on the considerations developed in 

Section 3.4, we have ℓc=ℓs and the FFM criterion is actually expressed by systems (7) and (9). 

Taking into account the samples with a central hole (e = 0 mm), strength estimations according to 

FFM considering symmetric crack initiation are compared with the experimental results in Fig. 11a. 

Strength predictions related to the asymmetric scenario are very close to those referring to the 

symmetric one, being almost 1% higher.  

The deviation of FFM predictions from the average value of the experimental initiation loads is 

approximately 14% and 11% for the configurations with  = 2 and 1 mm, decreasing to 5% and 2.5% 

for the geometries with  = 0.5 and 4 mm, respectively.  

Furthermore, the critical crack advance provided by Eq. (7) ℓc keeps approximately constant and equal 

to 0.06 mm, which corresponds to a ratio ℓc/ℓch  0.55. These values are consistent with the results 

obtained by (Sapora and Cornetti 2018) for a circular hole subjected to biaxial loading. Indeed, for 

this configuration considering a ratio /ℓch > 1, the normalized crack advancement ℓc/ℓch → 2/(1.122) 

 0.51. 

Considering the geometries characterized by e = 20 mm, the comparison between the strength 

estimations provided by FFM and experimental results is presented in Fig. 11b. Two different crack 

initiation scenarios are analyzed: (i) asymmetric crack initiation from the top of the hole (Fig. 5a) and 

(ii) simultaneous initiation from both the top and the bottom of the hole (Fig. 5c). The most critical 

one results to be the crack initiation from the top of the hole, although the difference for low radii is 

not noticeable (less than 1%). 

As shown in Fig. 11b FFM predictions are again in agreement with the experimental results. Indeed, 

considering the most critical scenario, the deviation from the average value of Pc is around 7% for 

 = 4 mm and decreases to nearly 2% for other configurations. Finally, the critical crack advances ℓc 

keeps approximately constant and equal to 0.06 mm for the top initiation (Fig. 5a). Instead, 

considering the crack initiation scenario reported in Fig. (5c), ℓc1 and ℓc2 are equal to  0.06 mm and 

0.052 mm for  = 0.5 mm, respectively. As the radius increases, the critical crack advance values 

decrease and finally increase up to ℓc1  0.077 mm and ℓc2  0.013 mm for  = 4 mm. 

4.2 Crack growth 

Once crack initiation is predicted by FFM, crack growth stability can be assessed by exploiting the 

concepts of LEFM, and thus analyzing the differential energy release rate G. Based on quasi-static 

assumption, the critical value GIc is considered as a constant value. 



As discussed in the previous section, for all analyzed configurations, considering different crack 

initiation scenarios, the solution of the system (7) ℓs results lower than a*, and thus ℓc = ℓs. Thus, 

based on the considerations developed in Section 3.4, for a globally positive/locally negative 

configuration (Fig. 10), the crack propagates from a crack length ℓc up to at least a crack length of 

ℓc+a0 where the differential energy release rate is equal to the critical one. Then, a stable crack growth 

phase can occur increasing the external load up to a length a', corresponding to the local minimum of 

G. Finally, an unstable crack growth takes place for a > a' leading to the failure of the sample. 

Focusing on the centrally holed geometries, asymmetric crack propagation is observed for all tested 

samples. Considering this crack initiation scenario, the configurations are globally positive/locally 

negative, and thus the previous considerations hold true. 

With the experimental setup presented in Section 2, we are not able to capture and record the initial 

unstable crack initiation phase and thus only the stable growth is investigated experimentally. In 

particular, the crack lengths at the end of the stable crack growth, reported in Table 2, are compared 

with the values of a'. In Fig. 12a, the G and Ginc functions for the three tested samples with  = 0.5 

mm are reported. These curves correspond to an applied load Pf, since this is the loading condition at 

the end of the stable crack growth phase. For this geometry, the crack length a'= 0.84 mm is nearly 

25% lower than the average experimental crack length. Similarly, considering the configuration with 

 = 1 mm, the discrepancy between a' = 1.7 mm and the average experimental value is almost 40%. 

These discrepancies between the values of a' with respect to the experimental crack lengths at the end 

of the stable crack growth phase can be explained by considering the ‘excess energy’ available during 

crack propagation for further crack growth. 

