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Résumé
Nous étudions le problème de Stokes pour les fluides incompressibles en deux
et trois dimensions, sur des domaines bornés à frontière régulière. Nous uti-
lisons pour cela une formulation tourbillon-vitesse-pression et introduisons
un nouvel espace de Hilbert pour le tourbillon. Nous développons une for-
mulation mixte abstraite qui donne un cadre variationnel précis et conduit
à un problème de Stokes bien posé faisant intervenir une nouvelle condition
limite en vitesse-tourbillon. Dans le cas particulier de domaines bidimen-
sionnels simplement connexes avec des conditions limites homogènes, nous
décrivons complètement le lien avec la formulation classique en fonction
courant-tourbillon et nous montrons que la formulation tourbillon-vitesse-
pression est une extension mathématique naturelle de celle-ci.
Abstract
We study the Stokes problem of incompressible fluid dynamics in two and
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three-dimension spaces, for general bounded domains with smooth boun-
dary. We use the vorticity-velocity-pressure formulation and introduce a new
Hilbert space for the vorticity. We develop an abstract mixed formulation
that gives a precise variational frame and conducts to a well-posed Stokes
problem involving a new velocity-vorticity boundary condition. In the par-
ticular case of simply connected bidimensional domains with homogeneous
boundary conditions, the link with the classical stream function-vorticity
formulation is completely described, and we show that the vorticity-velocity-
pressure formulation is a natural mathematical extension of the previous one.

Keywords : Fluid mechanics, Stokes equation, mixed formulations, inf-sup
condition, vector field decomposition.

AMS (MOS) classification : 35Q30 - 46E35 - 76D03
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1 Introduction

◦ Let Ω be a bounded connected domain of IRN (N = 2 or 3) with a boun-
dary ∂Ω = Γ. To fix ideas, we will suppose that Γ is Lipschitz continuous but
when it will be necessary to increase the regularity of the boundary, it will be
quoted in the text. The Stokes problem modelizes the stationary equilibrium
of an incompressible viscous fluid when the velocity u is sufficiently small to
neglect the nonlinear terms (see e.g. Landau-Lifchitz [LL71]). From a ma-
thematical point of view, this problem is the first step in order to consider
the nonlinear Navier-Stokes equations of incompressible fluids, as proposed
e.g. by Lions [Lio69], Temam [Tem77] or Girault-Raviart [GR86]. The Stokes
problem can be classically written with primal formulation involving velocity
u and pressure p :





−ν∆u + ∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ ,

(1)

where ν > 0 is the kinematic viscosity and f the datum of external forces.

◦ Our motivation comes from the numerical simulations in computatio-
nal fluid dynamics. The Marker And Cell (”MAC”) method was proposed
by Harlow and Welch [HW65] and is also known as the C-grid of Arakawa
[Ara66]. It contains staggered grids relative to velocity and pressure and is
still very popular when used in industrial computer softwares as Flow3d of
Harper, Hirt and Sicilian [HHS83] or Phoenics developed by Patankar and
Spalding [PS72]. This discretization is founded on the use of a cartesian
mesh : velocity is defined with the help of fluxes on the faces of the mesh and
pressure is supposed to be constant in each cell (Figure 1), with an analogous
finite difference method for Maxwell equations [Yee66] : we refer to this me-
thodology with the acronym HaWAY, for Harlow, Welch, Arakawa, Yee. Our
objective is to generalize these degrees of freedom to arbitrary meshes that
respect the usual topological constraints associated with finite elements (see
e.g. Ciarlet [Cia78]) and in particular to triangles (Figure 2) or tetrahedra.
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Fig. 1 – The HaWAY scheme on a cartesian mesh.
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Fig. 2 – The HaWAY scheme on a triangular mesh.

Some years ago, Nicoläıdes [Nic89] has proposed a new interpretation of the
HaWAY method with the help of dual finite volumes for triangular meshes.
An analysis of the HaWAY scheme as a numerical quadrature for finite ele-
ments has also been proposed by Girault and Lopez [GL96].

◦ From the numerical point of view, this HaWAY discretization can be
seen as the search of an approximation of velocity field conforming in the
H(div,Ω) Sobolev space with the help of the Raviart-Thomas [RT77] (when
N = 2) and Nédélec [Néd80] (when N = 3) finite element of degree one. The
approximation of pressure field in space L2(Ω) is associated with disconti-
nuous finite elements of degree zero. This vision, also adopted by Nicoläıdes,
is a variational crime for the Stokes problem (1), where velocity classically
belongs to finite dimensional linear spaces that are included in the Sobolev
space H1(Ω) (see e.g. Adams [Ada75]).
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◦ In this paper, we recall the variational formulation which was previously
proposed in ([Dub92], [Dub95]) involving the three fields of vorticity, velocity
and pressure. A particularity of this formulation is that boundary conditions
can be considered in a very general way. Previous works of Beghe, Conca,
Murat and Pironneau [BCMP87] and Girault [Gir88] appear as particular
cases of what we obtain. Finally, boundary condition in (1) can in our sense
be seen as a mixed Dirichlet-Neumann boundary condition. The basic idea
of our formulation is the same as the one used in stream function-vorticity
formulation (Glowinski [Glo73], Ciarlet-Raviart [CR74], Girault [Gir76]) : we
introduce the vorticity as a new unknown. But, the latter use the fact that
a solenoidal vector field u (satisfying div u = 0) can a priori be represen-
ted as the curl of some stream function ψ : u = curl ψ. For the complete
generality of the approach, we have here chosen to do not represent the so-
lenoidal velocity field u with a stream function ψ for multiple reasons. First,
any representation of the type u = curl ψ precludes flows with sinks and
sources (Foias-Temam [FT78]). Moreover, this representation is in the nu-
merical practice restricted to two-dimensional domains even if Roux, Dupuy
and one of the authors ([Rou84], [DD86], [Dub90]) have done first attempts
in three-dimensional domains with Nédélec’s vectorial finite elements [Néd80]
conforming in space H(curl,Ω). Let us notice also a recent paper of Amara,
Barucq and Duloué [ABD99], developing also a tridimensional stream func-
tion and vorticity formulation.

◦ The scope of this work is then the following. In Section 2, we recall the for-
mulation involving the three fields vorticity, velocity and pressure. In Section
3, we study the two-dimensional case, which was already intensively analyzed
by Glowinski [Glo73], Ciarlet-Raviart [CR74], Glowinski-Pironneau [GP79],
Bernardi, Girault and Maday [BGM92], Ruas [Rua95a] among others. We
then define an appropriate functional space in Section 4. In Section 5, we de-
velop an abstract approach and exhibit the technical inf-sup hypotheses that
are sufficient to satisfy. Then we prove that this triple formulation conducts
to a mathematically well-posed problem with continuous dependence on the
data. We give in Section 6 the main result of this article that expresses
the conditions under which the Stokes problem in vorticity-velocity-pressure
formulation is well-posed. These conditions are completely nontrivial for a
general tridimensional domain Ω that is bounded, connected, non simply
connected and with a non-connected boundary. For proving it, we have to
generalize the representation theorem for vector fields that is summarized
in Bendali, Dominguez and Gallic [BDG85]. A particular emphasis is given
on the boundary condition for the tangential velocity. Finally, the last sec-
tion deals again with the two-dimensional case and with the link between
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the stream function-vorticity formulation and the vorticity-velocity-pressure
one. It then allows to enlarge the frame where our formulation is well-posed.

2 Vorticity-velocity-pressure formulation

In the following, all notation and formulae are supposed to be correct
when Ω is a two- or a three-dimensional domain, and N will stand for the
dimension.

2.1 Notation and functional spaces

◦ We shall consider the following spaces (see for example [Ada75]) : we
denote D(Ω) the space of all indefinitely differentiable functions from Ω to
IR with compact support, D′(Ω) the space of distributions which is the dual
space of D(Ω) and L2(Ω) the space of all classes of functions which are square
integrable. Space L2

0(Ω) is composed of functions in L2(Ω) whose mean value
is zero. Space H1(Ω) consists of functions ϕ ∈ L2(Ω) for which all partial

derivatives
∂ϕ

∂xi
(in the distribution sense) belong to the space L2(Ω) :

H1(Ω) =

{
ϕ ∈ L2(Ω) , ∀i ∈ {1 . . .N} ,

∂ϕ

∂xi
∈ L2(Ω)

}
.

Symbols ‖ • ‖
1,Ω

(respectively |•|
1,Ω

) denote usual norms (respectively semi-
norms) in Sobolev space H1(Ω). In a similar way, we define space H2(Ω) as
the space of functions of H1(Ω) for which the first partial derivatives be-
long to H1(Ω). The associated norms and semi-norms are respectively noted
‖ . ‖

2,Ω
and | . |

2,Ω
. The Sobolev space H1

0 (Ω) is the closure of D(Ω) in the
sense of the norm ‖ • ‖

1,Ω
. In the sequel, (•, •)0 and ‖ • ‖

0,Ω
denotes res-

pectively the standard inner product and the norm in L2(Ω) and 〈•, •〉
−1,1

the duality product between H1
0 (Ω) and its topological dual space H−1(Ω).

Finally, γ shall denote the trace operator from H1(Ω) onto H1/2(Γ) or from
H2(Ω) onto H3/2(Γ).

◦ Space H1
0 (Ω; Γ1), Γ1 ⊂ Γ.

For any subset Γ1 of the boundary Γ, we define the space H1
0 (Ω; Γ1) composed

of functions of H1(Ω) whose trace is zero on Γ1.

H1
0 (Ω; Γ1) =

{
ϕ ∈ H1(Ω),

γϕ = 0 on Γ1 if meas (Γ1) 6= 0
(ϕ, 1)0 = 0 if meas (Γ1) = 0

}
.

Notice that H1
0(Ω; Γ) = H1

0 (Ω) and H1
0 (Ω; Ø) = H1(Ω) ∩ L2

0(Ω) . We shall
note Γc

1 the complementary of Γ1. Then by definition, traces of functions in
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H1
0 (Ω; Γ1) belong to space H

1/2
00 (Γc

1) (see Lions-Magenes [LM68]) :

H
1/2
00 (Γc

1) =
{
γϕ , ϕ ∈ H1(Ω) such that γϕ = 0 on Γ1

}
.

We have H
1/2
00 (Γ) = H1/2(Γ) . Finally, for any space H

1/2
00 (Γ1) , (H

1/2
00 (Γ1))

′

will denote its topological dual space and we can remark that (H
1/2
00 (Γ))′ =

H−1/2(Γ) .

◦ Space H(div,Ω).
First, let us recall that, for all vector field v in IRN , div v is defined by :

div v =

N∑

i=1

∂vi

∂xi
.

Following Duvaut-Lions [DL72], we then define H(div,Ω) the space of all
vector fields that belong to space (L2(Ω))N and whose divergence is in L2(Ω).
We have classically :

H(div,Ω) =
{
v ∈ (L2(Ω))N , div v ∈ L2(Ω)

}
, (2)

which is a Hilbert space equipped with the norm :

‖ v ‖
div,Ω

=

((
N∑

j=1

‖ vj ‖2
0,Ω

)
+ ‖div v‖2

0,Ω

)1/2

. (3)

◦ Normal trace in H(div,Ω).
Now, let us consider any subset Γ1 of Γ whose measure is non zero. If ϕ
belongs to H1

0 (Ω; Γc
1) , its trace γϕ belongs to H

1/2
00 (Γ1). Following [Dub02]

or Fernandes and Gilardi [FG97]), the normal trace on Γ1, denoted by γ̃
Γ1

•v
is a linear form acting on functions that are zero on the complementary of
Γ1 in Γ.

γ̃
Γ1

• : H(div,Ω) −→ (H
1/2
00 (Γ1))

′

v 7−→ γ̃
Γ1

•v ,

which is defined, for all ϕ ∈ H1
0 (Ω; Γc

1) and v ∈ H(div,Ω), by :

〈γ̃
Γ1

•v, γϕ〉
(H

1/2
00 (Γ1))′,H

1/2
00 (Γ1)

= (v,∇ϕ)0 + (div v, ϕ)0 .

As they coincide on regular functions, in all the sequel, the normal trace γ̃
Γ1

•v
will be shortly denoted by v•n|Γ1

. Finally, we define the following space :

Definition 1 We note H0(div,Ω) =
{
v ∈ H(div,Ω) , v•n|Γ = 0

}
.
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◦ Space H(curl,Ω).
We recall that if v is a vectorial field defined on Ω ⊂ IR3, then curl v is also
a vectorial field, defined by :

curl v =




∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2




. (4)

Then, we define :

H(curl,Ω) =
{
v ∈ (L2(Ω))3 , curl v ∈

(
L2(Ω)

)3}
.

When Ω ⊂ IR2 and ϕ is a scalar field defined on Ω, then curl ϕ is the
vectorial field defined by :

curl ϕ =




∂ϕ

∂x2

− ∂ϕ

∂x1


 . (5)

Here again, we can define :

H(curl,Ω) =
{
ϕ ∈ L2(Ω) , curl ϕ ∈

(
L2(Ω)

)2}
.

To be compatible with N = 2 or N = 3 dimensions, we set :

H(curl,Ω) =
{
ϕ ∈ (L2(Ω))2N−3 , curl ϕ ∈

(
L2(Ω)

)N}
. (6)

which is equipped with the norm :

‖ ϕ ‖
curl,Ω

=

(
2N−3∑

j=1

‖ ϕj ‖2
0,Ω

+
N∑

j=1

‖ (curl ϕ)j ‖2
0,Ω

)1/2

. (7)

Remark 2.1 Be aware that H(curl,Ω) is equal to H1(Ω) in two dimensions
and different from (H1(Ω))3 in three.

If Ω is contained in IR2 and v is a vectorial field defined on Ω, the following
scalar field, still denoted by curl v is obtained from the previous definition
(4) by taking the last component of v equal to zero :

curl v =
∂v2

∂x1
− ∂v1

∂x2
, when Ω ⊂ IR2 and v : Ω −→ IR2 . (8)

8



◦ Tangential trace in H(curl,Ω).
Following Levillain [Lev91] or [Dub02], we define the space of tangential
vector functions that are zero on the component Γc

1 of the boundary (n is
the outer normal to the boundary) :

TH
1/2
00 (Γ1) =

{
γξ , ξ ∈ (H1(Ω))N , γξ•n ≡ 0 on Γ , γξ × n = 0 on Γc

1

}
.

The tangential part of any vector γξ is : ξt ≡ γξ−(γξ•n) n. Then, for elements

of space TH
1/2
00 (Γ1), we have : ξt = γξ . In tridimensional domains, there exists

a tangential trace from H(curl,Ω) to
(
TH

1/2
00 (Γ1)

)′
, where

(
TH

1/2
00 (Γ1)

)′

denotes the topological dual space of TH
1/2
00 (Γ1),

γ̃
Γ1
× : H(curl,Ω) −→ (TH

1/2
00 (Γ1))

′

ϕ 7−→ γ̃
Γ1
×ϕ ,

which is defined in the following way. Let ξt be in TH
1/2
00 (Γ1), then we set :

〈γ̃
Γ1
×ϕ, ξt〉

(TH
1/2
00 (Γ1))

′
, TH

1/2
00 (Γ1)

= (ϕ, curl ξ)0 − (curl ϕ, ξ)0 .

As they coincide on regular functions, in all the sequel the tangential trace
γ̃

Γ1
×ϕ will be shortly denoted by ϕ× n|Γ1

.

2.2 Vorticity-velocity-pressure formulation

◦ We suppose that boundary Γ of domain Ω is decomposed with the help
of two independent partitions :

Γ = Γm ∪ Γp with Γm ∩ Γp = Ø , (9)

Γ = Γθ ∪ Γt with Γθ ∩ Γt = Ø . (10)

We suppose that different types of data are given on each part of Γ : normal
velocity g0 on Γm , constraint Π0 on Γp , tangential vorticity θ0 on Γθ and
tangential velocity σ0 on Γt . In [Dub92] and [Dub02], it was proposed to write
the Stokes problem by means of a vorticity-velocity-pressure formulation. We
introduce the vorticity ω :

ω = curl u (11)

and the Stokes problem reads formally :

curl ω − δ∇div u+ ∇p = f in Ω (12)

9



div u = 0 in Ω , (13)

with the very general boundary conditions :

u•n = g0 on Γm (14)

p− δdiv u = Π0 on Γp (15)

ω × n = θ0 on Γθ (16)

n× u× n = σ0 on Γt , (17)

with ω given in (11) and the kinematic viscosity taken equal to 1. In the pre-
vious formulae, the constant δ is equal to 1. But, as we consider u divergence
free, it is possible to forget div u in the formulation. So, the constant δ can
be taken equal to 0. Then, in the following, δ will be either 0 or 1.

