
HAL Id: hal-04707428
https://hal.science/hal-04707428v1

Preprint submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

A Simple Algorithm for Worst Case Optimal Join and
Sampling

Florent Capelli, Oliver Irwin, Sylvain Salvati

To cite this version:
Florent Capelli, Oliver Irwin, Sylvain Salvati. A Simple Algorithm for Worst Case Optimal Join and
Sampling. 2024. �hal-04707428�

https://hal.science/hal-04707428v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

A Simple Algorithm for Worst Case Optimal Join
and Sampling
Florent Capelli #

Université d’Artois, CNRS, UMR 8188 - CRIL, F-62300 Lens, France

Oliver Irwin #

Université de Lille, CNRS, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Sylvain Salvati #

Université de Lille, CNRS, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Abstract
We present an elementary branch and bound algorithm with a simple analysis of why it achieves
worstcase optimality for join queries on classes of databases defined respectively by cardinality
or acyclic degree constraints. We then show that if one is given a reasonable way for recursively
estimating upper bounds on the number of answers of the join queries, our algorithm can be turned
into algorithm for uniformly sampling answers with expected running time Õ(UP/OUT) where UP
is the upper bound, OUT is the actual number of answers and Õ(·) ignores polylogarithmic factors.
Our approach recovers recent results on worstcase optimal join algorithm and sampling in a modular,
clean and elementary way.

2012 ACM Subject Classification Information systems → Relational database model; Theory of
computation → Branch-and-bound

Keywords and phrases join queries, worst-case optimality, uniform sampling

Funding This work was supported by project ANR KCODA, ANR-20-CE48-0004.

1 Introduction

Join queries are expressions of the form Q := R1(x1), . . . , Rm(xm), where every Ri is a
relation symbol and the xi is a tuple of variables over a set X. Evaluating join queries is a
central task when answering database queries. Since the combined complexity of deciding
whether a given join query has at least one answer on a given database is NP-complete [2],
it is unlikely that one can list all its answers in time linear in the number of answers. An
interesting line of research has been the design of so called worst case optimal join (WCOJ)
algorithms. In this setting, for a given query Q, we consider the worst possible database
among a class of instances, that is, the one where the number of answers of Q is maximal.
Now, even if we cannot find the answers of Q in time linear in the number of answers of Q,
we can still aim at finding every answer in time linear in the number of answers of the worst
possible database in the class. Such an algorithm will be said to be a WCOJ algorithm.

Consider for example the triangle query, a query we will use multiple times in this paper
for illustration:

Q∆ := R(x1, x2), S(x2, x3), T (x1, x3) (1)

We assume that R, S, T are relations of size respectively NR, NS and NT . It is not hard
to see that Q∆ will have never more than NR ×NS ×NT answers. Even better, one can
notice that the variables of R and S already cover all variables of Q∆. Therefore, Q∆ cannot
have more than NR×NS , and by symmetry, no more than min(NRNS , NSNT , NRNT). The
work of Atserias, Grohe and Marx [1] extends this notion of covering all the variables to the
idea of a fractional cover, leading to an even better bound on the number of answers which is

mailto:florent.capelli@univ-artois.fr
https://orcid.org/0000-0002-2842-8223
mailto:oliver.irwin@univ-lille.fr
https://orcid.org/0000-0002-8986-1506
mailto:sylvain.salvati@univ-lille.fr

2 A Simple Algorithm for WCO Join and Sampling

(NRNSNT)1/2 and this bound is actually optimal in the sense that there exists an instance of
Q∆ where R, S and T have respectively sizes of at most NR, NS , NT and Õ((NRNSNT)1/2)
answers where Õ(·) hides polylogarithmic factors in the relation sizes and polynomial factors
in the query size, considered constant. Therefore, an algorithm able to compute the answers
of Q∆ in time Õ((NRNSNT)1/2) is a WCOJ algorithm for the class of instances of Q∆ where
R, S and T have sizes of at most NR, NS , NT respectively. It is optimal in the sense that it
is linear in the size of the worst possible instance of the class.

