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ABSTRACT

Silicon nanostructures have a rich optical response thanks to Mie-type optical resonances, that can be designed
on-demand via their geometry. It is possible to encode bits of information in a nanostructure’s geometry, and
retrieve this information optically via the color observed in dark-field microscopy.! Furthermore, asymmetric
structures can profit from the illuminating light polarization to facilitate information readout. Our ultimate goal
is to accurately reverse engineer experimentally feasible silicon nanostructures for information encoding, such
that they implement a set of ideally distinguishable colors for robust optical readout.

Deep learning is increasingly being used to solve inverse problems such as nano-photonic structure design.
Neural networks for inverse design are mostly trained on simulated data, which is cheap to generate. But training
neural networks on experimental data is a very interesting option, because it allows to include all experimental
constraints into the model, which consequently learns to capture phenomena that may be hard to simulate.?3
Here, in order to learn an accurate model for the full experimental measurement setup, we trained a neural
network with experimental darkfield color data from several thousand nanostructures.

Firstly, we built a forward network, taking as input the nanostructures’ shapes from fabricated samples and
predicting the dark-field color for both X and Y polarizations. We then successfully built an inverse tandem
network, capable of designing structures with desired color responses. In order to create distinguishable color
responses, another deep neural network was trained on the task to map all experimental colors in a regularized
color latent space. Sampling equidistant points from this latent space then yields the most distinguishable, yet
experimentally feasible colors.

The next future step will be to produce samples from the generated structures to test the network’s accuracy.
We would like to test how many bits of information we can encode using the darkfield color as readout.

Keywords: Neural networks for inverse design, neural networks trained on experimental data, darkfield colors
for information encoding, inverse tandem network, silicon nanostructures, RGB response, color response.

1. INTRODUCTION

Sub-wavelength dielectric nanostructures are nowadays studied for their many properties that make them advan-
tageous for high density information storage; such as fine-tuning of the optical response through the manipulation
of the structure geometry? and their relatively easy and parallelizable manufacturing process. In a conceptu-
ally similar manner as for example in the CD-ROM, DVD or Blu-Ray disc, it is possible to encode multiple

Further author information: (Send correspondence to J.J.J.)
J.J.J.: E-mail: jimenez@irsamc.ups-tlse.fr

P.R.W.

S.p


https://orcid.org/0009-0006-4615-148X
https://orcid.org/0000-0002-4571-0116

bits of information in the nanostructure’s geometry that itself is covering only a sub-diffraction small area.’

Even though the structure cannot be resolved spatially from the far-field, the encoded information can be re-
trieved using spectrally resolved measurements, e.g., via the color observed in dark-field microscopy.! It has
been demonstrated that artificial neural networks can be trained for accurate and robust information readout
from the optical response of different 2D and 3D geometries of dielectric nanostructures.’%7 Color encoding
has the potential to enable fast, parallel and precise data extraction from a single measurement over a large area
with many nanostructures; possibly enabling future industrialization of such technologies. However, a major
challenge is to increase the number of digital bits of information that can be encoded in a single nanostructure,
while remaining capable to retrieve this information from a fast color measurement. We try to address this open
challenge using a deep learning based inverse design approach, which we introduce in the following.

2. METHODS AND RESULTS
2.1 Nanostructure Geometry

We want to model dielectric nanoparticles on top of a substrate, and observe the effect of changing their shape
on the observed color on dark field images. We want to use nanostructures that do not have radial symmetry
because we want these structures to produce different scattered spectra and different colors for X and Y polarized
light. The structures are constructed with some cuboids with random lengths and widths (;, w;), with I; and
w; € [40 nm — 150 nm]. The cuboids have random positions (z;,y;) € A , with A being an area of 400 nm x
400 nm. These cuboids can intersect to form even larger and more complex figures, in which case we keep the
union of the overlapping structures.
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Figure 1. Representation of the Silicon nano cuboid structures.