◦ We have already established (see [Dub02] for three-dimensional case and
[Sal99] for two-dimensional case) that modulo some technical hypotheses re-
called in Section 6.3, problem (11-17) is well-posed for the triplet (ω, u, p)
in a particular case and under the restrictive hypothesis :

Γθ = Γm and Γt = Γp . (18)

In the sequel, we will restrict first to the case of homogeneous Dirichlet
boundary conditions :

g0 = 0 on Γm , (19)

θ0 = 0 on Γθ , (20)

and, second, to a particular decomposition of the boundary Γ :

Γm ≡ Γ and Γp ≡ Ø . (21)

◦ We have precedently proposed (see [Dub92]) to formulate problem (11-
17) in Sobolev spaces with the help of velocity vector space H(div,Ω) such
that v•n is zero on Γm = Γ . More precisely, we set :

X =
{
v ∈ H(div,Ω) , v•n|Γ = 0

}
= H0(div,Ω) . (22)

We have proceeded in an analogous way with vorticity by setting :

W̃ =
{
ϕ ∈ H(curl,Ω) , ϕ× n|Γθ

= 0
}
. (23)

Finally, meas (Γp) being zero, the space for the pressure is :

Y = L2
0(Ω) . (24)

Remark 2.2 In relation (23), ϕ×n|Γθ
= 0 means rigorously that ϕ×n is zero

in dual space (TH
1/2
00 (Γθ))

′, analogously with the normal trace in H(div,Ω).
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3 Classical bidimensional case

3.1 Stream function-vorticity formulation

◦ In this section, we suppose that Ω is a bounded connected and simply
connected domain of IR2 with a Lipschitz boundary ∂Ω ≡ Γ. These hypo-
theses allow to consider the classical stream function-vorticity formulation
of the Stokes problem. We will point out the formal link between the two
formulations.
◦ We choose a set of boundary conditions that consists in giving all the
components of the velocity field on the entire boundary :

u = 0 on Γ . (25)

With notation introduced in (11-17), boundary condition (25) corresponds
to “Dirichlet-Neumann” boundary conditions in vorticity-velocity-pressure
formulation :

Γm = Γ g0 ≡ 0 ,
Γt = Γ σ0 ≡ 0 .

The unknown velocity field u belongs to space X introduced in relation
(22) and satisfies also incompressibility relation (13). Then, taking into ac-
count hypotheses done on domain Ω (see e.g. Girault and Raviart [GR86]),
there exists a stream function ψ that belongs to space H1

0 (Ω) in such a way
that u is represented as the curl of the scalar field ψ :

u = curl ψ ≡
(
∂ψ

∂x2
, − ∂ψ

∂x1

)t
, ψ ∈ H1

0 (Ω) . (26)

Then, it is possible to write equations (11) and (12) under the form :

ω + ∆ψ = 0 in Ω , (27)

− ∆ω = curl f in Ω . (28)

Taking into account representation (26), boundary conditions for stream
function are :

ψ = 0 and
∂ψ

∂n
= 0 on Γ , (29)

where
∂ψ

∂n
is the normal derivative along Γ. These equations are the Stokes

problem in stream function-vorticity formulation which was well studied
(Glowinski-Pironneau [GP79], [GR86]).
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We have just seen formally that the vorticity-velocity-pressure problem
corresponds to the stream function-vorticity problem when we restrict to bi-
dimensional case and particular boundary conditions. We had also observed
in an earlier work ([Sal99], [DSS02b]) that this correspondence is still valid
after discretization with low degree finite elements.

◦ Consider now the problem (27)-(28) under a variational form with the fol-
lowing Hilbert space introduced by Bernardi, Girault and Maday [BGM92] :

M(Ω) =
{
ϕ ∈ L2(Ω) , ∆ϕ ∈ H−1(Ω)

}
, (30)

where H−1(Ω) is the topological dual space of H1
0 (Ω) with the associated

norm :

H−1(Ω) 3 θ 7−→ ‖ θ ‖
−1,Ω

= sup
v ∈ H1

0 (Ω)

〈θ, v〉
−1 , 1

‖ ∇v ‖
0,Ω

. (31)

Consequently, the norm on space M(Ω) is defined by the relation :

M(Ω) 3 ϕ 7−→ ‖ ϕ ‖
M

=
(
‖ ϕ ‖2

0,Ω
+ ‖ ∆ϕ ‖2

−1,Ω

)1/2

. (32)

If f is given in space (L2(Ω))2, the variational formulation of problem (27),
(28), (29) is the following :

ψ ∈ H1
0 (Ω) , ω ∈M(Ω) , (33)

(ω, ϕ)0 + 〈∆ϕ, ψ〉
−1 , 1 = 0 , ∀ϕ ∈M(Ω) (34)

〈∆ω, ζ〉
−1 , 1 = −(f, curl ζ)0 , ∀ζ ∈ H1

0 (Ω) (35)

and we have the following result due to [BGM92].

Theorem 3.1 The stream function-vorticity problem is well-posed.
If Ω is a bounded connected and simply connected domain of IR2 with a Lip-
schitz boundary Γ and if datum f belongs to space (L2(Ω))2, the variational
problem (33), (34), (35) admits a unique solution (ψ, ω) ∈ H 1

0 (Ω)×M(Ω) that
depends continuously on the datum f :

∃ C > 0 , ‖ ∇ψ ‖
0,Ω

+ ‖ ω ‖
M

≤ C ‖ f ‖
0,Ω

. (36)

The proof of this theorem is based on a general result derived by Brezzi
[Bre74] (see also Babus̆ka [Bab71]).

Theorem 3.2 Mixed formulation.
Let Z and M be two Hilbert spaces, M ×M 3 (ω, ϕ) 7−→ a(ω, ϕ) ∈ IR and
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Z × M 3 (ζ, ϕ) 7−→ b(ζ, ϕ) ∈ IR two continuous bilinear forms such that
b(•, •) satisfies the so-called inf-sup condition :

∃ β > 0 , inf
ζ∈Z

sup
ϕ∈M

b(ζ, ϕ)

‖ ζ ‖
Z
‖ ϕ ‖

M

≥ β , (37)

and bilinear form a(•, •) is elliptic on the right kernel K of b(•, •) :

K = {ϕ ∈M , ∀ζ ∈ Z , b(ζ, ϕ) = 0} (38)

∃ α > 0 , ∀ ϕ ∈ K , a(ϕ, ϕ) ≥ α ‖ ϕ ‖
M

. (39)

Then, for each pair (ρ, σ) ∈M ′ × Z ′, the mixed variational problem :

ψ ∈ Z , ω ∈M (40)

a(ω, ϕ) + b(ψ, ϕ) = 〈ρ, ϕ〉
M′ , M

, ∀ϕ ∈ M (41)

b(ζ, ω) = 〈σ, ζ〉
Z′ , Z

, ∀ζ ∈ Z , (42)

has a unique solution (ψ, ω) ∈ Z ×M that continuously depends on datum
(ρ, σ) :

∃ C > 0 , ‖ ψ ‖
Z

+ ‖ ω ‖
M

≤ C
(
‖ ρ ‖

M′
+ ‖ σ ‖

Z′

)
. (43)

Proof of Theorem 3.1
The present proof is a variant of the one proposed in [BGM92]. We just give
it for completeness of our study.
• With the notation of Theorem 3.2, we make the following choice :

Z = H1
0 (Ω) M = M(Ω)

a(ω, ϕ) = (ω, ϕ)0 , ω ∈M(Ω) , ϕ ∈M(Ω)
b(ζ, ϕ) = 〈∆ϕ, ζ〉

−1 , 1 , ζ ∈ H1
0 (Ω) , ϕ ∈M(Ω) .

• The proof of the inf-sup condition (37) is elementary thanks to the in-
troduction of the Poincaré constant P :

‖ ζ ‖
0,Ω

≤ P ‖ ∇ζ ‖
0,Ω

, ∀ζ ∈ H1
0 (Ω) .

First, we remark that, if ϕ belongs to H1
0 (Ω), ϕ belongs also to M(Ω) and

verifies :

‖ϕ‖
M
≤

√
1 + P 2‖∇ϕ‖

0,Ω
. (44)
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Indeed, for ϕ ∈ H1
0 (Ω) ⊂ M(Ω) and ζ ∈ H1

0 (Ω), 〈−∆ϕ, ζ〉
−1,1 = (∇ϕ,∇ζ)0,

then ‖∆ϕ‖
−1,Ω

≤ ‖∇ϕ‖
0,Ω

which proves (44). Then, for a fixed ζ in H1
0 (Ω),

we have (take ϕ = −ζ and use (44)) :

sup
ϕ∈M(Ω)

〈∆ϕ, ζ〉
−1,1

‖∇ζ‖
0,Ω
‖ϕ‖

M

≥ 〈∆ζ, ζ〉
−1,1

‖∇ζ‖
0,Ω

‖ζ‖
M

≥
‖∇ζ‖2

0,Ω√
1 + P 2‖∇ζ‖2

0,Ω

.

The inf-sup condition with β =
1√

1 + P 2
is proved.

• The kernel K, defined in (38), can be evaluated and we have :

K =
{
ϕ ∈ L2(Ω) , ∆ϕ = 0 in H−1(Ω)

}
.

Then, the L2 scalar product is clearly elliptic (with α = 1) on space K rela-
tively to the norm (32) in space M(Ω). �

◦ First we have proposed in Section 2.2 to search the vorticity for the
(ω, u, p) formulation, in a subspace of H(curl,Ω), which is equal to H1(Ω)
in two dimensions (see (23)). But it is now understood ([BGM92]) that the
(ψ, ω) problem, which can be seen as a particular case of the (ω, u, p) for-
mulation, is well-posed when the vorticity is searched in space M(Ω) and
not in space H1(Ω). As M(Ω) is different from H1(Ω) = H(curl,Ω) in the

two-dimensional case, we a priori have to change the space W̃ (see (23))
where we look for the vorticity in the (ω, u, p) formulation in order to obtain
a well-posed problem. The adequate space for the vorticity will be introduced
further.

Remark 3.3 We refer to our previous studies for cases where (ω, u, p) is
well-posed with ω in a subspace of H(curl,Ω) [Dub02], [Sal99], [DSS02b],
and for difficulties associated with the discretization of the space M(Ω) in
the (ψ, ω) formulation to [GP79], [DSS00], [DSS02a] and [ASS02].

3.2 Properties of space M(Ω)

In this section we shall give some properties of the space M(Ω) and a
density result useful for the last section of this paper.
◦ Let us recall the definition of the space M(Ω) :

M(Ω) =
{
ϕ ∈ L2(Ω) , ∆ϕ ∈ H−1(Ω)

}
,

and the associated norm of an element ϕ of M(Ω) :

‖ ϕ ‖
M

=
(
‖ ϕ ‖2

0,Ω
+ ‖ ∆ϕ ‖2

−1,Ω

)1/2

.
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Lemma 3.4 Trace in space M(Ω).
Let Ω be a simply connected open bounded domain in IR2, with a Lipschitz
boundary Γ. Then, there exists a trace operator, still denoted by γ, which is a
continuous application from M(Ω) in

(
H1/2(Γ)

)′
= H−1/2(Γ). Consequently,

there exists a strictly positive constant C such that, for all ϕ in M(Ω), we
have :

‖ γϕ ‖
−1/2,Γ

≤ C ‖ ϕ ‖
M

. (45)

Proof
• Let us remark that for all g in H1/2(Γ), there exists ξ in H2(Ω) ∩ H1

0 (Ω)

such that the normal derivative
∂ξ

∂n
is equal to g in space H1/2(Γ). Then, for

all ϕ in M(Ω), expression (ϕ,∆ξ)0 − 〈∆ϕ, ξ〉
−1,1 is well defined and we can

set :
〈γϕ, g〉

H−1/2(Γ),H1/2(Γ)
= (ϕ,∆ξ)0 − 〈∆ϕ, ξ〉

−1,1 . (46)

Let us begin to remark that, by construction, we have :

|〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

| ≤ 2 ‖ ϕ ‖
M

‖ ξ ‖
2,Ω

, (47)

which proves that (46) defines a continuous operator on H2(Ω).
• Now, we shall show that 〈γϕ, g〉

H−1/2(Γ),H1/2(Γ)
is effectively only function

of g. We observe that, for all δ ∈ D(Ω), we have :

〈∆ϕ, δ〉
−1,1 = 〈∆ϕ, δ〉

D′(Ω),D(Ω)
= (ϕ,∆δ)0 ,

and then 〈γϕ, ∂δ
∂n

〉
H−1/2(Γ),H1/2(Γ)

= 0 for all δ ∈ D(Ω). Now, using continuity

(47) and density of D(Ω) in H2
0 (Ω), we deduce that :

〈γϕ, ∂δ
∂n

〉
H−1/2(Γ),H1/2(Γ)

= 0 , ∀δ ∈ H2
0 (Ω) .

Finally, if ξ and η are two functions ofH2(Ω) ∩H1
0(Ω), such that

∂ξ

∂n
= g =

∂η

∂n
on Γ, the difference δ = ξ − η belongs to H2

0 (Ω) and we have :

〈γϕ, ∂ξ
∂n

〉
H−1/2(Γ),H1/2(Γ)

= 〈γϕ, ∂η
∂n

〉
H−1/2(Γ),H1/2(Γ)

= 〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

,

which proves that 〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

only depends on the function g of

H1/2(Γ).
• In a last step, we shall show that γϕ is continuous on H1/2(Γ). Using
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again the continuity property (47), and as 〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

only depends

on g, we deduce that :

|〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

| ≤ 2 ‖ ϕ ‖
M

inf
ζ∈H2(Ω) ∩ H1

0 (Ω), ∂ζ
∂n

=g
‖ ζ ‖

2,Ω
.

Then, thanks to the trace theorem [LM68], there exists a positive constant
C independent of g such that :

|〈γϕ, g〉
H−1/2(Γ),H1/2(Γ)

| ≤ C ‖ ϕ ‖
M
‖ g ‖

1/2,Γ
.

The previous inequality is valid for all ϕ in M(Ω) and for all g in H1/2(Γ),
which proves that γϕ is a continuous operator from M(Ω) in H−1/2(Γ), and
leads to the announced inequality (45). �

◦ We introduce the space of harmonic functions of L2(Ω) :

H(Ω) =
{
ϕ ∈ L2(Ω) , ∆ϕ = 0 ∈ D′(Ω)

}
,

and we have the following decomposition of space M(Ω) :

Lemma 3.5 Decomposition of space M(Ω).
We have :

M(Ω) = H1
0 (Ω) ⊕H(Ω) .

Proof
We split any element ϕ of M(Ω) into two parts : ϕ = ϕ0 + ϕ∆. On the
one hand, the component ϕ0 is uniquely defined in space H1

0 (Ω), since ∆ϕ
belongs to H−1(Ω), as the solution of the Dirichlet problem :

{
∆ϕ0 = ∆ϕ in Ω
γϕ0 = 0 on γ .

On the other hand, we set : ϕ∆ = ϕ − ϕ0. Then, function ϕ∆ belongs to
L2(Ω) as ϕ and ϕ0. Moreover, by construction, we have : ∆ϕ∆ = 0 in Ω.
Then, ϕ∆ belongs to H(Ω). Let us remark that γϕ∆ = γϕ in space H−1/2(Γ)
(see Lemma 3.4). �

Lemma 3.6 Scalar product in M(Ω) (see also [Rua95b]).
Let ϕ and ξ be two elements of space M(Ω). Using the previous decomposition
(see Lemma 3.5), we can write : ϕ = ϕ0 + ϕ∆ and ξ = ξ0 + ξ∆. Then, the
scalar product in M(Ω) associated with norm (32) can be written as :

(ϕ, ξ)
M

= (ϕ, ξ)0 + (∇ϕ0,∇ξ0)0 . (48)
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Proof
The scalar product in M(Ω) can be expressed by :

(ϕ, ξ)
M

=
1

2

(
‖ ϕ+ ξ ‖2

M
− ‖ ϕ ‖2

M
− ‖ ξ ‖2

M

)
.

For any function ψ of M(Ω), we have : ‖ ψ ‖2
M

=‖ ψ ‖2
0,Ω

+ ‖ ∆ψ ‖2
−1,Ω

.

Now, introducing the decomposition given in Lemma 3.5, as ∆ψ∆ is zero, we
obtain :

‖ ψ ‖2
M

=‖ ψ ‖2
0,Ω

+ ‖ ∆ψ0 ‖2
−1,Ω

,

for all ψ ∈M(Ω). Moreover, we have :

‖ ∆ψ0 ‖
−1,Ω

= sup
ζ∈H1

0 (Ω)

〈∆ψ0, ζ〉
−1,1

‖ ∇ζ ‖
0,Ω

= sup
ζ∈H1

0 (Ω)

−(∇ψ0,∇ζ)0

‖ ∇ζ ‖
0,Ω

=‖ ∇ψ0 ‖
0,Ω

as ψ0 belongs to H1
0 (Ω). Then, we obtain for the M(Ω)-scalar product :

(ϕ, ξ)
M

=
1

2

(
‖ ϕ+ ξ ‖2

0
− ‖ ϕ ‖2

0
− ‖ ξ ‖2

0

)

+
1

2

(
‖ ∇ϕ0 + ∇ξ0 ‖2

0,Ω
− ‖ ∇ϕ0 ‖2

0,Ω
− ‖ ∇ξ0 ‖2

0,Ω

)
.

In the above expression, the first block gives the standard L2(Ω)-scalar pro-
duct between ϕ and ξ, and the second the L2(Ω)-scalar product between ∇ϕ0

and ∇ξ0, which achieves the proof. �

Proposition 3.7 Density of H1(Ω) in M(Ω).
Let Ω be a simply connected open bounded domain in IR2, with a Lipschitz
boundary Γ. Space H1(Ω) is dense in space M(Ω) for the norm ‖ • ‖

M
.