Fig. 12 (a) Ginc and G functions at failure for samples with  = 0.5 mm and e = 0 mm. (b) G(a1, a2) for 

propagation from the bottom crack, related to a sample with e = 20 mm and  = 2 mm. 

a' 

(b) (a) 



Furthermore, in this analysis, it is worth noting that samples with  = 2 mm and 4 mm did not show 

a stable crack propagation phase. This behavior might be explained once again by considering that 

the unstable crack growth phase led directly to the failure of the samples due to a sufficiently high 

‘excess energy’, without showing thus the stable crack growth phase. The same analysis is developed 

for geometries with e = 20 mm. In this case, in addition to the geometries with radii values equal to 

0.5 mm and 1 mm, specimens with  =2 mm also showed a stable crack propagation phase. In 

particular, samples showed an asymmetric crack growth from both the top and the bottom of the hole 

or only from the top side. Then, after the stable phase, an unstable crack propagation occurred always 

from the bottom crack or the bottom of the hole edge. For this reason, the function G(a1, a2) related 

to bottom crack propagation, was investigated for each sample. This function is obtained considering 

different values of the top crack a1 as presented in Section 3.4. In this analysis, the experimental 

bottom crack length at the end of the stable growth phase is compared with a', corresponding to the 

minimum of G(a1, a2) considering a top crack length a1= a1,exp, measured experimentally (Fig. 12b). 

Considering  = 0.5 mm, a' is ranging between 0.96 mm and 1.13 mm whereas for  = 1 mm a' is 

almost constant and equal to 2 mm. For  = 2 mm a' is ranging between 3.2 mm and 3.6 mm. 

Analogously to that stated for the centrally holed geometries, these values of a' are higher than the 

experimental crack lengths at the end of the stable phase. Furthermore, it is noteworthy that some 

samples with   = 1 mm and 2 mm (characterized by the highest values of the failure loads), as 

highlighted in Table 2, and all the specimens with  = 4 mm did not show a stable crack propagation 

phase from the bottom of the hole. In these cases, unstable crack growth occurred directly from the 

bottom of the hole edge. As discussed before, these results can be attributed to the excess of energy 

present during crack propagation. 

To conclude this analysis, for the samples that showed a stable crack growth phase, we evaluated the 

values of Gmin, corresponding to a crack length a', determined for each sample as previously 

described. As  varies, the average value of Gmin ranges between 0.15 and 0.34 MPamm. These 

higher values with respect to GIc, used to implement the FFM approach, might be due to dynamic 

effects that could characterize the crack initiation phase. In such case, the crack velocity during 

initiation can be estimated based on the relation between dynamic and quasi-static ERR for a semi-

infinite crack in an infinite medium (Freund 1998):  
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where vcrack is the crack velocity and vRayleigh the Rayleigh’s velocity. 



From this relation and assuming that the crack propagates when Gdyn = GIc, it yields crack velocities 

between 170 and 450 m/s for Gmin values between 0.15 and 0.34 MPamm. These crack velocities are 

in the order of magnitude, yet smaller than the crack velocities measured during the unstable crack 

propagation phase. This could be due to relation (11) that may be different from Freund’s solution in 

the case of a crack initiating and propagating from a hole (Doitrand et al. 2022), (Chen et al. 2023).  

 

Fig. 13 Gmin values as  varies for all tested samples. 

5. Conclusions 

In this work, the failure behavior of eccentric circular holes in PMMA disks under compression load 

was investigated experimentally. Furthermore, to investigate the failure size effect, four different hole 

radii were considered.  

Experimental results were interpreted in terms of FFM. The coupled approach was implemented 

numerically, considering different crack initiation scenarios. The most critical one resulted the 

symmetric crack initiation case for the centrally holed geometries and the asymmetric one (from the 

top of the edge) for configurations characterized by an eccentric hole. Indeed, the more the hole is 

eccentric, the less is the strength of the sample. Crack initiation predictions, obtained by implementing 

numerically the FFM approach, were in agreement with experimental results.  

Moreover, the stability of crack growth was discussed for locally negative/globally positive and 

locally positive/globally negative configurations, using the concepts of LEFM. Finally, exploiting an 

ultrahigh-speed acquisition camera, the stable crack growth phase was investigated. In particular, the 

experimental crack lengths at the end of the stable growth were compared with theoretical predictions. 

Discrepancies were interpreted considering an excess of energy during crack propagation available 

for further crack advancement. In light of these results, future research directions could include 

dynamics analyses to evaluate better the influence of dynamic effects on the crack initiation and 

alternation of stable/unstable crack growth. Moreover, analyses exploiting a different setup could be 



developed to catch experimentally the unstable crack initiation. This could also help to furnish a 

deeper physical meaning to the critical crack advancement provided by the FFM approach.  
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