2.2 Numerical Simulations

For the study and simulation of different dielectric nanoparticles on a substrate, and their interactions with
light, Electromagnetic (EM) simulations were done using the following formalism of solving the inhomogeneous
Helmholtz equation

. —4 .
(A + K1) E(7) = — (A + k1) x E(7). 1)
€
The solution to this equation, in presence of a nanostructure that occupies the volume V is given by the

optical Optical Lippmann-Schwinger equation:®

— — —

E(F,w) = E}(F, w) —|—/ GEE(F, r’,w)xe(r’,w)ﬁ(r’,w) dr’ , (2)
1%

Eo represents the illuminating field, 7 is a position inside the nanostructure, V' the nanostructure’s volume; and
GPFE the Green’s tensor, describing the behavior of a point source in the given environment. Here we have a



layered substrate with semi-infinite Si and a 400nm SiO, (BOX) layer. This equation is numerically solved by
discretizing the nanostructure volume into finite cells. For this purpose, we use the python toolkit pyGDM. This
toolkit also allows us to calculate the back-scattering spectra of our system, which we then use to calculate the
perceived color primaries (X, Y, Z) of the nanostructures when observed in dark field microscopy.” 1 These
color primaries are obtained using the CIE 1931 XYZ color matching functions, these are then converted to RGB
values. Numerically, this treatment is done with the colour python toolkit.!!

2.3 Experimental Sample Measurements

We fabricate an experimental sample with 8775 different silicon nanostructures, each with 5 micrometer distance
to each other, on top of a Silicon-on-insulator substrate with a silicon layer height of 90nm, with the same
top-down electron-beam lithography process as used in prior works.! The sample was measured by dark field
microscopy with a VA = 0.45 objective in back-scattering and a calibrated halogen lamp as white light source.
Linear polarization filters are used for measuring X and Y polarized response. We take dark-field microscopy
color images with fixed white balance of the sample and under the described, fixed experimental conditions to
get each nanostructure RGB values.

However, we observed that many nanostructures produce a spot with multiple colors. Taking the mean color
of all these shades often produces a very different color to what a human observer feels as perceived color when
looking at the dark-field images. The experimental colors also generally don’t match well with the colors from
the back-scattering simulations. We attribute this mismatch between experiment and simulations to the non-
negligible collection angle of our NA = 0.45 microscope objective, which leads to the different colors observed
in the zoomed microscope images.

To resolve this wealth of contributing colors, we generate for each nanostructure a hierarchical color palette
of the five most prominent colors observed in the dark field images, as seen in Fig. 2. This is done using k-means
clustering and removing the “black” cluster. For this, we use the scikit-learn toolkit.'?> The hierarchical
order allows us to characterize each structure by the one color that is predominant in the dark-field image. This
predominant color information will be used to train our neural network.

Dominant colors palette particle 82

Percentage of color: 35.48%

Percentage of color: 32.26%

Percentage of color: 19.36%

Percentage of color: 3.23%

Figure 2. (a) Example of the mask image of a nanostructure. (b) Example of the color palette generated from the
processed dark field image of this nanostructure.

While the simulations reproduce also similar palettes when analyzing angle-dependent color scattering, the
agreement with experiment is rather qualitative, and not sufficient for an accurate identification of color-
responses, as required for the target data storage application. Therefore, we try in a first step to train a
data-based deep learning model for a quantitatively more accurate prediction of the experimentally observed
colors.

2.4 Forward Network Architecture

We build a neural network model that analyses the nanostructure’s mask image and predicts the observed color
for both light polarizations.
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Figure 3. Diagram of the Forward Residual Network used for color prediction. The input of the ResNet is a 50px x
50px image with values {0,1}. The blue hidden layers, are 2D convolutional layers with residual blocks, that compress
information from the mask image. The purple hidden layers are dense layers. The output of the network is an array
containing RGB values for both light polarizations.

To avoid overfitting, we apply data augmentation by artificially incrementing the size of the training set by
mirroring the mask images with respect to the X axis, The Y axis, and by randomly shifting the image structure
by a couple of pixels. With this data augmentation, the model becomes more robust by learning that symmetry
transformations of the mask image with respect to the incident field should leave the output color unchanged.

The created neural network is able to accurately predict the colors that we will observe for our specific
experimental conditions. Note that the model can be easily modified to predict the main three hierarchical
colors obtained for each nanostructure. This can be done by simply increasing the number of output channels to
six (3 colors for two polarizations) and by adding the percentage of each color in the total response. Despite data
augmentation, overfitting still occurs when we train directly on the experimental data. However, we manage
to suppress overfitting by a simple trick: We train the same network on a significantly larger set of simulated
colors first (20.000 samples), even though the simulated colors don’t match well the experimental colors. The
reasoning behind this approach is that the physics in the simulations is the same, and deviations with the
measurements occur because we are not capable to reproduce the exact experimental conditions. We then fine-
tune this simulations-based neural network with small learning rate on the experimental training data. In this
way, we successfully avoid any overfitting and manage to obtain a smaller validation loss on the experimental
test data, compared to experiment-only training.