Proof
• This proof is close to the one of Theorem 2.4 in [GR86], and is based on
the following property : a subspace S of a Hilbert space M is dense in M if
and only if every element of M ′ that vanishes on S also vanishes on M .
• Let ϕ̂ belong to (M(Ω))′. As it is a Hilbert space, the Riesz theorem
proves that there exists a function, denoted by ϕ, in M(Ω) such that :

〈ϕ̂, ξ〉
(M(Ω))′,M(Ω)

= (ϕ, ξ)
M

, ∀ ξ ∈M(Ω) .

Using the decomposition introduced in Lemma 3.5 and the expression of the
M(Ω)-scalar product derived in (48), we have for all ξ ∈M(Ω) :

(ϕ, ξ)
M

= (ϕ, ξ)0 + (∇ϕ0,∇ξ0)0 .
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We suppose now that ϕ̂ vanishes on H1(Ω). Then, we obtain :

(ϕ, ξ)0 + (∇ϕ0,∇ξ0)0 = 0 , ∀ξ ∈ H1(Ω) .

In this relation, we have used the splitting of ξ considered as an element of
M(Ω). Moreover, as ϕ0 belongs to H1

0 (Ω), we have also :

(∇ϕ0,∇ξ0)0 = −〈∆ξ0, ϕ0〉
−1,1

= −〈∆ξ, ϕ0〉
−1,1 as ∆ξ0 = ∆ξ

= (∇ϕ0,∇ξ)0 as ξ ∈ H1(Ω) .

Then, we have :

(ϕ, ξ)0 + (∇ϕ0,∇ξ)0 = 0 , ∀ξ ∈ H1(Ω) .

This equality implies that in the distribution sense :

ϕ− div ∇ϕ0 = 0 in D′(Ω) .

Then, ϕ0 is solution in H1
0 (Ω) of the following problem :

{
div ∇ϕ0 = ∆ϕ0 = ϕ in Ω

γϕ0 = 0 on Γ .

And we can observe that ∆ϕ0, which is equal to ϕ, belongs to L2(Ω).
• As D(Ω) is dense in H1

0 (Ω), let (ϕk)k≥1 be a sequence of D(Ω) that tends
to ϕ0 in H1

0 (Ω). Then, we have the following relations :

ϕk
k−→∞−→ ϕ0 in H1

0 (Ω) ,

∆ϕk
k−→∞−→ ∆ϕ0 = ϕ in D′(Ω).

Then, we have :

〈∆ϕk, ψ〉D′(Ω),D(Ω)

k−→∞−→ 〈∆ϕ0, ψ〉
D′(Ω),D(Ω)

for all ψ ∈ D(Ω) ,

which can be rewritten, as ∆ϕk and ∆ϕ0 are both in L2(Ω) :

(∆ϕk, ψ)0

k−→∞−→ (∆ϕ0, ψ)0 for all ψ ∈ D(Ω) .

Finally, as D(Ω) is dense in L2(Ω) and if ψ belongs to L2(Ω), (∆ϕ0, ψ)0 is
the limit, when k tends to infinity, of (∆ϕk, ψ)0.
• Let us now prove that, for any arbitrary element ξ of M(Ω), we have :

〈ϕ̂, ξ〉
(M(Ω))′,M(Ω)

= (ϕ, ξ)
M

= 0 .
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Using the expression of the scalar product (48) and, as we have seen above,
we obtain :

(ϕ, ξ)
M

= (ϕ, ξ)0 + (∇ϕ0,∇ξ0)0

= (ϕ, ξ)0 − 〈∆ξ0, ϕ0〉
−1,1

= (ϕ, ξ)0 − 〈∆ξ, ϕ0〉
−1,1 as ∆ξ0 = ∆ξ

= (∆ϕ0, ξ)0 − 〈∆ξ, ϕ0〉
−1,1 as ∆ϕ0 = ϕ

= lim
k−→∞

(∆ϕk, ξ)0
− lim

k−→∞
〈∆ξ, ϕk〉−1,1

= lim
k−→∞

(
〈ξ,∆ϕk〉D′(Ω),D(Ω)

− 〈∆ξ, ϕk〉D′(Ω),D(Ω)

)
,

which leads to the result : (ϕ, ξ)
M

= 0 for all ξ in M(Ω). �

4 New functional space for vorticity

In this section, we shall define the new space W where we search for
the vorticity as announced above. Instead of being a subspace of H(curl,Ω),
W will be a subspace of a new functional space H(curl, div∗,Ω) that we
introduce in this section. We will define a weak rotational operator acting on
functions in H(curl, div∗,Ω) and a “co-curl” operator taking its values in the
space of velocities. We will need to define a tangential trace on this space to
impose boundary conditions on the vorticity in the formulation.

4.1 Functional space and weak rotational operator

◦ We have introduced above the space H0(div,Ω) as :

H0(div,Ω) =
{
v ∈ H(div,Ω) , v•n|Γ = 0

}
.

We first recall how to deal with the dual space (H0(div,Ω))′. As space
(H0(div,Ω))′ is a subspace of (D′(Ω))N , if we consider a linear form T of
(D′(Ω))N , T belongs to space (H0(div,Ω))′ if and only if T is continuous for
the H(div,Ω)-topology, ie if there exists a constant C > 0 such that :

∀v ∈ (D(Ω))N , |〈T, v〉
(D′(Ω))N ,(D(Ω))N

| ≤ C
(
‖ v ‖2

0,Ω
+ ‖ div v ‖2

0,Ω

)1/2

.

◦ For ϕ ∈ (L2(Ω))2N−3, the distribution curl ϕ is well defined in (D′(Ω))N

and is given by :

〈curl ϕ, v〉
(D′(Ω))N ,(D(Ω))N

= (ϕ, curl v)0 , ∀v ∈ (D(Ω))N
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We restrict ourselves to fields ϕ ∈ (L2(Ω))2N−3 such that the distribution
curl ϕ is continuous for the H(div,Ω)-norm. It thus gives a mathematical
sense to the duality product 〈curl ω, v〉 when v is a vector field that belongs
to space H(div,Ω), as suggested to us by Amara [Ama97].

Definition 2 Functional space for vorticity.
We set H(curl, div∗,Ω) the following space :

H(curl, div∗,Ω) =

{
ϕ ∈ (L2(Ω))N , ∃ C > 0 , ∀v ∈ (D(Ω))N ,

|(ϕ, curl v)0| ≤ C
(
‖ v ‖2

0,Ω
+ ‖ div v ‖2

0,Ω

)1/2

}
(49)

◦ We denote by 〈•, •〉
div∗,div

the duality product between H0(div,Ω) and its

dual. Then, the norm of an element of (H0(div,Ω))′ is defined as follows :

(H0(div,Ω))′ 3 ζ 7−→‖ ζ ‖
div∗,Ω

= sup
v ∈ H0(div,Ω)

〈ζ, v〉
div∗,div

‖ v ‖
div,Ω

. (50)

Proposition and definition 4.1 Weak rotational operator.
◦ For functions ϕ in H(curl, div∗,Ω), the application denoted by R∗ϕ and
defined by :

(D(Ω))N 3 v 7−→ 〈R∗ϕ, v〉div∗,div
= (ϕ, curl v)0, (51)

is continuous from space (D(Ω))N in IR for the H(div,Ω) -topology.
◦ Then, for ϕ ∈ H(curl, div∗,Ω), the application R∗ϕ is uniquely extended
by continuity to space H0(div,Ω) and the application :

R∗ : H(curl, div∗,Ω) 3 ϕ 7−→ R∗ϕ ∈ (H0(div,Ω))′

is thus well defined.
◦ The application :

H(curl, div∗,Ω) 3 ϕ 7−→‖ ϕ ‖
curl,div∗,Ω

=
(
‖ ϕ ‖2

0,Ω
+ ‖ R∗ϕ ‖2

div∗,Ω

)1/2

(52)

is a norm on the space H(curl, div∗,Ω). Moreover, for this norm and the
associated scalar product, H(curl, div∗,Ω) is a Hilbert space.

Proof
Thanks to the density of (D(Ω))N in H0(div,Ω), we can use the extension
theorem for uniformly continuous functions due to the continuity properties
(49). �
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◦ The next proposition shows that H(curl, div∗,Ω) is not empty as the
space H(curl,Ω) is contained in it, and that R∗ is the natural extension of
the curl operator as they both coincide on regular functions.

Proposition 4.2
When ϕ belongs to H(curl,Ω), then R∗ϕ is equal to curl ϕ in (H0(div,Ω))′

and we have :

〈R∗ϕ, v〉div∗,div
= (curl ϕ, v)0 , ϕ ∈ H(curl,Ω) , v ∈ H0(div,Ω). (53)

Proof
For all ϕ ∈ H(curl,Ω), ϕ belongs to (L2(Ω))2N−3 and curl ϕ to (L2(Ω))N . The
application : H0(div,Ω) 3 v 7−→ (curl ϕ, v)0 ∈ IR is linear and continuous
for the H(div,Ω)−topology, so belongs to (H0(div,Ω))′. Moreover, for all
v ∈ (D(Ω))N :

(curl ϕ, v)
0

= (ϕ, curl v)
0

by integrating by parts (54)

= 〈R∗ϕ, v〉div∗,div
by Definition (51).

¿From which we deduce that R∗ϕ = curl ϕ in (D′(Ω))N and since (D(Ω))N

is dense in H0(div,Ω), R∗ϕ = curl ϕ in (H0(div,Ω))′, which leads to (53). �

Remark 4.3 Notice that we can define 〈R∗ϕ, v〉div∗,div
for a function v in

H0(div,Ω), but that we do not know how to define 〈R∗ϕ, v〉div∗,div
for a generic

function v in H(div,Ω).

As R∗ϕ and curl ϕ coincide on regular functions, in all the sequel, we will
drop the notation R∗ϕ for those of curl ϕ, ϕ ∈ H(curl, div∗,Ω).

4.2 Properties of space H(curl, div∗,Ω)

In this section, we prove the basic properties of the new space introduced
above.

Proposition 4.4 Density of H(curl,Ω) in H(curl, div∗,Ω).
The space H(curl,Ω) is dense in H(curl, div∗,Ω) for the norm ‖ • ‖

curl,div∗,Ω
.

Proof
• Here again, this proof is based on the following property : a subspace S
of a Hilbert space M is dense in M if and only if every element of M ′ that
vanishes on S also vanishes on M .
• Let ϕ̂ belong to (H(curl, div∗,Ω))′. As space H(curl, div∗,Ω) is a Hilbert
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space (see Proposition 4.1), the Riesz theorem proves that there exists a
function, denoted by ϕ, in H(curl, div∗,Ω) such that :

〈ϕ̂, ξ〉(H(curl,div∗,Ω))′,H(curl,div∗,Ω) = (ϕ, ξ)
curl,div∗,Ω

, ∀ ξ ∈ H(curl, div∗,Ω)

= (ϕ, ξ)0 + (curl ϕ, curl ξ)
(H0(div,Ω))′

By applying again the Riesz theorem for curl ϕ ∈ (H0(div,Ω))′, we can find
an element of H0(div,Ω), denoted by ρϕ such that :

(ϕ, ξ)
curl,div∗,Ω

= (ϕ, ξ)0 + 〈curl ξ, ρϕ〉
div∗,div

.

We suppose now that ϕ̂ vanishes on H(curl,Ω) ie :

(ϕ, ξ)
curl,div∗,Ω

= 0 , ∀ξ ∈ H(curl,Ω) .

Using Proposition 4.2, as ρϕ belongs to H0(div,Ω), we obtain :

(ϕ, ξ)
0
+ (curl ξ, ρϕ)

0
= 0 , ∀ξ ∈ H(curl,Ω) .

Let us now introduce ϕ̃ and ρ̃ϕ the extensions to IRN , by zero outside Ω,
of functions ϕ and ρϕ. Let us remark that ρ̃ϕ belongs to H(div, IRN) as

ρϕ•n|Γ = 0. Moreover, let us notice that, for all function ξ̃ ∈ (D(IRN ))2N−3,
its restriction on Ω, say ξ, belongs to H(curl,Ω). Then, the above formula
leads to the following relations :

0 = (ϕ, ξ)
0
+ (curl ξ, ρϕ)

0

= (ϕ̃, ξ)0 + (curl ξ, ρ̃ϕ)0

= (ϕ̃, ξ̃)
L2(IRN )

+ (curl ξ̃, ρ̃ϕ)
L2(IRN )

∀ξ̃ ∈ (D(IRN))2N−3 .

This equality implies that in the distributions sense :

ϕ̃+ curl ρ̃ϕ = 0 in (D′(IRN))2N−3.

Thus, ρ̃ϕ belongs to H(curl, IRN ) since ϕ̃ belongs to (L2(IRN ))2N−3. As
ρ̃ϕ belongs to H(div, IRN), we deduce that ρ̃ϕ belongs to H(curl, IRN) ∩
H(div, IRN) = (H1(IRN))N (see Weber [Web80] or [GR86]). Moreover, ρ̃ϕ
being identically zero outside Ω, we deduce that ρϕ belongs to (H1

0 (Ω))N

(see [GR86]).
• As (D(Ω))N is dense in (H1

0 (Ω))N , let (ψk)k≥1 be a sequence of (D(Ω))N

that tends to ρϕ in (H1
0 (Ω))N . Then, we have the following relations :

ψk
k−→∞−→ ρϕ in H0(div,Ω) ,

curl ψk
k−→∞−→ curl ρϕ = −ϕ in (L2(Ω))2N−3 ,
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• Let us now prove that, for any arbitrary element ξ of H(curl, div∗,Ω),
we have :

〈ϕ̂, ξ〉(H(curl,div∗,Ω))′,H(curl,div∗,Ω) = (ϕ, ξ)
curl,div∗,Ω

= 0 .

We have seen that ρϕ belongs to (H1
0 (Ω))N , which is contained in H0(div,Ω).

Using the above convergences, we obtain :

(ϕ, ξ)
curl,div∗,Ω

= (ϕ, ξ)0 + 〈curl ξ, ρϕ〉
div∗,div

= lim
k−→∞

[(−curl ψk, ξ)0 + 〈curl ξ, ψk〉div∗,div
].

As ψk belongs to (D(Ω))N , using (51), we have :

〈curl ξ, ψk〉div∗,div
= (ξ, curl ψk)0 .

Then we obtain : (ϕ, ξ)
curl,div∗,Ω

= 0 for any ξ ∈ H(curl, div∗,Ω), which fi-
nishes to prove that H(curl,Ω) is dense in H(curl, div∗,Ω). �

◦ Because of the previous density property, the scope of this paragraph is
to define an extension of the tangential trace, naturally defined in H(curl,Ω)
(see Section 2.1), for functions of H(curl, div∗,Ω). Let Γ1 be an arbitrary
subset of the boundary Γ, and n the outer normal along Γ, let us recall that
we have defined the following space of tangential boundary vector functions
that are different from zero on Γ1 :

TH
1/2
00 (Γ1) =

{
γξ , ξ ∈ (H1(Ω))N , γξ•n ≡ 0 on Γ , γξ × n = 0 on Γc

1

}
.

Let us observe that an element ξ of (H1(Ω))N such that : ξ•n = 0 on Γ,
belongs also to space H0(div,Ω). Then, we can define the following tangential
trace.

Proposition 4.5 Tangential trace operator on H(curl, div∗,Ω).
Let Ω be an open bounded domain in IRN whose boundary Γ is such that
Γ1 ⊂ Γ. There exists a continuous application γ̃

Γ1
× from H(curl, div∗,Ω) in(

TH
1/2
00 (Γ1)

)′
:

γ̃
Γ1
× : H(curl, div∗,Ω) −→

(
TH

1/2
00 (Γ1)

)′

ϕ 7−→ γ̃
Γ1
×ϕ ,

Let γξ be in TH
1/2
00 (Γ1), associated with ξ ∈ (H1(Ω))N ∩ H0(div,Ω). Then,

the normal component of γξ is reduced to zero and the previous trace operator
is defined by :

〈γ̃
Γ1
×ϕ, γξ〉 = (ϕ, curl ξ)0 − 〈curl ϕ, ξ〉

div∗,div
. (55)
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Proof
• Let ϕ ∈ H(curl, div∗,Ω) and ξ ∈ (H1(Ω))N ∩ H0(div,Ω). Then we
remark that : 〈curl ϕ, ξ〉

div∗,div
is well defined. In a first step, we shall show

that 〈γ̃
Γ1
×ϕ, γξ〉 is effectively only function of the trace of ξ. Let us begin to

remark that, by construction, we have :

|〈γ̃
Γ1
×ϕ, γξ〉| ≤ 2 ‖ ϕ ‖

curl,div∗,Ω
‖ ξ ‖

1,Ω
, (56)

which proves that (55) define a continuous operator on (H1(Ω))N . Then, for
all δ ∈ (D(Ω))N , we have thanks to Definition (51) :

〈curl ϕ, δ〉
div∗,div

= (ϕ, curl δ)0 .

Then 〈γ̃
Γ1
×ϕ, δ〉 = 0 for all δ ∈ (D(Ω))N (cf (55)). And, using continuity

(56) and density of (D(Ω))N in (H1
0 (Ω))N , we deduce that :

〈γ̃
Γ1
×ϕ, γδ〉 = 0 , ∀δ ∈ (H1

0 (Ω))N .