In this simplified example, the class is defined via cardinality constraints: we consider
instances where each relation has a size (or cardinality) that is bounded by a given integer.
Building on the understanding of the worst case for such classes given in [1], Ngo, Porat,
Ré and Rudra proposed the first WCOJ algorithm for instances defined by cardinality
constraints in [10]. A simplified branch and bound algorithm, Triejoin, has been proposed by
Veldhuizen in [15] and a more general version, known as GenericJoin has been introduced
by Ngo in [9], which is also worst case optimal on classes defined by so-called acyclic degree
constraints, which is a strict generalisation. Since then, a fruitful line of research has focused in
understanding worst case bounds for classes of instances defined via more complex constraints
(e.g., functional dependencies or non acyclic degree constraints). A deep connection with
information theory has been made in [7] by Khamis, Ngo and Suciu, allowing the design of
PANDA, which can perform join queries in time that is not far from worst case optimality,
see [14] for an enlighting survey by Suciu on this connection.

Another related line of research has focused on designing algorithms to uniformly sample
answers of join queries. One naive way of doing so is to first list ans(Q) explicitly and then
uniformly sample an element of the list. Using a WCOJ algorithm, this gives a method
allowing constant time sampling after a preprocessing linear in the worst case. This complexity
however does not match the intuition one could have of the hardness of the problem. Indeed,
it is reasonable to expect a query to be easier to sample if it has many solutions, because,
intuitively, they are easier to find. It turns out that this intuition can be turned into a
formally proven algorithm which achieves the following: for a class C of queries defined
via cardinality constraints, Deng, Lu and Tao [4] simultaneously with Kim, Ha, Flechter
and Han [8] proved that one can achieve uniform sampling for a join query Q ∈ C in time
of Õ(|wc(C)|

max(1,|ans(Q)|)) where wc(C) is the worst case instance of class C and ans(Q) is the set
of answers of Q. This result has recently been generalised to the case of acyclic degree
constraints by Wang and Tao [16].

Our contributions. In this paper, we propose a very simple join algorithm with a very simple
analysis which achieves worst case optimality on classes of instances defined by cardinality
constraints and degree constraints. Our algorithm is a simple branch and bound algorithm
which assigns one variable to every possible value in the domain and backtracks whenever an
inconsistency is detected. As such, this can be seen as an extremely simplified version of
GenericJoin [9] or TrieJoin [15]. However, for these algorithms, a clever data structure is
needed to branch only on relevant values. This is actually necessary since this naive branch
and bound algorithm is not really worst case optimal. Indeed, on a query on domain D, an
extra factor of |D| appears in the complexity. We turn it into a WCOJ algorithm with a
simple trick: instead of branching directly on domain values, we branch on the values bit by
bit. An illustration of our algorithm is given in Figure 1 for the triangle query Q∆, defined
in Equation (1) with tables given in Table 1. On the left, we show the branch and bound
algorithm where values of x1, . . . , x3 are iteratively set to values in the domain {0, 1, 2, 3}.
Whenever a relation is inconsistent with the current partial assignment, we backtrack, which

F. Capelli, O. Irwin and S. Salvati 3

is represented by ⊥ in the tree. Observe on the example that after setting x1 to 0, we explore
many “useless” values for x2 that directly give an inconsistency. In this simple example, we
can directly read from R that only the value x2 7→ 0 is relevant, but in some more complex
queries, we may need to compute more complex intersections efficiently, which is exactly how
GenericJoin and TrieJoin address the problem.

To avoid the need for such a data structure, we slightly modify the algorithm as shown
on the right part of Figure 1. We encode the domain {0, 1, 2, 3} with two bits on {0, 1}2 and
now branch on the first bit x1

1 of x1 and then on the second bit x2
1 of x1 and so on. We can

directly see on the example that when x1 is set to 0, that is, when x1
1 7→ 0, x2

1 7→ 0, then we
do not explore the values {1, 3} for x2 as we directly detect an inconsistency when setting
the first bit of x2 to 1. This simple trick is enough to guarantee worst case optimality of a
simple branch and bound algorithm.

R x1 x2 S x2 x3 T x1 x3

0 0 0 2 0 3
1 0 0 3 1 0
1 1 1 0 1 2
2 1 1 2 2 3

Table 1 An instance of Q∆ on domain {0, 1, 2, 3}.