For a first proof of principle, the following models are done only with one color input, in the future we plan
to modify the workflow to include the richer color information.

2.5 Inverse Model
2.5.1 Tandem network

Our goal is to get a set of inverse designed nanostructures that encode a certain number of bits via a succinct
and easy to measure color response, so that it is easy and robust to read out the information by comparing
the colors. To this end, we have to develop an artificial Neural Network capable of predicting a nanostructure
geometry that will yield a target Dark-field color.

Our nanostructures are parametrized as binary (black/white) top-view images, where black indicates silicon,
and white indicates the absence of material. However, the vanilla tandem network (full model in Figure 4) strug-
gles to generate "non-blurry” images, so we use a recently proposed trick:? '3 We train a separate Wasserstein
GAN with gradient penalty (WGAN-GP!'*) network on the generation of binary silicon nanostructure-images.
The WGAN generates very accurate high contrast images with sharp edges. Its latent space is a learned mapping
of the image-geometries to a continuous, parametrized description of the structures. The inverse design network
(tandem architecture!®) is subsequently trained to predict these Zgeo, Which then are converted by the pre-trained
WGAN to a geometry-image. This image is then fed during the tandem-training into the pre-trained forward
network for color-prediction and loss calculation.

A few examples of the inverse network’s generated structures can be seen in Fig. 5.
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Figure 4. Diagram of the inverse network.
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Figure 5. Example of generated geometries.

These top-view images look like the ones from the original data-set, as they are composed of blocks that can
be joined to form more complex structures. The complete network manages to produce geometries whose colors
are predicted to be very close to the original most predominant colors.

2.5.2 Variational autoencoder and latent space regularization

With the goal of finding the most “different” color combinations possible within the limits of the nano-geometry,
a further autoencoder neural network is trained on mapping all experimental colors into a regularized color latent
space (See Fig. 6, right). Due to the VAE regularization'® in this latent space, similar colors would sit close
to each other, and different colors would sit far away. The latent space regularization also allows us to get a
compact and continuous dataset that allows interpolation between colors present in the original dataset (See Fig.
6, left).
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Figure 6. (a) Diagram of latent space regularization. (b) Diagram of Variation autoencoder.

An example of the latent space sampling is presented in Fig. 7 (left). The colors produced by the decoder of
the Variational autoencoder, are mapped to show the network’s prediction of the most predominant colors that



are feasible with our experimental setup (see Fig. 7, right). Finally, these feasible colors are fed to the tandem
network (cf Fig. 4) to map the structures that would be needed to produce this distribution, which are depicted
in the bottom of Fig 7.

predicted colors

X X X X X X X X X X X X %X X X e e rr P i 1 1 1 |
X X X X X X X X %X X X X x x x e e 1 1 1 7 | ] |
Tx x x x x x x x x %x x x x x x e e rr PP i 1 | 1 |
X X X X X X X X X X X X x X X e e e 4 1 1 1 | 1 |
o] X % ox o x o ox ox ox o x o x X x x X X X e e e 7l 1 1 1 ] |
X X X X X X X X X X X X X X X S0 NN N NN SN ENN NN BN BN BN BN NN R
X X X X X X X X X X X X X X X SN V0N (0N NN SN S N N N R -
Zi0o{ x x x X X X X X X X X %X X X x I EN DN RN RN S N S N N S
X X X X X X X X X X X X X X X 0 RN B B R P Y Y e e
X X X X X X X X X X X X X X X RO Y B ol i
-2 x x x x x x x x x x x x x x x Xy X x XY ® v .V-V .Y Y.Y
X X X X X X X X X X X X X X X VX‘V-V.Y V.V
747XXKXXKXXX)(XX)()(X XV.V.Y V.Y
X X X X X X X X X X X X X X X Y.V.Y V.Y
XX‘XXXXXXXXIXXXXX V7V.V V.V
4 2 ;z 2 4

B B B BB ) D L) LA ) D[

B B B R B) IS [E] [EDLE) B[R (R LD [E) E]

RN SN R N R NS R R RN

B o BBl () (2] )LL) (2] (2] [ L] 2]

B o o B ) (2] (2] L] L] (] (2] (2] (2] [&] [¢]

B o B B[] (2] () L[] (] [e] (3] =] [&] [e]

B B BTG [E [E] L) [ [e] (2] [] [e] &)

B B (3] (2] (2] () (=) (=] [=] (2] (2] (3] (3] (4] [4]

B 60 (] (8] (&) [ (=] =) [e) (o] () (1) [0 () 1]

] & &) B[ B B ] (8] (R (] () 0 [ [

B & & B8 e R B (] (7] (R (R] (7] O] L] L)

B B A 7 ) 7 ] (7] (¥ [F]O(N]CH) O[O

W) & W BS [ A e (R (R (F (R (F) O L] L)

RS N - IR IR R IR R

W) m ] )R (R)OCRD(E(E) )OO

Figure 7. (a) Diagram of latent space sampling. (b) Predicted colors from this latent space sampling (c) Predicted
nanostructure masks from this latent space sampling.