Finally, if ξ and η are two functions of (H1(Ω))N ∩ H0(div,Ω), such that
γξ = γη on Γ1 and γξ = γη = 0 on Γc

1, then the difference δ = ξ − η belongs
to (H1

0(Ω))N and we have :

〈γ̃
Γ1
×ϕ, γξ〉 = 〈γ̃

Γ1
×ϕ, γη〉 ,

which proves that 〈γ̃
Γ1
×ϕ, γξ〉 only depends on the trace γξ of ξ on Γ1.

• In a second step, we shall show that γ̃
Γ1
×ϕ is a continuous function

on TH
1/2
00 (Γ1). Using again the continuity property (56), and as 〈γ̃

Γ1
×ϕ, γξ〉

only depends on ξ, we deduce that :

|〈γ̃
Γ1
×ϕ, γξ〉| ≤ 2 ‖ ϕ ‖

curl,div∗,Ω
inf

ζ∈(H1(Ω))3 , γζ=γξ
‖ ζ ‖

1,Ω
.

Then, thanks to the trace theorem [LM68], there exists a positive constant
C independent of ξ such that :

|〈γ̃
Γ1
×ϕ, γξ〉| ≤ C ‖ ϕ ‖

curl,div∗,Ω
‖ γξ ‖

1/2,Γ
.

The previous inequality remains valid for all ϕ in H(curl, div∗,Ω) and ξ in

(H1(Ω))N ∩ H0(div,Ω), such that γξ belongs to TH
1/2
00 (Γ1), which proves

that γ̃
Γ1
× is a continuous operator from H(curl, div∗,Ω) in (TH

1/2
00 (Γ1))

′. �

Proposition 4.6 Case of regular functions.
Let Ω be an open bounded domain in IRN whose boundary Γ is such that
Γ1 ⊂ Γ. If function ϕ belongs to H(curl,Ω), γ̃

Γ1
× is equal to the “tangential

trace” of ϕ (see Section 2.1) :

γ̃
Γ1
×ϕ = ϕ× n|Γ1

if ϕ ∈ H(curl,Ω). (57)
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Proof
Let us notice that if ϕ belongs to H(curl,Ω), we can rewrite, thanks to
Proposition 4.2, the duality product 〈curl ϕ, ξ〉

div∗,div
:

〈curl ϕ, ξ〉
div∗,div

= (curl ϕ, ξ)0 , for all ξ ∈ (H1(Ω))N ∩ H0(div,Ω) .

Then, with the help of Green’s formula and by definition of the tangential
trace in H(curl,Ω), we have for all ϕ in H(curl,Ω) :

〈γ̃
Γ1
×ϕ, γξ〉 = 〈ϕ× n|Γ1

, γξ〉 .

which achieves the proof. �

Thanks to this last proposition, as the traces coincide on regular functions,
in all the sequel, we will shortly denote γ̃

Γ1
×ϕ by ϕ × n|Γ1

, for all ϕ in
H(curl, div∗,Ω).

4.3 Definition of the vorticity space

Let Γθ and Γt be a partition of the boundary : Γ = Γθ∪Γt with Γθ∩Γt = Ø.
We can now define the new vectorial space where we shall search for the
vorticity. This space is composed of functions of H(curl, div∗,Ω) introduced
previously, whose tangential trace is null on the part Γθ of Γ. We set :

W =

{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0 in
(
TH

1/2
00 (Γθ)

)′}
. (58)

This definition allows to introduce the following curl operator R : W −→ X ′

for functions of W . Let us define l as the canonical injection from W to
H(curl, div∗,Ω). In Definition 4.1, we have introduced a curl operator from
H(curl, div∗,Ω) to (H0(div,Ω))′ = X ′, named R∗ in this case. Then, we
define R = R∗.l :

R∗ : H(curl, div∗,Ω)
R∗−→ X ′

↑ l ↓
R : W −→ X ′.

(59)

The expression 〈Rϕ, v〉
X′,X

is now well defined for all ϕ ∈ W , v ∈ X.
The norm in W is naturally defined as follows :

‖ ϕ ‖2
curl,div∗,Ω

= ‖ ϕ ‖2
0,Ω

+ ‖ Rϕ ‖2
div∗,Ω

= ‖ ϕ ‖2
0,Ω

+


 sup
v ∈ H0(div,Ω)

〈Rϕ, v〉
div∗,div

‖ v ‖
div,Ω




2

.
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The following lemma will be useful in the sequel.

Lemma 4.7 There exists a constant C > 0 such that, for all function ϕ of
(H1(Ω))2N−3 ∩ W , we have :

‖ ϕ ‖
W

= ‖ ϕ ‖
curl,div∗,Ω

≤ C ‖ ϕ ‖
1,Ω

.

Proof
First, let us recall that :

‖ ϕ ‖2
curl,div∗,Ω

= ‖ ϕ ‖2
0,Ω

+


 sup
v ∈ H0(div,Ω)

〈Rϕ, v〉
div∗,div

‖ v ‖
div,Ω




2

.

As space (H1(Ω))2N−3 is contained in H(curl,Ω), Proposition 4.2 shows that
R∗ϕ is equal to curl ϕ in (H0(div,Ω))′. Then, thanks to Cauchy-Schwarz
inequality, we deduce that :

‖ ϕ ‖2
curl,div∗,Ω

≤ ‖ ϕ ‖2
0,Ω

+ sup
v ∈ H0(div,Ω)

‖ curl ϕ ‖2
0,Ω

‖ v ‖2
0,Ω

‖ v ‖2
div,Ω

≤ ‖ ϕ ‖2
0,Ω

+ ‖ curl ϕ ‖2
0,Ω

≤ C ‖ ϕ ‖2
1,Ω

which gives the announced result. �

5 Abstract result

In this section, we propose an abstract three-fields formulation which is
a general way to consider the Stokes problem in (ω, u, p) formulation. To
keep some flexibility for the interpretation of the variational formulation,
we introduce a mass operator J to represent in a rigorous way the formal
equality “ω = curl u” which is not obvious to write when u does not belong
to H(curl,Ω). We can state the major result of this section, ie the necessary
hypotheses to obtain a well-posed problem from the abstract formulation.

Theorem 5.1 Triple mixed variational formulation.
Preliminaries
Let W , X and Y be three Hilbert spaces, with their respective scalar products
(•, •)

W
, (•, •)

X
and (•, •)

Y
, and respective norms ‖ • ‖

W
, ‖ • ‖

X
and ‖ • ‖

Y
.

We suppose that there exists two continuous mappings R : W −→ X ′ and
D : X −→ Y ′. We define the polar space of KerD :

(KerD)0 =
{
ξ ∈ X ′ , 〈ξ, v〉

X′,X
= 0 , ∀ v ∈ KerD

}
, (60)
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and the subspace V of W :

V =
{
ϕ ∈ W , 〈Rϕ, v〉

X′,X
= 0 , ∀ v ∈ KerD

}
,

=
{
ϕ ∈ W , Rϕ ∈ (KerD)0

}
. (61)

We introduce the canonical injection i : KerD −→ X, a continuous operator
J : W −→ W ′ and r the Riesz isomorphism from Y ′ to Y . Moreover we
introduce D′ : Y −→ X ′ and R′ : X −→ W ′ dual operators of D and R
respectively :

〈D′ζ, x〉
X′,X

= 〈ζ,Dx〉
Y,Y ′

, ∀ζ ∈ Y , ∀x ∈ X ,

〈R′η, ϕ〉
W ′,W

= 〈η, Rϕ〉
X,X′

, ∀η ∈ X , ∀ϕ ∈ W ,

and a real parameter δ.

Hypotheses
Assume that :

◦ ∃ a > 0 , inf
q∈Y

q 6=0

sup
v∈X
v 6=0

〈q,Dv〉
Y,Y ′

‖ v ‖
X
‖ q ‖

Y

≥ a ; (62)

◦ ∃ b > 0 , inf
v∈KerD

v 6=0

sup
ϕ∈W

ϕ6=0

〈v, Rϕ〉
X,X′

‖ v ‖
X
‖ ϕ ‖

W

≥ b ; (63)

◦ J is elliptic on V :

∃ c > 0 , 〈Jϕ, ϕ〉
W ′,W

≥ c ‖ ϕ ‖2
W

for all ϕ ∈ V . (64)

Conclusion
Then, for any σ = (λ, µ, ν) in W ′ ×X ′ × Y ′, the problem : find ξ = (ω, u, p)
in W ×X × Y such that for all η = (ϕ, v, q) in W ×X × Y :





〈Jω, ϕ〉
W ′,W

− 〈R′u, ϕ〉
W ′,W

= 〈λ, ϕ〉
W ′,W

∀ϕ ∈ W

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= 〈µ, v〉
X′,X

∀v ∈ X

〈Du, q〉
Y ′,Y

= 〈ν, q〉
Y ′,Y

∀q ∈ Y,

has a unique solution (ω(σ), u(σ), p(σ)) ∈ W × X × Y which continuously
depends on data σ = (λ, µ, ν) i.e there exists C > 0 such that, for all
σ ∈ W ′ ×X ′ × Y ′ :

‖ ω(σ) ‖
W

+ ‖ u(σ) ‖
X

+ ‖ p(σ) ‖
Y

≤ C ‖ σ ‖
W ′×X′×Y ′

. (65)
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Let us begin by rewriting hypotheses (62) and (63).

Proposition 5.2 Interpretation of hypotheses (62)-(63).

◦ D ∈ Isom((KerD)⊥, Y ′) , (66)

◦ D′ ∈ Isom(Y, (KerD)0) , (67)

where (KerD)⊥ = {x ∈ X , (v, x)
X

= 0 , ∀v ∈ KerD} .

◦ R′i = R′ |
KerD

∈ Isom(KerD, V 0) , (68)

◦ i′R ∈ Isom(V ⊥, (KerD)′) , (69)

where we have set : V 0 =
{
ξ ∈ W ′ , 〈ξ, ϕ〉

W ′,W
= 0 , ∀ϕ ∈ V

}
, and :

V ⊥ = {w ∈ W , (w, ϕ)
W

= 0 , ∀ϕ ∈ V } . Finally, (KerD)′ is the dual space
of KerD.

To prove this proposition, we need the classical result of Ladyzenskaya-
Babus̆ka-Brezzi which is proved in [LU68], [Bab71] or [Bre74].

Theorem 5.3 Ladyzenskaya-Babus̆ka-Brezzi theorem.
Let T and M be two Hilbert spaces whose respective norms are denoted by
‖ • ‖

T
and ‖ • ‖

M
, scalar products by (•, •)

T
and (•, •)

M
and dual spaces by T ′

and M ′. Let T ×M 3 (t, µ) 7−→ b(t, µ) ∈ IR be a bilinear continuous form,
B : T −→M ′ a linear operator and B ′ : M −→ T ′ its dual defined by :

∀t ∈ T , ∀µ ∈M , 〈Bt, µ〉
M′,M

= 〈t, B′µ〉
T,T ′

= b(t, µ)

We define K the left kernel of b(•, •), its polar K0 and its orthogonal K⊥ :

◦ K = {t ∈ T , b(t, µ) = 0 , ∀µ ∈M} ;

◦ K0 =
{
θ ∈ T ′ , 〈θ, t〉

T ′,T
= 0 , ∀t ∈ K

}
;

◦ K⊥ = {θ ∈ T , (θ, t)
T

= 0 , ∀t ∈ K} .

The three following conditions are equivalent :

(i) ∃ β > 0 , inf
µ∈M

µ6=0

sup
t∈T
t6=0

b(t, µ)

‖ t ‖
T
‖ µ ‖

M

≥ β ;

(ii) B′ is an isomorphism from M onto K0 and :
∃ β > 0 , ∀µ ∈M , ‖ B′µ ‖

T ′
≥ β ‖ µ ‖

M
;
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(iii) B is an isomorphism from K⊥ onto M ′ and :
∃ β > 0 , ∀t ∈ K⊥ , ‖ Bt ‖

M′
≥ β ‖ t ‖

T
.

The constant β is the same in the three inequalities.

Proof of Proposition 5.2
• We first apply Theorem 5.3 with T = X and M = Y . Then, we set :
b(v, q) = 〈Dv, q〉

Y ′,Y
. Therefore, we have B = D , B ′ = D′ and :

K =
{
v ∈ X , 〈Dv, q〉

Y ′,Y
= 0 , ∀q ∈ Y

}
= KerD .

We conclude that :

B ∈ Isom(K⊥,M ′) ⇔ D ∈ Isom((KerD)⊥, Y ′) ,

B′ ∈ Isom(M,K0) ⇔ D′ ∈ Isom(Y, (KerD)0) .

• We apply again Theorem 5.3 with T = W and M = KerD . Here, we
set : b(v, ϕ) = 〈iv, Rϕ〉

X,X′
. Then, we have :

〈iv, Rϕ〉
X,X′

= b(v, ϕ) = 〈v, i′Rϕ〉
KerD,(KerD)′

= 〈ϕ,R′iv〉
W,W ′

which leads to : B = i′R , B′ = R′i = R′ |
KerD

. As :

K =
{
ϕ ∈ W , 〈v, Rϕ〉

X,X′
= 0 , ∀v ∈ KerD

}

=
{
ϕ ∈ W , Rϕ ∈ (KerD)0

}
= V ,

we obtain :

B ∈ Isom(K⊥,M ′) ⇔ i′R ∈ Isom(V ⊥, (KerD)′) ,

B′ ∈ Isom(M,K0) ⇔ R′ |
KerD

∈ Isom(KerD, V 0) .

�

Proof of Theorem 5.1
We introduce the operator A : W ×X×Y −→W ′×X ′×Y ′ by the following
matrix :

A =




J −R′ 0
R δD′rD −D′

0 D 0




We just have to prove that the continuous operator A is bijective due to the
Banach isomorphism theorem.
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• The operator A is injective.

Let ξ = (ω, u, p) ∈ W ×X × Y be the solution of Aξ = 0 :

Jω − R′u = 0 in W ′ , (70)

Rω −D′(p− δrDu) = 0 in X ′ , (71)

Du = 0 in Y ′ . (72)

∗ Let us apply equation (71) on any vector v ∈ KerD. As :

〈D′(p− δrDu), v〉
X′,X

= 〈p− δrDu, Dv︸︷︷︸
=0

〉
Y,Y ′

= 0 ,

we have, for all v in KerD :

〈Rω, v〉
X′,X

= 0 ,

thus Rω belongs to (KerD)0 ie ω belongs to V .
∗ Equation (72) Du = 0, means u ∈ KerD.
∗ If we test equation (70) with the particular vector ϕ = ω, we obtain :

〈Jω, ω〉
W ′,W

− 〈R′u, ω〉
W ′,W

= 0 .

As ω belongs to V and as u belongs to KerD, we have :

〈R′u, ω〉
W ′,W

= 〈u,Rω〉
X,X′

= 0 .

So, 〈Jω, ω〉
W ′,W

= 0 and hypothesis (64) leads to ω ≡ 0 .
∗ Taking into account that ω and Du are zero, equation (71) becomes D′p = 0
in Y ′. As D′ is an isomorphism from Y onto (KerD)0 (hypothesis (67)), p is
zero.
∗ Finally, equation (70) is reduced to R′u = 0 in W ′. As u belongs to KerD
and as R′ |

KerD
is an isomorphism from KerD onto V 0, see (68), we obtain

u = 0.

Therefore, we have proved that if σ = (0, 0, 0), then ξ = (0, 0, 0). It means
that A is an injective operator.

• The operator A is surjective.

Let σ = (λ, µ, ν) ∈ W ′ ×X ′ × Y ′ and ξ = (ω, u, p) ∈ W ×X × Y be the
solution of Aξ = σ :

Jω − R′u = λ in W ′ , (73)

Rω −D′(p− δrDu) = µ in X ′ , (74)

Du = ν in Y ′ . (75)
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∗ Let us split ω ∈ W and u ∈ X into two orthogonal components :

ω = ω1 + ω2 ∈ V ⊕ V ⊥ = W ,

u = u1 + u2 ∈ Ker D ⊕ (Ker D)⊥ = X .

∗ Let us apply equation (74) on any vector v in Ker D. As :

〈D′(p− δrDu), v〉
X′,X

= 〈p− δrDu, Dv︸︷︷︸
=0

〉
Y,Y ′

= 0 ,

we obtain for all v in KerD :

〈Rω, v〉
X′,X

= 〈i′Rω, iv〉
(KerD)′,KerD

= 〈µ, v〉
X′,X

,

〈i′Rω1, iv〉(KerD)′,KerD︸ ︷︷ ︸
=0 as v ∈ KerD , ω1∈V

+ 〈i′Rω2, iv〉(KerD)′,KerD
= 〈µ, v〉

X′,X
, (76)

ie i′Rω2 = µ in (KerD)′ because µ ∈ X ′ ⊂ (KerD)′. Taking into account
that i′R is an isomorphism from V ⊥ onto (Ker D)′, cf (69), there exists a
unique ω2 in V ⊥ such that i′Rω2 = µ in (Ker D)′.
∗ From equation (75), we deduce that Du2 = ν in Y ′ and from the isomor-
phism (66), we obtain that there exists a unique u2 in (Ker D)⊥.
∗ Using both decompositions, equation (73) can be rewritten as follows :

Jω1 = λ− Jω2 +R′u1 +R′u2 in W ′ . (77)

We first test this equation with some function ϕ in V . As u1 ∈ Ker D :

〈R′u1, ϕ〉W ′,W
= 〈u1, Rϕ〉X,X′

= 0 , ∀ϕ ∈ V ,

equation (77) implies :

〈Jω1, ϕ〉W ′,W
= 〈λ− Jω2 +R′u2, ϕ〉W ′,W

, ∀ϕ ∈ V , (78)

where ω2 and u2 are given by previous steps. If we note η ≡ λ−Jω2 +R′u2 ,
we have to find ω1 ∈ V such that :

〈Jω1, ϕ〉W ′,W
= 〈η, ϕ〉

W ′,W
, ∀ϕ ∈ V . (79)

Applying the Lax-Milgram’s lemma [LM54] (hypothesis (64) is the ellipticity
on V ), there exists a unique ω1 in V solution of (79).
∗ We report that last result in equation (77) and we obtain :

R′u1 = −λ+ Jω −R′u2 . (80)
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As 〈R′u1, ϕ〉W ′,W
= 0 for all u1 in Ker D and all ϕ in V , we have constructed

ω1 such that −λ+Jω−R′u2 belongs to V 0 (see (78)). Then equation (80) can
be considered in the Hilbert space V 0. As R′ |

Ker D
is an isomorphism from

KerD onto V 0 (hypothesis (68)), there exists a unique u1 ∈ KerD satisfying
(80).
∗ Finally, equation (74) can be written : −D′p = µ − Rω − D′δrDu ≡ ζ.
We have constructed ω2 such that functional ζ belongs to (Ker D)0 and is
also independent of ω1 (see (76)). Finally, D′ is an isomorphism from Y onto
(Ker D)0 (hypothesis (67)) and we deduce that there exists a unique p ∈ Y
such that D′p = ζ. �

Remark 5.4 Previous proof gives an algorithm for obtaining all different
fields :
◦ First ω2 ∈ V ⊥ and u2 ∈ (Ker D)⊥ are obtained independently.
◦ Then ω2 and u2 lead to ω1 ∈ V .
◦ Vorticity field ω and component u2 of u allow to obtain u1 ∈ Ker D.
◦ Finally ω and u give the pressure p ∈ Y .

6 Application to the Stokes problem

The aim of this section is to apply the abstract result (Theorem 5.1) to the
Stokes problem. As we look for the velocity in space X = H0(div,Ω), curl u
can only be defined in the distribution sense. So equation ω = curl u should
be verified in a weak sense. First, we give a sense to curl u for u in H0(div,Ω)
by duality. For doing this, we define R : W ⊂ H(curl, div∗,Ω) −→ X ′ with
the help of the curl operator, introduced previously, from H(curl, div∗,Ω)
to (H0(div,Ω))′ = X ′ (see (59)). Then the curl will be the dual operator
R′ : X −→ W ′ that gives a sense to curl u in W ′ for u ∈ X. Second,
we introduce an abstract mass operator J : W −→ W ′ and the equation
ω = curl u becomes in a weak general version in W ′:

Jω = R′u in W ′ , u ∈ X , ω ∈ W.

The precise choice of the operator J will be discussed further.

◦ Let us recall that Γθ and Γt is a partition of the boundary Γ of the domain
Ω such that Γ = Γθ∪Γt with Γθ∩Γt = Ø. We have set the following spaces :

W =
{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0
}
,

X = H0(div,Ω) , Y = L2
0(Ω).
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◦ We now introduce the divergence operator D. Defining r the Riesz iso-
morphism from L2(Ω) onto (L2(Ω))′, and s the canonical injection of X in
H(div,Ω), as div is a continuous operator from H(div,Ω) to L2(Ω), we first
set :

D0 : H(div,Ω) 3 v 7−→ D0v = div v ∈ L2(Ω).

Space Y is equal to L2
0(Ω) and is a subspace of L2(Ω). So we have (L2(Ω))′ ⊂

Y ′. If we note t the corresponding canonical injection from (L2(Ω))′ to Y ′,
abstract operator D is then equal to t.r.D0.s :

D0 : H(div,Ω) −→ L2(Ω)
↑ ↓ r
| s (L2(Ω))′

| ↓ t
D : X −→ Y ′

And finally 〈Dv, q〉
Y ′,Y

is well defined for all v ∈ X and q ∈ Y .

◦ With the previous notation, operator R is defined in (59), the Stokes
problem (11-17) becomes :





find ω ∈ W , u ∈ X , p ∈ Y such that :
Jω = R′u in W ′ ,
Rω −D′(p− δrDu) = f in X ′ ,
Du = 0 in Y ′,

(81)

with δ a constant either equal to 0 or 1.
The variational formulation of the previous problem is obtained by ma-

king first equation of (81) acting on ϕ ∈ W , second equation of (81) on v ∈ X
and last equation on q ∈ Y . It gives :





find (ω, u, p) ∈ W ×X × Y such that , for all (λ, µ, ν) ∈ W ′ ×X ′ × Y ′ :
〈Jω, ϕ〉

W ′,W
− 〈R′u, ϕ〉

W ′,W
= 〈λ, ϕ〉

W ′,W
, ∀ ϕ ∈ W

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= 〈µ, v〉
X′,X

, ∀ v ∈ X

〈Du, q〉
Y ′,Y

= 〈ν, q〉
Y ′,Y

, ∀ q ∈ Y.

Problem (81) is obtained from the previous one by taking :

λ = 0 , µ = f , ν = 0 .
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6.1 Co-Curl operator

In this subsection, we introduce a new operator called a “co-curl”
ρ : W −→ X that allows to easily manipulate the curl of functions of W as
functions in space H0(div,Ω), whose normal trace is null on the boundary.
The co-curl is an useful tool to finally define the mass operator J introduced
above. We will see that a remarkable property of the co-curl operator ρ is
that div(ρϕ) is well defined for ϕ ∈ W but it is not null in general !

◦ Let us take ϕ in W . By definition, Rϕ, defined in (59), belongs to X ′.
As X is a Hilbert space, by applying Riesz theorem to Rϕ, for all ϕ ∈ W ,
there exists a unique ρϕ ∈ X such that for all v ∈ X :

〈Rϕ, v〉
X′,X

= (ρϕ, v)
div

= (ρϕ, v)0 + (div ρϕ, div v)0 . (82)

Moreover, for all ϕ in W , we have : ‖ Rϕ ‖
X′

=‖ ρϕ ‖
div,Ω

. Let us notice that
the norm in W is defined as follows : ‖ ϕ ‖2

W
=‖ ϕ ‖2

0,Ω
+ ‖ Rϕ ‖2

X′
and, using

(82), we obtain :

‖ ϕ ‖2
W

= ‖ ϕ ‖2
0,Ω

+ ‖ ρϕ ‖2
div,Ω

‖ ϕ ‖2
W

= ‖ ϕ ‖2
0,Ω

+ ‖ ρϕ ‖2
0,Ω

+ ‖ div ρϕ ‖2
0,Ω

.

We list the properties implied by the introduction of the co-curl operator.

Lemma 6.1 Let us recall that we have introduced in relation (61) the follo-
wing kernel :

V =
{
ϕ ∈ W , 〈Rϕ, v〉

X′,X
= 0 , ∀ v ∈ KerD

}
.

Then, the kernel V can be characterized with the help of the co-curl ρ by :

V =
{
ϕ ∈ W , ρϕ ∈ (KerD)⊥

}
,

where
(KerD)⊥ = {v ∈ X , (v, w)

div
= 0 , ∀ w ∈ KerD} .

Proof
The proof is straightforward as, for ϕ ∈ V and for all v ∈ KerD, we have :

〈Rϕ, v〉
X′,X

= 0 = (ρϕ, v)
div

,

which means that ρϕ belongs to (KerD)⊥. �

Definition 3 Leray projection operator and K operator.
Consider v ∈ X = H0(div,Ω) and the orthogonal decomposition :

v = v1 + v2 ∈ Ker D ⊕ (Ker D)⊥ .
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Then, we define the two following operators :

L : X 3 v 7−→ Lv = v1 ∈ Ker D ,

K : X 3 v 7−→ Kv = v2 ∈ (Ker D)⊥ .

Remark that L is the Leray projection operator (see Leray [Ler34]).

Taking ϕ ∈ W and using the above decomposition for ρϕ ∈ X (see (82)), we
obtain :

ρϕ = Lρϕ +Kρϕ ∈ Ker D ⊕ (Ker D)⊥ .

So, for all ϕ ∈ W , we have :

‖ ϕ ‖2
W

=‖ ϕ ‖2
0,Ω

+ ‖ ρϕ ‖2
0,Ω

+ ‖ div ρϕ ‖2
0,Ω

,

or else :

‖ ϕ ‖2
W

=‖ ϕ ‖2
0,Ω

+ ‖ Lρϕ ‖2
0,Ω

+ ‖ Kρϕ ‖2
0,Ω

+ ‖ div Kρϕ ‖2
0,Ω

. (83)

Lemma 6.2 For all function ϕ ∈ (D(Ω))2N−3, we have :

curl ϕ = ρϕ = Lρϕ and Kρϕ = 0 .

Proof
First, as ϕ belongs to (D(Ω))2N−3, curl ϕ belongs to H0(div,Ω), as ρϕ. Mo-
reover, as (D(Ω))2N−3 is contained in H(curl,Ω), from Proposition 4.2, we
deduce that for all v ∈ H0(div,Ω) :

〈curl ϕ, v〉
div∗,div

= (curl ϕ, v)0 = (curl ϕ, v)
div

= (ρϕ, v)
div

by (82).

So, curl ϕ is equal to ρϕ in H0(div,Ω) = X. Moreover, as div curl ϕ ≡ 0, ρϕ
belongs to Ker D. Then, ρϕ = Lρϕ and Kρϕ = 0. �

Remark 6.3 For any sufficiently regular function ϕ, equal to zero on the
boundary of Ω, we have seen that : ρϕ = curl ϕ in H0(div,Ω).
As div curl ϕ ≡ 0, we obtain Kρϕ = 0. But a function ϕ of W is not
so regular and only its co-curl is defined in H0(div,Ω). Then, the component
Kρϕ is the non divergence free part of the (co-)curl ρϕ of ϕ ! (see Section
6.4, proposition 6.18).
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Lemma 6.4 Let us recall the definition of the kernel V :

V =
{
ϕ ∈ W , 〈Rϕ, v〉

X′,X
= 0 , ∀ v ∈ KerD

}
.

We can now characterize this kernel with the help of the Leray projection
operator :

V = {ϕ ∈ W , Lρϕ ≡ 0} .

Proof
The proof is straightforward as, for all ϕ ∈ W , we have :

ρϕ = Lρϕ+Kρϕ ∈ Ker D ⊕ (Ker D)⊥ .

By Lemma 6.1, we know that ϕ ∈ V implies ρϕ ∈ (Ker D)⊥. So Lρϕ ≡ 0. �

6.2 Mass operator

With the help of the co-curl operator ρ, we can define the mass operator
J . Our first idea to define J is to consider the Riesz isomorphism from W to
W ′ :

〈Jω, ϕ〉
W ′,W

= 〈J1ω, ϕ〉W ′,W
≡ (ω, ϕ)W ,

where we recall that :

(ω, ϕ)W = (ω, ϕ)0 + (Lρω, Lρϕ)0 + (Kρω,Kρϕ)0 + (div Kρω, div Kρϕ)0 .

Second, we consider a second functional that verify the hypothesis of ellipti-
city (64) on V which is : 〈Jω, ϕ〉

W ′,W
= 〈J2ω, ϕ〉W ′,W

, with :

〈J2ω, ϕ〉W ′,W
= (ω, ϕ)0 + (Kρω,Kρϕ)0 + (div Kρω, div Kρϕ)0 .

Third, we will use the L2-scalar product :

〈Jω, ϕ〉
W ′,W

= 〈J3ω, ϕ〉W ′,W
= (ω, ϕ)0 ,

that is a priori not relevant for our formulation because of the hypothesis of
ellipticity (64) on V .

6.3 Vector field representation

In this section, we shall use theorems of vector field representation proven
in different references. The first ones in [ABDG98] are given for homogeneous
conditions on all the boundary, supposed Lipschitz or C1,1 (see also [BDG85]).
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The second reference [Dub02], which is needed here, is a vector field repre-
sentation with mixed boundary conditions and this theorem needs a strong
hypothesis : the boundary Γ of Ω is of C2−class. It has to be improved in the
future, in order that this paper has a better use in practice.

So, let us assume now that the boundary Γ of Ω is of C2−class (when this
last and strong hypothesis can be released, it will be quoted in the text). We
suppose that Γ is split into two subsets Γ1 and Γ2 that compose a partition :

Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = Ø .

We introduce some functional spaces :

H1
0 (Ω; Γ1,Γ2) =

{
ϕ ∈ (H1(Ω))2N−3 , γϕ•n = 0 on Γ1 , γϕ× n = 0 on Γ2

}
,

M0(Ω; Γ1,Γ2) =

{
ϕ ∈ (L2(Ω))N , div ϕ = 0 , curl ϕ = 0

ϕ•n|Γ1
= 0 in (H

1/2
00 (Γ1)

N)′ , ϕ× n|Γ2
= 0 in (TH

1/2
00 (Γ2))

′

}

M1(Ω; Γ1,Γ2) =

{
ϕ ∈ (H1(Ω))N , div ϕ = 0 , curl ϕ = 0
γϕ•n = 0 on Γ1 , γϕ× n = 0 on Γ2

}
,

Then Π1
Γ1,Γ2

will be the orthogonal projector from (L2(Ω))N ontoM1(Ω; Γ1,Γ2)
and Π0

Γ1,Γ2
the projector from (L2(Ω))N onto M0(Ω; Γ1,Γ2). Let us begin by

a first result :

Lemma 6.5 We suppose that Γ is a C2−class regular boundary. Then, for
all ϕ ∈ H1

0(Ω; Γ1,Γ2), we have :

‖ ϕ ‖
1,Ω

≤ C
(
‖ Π1

Γ1Γ2
ϕ ‖2

0,Ω
+ ‖ div ϕ ‖2

0,Ω
+ ‖ curl ϕ ‖2

0,Ω

)1/2

.

Proof is derived in [BDG85] when Γ1 = Γ or Γ1 = Ø, and in [Dub02] in a
more general case. Then, we have the two following theorems :

Theorem 6.6 Space M 0(Ω; Γ1,Γ2) is finite dimensional.
Let Ω be an open, bounded, connected domain with a Lipschitz boundary.
If we can choose smooth cuts Σj, j = 1, . . . ,M in order that the interior
of Ω, obtained by removing the cuts from Ω is simply connected, then space
M0(Ω; Γ1,Γ2) is finite dimensional.
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The proof is derived in [FG97].

Theorem 6.7 Representation of vector fields.
Assume that Ω verifies hypotheses of Lemma 6.5 and let (Γ1,Γ2) be a partition
of the boundary Γ. Let u ∈ (L2(Ω))N be a vector field. Then there exists two
potentials ϕ and ψ satisfying the condition :

{
ϕ ∈ H1

0 (Ω; Γ1) ,
ψ ∈ H1

0 (Ω; Γ1,Γ2) ,

and such that u has the following orthogonal decomposition in space (L2(Ω))N :

u = ∇ϕ+ curl ψ + Π0
Γ2,Γ1

u .

Moreover, if we impose the supplementary following conditions to vector po-
tential ψ when N = 3 :

div ψ = 0 in Ω , Π1
Γ1,Γ2

ψ = 0 ,

they are uniquely and continuously defined :

∃ C > 0 , ‖ ϕ ‖
1,Ω

≤ C ‖ u ‖
0,Ω

, ‖ ψ ‖
1,Ω

≤ C ‖ u ‖
0,Ω

.

From this theorem, whose proof can be found in [FG97] and Dubois [Dub02],
we deduce the following lemma :

Lemma 6.8 Representation of space KerD.
◦ If we suppose that Γ is a C2−class regular boundary, then all functions
in KerD can be orthogonally split as follows :

v = curl χ + ζ ,

with χ ∈ H1
0 (Ω; Ø,Γ) and ζ = Π0

Γ,Ø v ∈M0(Ω; Γ,Ø).

◦ If Ω is a connected and simply connected open bounded domain of IRN

with a C1,1 boundary, then all functions in KerD can be written as follows :

v = curl χ ,

with χ ∈ H1
0 (Ω; Ø,Γ).
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Proof
• As v belongs to X, it belongs to (L2(Ω))N and we can apply the Theorem
6.7 with Γ1 = Ø and Γ2 = Γ :

v = ∇ϕ+ curl ψ + ζ ,

where ϕ, ψ, ζ are uniquely defined, respectively in the following spaces :




ϕ ∈ H1
0 (Ω; Ø) = {ϕ ∈ H1(Ω) , (ϕ, 1)0 = 0} ,

ψ ∈ H1
0 (Ω; Ø,Γ) ,

ζ = Π0
Γ,Ø v ∈ M0(Ω; Γ,Ø) .