3. CONCLUSION

The aim of this work was to build a Deep Learning model for inverse design of dielectric nanostructures, targeting
the color response of these structures to fabricate geometries with an optical signature that is as distinguishable as
possible from other structures. An electromagnetic model was made, that captures the color tendencies produced
by the nanostructures, and complex behaviors such as angular dependencies of the observed colors. We managed
to construct and train a Neural Network on experimental data extracted from fabricated samples, to predict the
dark-field observed color from dielectric nanostructures with different geometries. We also successfully built an
Inverse Network capable of designing structures that will experimentally produce the desired optical responses
for X and Y polarized light. Lastly, our goal is to use the here presented method to maximize the amount of
bits that can be encoded and still retrieved in a single nanostructure.

REFERENCES

[1] P. R. Wiecha, A. Lecestre, J. D. Berke, and G. Larrieu, “Pushing the limits of optical information storage
using deep learning,” Nature Nanotechnology 14, pp. 237-244, 1 2019.

[2] A. Khaireh-Walieh, D. Langevin, P. Bennet, O. Teytaud, A. Moreau, and P. R. Wiecha, “A newcomer’s
guide to deep learning for inverse design in nano-photonics,” Nanophotonics 12, pp. 4387-4414, 1 2023.



3]

[13]
[14]
[15]

[16]

P. R. Wiecha, A. Arbouet, C. Girard, and O. L. Muskens, “Deep learning in nano-photonics: inverse design
and beyond,” Photon. Res. 9, pp. B182-B200, May 2021.

A. 1. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically
resonant dielectric nanostructures,” Science 354, 11 2016.

D. Psaltis and G. Burr, “Holographic data storage,” Computer 31(2), pp. 52-60, 1998.

X. Li, Y. Cao, N. Tian, L. Fu, and M. Gu, “Multifocal optical nanoscopy for big data recording at 30 tb
capacity and gigabits/second data rate,” Optica 2, pp. 567-570, Jun 2015.

D. Yang, Z. Lei, L. Li, W. Shen, H. Li, C. Gui, and Y. Song, “High optical storage density using three-
dimensional hybrid nanostructures based on machine learning,” Optics and Lasers in Engineering 161,
p. 107347, 2023.

C. Girard, “Near fields in nanostructures,” Reports on Progress in Physics 68, pp. 1883 — 1933, 2005.

P. R. Wiecha, “pyGDM-—A python toolkit for full-field electro-dynamical simulations and evolutionary
optimization of nanostructures,” Computer Physics Communications 233, pp. 167-192, 12 2018.

P. R. Wiecha, C. Majorel, A. Arbouet, A. Patoux, Y. Brulé, G. C. D. Francs, and C. Girard, ““pyGDM”
- new functionalities and major improvements to the python toolkit for nano-optics full-field simulations,”
Computer Physics Communications 270, p. 108142, 1 2022.

T. Mansencal, “Colour 0.4.2,” Zenodo , 11 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research 12, pp. 2825-2830, 2011.
Y. Augenstein, T. Repén, and C. Rockstuhl, “Neural Operator-Based Surrogate Solver for Free-Form Elec-
tromagnetic Inverse Design,” ASC photonics 5, 10, p. 1547-1557, 5 2023.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein
gans,” CoRR abs/1704.00028, 2017.

D. Liu, Y. Tan, E. Khoram, and ongfu Yu, “Training deep neural networks for the inverse design of
nanophotonic structures,” ACS Photonics 5, 4, p. 1365-1369, 2 2018.

D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” CoRR abs/1906.02691,
2019.



	Introduction
	Methods and results
	Nanostructure Geometry
	Numerical Simulations
	Experimental Sample Measurements
	Forward Network Architecture
	Inverse Model
	Tandem network
	Variational autoencoder and latent space regularization


	Conclusion