• Due to the orthogonal decomposition, scalar ϕ is defined as the variatio-
nal solution of :

{
ϕ ∈ H1

0 (Ω; Ø)
(∇ϕ,∇η)0 = (v,∇η)0 , ∀η ∈ H1

0 (Ω; Ø) .

Using the Green formula, we obtain, for all η in H1
0 (Ω; Ø) :

(v,∇η)0 = − (div v, η)0︸ ︷︷ ︸
= 0 as v ∈ KerD

+ 〈v•n, η〉
H−1/2(Γ),H1/2(Γ)

,

Moreover 〈v•n, η〉
H−1/2(Γ),H1/2(Γ)

is also zero : as v is in X, v•n|Γ belongs to

H−1/2(Γ) and is zero on the whole boundary Γ. Then, scalar ϕ verifies :
{
ϕ ∈ H1

0 (Ω; Ø)
(∇ϕ,∇η)0 = 0 , ∀η ∈ H1

0 (Ω; Ø) ,

which means that ∇ϕ is equal to zero. Finally, the decomposition of vector
v in X ∩ KerD is reduced to : v = curl χ + ζ, with χ ∈ H1

0 (Ω; Ø,Γ) and
ζ = Π0

Γ,Ø v ∈ M0(Ω; Γ,Ø).
• When Ω is connected and simply connected with a C1,1 boundary,M0(Ω; Γ,Ø)
is reduced to zero (see e.g [ABDG98]) and the decomposition of v is reduced
to : v = curl χ, χ ∈ H1

0 (Ω; Ø,Γ). �

Corollary 6.9
X = Ker D ⊕ (Ker D)⊥ ,

with :

Ker D =
{
curl χ+ ζ , χ ∈ H1

0 (Ω; Ø,Γ) , ζ ∈M0(Ω; Γ,Ø)
}

,

and :

(Ker D)⊥ =

{
∇ϕ , ϕ ∈ H1

0 (Ω; Ø) , ∆ϕ ∈ L2(Ω) ,
∂ϕ

∂n
= 0 on Γ

}
.
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Proof
The characterization of Ker D is an application of the Lemma 6.8. Let v be
a vector of X. As we have done previously, we know that v can be split as :

v = ∇ϕ+ curl ψ + ζ︸ ︷︷ ︸
∈ KerD

,

where ϕ is uniquely defined in H1
0 (Ω; Ø) and such that :

(∇ϕ,∇η)0 = −(div v, η)0 , ∀η ∈ H1
0 (Ω; Ø) .

Integrating by parts, we deduce that previous function ϕ is the weak solution
of the following laplacian problem :

{
∆ϕ = div v in Ω ,
∂ϕ

∂n
= 0 on Γ .

So, (Ker D)⊥ is the space of functions :

{
∇ϕ , ϕ ∈ H1

0 (Ω; Ø) , ∆ϕ ∈ L2(Ω) ,
∂ϕ

∂n
= 0 on Γ

}
,

where the normal trace
∂ϕ

∂n
has to be considered in H−1/2(Γ). �

6.4 Theoretical study of generalized Stokes problems

We apply in this section the theoretical result proposed in Section 5. We
detail the proof of the following theorem.

Theorem 6.10 Well-posedness of a generalization of the Stokes problem.
◦ Let Ω be an open bounded connected domain of IRN with a boundary
denoted by Γ. Let (Γt,Γθ) be a partition of Γ. We consider the spaces :

W =
{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0
}
, X = H0(div,Ω) , Y = L2

0(Ω) ;

and the operators introduced in the previous section acting on these spaces :
R : W −→ X ′ ; D : X −→ Y ′ ; J : W −→ W ′. Functional associated with
operator J is either equal to :

〈J1ω, ϕ〉W ′,W
= (ω, ϕ)W ,

where :

(ω, ϕ)W = (ω, ϕ)0 + (Lρω, Lρϕ)0 + (Kρω,Kρϕ)0 + (div Kρω, div Kρϕ)0 ,
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or :

〈J2ω, ϕ〉W ′,W
= (ω, ϕ)0 + (Kρω,Kρϕ)0 + (div Kρω, div Kρϕ)0 ,

with operators K and L given in Definition 3. Finally, we denote by r the
Riesz isomorphism from Y ′ to Y and by δ a constant either equal to 0 or 1.
◦ We assume one of the two following hypotheses on Ω :
(i) Ω is a connected and simply connected open bounded domain of IRN with
a C1,1 boundary,
(ii) Ω is an open bounded connected domain of IRN with a C2-class boundary
and there exists some analytical subset Γ0 of Γ such that :

meas (Γ0) 6= 0 and Γ0 ⊂ Γt . (84)

◦ Then, the following problem :





find (ω, u, p) ∈ W ×X × Y such that :
〈Jω, ϕ〉

W ′,W
− 〈R′u, ϕ〉

W ′,W
= 〈λ, ϕ〉

W ′,W
, ∀ ϕ ∈ W

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= 〈µ, v〉
X′,X

, ∀ v ∈ X

〈Du, q〉
Y ′,Y

= 〈ν, q〉
Y ′,Y

, ∀ q ∈ Y

is well-posed : there exists C > 0 such that, for all (λ, µ, ν) ∈ W ′×X ′×Y ′ :

‖ ω ‖
W

+ ‖ u ‖
X

+ ‖ p ‖
Y

≤ C ‖ λ ‖
W ′

+ ‖ µ ‖
X′

+ ‖ ν ‖
Y ′
.

Remark 6.11
◦ As the normal velocity is null along the whole boundary Γ, hypothesis
(84) implies that the velocity is completely known at least on an analytical
part of the boundary.
◦ In [Dub02] and [Sal99], a different case is studied : it is assumed that
Γm = Γθ and that no singularity exists, ie M 0(Ω; Γm,Γp) = {0}. But the
condition Γm = Γ is not necessary.
◦ Notice that when Ω ⊂ IR2 is connected and simply connected, this theorem
allows the classical stream function-vorticity formulation to treat enlarged
boundary conditions on the tangential velocity.

We shall need the four next lemmas to prove the Theorem 6.10.

Lemma 6.12 Ellipticity (64).
In the frame of Theorem 6.10, the operators J1 and J2 are elliptic on space
V = {ϕ ∈ W , Lρϕ = 0}.
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Proof
For all ϕ ∈ V , we have :

‖ ϕ ‖2
W

= ‖ ϕ ‖2
0,Ω

+ ‖ Kρϕ ‖2
0,Ω

+ ‖ div Kρϕ ‖2
0,Ω

= 〈J1ϕ, ϕ〉W ′,W
= 〈J2ϕ, ϕ〉W ′,W

,

and the result is obvious. �

Lemma 6.13 Inf-sup condition for velocity-pressure (62).
There exists a strictly positive constant a such that :

inf
q∈Y

q 6=0

sup
v∈X
v 6=0

〈q,Dv〉
Y,Y ′

‖ v ‖
X
‖ q ‖

Y

≥ a .

Proof
The proof is not repeated here as it is a very classical result (see e.g [RT77],
[DSS01] among others). �

Lemma 6.14 Inf-sup condition for velocity-vorticity (63).
We assume that there exists some analytical subset Γ0 of Γ such that :

meas (Γ0) 6= 0 and Γ0 ⊂ Γt .

Then, there exists a strictly positive constant b such that :

inf
v∈KerD

v 6=0

sup
ϕ∈W

ϕ6=0

〈Rϕ, v〉
X′,X

‖ v ‖
X
‖ ϕ ‖

W

≥ b .

Proof
We prove the inequality by contradiction. We suppose that there exists a
sequence (vk)k∈IN of elements of Ker D such that, for all integer k, we have :
‖ vk ‖

div,Ω
=‖ vk ‖

0,Ω
= 1, and :

∀ ϕ ∈ W , 〈Rϕ, vk〉X′,X
≤ 1

k
‖ ϕ ‖

W
. (85)

• The field vk belongs to (L2(Ω))N ∩Ker D for all k ∈ IN. So, using Theo-
rem 6.7 and exactly the same argument as in Lemma 6.8 with Γ1 = Γt and
Γ2 = Γθ, vk can be split as follows : vk = curl ψk +ξk, with ψk ∈ H1

0 (Ω; Γt,Γθ)
and ξk = Π0

Γθ ,Γt
vk ∈M0(Ω; Γθ,Γt).

• Second, let us show now that curl ψk tends to zero in (L2(Ω))N . As ψk

belongs to (H1(Ω))2N−3 which is contained in H(curl,Ω), using Proposition
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4.2, we deduce that ψk belongs to H(curl, div∗,Ω). Moreover, by definition
of H1

0 (Ω; Γθ,Γt), ψk × n|Γθ
= 0 (see (57)), which means that ψk belongs to

space W , so Rψk = curl ψk is well defined. And we can take ϕ = ψk in (85).
Then, thanks to the orthogonality of the decomposition, we obtain, for all
k ∈ IN :

〈Rψk, vk〉X′,X
= (curl ψk, vk)0

=‖ curl ψk ‖2
0,Ω

≤ 1

k
‖ ψk ‖

W

≤ 1

k
‖ ψk ‖

1,Ω
(by Lemma 4.7)

Now, using Lemma 6.5 and unicity conditions for ψk given in Theorem 6.7,
we have Π1

Γt,Γθ
ψk = 0 and div ψk = 0, in three dimensions. In two dimensions,

we use a generalized Poincaré inequality as meas (Γt) 6= 0. In both cases,
we deduce from the previous inequality that :

‖ curl ψk ‖2
0,Ω

≤ C

k
‖ curl ψk ‖

0,Ω
,

and after simplification :

‖ curl ψk ‖
0,Ω

≤ C

k
,

which means that curl ψk goes to zero in (L2(Ω))N as k goes to infinity.
• The sequence (vk)k∈IN is bounded in (L2(Ω))N . We have seen above that
vk can be split into vk = curl ψk + ξk, and curl ψk tends strongly to zero in
(L2(Ω))N . Then the sequence (ξk)k∈IN is also bounded in (L2(Ω))N . Moreover,
space M0(Ω; Γθ,Γt) is finite dimensional (see Theorem 6.6), so there exists a
sub-sequence, still denoted by ξk and ξ ∈M0(Ω; Γθ,Γt) such that ξk strongly
converges to ξ. Finally, we deduce from these results that vk converges to-
wards ξ in (L2(Ω))N . Moreover, as div vk = 0 for all k ∈ IN, div vk converges
towards 0 = div ξ, as ξ belongs to M 0(Ω; Γθ,Γt). Then, vk converges towards
ξ in H(div,Ω). And, by continuity of the normal trace on H(div,Ω), we de-
duce that ξ•n|Γ = limk−→∞ vk•n|Γ = 0 in H−1/2(Γ).
• As Ω is bounded, we can cover Ω with a finite number of open balls Bl,
for l = 0 to l = L, such that :

Ω ⊂ ∪L
l=1Bl and Bl ∩ Bl+1 6= Ø for all l ∈ {0 , L− 1} .

∗ Let us choose B0 the ball containing the analytical subset Γ0 ⊂ Γt (hypo-
thesis (84)). As B0 is simply connected and as curl ξ = 0, we deduce that ξ
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can be written as ∇µ0 in B0 with µ0 ∈ H1(B0) (see [BDG85] for example).
Moreover, ξ × n|Γ = 0 on Γt. So we obtain :

∇µ0 × n|Γt
= curlΓ(γµ0) = 0 on Γt .

Then, we have : ∇Γ(γµ0) = n× curlΓ(γµ0) = 0 on Γt. We deduce that γµ0 is
constant on Γt thus on Γ0, and we finally can choose the constant equal to
zero. Then µ0 is solution of the following problem :





∆µ0 = div ξ = 0 in B0 ,
∂µ0

∂n
= ξ•n|Γ = 0 on Γ0 ⊂ Γ ,

µ0 = 0 on Γ0 ⊂ Γt .

So µ0 verifies a Cauchy problem on Γ0 which is supposed analytical (84).
Then, µ0 ≡ 0 on B0 (see Landis [Lan59]).
∗ Consider now B1 intersecting B0. On B1 which is simply connected, we
have : ξ = ∇µ1. Let us introduce an analytical line Γ1 contained in the
intersection of B0 and B1. Then, exactly as above, µ1 verifies :





∆µ1 = 0 in B1 ,
∂µ1

∂n
= 0 on Γ1 ,

µ1 = 0 on Γ1 .

As Γ1 is analytical, µ1 is identically zero on B1.
∗ The same argument, applied on other balls, leads to ξ ≡ 0 on Ω, which is

impossible : as vk
k−→∞−→ ξ in L2(Ω), ‖ ξ ‖

0,Ω
= 1 thanks to ‖ vk ‖

0,Ω
= 1. �

Lemma 6.15 Inf-sup condition (63) when Ω is a connected and simply connec-
ted open bounded domain of IRN .
We assume that Ω is a connected and a simply connected open bounded do-
main in IRN whose boundary Γ is supposed of class C1,1. Then, there exists
a strictly positive constant b such that :

inf
v∈KerD

v 6=0

sup
ϕ∈W

ϕ6=0

〈Rϕ, v〉
X′,X

‖ v ‖
X
‖ ϕ ‖

W

≥ b .

Proof
We are in the particular case of a connected and simply connected open
bounded domain of IRN with a C1,1 boundary, we can use the second part of
Lemma 6.8 : there exists χ ∈ H1

0 (Ω; Ø,Γ) such that v = curlχ and satisfying
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‖χ‖
1,Ω

≤ C0 ‖v‖0,Ω
. With Proposition 4.2, χ belongs to H(curl, div∗,Ω) and

R χ is equal to curl χ in (H0(div,Ω))′. So, for all v in Ker D, we have :

sup
ϕ∈W

ϕ6=0

〈Rϕ, v〉
X′,X

‖ v ‖
X
‖ ϕ ‖

W

≥ (curl χ, v)0

‖ v ‖
X
‖ χ ‖

W

=
‖ v ‖2

0,Ω

‖ v ‖
X
‖ χ ‖

W

=
‖ v ‖2

0,Ω

‖ v ‖
0,Ω

‖ χ ‖
W

≥ ‖ v ‖
0,Ω

C ‖ χ ‖
1,Ω

with Lemma 4.7

≥ 1

CC0
.

Then, the desired inf-sup condition is proved. �

Proof of Theorem 6.10
We prove that hypotheses of the abstract Theorem 5.1 from the previous
section are satisfied. The proof is divided into three steps : Lemma 6.12 is
ellipticity (64), Lemmas 6.13 and 6.14 are inf-sup conditions (62) and (63).
The particular case of a connected and simply connected domain is proved
with the help of Lemma 6.15. �

6.5 Towards a new boundary condition

We now interpret the variational solution of the problem studied in Theo-
rem 6.10 for different choices of the mass operator J . The first choice J1

conducts to an elliptic problem which is not the Stokes problem, while the
second one J2 can be re-interpreted as the Stokes system of partial differential
equations, but with a non classical boundary condition.

Proposition 6.16 Mass operator J1 associated with the W -scalar product.
We set :

〈J1ω, ϕ〉W ′,W
= (ω, ϕ)0 + (Lρω, Lρϕ)0 + (Kρω,Kρϕ)

div
≡ (ω, ϕ)W .

Operators K and L are given in Definition 3.
Under hypotheses of Theorem 6.10, taking λ = 0, µ = f ∈ (L2(Ω))N and
ν = 0, the solution (ω, u, p) ∈ W ×X × Y of the problem :





〈J1ω, ϕ〉W ′,W
− 〈R′u, ϕ〉

W ′,W
= 0 ∀ ϕ ∈ W ,

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= (f, v)0 ∀ v ∈ X ,

〈Du, q〉
Y ′,Y

= 0 ∀ q ∈ Y .
(86)

is such that :
ω + curl Lρω = curl u in (D′(Ω))2N−3 .
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In other words, the operator J1, associated with the natural scalar product
in W , does not satisfy the first equation of the Stokes problem, which is :
ω = curl u in (D′(Ω))2N−3.

Proof
Let us consider the first equation of problem (86). We take ϕ in (D(Ω))2N−3

and rewrite the duality product. Thanks to (53), we obtain :

〈R′u, ϕ〉
W ′,W

= 〈Rϕ, u〉
X′,X

= (curl ϕ, u)0 .

Using Lemma 6.2, as ϕ belongs to (D(Ω))2N−3, we have Kρϕ = 0 and Lρϕ =
curl ϕ. So we obtain for all ϕ ∈ (D(Ω))2N−3 :

(ω, ϕ)0 + (Lρω, curl ϕ)0 = (u, curl ϕ)0 .

Then, the first equation of problem (86) leads to : ω + curl Lρω = curl u in
(D′(Ω))2N−3. �

◦ The previous proposition shows that the first natural choice J1 as the
functional J is not the good one. Let us now examine the second one.

Proposition 6.17 Boundary mass operator J2 that guarantees ellipticity.
We set :

〈J2ω, ϕ〉W ′,W
= (ω, ϕ)0 + (Kρω,Kρϕ)

div
.

The operator K is given in Definition 3.
Under hypotheses of Theorem 6.10, taking λ = 0, µ = f ∈ (L2(Ω))N and
ν = 0, the solution (ω, u, p) ∈ W ×X × Y of the problem :





〈J2ω, ϕ〉W ′,W
− 〈R′u, ϕ〉

W ′,W
= 0 ∀ ϕ ∈ W ,

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= (f, v)0 ∀ v ∈ X ,

〈Du, q〉
Y ′,Y

= 0 ∀ q ∈ Y .
(87)

is such that :




ω = curl u in (D′(Ω))N ,
curl ω + ∇p = f in (D′(Ω))N ,
div u = 0 in D′(Ω) ,

These are the partial differential equations associated with the Stokes problem.

Proof
• Let us consider the first equation of problem (87). Exactly as in the
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previous proof, when we take ϕ in (D(Ω))2N−3, we obtain Kρϕ = 0 with
Lemma 6.2. Then, we can rewrite the duality product, thanks to (53), as :

〈R′u, ϕ〉
W ′,W

= 〈Rϕ, u〉
X′,X

= (curl ϕ, u)0 ,

which leads to :

(ω, ϕ)0 = (curl ϕ, u)0 = 〈curl u, ϕ〉
(D′(Ω))2N−3 ,(D(Ω))2N−3

,

which means : ω = curl u in (D′(Ω))2N−3. It is exactly the first equation of
the Stokes problem.
• We consider now the last equation of problem (87) : Du = 0 in Y ′. As
D is nothing else than the divergence operator, we have Du = div u. Then,
solution u of problem (87) is divergence free, which is the third equation of
the Stokes problem.
• Finally, let us consider the second equation of problem (87). As Du = 0,
choosing virtual fields v in space (D(Ω))N , it becomes :

〈Rω, v〉
X′,X

− (p, div v)0 = (f, v)0 , ∀v ∈ (D(Ω))N .

Using Definition (51), for all v in (D(Ω))N , we have :

〈Rω, v〉
X′,X

= (ω, curl v)0 = 〈curl ω, v〉
(D′(Ω))N ,(D(Ω))N

.

These two equations lead to : curl ω + ∇p = f in (D′(Ω))N . It is the second
equation of the Stokes problem. �

◦ According to Lemma 6.12, the term (Kρω,Kρϕ)
div

is, in some sense, the
minimal one to obtain ellipticity of the functional J on the kernel V , without
more explicit conditions on the domain Ω. Moreover, this complementary
term appears on the boundary only (it is zero for regular functions, see
Lemma 6.2) and it is associated with a non classical boundary condition,
as it is developed in the next proposition.

Proposition 6.18 A new boundary condition for the Stokes operator.
Under hypotheses of Theorem 6.10, the solution (ω, u, p) ∈ W ×X×Y of the
problem (87) studied in proposition 6.17 is such that the velocity u belongs to
H(curl,Ω). Moreover, it formally satisfies the following boundary conditions
of
◦ non penetrability, u•n = 0 on Γ,
◦ given tangential vorticity on a part Γθ of the boundary, ω×n = 0 on Γθ,
◦ and a new coupled condition between tangential velocity and vorticity :

u× n|Γt
= curlΓ γχ on Γt, (88)
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where the scalar function χ is associated with the vorticity ω through the
following relation :

{
∆χ = div (ρω) in Ω ,
∂χ

∂n
= 0 on Γ ,

(89)

in which ρω is the Riesz representant of Rω in space X.

Remark 6.19 The last boundary condition appears mathematically but is
not contained in the mechanical model for which we have : u× n|Γt

= 0. We
do not have a simple physical interpretation of this boundary condition.

Proof of Proposition 6.18
• First, let us recall that we have seen in the previous proposition that
curl u = ω. As ω belongs to (L2(Ω))2N−3, function u belongs to H(curl,Ω).
• Moreover, the natural Dirichlet condition on normal velocity is a conse-
quence of the choice of space X. Then we have :

u•n = 0 on Γ .

In a similar manner, the choice of space W leads to :

ω × n = 0 on Γθ .

Finally, the only difficult point deals with the study of the tangential com-
ponent of the velocity on Γt. The demonstration will be done in three dimen-
sions, but it is analogous in two dimensions.
• We consider again the first equation of problem (87), and we choose ϕ
in (H1(Ω))3 such that its tangential trace γϕ× n is zero on Γθ and its nor-
mal trace γϕ•n is zero on the whole boundary Γ. As Γt = Γc

θ, its trace γϕ

belongs to TH
1/2
00 (Γt), by definition of this space. Moreover, for regular func-

tions, ϕ× n|Γθ
is equal to γϕ× n on Γθ, so ϕ belongs to W . As u belongs to

H(curl,Ω), tangential trace of u is well defined in (TH
1/2
00 (Γt))

′. Then, using
again (53) and integrating by parts, we obtain :

〈Rϕ, u〉
X′,X

= (u, curl ϕ)0 = (ϕ, curl u)0 + 〈γϕ, n× u× n〉
TH

1/2
00 (Γt),(TH

1/2
00 (Γt))

′

Introducing this relation in the first equation of problem (87) and taking into
account the fact that ω = curl u, we deduce that :

〈γϕ, n× u× n〉
TH

1/2
00

(Γt),(TH
1/2
00

(Γt))
′
= (Kρω,Kρϕ)

div
, (90)
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for all ϕ in space (H1(Ω))3 such that γϕ is in TH
1/2
00 (Γt). Then, the tan-

gential trace of u, which is formally written : n × u × n, is zero in space
(TH

1/2
00 (Γt))

′, which is still formally written n × u× n = 0 on Γt, if the ex-
pression (Kρω,Kρϕ)

div
is zero for all ϕ in space (H1(Ω))3. But, in general,

it is not the case. More precisely, using the orthogonal decomposition of X
(see Corollary 6.9), we have :

(Kρω,Kρϕ)
div

= (Kρω, ρϕ)
div

= 〈Rϕ,Kρω〉
X′,X

,

by definition of the Riesz operator ρ. As ϕ belongs to space (H1(Ω))3, using
(53), we deduce that :

(Kρω,Kρϕ)
div

= (Kρω, curl ϕ)0 .

Let us now observe that, by definition, Kρω belongs to (Ker D)⊥ which is
contained in space {∇χ , χ ∈ H1

0 (Ω; Ø)} (see Corollary 6.9). So, there exists
a function χ in H1

0 (Ω; Ø) such that : Kρω = ∇χ. Then, we have :

(Kρω,Kρϕ)
div

= (curl ϕ,∇χ)0 ,

which is equal to a boundary term : 〈γϕ, γ(∇χ) × n〉
TH

1/2
00 (Γt),(TH

1/2
00 (Γt))

′
(see

[Dub90]). Introducing this relation in (90), we deduce that, formally :

〈γϕ, n× u× n〉
TH

1/2
00

(Γt),(TH
1/2
00

(Γt))
′
= 〈γϕ, γ(∇χ) × n〉

TH
1/2
00

(Γt),(TH
1/2
00

(Γt))
′

for all ϕ in (H1(Ω))3, null on Γθ and such that γϕ•n = 0 on the whole
boundary Γ. Then, we obtain :

n× u× n|Γt
= γ(∇χ) × n on Γt ,

where χ is associated with the non divergence free part of the co-curl of the
vorticity ω. Finally, the equality γ(∇χ)×n = curlΓ γχ, which is the surfacic
curl operator (see [CB68]), leads to the expected result. �

◦ Let us remark that the boundary condition on the tangential velocity
(88-89) is not classical. To recover the boundary condition of given tangential
velocity (17), it is sufficient for the term (Kρω,Kρϕ)

div
to be identically zero.

It would be the case if the mass operator J is equal to the (L2(Ω))2N−3-
norm ie J3, and if this operator is elliptic on V . We develop this point in
the following theorem ; a (ω, u, p) formulation compatible with the classical
Stokes problem is therefore a direct consequence of Theorem 6.10 and of the
previous remarks.

Theorem 6.20 Well-posedness of the Stokes problem.
◦ Let Ω be a bounded connected domain of IRN , (N = 2 or 3) with a boun-
dary denoted by Γ. Let (Γt,Γθ) be a partition of Γ. We consider the spaces :
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W =
{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0
}
, X = H0(div,Ω) , Y = L2

0(Ω) ,

the operators introduced in the previous section acting on these spaces : R :
W −→ X ′ ; D : X −→ Y ′ ; J : W −→ W ′. We denote by r the Riesz
isomorphism from Y ′ to Y and by δ a constant either equal to 0 or 1.
◦ We consider a functional associated with the operator J3 chosen equal to
the (L2(Ω))2N−3-scalar product :

〈J3ω, ϕ〉W ′,W
= (ω, ϕ)0 ,

and we assume that J3 is elliptic on the kernel V , which is :

V =
{
ϕ ∈ W , 〈Rϕ, v〉

X′,X
= 0 , ∀ v ∈ KerD

}
.

◦ We assume one of the two following hypotheses on Ω :
(i) Ω is a connected and simply connected open bounded domain of IRN with
a C1,1 boundary,
(ii) Ω is an open bounded connected domain of IRN with a C2-class boundary
and there exists some analytical subset Γ0 of Γ such that :

meas (Γ0) 6= 0 and Γ0 ⊂ Γt .

◦ Then, the following problem :





find (ω, u, p) ∈ W ×X × Y such that :
〈J3ω, ϕ〉W ′,W

− 〈R′u, ϕ〉
W ′,W

= 〈λ, ϕ〉
W ′,W

, ∀ ϕ ∈ W

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= 〈µ, v〉
X′,X

, ∀ v ∈ X

〈Du, q〉
Y ′,Y

= 〈ν, q〉
Y ′,Y

, ∀ q ∈ Y

is well-posed and is exactly the following Stokes problem.





ω − curl u = λ in Ω,
curl ω − δ∇div u+ ∇p = µ in Ω,

div u = ν in Ω,
u•n = 0 on Γ,

n× u× n = 0 on Γt,
ω × n = 0 on Γθ.

Proof
For the well-posedness, we prove that hypotheses of the abstract Theorem
5.1 are satisfied. Ellipticity (64) is here assumed, Lemmas 6.13 and 6.14 are
inf-sup conditions (62) and (63). The particular case of the connected and
simply connected domain is proved by Lemma 6.15.
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As J3 is equal to the (L2(Ω))2N−3-scalar product, the re-interpretation of the
first equation of the variational formulation is obvious as done in proposition
6.17. The last point is the boundary condition on tangential velocity. Refer to
the proof of proposition 6.18 for the details. Taking ϕ in space (H1(Ω))2N−3

such that γϕ is in TH
1/2
00 (Γt), using (53) and integrating by parts, we obtain :

〈Rϕ, u〉
X′,X

= (u, curl ϕ)0 = (ϕ, curl u)0 + 〈γϕ, n× u× n〉
TH

1/2
00

(Γt),(TH
1/2
00

(Γt))
′
.

Introducing this relation in the first equation of problem (87) and taking into
account the fact that ω = curl u, we deduce that :

〈γϕ, n× u× n〉
TH

1/2
00 (Γt),(TH

1/2
00 (Γt))

′
= 0,

for all ϕ in space (H1(Ω))2N−3 such that γϕ is in TH
1/2
00 (Γt). Then, the tan-

gential trace of u, which is n× u× n, is zero in space (TH
1/2
00 (Γt))

′, which is
formally written : n× u× n = 0 on Γt. �

The problem of the ellipticity of J3 in the general case is still open, except in
a slightly more general case than the stream function-vorticity formulation,
as we shall see in the next section.

7 The bi-dimensional case revisited

In this section, we consider the particular case of a two-dimensional sim-
ply connected domain Ω whose boundary is supposed to be of class C1,1.
The boundary Γ is split into Γθ and Γt. In a first step, we show that the
mass operator J3, associated with the L2− scalar product, is elliptic on V
in this configuration, and we though obtain an extension of the frame of the
classical (ψ, ω) formulation. In a second step, in the case Γt ≡ Γ we prove
the complete equivalence between the vorticity-velocity-pressure formulation
and the classical (ψ, ω) one.

7.1 A well-posed formulation of the (ω, u, p) Stokes pro-
blem in the bidimensional case

◦ In the vorticity-velocity-pressure formulation in two-dimensional do-

mains, the spaceW for the vorticity is
{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0
}
.

Let us also recall that the curl operator is defined in (59). First, let us com-
pare spaces for vorticity : W , H(curl, div∗,Ω) and M(Ω) = {ϕ ∈ L2(Ω),
∆ϕ ∈ H−1(Ω)}.
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Lemma 7.1 Space H(curl, div∗,Ω) (and then W ) is imbedded in M(Ω) and,
for all ϕ in H(curl, div∗,Ω), we have :

∀χ ∈ H1
0 (Ω) , 〈−∆ϕ, χ〉

−1,1 = 〈curl ϕ, curl χ〉
X′,X

. (91)

Moreover, this imbedding is continuous :

∀ϕ ∈ H(curl, div∗,Ω) , ‖ ϕ ‖
M

≤ ‖ ϕ ‖
curl,div∗,Ω

. (92)

Proof
Let us take a function ϕ ∈ H(curl, div∗,Ω). On the one hand, 〈curl ϕ, v〉

X′,X

is defined for all v ∈ X. On the other hand, for all χ ∈ D(Ω), we have :

−〈∆ϕ, χ〉
D′(Ω),D(Ω)

= 〈ϕ, curl curl χ〉
D′(Ω),D(Ω)

= (ϕ, curl curl χ)0 as ϕ ∈ L2(Ω) .

Let us remark that curl χ belongs to X, because the tangential derivative
of χ is zero along Γ. Then, by definition of the curl operator (see (51)), we
obtain :

|〈∆ϕ, χ〉
D′(Ω),D(Ω)

| = |〈curl ϕ, curl χ〉
X′,X

|
≤ ‖ curl ϕ ‖

X′
‖ curl χ ‖

X︸ ︷︷ ︸
=‖∇χ‖

0,Ω

.

This relation proves that ∆ϕ is a linear and continuous form on H1
0 (Ω),

and then belongs to H−1(Ω). So ϕ belongs to M(Ω). Moreover, the above
inequality leads to :

‖ ∆ϕ ‖
−1,Ω

= sup
χ∈H1

0 (Ω)

〈∆ϕ, χ〉
−1,1

‖ ∇χ ‖
0,Ω

≤ ‖ curl ϕ ‖
X′

.

Then, by definition of the two norms, we have :

‖ ϕ ‖2
M

=‖ ϕ ‖2
0,Ω

+ ‖ ∆ϕ ‖2
−1,Ω

≤ ‖ ϕ ‖2
0,Ω

+ ‖ curl ϕ ‖2

X′
=‖ ϕ ‖2

curl,div∗,Ω

which gives the announced result. �

Proposition 7.2 Comparison of the vorticity spaces.
Let Ω be a connected and simply connected open bounded domain in IR2 whose
boundary Γ is supposed to be of class C1,1. Then, space H(curl, div∗,Ω), de-
fined in (49), is equal to space M(Ω) defined in (30) and the norms of these
two spaces are equivalent.
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Proof
• Due to Lemma 7.1, the only point to prove is that space M(Ω) is conti-
nuously imbedded in H(curl, div∗,Ω). First, it means that we have to show
that any function ϕ of M(Ω) has a weak curl which belongs to X ′, with
X = H0(div,Ω). Using the density of space H1(Ω) in space M(Ω) (see Pro-
position 3.7) we first assume that ϕ belongs to H1(Ω).
• Let us consider a function v in (D(Ω))2, which is contained in X. Using
the decomposition recalled in Theorem 6.7, we can split v : v = ∇χ + curl ψ.
There is no special function as Ω is simply connected (see e.g [GR86]). Mo-
reover, function χ is the unique solution in H1(Ω)/IR of the homogeneous
Neumann problem :

{
∆χ = div v in Ω
∂χ

∂n
= 0 on Γ .

Using regularity results (see [ADN59]), as div v belongs to L2(Ω), we deduce
that χ belongs to H2(Ω) and there exists C > 0 such that :

‖ χ ‖
2,Ω

≤ C ‖ div v ‖
0,Ω

. (93)

In a similar way, function ψ is the unique solution in H1
0 (Ω) of the homoge-

neous Dirichlet problem :

{
∆ψ = −curl v in Ω
ψ = 0 on Γ .

In a variational form, the partial differential equation becomes :

(curl ψ, curl ζ)0 = (curl v, ζ)0 = (v, curl ζ)0 , for all ζ ∈ H1
0 (Ω) .

Then, there exists C > 0 such that :

‖ ∇ψ ‖
0,Ω

= ‖ curl ψ ‖
0,Ω

≤ C ‖ v ‖
0,Ω

. (94)

• Now, let us calculate 〈curl ϕ, v〉
D′(Ω),D(Ω)

for all ϕ in H1(Ω) and v in

(D(Ω))2. Using the previous decomposition, we have :

〈curl ϕ, v〉
D′(Ω),D(Ω)

= (curl ϕ, v)
0

= (curl ϕ,∇χ)0 + (curl ϕ, curl ψ)0 .

On the one hand, as ϕ belongs to H1(Ω) and ψ to H1
0 (Ω), we obtain :

(curl ϕ, curl ψ)0 = −〈∆ϕ, ψ〉
−1,1 .
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On the other hand, as χ belongs to H2(Ω), its tangential derivative
∂χ

∂t
is in

H1/2(Γ). Moreover, the trace γϕ belongs to H−1/2(Γ) because ϕ is in M(Ω).
Then, we have :

(curl ϕ,∇χ)0 = 〈γϕ, ∂χ
∂t

〉
H−1/2(Γ),H1/2(Γ)

.

Finally, using (93) and (94), and the trace continuity from M(Ω) to H−1/2(Γ)
(see (45)), and from H2(Ω) to H3/2(Γ), we obtain :

|〈curl ϕ, v〉
D′(Ω),D(Ω)

| = | 〈γϕ, ∂χ
∂t

〉
H−1/2(Γ),H1/2(Γ)

− 〈∆ϕ, ψ〉
−1,1 |

≤ ‖ γϕ ‖
−1/2,Γ

‖ γχ ‖
3/2,Γ

+ ‖ ∆ϕ ‖
−1,Ω

‖ ψ ‖
1,Ω

≤ C ‖ γϕ ‖
−1/2,Γ

‖ χ ‖
2,Ω

+ ‖ ∆ϕ ‖
−1,Ω

‖ ψ ‖
1,Ω

≤ C
(
‖ ϕ ‖

M
‖ div v ‖

0,Ω
+ ‖ ϕ ‖

M
‖ v ‖

0,Ω

)

≤ C ‖ ϕ ‖
M

‖ v ‖
div,Ω

.

This inequality proves that curl ϕ defines a linear form on (D(Ω))2, which
is continuous for the H(div,Ω)-topology : curl ϕ belongs to X ′. It means ϕ
belongs to H(curl, div∗,Ω) for all ϕ of H1(Ω).
• Then, observing that, in the above inequality, the continuity constant
depends on the M(Ω)-norm, we deduce that any function ϕ of M(Ω) has a
weak curl which belongs to X ′, by density of space H1(Ω) in space M(Ω)
(see Proposition 3.7).
• Finally, let us compare the two norms. Using the density of (D(Ω))2 in
X, the above inequality leads to :

‖ curl ϕ ‖
X′

= sup
v∈X

〈curl ϕ, v〉
X′,X

‖ v ‖
div,Ω

= sup
v∈(D(Ω))2

〈curl ϕ, v〉
D′(Ω),D(Ω)

‖ v ‖
div,Ω

≤ C ‖ ϕ ‖
M

for all ϕ of H1(Ω) and then, by density, for all ϕ in M(Ω). Then, the defini-
tions (52) and (32) of the two norms lead obviously to :

∀ϕ ∈ H(curl, div∗,Ω) = M(Ω),

‖ ϕ ‖
curl,div∗,Ω

=
√

‖ϕ‖2
0
+ ‖curl ϕ‖2

X′
≤ C ‖ ϕ ‖

M
.

�

◦ We have already introduced the space H(Ω) of harmonic functions of
L2(Ω). Then we obtain the following characterization of space V given by :
V = {ϕ ∈ W , Lρϕ = 0} (see Lemma 6.4).
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Lemma 7.3 Let Ω be a connected and simply connected open bounded do-
main in IR2 whose boundary Γ is supposed of class C1,1. Then, space V is
imbedded in H(Ω). Moreover, if Γt ≡ Γ ( ie Γθ = ∅), spaces V and H(Ω) are
equal.

Proof
• First, let us remark that, for all ζ in H1

0 (Ω), curl ζ belongs to X and is
divergence free. Conversely, as Ω is simply connected, for all v in Ker D, the
subspace of divergence free functions of X, there exists ζ in H1

0 (Ω) such that
v = curl ζ.
• We have seen in Lemma 7.1 that space W is imbedded in M(Ω). So, let
ϕ be an element of W , and ζ be in H1

0 (Ω). We recall equality (91) :

〈−∆ϕ, ζ〉
−1,1 = 〈Rϕ, curl ζ〉

X′,X
.

Then, using the definition of the co-curl operator (see (82)), we have :

〈Rϕ, curl ζ〉
X′,X

= (ρϕ, curl ζ)
div

= (ρϕ, curl ζ)0 ,

as curl ζ is divergence free. Moreover, if we introduce the Leray operator
L (see Definition 3), which is the projector from X to Ker D, we obtain :
(ρϕ, curl ζ)0 = (Lρϕ, curl ζ)0, as curl ζ belongs to Ker D. Finally, for all ζ
in H1

0 (Ω) and all ϕ in W , we have :

〈−∆ϕ, ζ〉
−1,1

= 〈Rϕ, curl ζ〉
X′,X

= (Lρϕ, curl ζ)
0

. (95)

In a similar way, for any element v of Ker D, we obtain :

〈Rϕ, v〉
X′,X

= (Lρϕ, v)
0
, ∀ v ∈ Ker D , ∀ ϕ ∈ W . (96)

• Relation (95) shows that if ϕ belongs to V , Lρϕ is zero and then
〈−∆ϕ, ζ〉

−1,1 = 0 for all ζ in H1
0 (Ω), which means that ∆ϕ = 0 : ϕ be-

longs to H(Ω). So space V is always imbedded in H(Ω).
• Conversely, if Γθ is empty, any element of H(Ω) belongs to M(Ω) so to
W , as M(Ω) = W = H(curl, div∗,Ω) (Proposition 7.2). Moreover, if ϕ is
harmonic, we obtain with (95) : (Lρϕ, curl ζ)

0
= 0 for all ζ in H1

0 (Ω). For
all v in Ker D, there exists ζ in H1

0 (Ω) such that v = curl ζ. So we have :
(Lρϕ, v)0 = 0, for all v in Ker D. As Lρϕ also belongs to Ker D, we deduce
that Lρϕ = 0 and ϕ belongs to V . �

◦ A first important consequence of the previous results is to enlarge the
case in which the velocity-vorticity-pressure formulation is well-posed. This
is done in the following theorem.

Theorem 7.4 Well-posedness of the Stokes problem in the bidimensional
case.

55



◦ Let Ω be an open bounded connected and simply connected domain with its
boundary Γ assumed to be C1,1. Let (Γt,Γθ) be a partition of Γ. We consider

the following functional spaces : W =
{
ϕ ∈ H(curl, div∗,Ω) , ϕ× n|Γθ

= 0
}
,

X = H0(div,Ω), Y = L2
0(Ω), and the operators acting on these spaces :

R : W −→ X ′; D : X −→ Y ′; J3 : W −→ W ′, where the functional
associated with operator J3 is the L2(Ω)-scalar product :
〈J3ω, ϕ〉W ′,W

= (ω, ϕ)0 ∀ϕ ∈ W .
We denote by r the Riesz isomorphism from Y ′ to Y and by δ a constant
either equal to 0 or 1.
◦ Then, for all f in (L2(Ω))2, the following problem :




find (ω, u, p) ∈ W ×X × Y such that :
〈J3ω, ϕ〉W ′,W

− 〈R′u, ϕ〉
W ′,W

= 0 , ∀ ϕ ∈ W

〈Rω, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= (f, v)
0
, ∀ v ∈ X

〈Du, q〉
Y ′,Y

= 0 , ∀ q ∈ Y

is well-posed and is exactly the following Stokes problem :




ω − curl u = 0 in Ω,
curl ω − δ∇div u+ ∇p = f in Ω,

div u = 0 in Ω,
u•n = 0 on Γ,

u× n = 0 on Γt,
ω = 0 on Γθ.

Proof
Thanks to Theorem 6.20, the only point to prove is the W -ellipticity of the

L2(Ω)-norm on V =
{
ϕ ∈ W , 〈Rϕ, v〉

X′,X
= 0, ∀v ∈ KerD

}
.

We have proved in Lemma 7.1 that W ⊂ M(Ω). By the way, due to the
equivalence of the norms of H(curl, div∗,Ω) and M(Ω) (Proposition 7.2),
there exists a strictly positive constant C such that :

‖ ϕ ‖
M

≥ C ‖ ϕ ‖
curl,div∗,Ω

= C ‖ ϕ ‖
W
, ∀ϕ ∈ W.

Moreover, as space V is imbedded in H(Ω) (Lemma 7.3), we have :

‖ ϕ ‖
M

=‖ ϕ ‖0, ∀ϕ ∈ V,

The two above relations lead to :

‖ ϕ ‖0 ≥ C ‖ ϕ ‖
W
, ∀ϕ ∈ V.

which is the announced result. �
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7.2 Link with stream function-vorticity formulation

Here again, we restrict ourselves to the two-dimensional case when Ω
is connected and simply connected. Then, Γ is connected and every diver-
gence free function can be written as a curl of some stream function. Let
us recall that we have seen in Section 2 that stream function-vorticity and
vorticity-velocity-pressure formulations have a formal link when boundary
conditions are reduced to u = 0 on Γ, which means Γm = Γt = Γ. We want
here to precise the mathematical link between solutions of both formulations.

◦ The spaces associated with the vorticity-velocity-pressure formulation
are : X = H0(div,Ω), W = H(curl, div∗,Ω), and Y = L2

0(Ω). We note
(θ, u, p) ∈ W × X × Y the solution of the well-posed formulation given in
Theorem 7.4. We also introduce the solution (ψ, ω) in H1

0 (Ω) ×M(Ω) of the
stream function-vorticity Stokes problem. Let us recall that we have pro-
ved that the spaces for vorticity, W and M(Ω), are equal in this case (see
Proposition 7.2). Then, the natural questions are to find the link between
ω ∈ M(Ω) and θ ∈ W , on one hand, and on the other hand, the link
between u ∈ X and curl ψ which belongs naturally to H0(div,Ω). The
answers are given in the following theorem :

Theorem 7.5 Let Ω be a connected and simply connected open bounded do-
main in IR2 whose boundary Γ is supposed to be of class C1,1. Let f belong
to (L2(Ω))2. Let us recall that the solutions of the stream function-vorticity
formulation are ω and ψ :





ω ∈M(Ω) and ψ ∈ H1
0 (Ω)

(ω, ϕ)
0
+ 〈∆ϕ, ψ〉

−1,1
= 0 , ∀ϕ ∈M(Ω) ,

−〈∆ω, ζ〉
−1,1 = (f, curl ζ)0 , ∀ζ ∈ H1

0 (Ω) ,
(97)

while the solutions of the vorticity-velocity-pressure formulation are θ, u and
p such that :





θ ∈ W = M(Ω), u ∈ X = H0(div,Ω) and p ∈ Y = L2
0(Ω)

(θ, ϕ)
0
− 〈u, curl ϕ〉

X,X′
= 0 , ∀ϕ ∈ W,

〈curl θ, v〉
X′,X

− 〈D′(p− δrDu), v〉
X′,X

= (f, v)
0
, ∀ v ∈ X

〈Du, q〉
Y ′,Y

= 0 , ∀q ∈ Y .

(98)

Then, the solutions of these two formulations of the Stokes problem are equi-
valent in the following sense :

◦ The vorticities ω and θ are equal.
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◦ The velocities curl ψ and u are equal.

Proof
• Taking v in Ker D, the second equation of (98) becomes :

〈curl θ, v〉
X′,X

= (f, v)0 , ∀ v ∈ Ker D .

Then, using (96), we obtain :

〈curl θ, v〉
X′,X

= (Lρθ, v)0 = (f, v)0 , ∀ v ∈ Ker D .

Let us examine now the second equation of (97). Equality (95) leads to :

〈−∆ω, ζ〉
−1,1 = (Lρω, curl ζ)0 = (f, curl ζ)0 ,

for all ζ in H1
0 (Ω). As any element v of Ker D is a curl, we obtain :

(Lρω, v)0 = (f, v)0 , ∀ v ∈ Ker D .

Finally, we obtain :

(Lρθ, v)0 = (f, v)0 = (Lρω, v)0 , ∀ v ∈ Ker D .

As Lρθ and Lρω belong to Ker D, we deduce that : Lρθ = Lρω in Ker D.
Then ω − θ belongs to space V = {ϕ ∈ W , Lρϕ = 0} (see Lemma 6.4).
• Let us now prove that θ and ω are equal. Then, as the velocity u is
divergence free (see the third equation of (98)), the use of relation (96) in
the first equation of (98) leads to :

(θ, ϕ)0 = (u, Lρϕ)0 , ∀ϕ ∈ W .

In a same manner, using equality (95) in the first equation of the stream
function-vorticity formulation (97), we obtain :

(ω, ϕ)0 = (Lρϕ, curl ψ)0 , ∀ϕ ∈ W .

Then, subtracting the two above equations, we find :

(θ, ϕ)0 − (ω, ϕ)0 = (u, Lρϕ)0 − (Lρϕ, curl ψ)0 , ∀ϕ ∈ W ,

or else :
(u− curl ψ, Lρϕ)0 = (θ − ω, ϕ)0 , ∀ϕ ∈ W . (99)

If we choose ϕ in V , we have : Lρϕ = 0 and the above equality gives :

(θ − ω, ϕ)0 = 0 , ∀ϕ ∈ V .
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As ω − θ belongs to space V , we can choose ϕ = ω − θ and we obtain :
ω = θ.
• To finish, we study the difference u− curl ψ. Using equality (99) and the
previous result ω = θ, we deduce :

(u− curl ψ, Lρϕ)0 = 0 , ∀ϕ ∈ W .

Taking ϕ in D(Ω), we have Lρϕ = curl ϕ (see Lemma 6.2). Then, we obtain :

(u− curl ψ, curl ϕ)0 = 0 , ∀ϕ ∈ D(Ω) .

As u belongs to Ker D, there exists ζ in H1
0 (Ω) such that u = curl ζ and we

have :
(curl (ψ − ζ), curl ϕ)0 = 0 , ∀ϕ ∈ D(Ω) .

Then ψ = ζ and u is equal to curl ψ, by density of D(Ω) in H1
0(Ω). �

8 Conclusion

The vorticity-velocity-pressure formulation for the Stokes problem of in-
compressible fluids mechanics, proposed in [Dub92], does not give satisfying
numerical results for classical Dirichlet boundary condition on velocity as
numerically established in [Sal99] and [DSS02b] because the vorticity is sear-
ched in H(curl,Ω), which is not the appropriate functional space. We have
shown in this article that the appropriate spaceM(Ω) for the stream function-
vorticity formulation ([BGM92]) can be extended into a new functional space
H(curl, div∗,Ω) that we have defined. Then, we have proposed to extend the
vorticity-velocity-pressure formulation with this new vectorial space for the
vorticity. A difficulty that arises is to deal with a general “mass operator” J
introduced in Section 6.2 in order to write in a variational way the equation
ω = curl u. The results, that we have proved, are summarized below.

◦ For a bounded connected domain Ω of IR2 or IR3, with u•n = 0 on Γ, we
choose a mass operator J defined as J = J2 in Section 6.2. It leads to a well-
posed variational problem if Ω is connected and simply connected or if there
exists some analytical subset Γ0 of Γt (Γt ⊂ Γ) such that : meas (Γ0) 6= 0.
Moreover, the interpretation of the vorticity-velocity-pressure formulation
gives the partial differential equations of the Stokes problem, with a new
boundary condition on Γt for the tangential velocity. This new boundary
condition is detailed in the following and is defined with non classical objects.
First, for ω in the space of vorticityW ⊂ H(curl, div∗,Ω) (defined at relations
(58), the co-curl operator ρω (see Section 6.1) is the Riesz representant of

59



the weak rotational operator in the space X = H0(div,Ω) (see Section 4.1).
Second, function χ is the variational solution of the following problem :

{
∆χ = div (ρω) in Ω ,
∂χ

∂n
= 0 on Γ ,

When ω ∈ H(curl,Ω), ρω = curl ω in a sufficiently weak sense and χ ≡ 0.
Nevertheless, function χ is not null for a general vorticity field. Then, on the
subset Γt of Γ, the new boundary condition take the algebraic form :

n× u× n = curlΓ(γχ).

The mechanical interpretation of this condition should be improved in the
future.

◦ For a bounded connected domain Ω of IR2 or IR3, with u•n = 0 on Γ, if
the (L2(Ω))2N−3 scalar product is elliptic on the kernel V defined at Lemma
6.1 and if Ω is connected and simply connected or if there exists some analyti-
cal subset Γ0 of Γt such that : meas (Γ0) 6= 0, the vorticity-velocity-pressure
formulation is well-posed and is exactly the Stokes problem, with the classical
boundary conditions : u•n = 0 on Γ ; ω×n = 0 on Γθ and n×u×n = 0 on Γt.

◦ In the particular case where Ω is a connected, simply connected, open
bounded domain of IR2, we have proved that the L2(Ω)-scalar product is ellip-
tic on the kernel V : the vorticity-velocity-pressure formulation is well-posed
and is exactly the Stokes problem, with the classical boundary conditions.
Finally, if Γt = Γ, our formulation and the classical stream function-vorticity
one give exactly the same fields of vorticity and velocity.

◦ The first next step is to reduce the hypothesis on the regularity of
the boundary for the decomposition of vector fields, following the ideas of
[ABDG98] and [Dub02]. Then, the second one is to study the discretiza-
tion strategies in order to extend the HaWAY method to triangles. A third
direction is to establish the link between our vorticity-velocity-pressure for-
mulation and the three-dimensional stream function-vorticity one which was
proposed by Amara and al [AB99], [ABD99].
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physique. Dunod, Paris, 1972.

[DSS00] F. Dubois, M. Salaün, and S. Salmon. Harmoniques discrètes
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l’opérateur biharmonique et méthode itérative de résolution des
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limites non linéaires. Dunod, Paris, 1969.

[LL71] L. Landau and E. Lifchitz. Mécanique des fluides, volume VI of
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