0

0

0 1 2 3

1

0

0 1 2 3

1 2 3 1

0 1 2 3

2 3

2

0 1

0 1 2 3

2 3

3

𝑥1

𝑥2

𝑥3

⊥ ⊥ ⊥ ⊤

𝑥2

𝑥3

⊥ ⊥ ⊤ ⊥

⊥ ⊥ ⊥ 𝑥3

⊤ ⊥ ⊤ ⊥

⊥ ⊥

𝑥2

⊥ 𝑥3

⊥ ⊥ ⊥ ⊥

⊥ ⊥

⊥

(a) Over 4-valued domain

0

0

0

0

0 1

0 1

1

1

1

0 1

0

0 1

1

1

0

0

0

0

0 1

1

1

1

0

0

0 1

1

1

1

𝑥11

𝑥21

𝑥12

𝑥22

𝑥13

⊥ 𝑥23

⊥ ⊤

⊥

⊥

𝑥12

⊥ 𝑥22

𝑥13

⊥ ⊥

⊥

𝑥21

𝑥12

𝑥22

𝑥13

𝑥23

⊥ ⊤

⊥

⊥

𝑥22

𝑥13

𝑥23

⊤ ⊤

⊥

⊥

⊥

(b) Binarised version

Figure 1 Trace of an execution of our algorithm over the triangle query Q∆ defined in Table 1.
Satisfying assignments are labelled ⊤ and shown with a greenish node.On the right side, the same
algorithm branching on the bits of the values instead of the values themselves.

One strength of our result is that worst case optimality is proven without any knowledge
of the actual worst case of the class. This is in contrast with most existing WCOJ algorithms,
whose analysis often relies on how the worst case value is computed. This knowledge is
infused into the proof and, sometimes even, in the algorithm itself, for example in the first
NPPR algorithm [10]. Our analysis only exploits one property that we call prefix closedness.
A class of instances C is intuitively prefix closed if for every Q ∈ C, the number of answers of
Q where we have removed some variables never exceeds the worst case wc(C). This property
is straightforward to establish for classes defined with cardinality constraints and with acyclic
degree constraints resulting in an elementary proof of worst case optimality.

4 A Simple Algorithm for WCO Join and Sampling

The second contribution of this paper is to show how uniformly sampling answers can
be achieved in expected runtime of Õ(wc(C)

max(1,|ans(Q)|)) for classes defined with cardinality con-
straints and with acyclic degree constraints, matching the complexity established in previous
work with more involved techniques [16, 4, 8]. Our approach is elementary. Intuitively, we
see the trace of our WCOJ algorithm as a tree whose leaves are either conflicts or solutions.
The sampling problem hence reduces to uniformly sampling “interesting” leaves in a tree,
without fully exploring it. It turns out that this is easy to do by adapting an algorithm from
Rosenbaum [13] as long as one has a way of overestimating the number of interesting leaves
in each subtree. We show that this can be done for join queries using the knowledge we have
on how to compute worst case bounds. The only technical blackbox we use to establish this
result is (a weak form of) Friedgut’s inequality [5]. In particular, we recover the recent result
from [16] on sampling join queries under acyclic degree constraints with an elementary proof.

Organisation of the paper. We give some necessary notations and preliminaries in Section 2.
Section 3 contains the description of our branch and bound algorithm and a simple analysis of
its complexity. We then show that this is enough to establish worst case optimality for classes
defined with cardinality constraints and acyclic degree constraints in Section 4. Finally,
Section 5 shows that the branch and bound algorithm can easily be turned into a sampling
algorithm achieving the same complexity as previous work in a simpler and more modular
way.

2 Preliminaries

Notations. We assume the reader familiar with the basic vocabulary of database theory
and mostly introduce notations in this section. Given two sets X and D, we denote by DX

the set of tuples over variables X and domain D, that is, the set of mappings from X to D.
We denote by ⟨⟩ the empty tuple, that is, the only element of D∅ and by ⟨x← d⟩ the tuple
on variable {x} that maps x to d. For τ ∈ DX and σ ∈ DY with X ∩ Y = ∅, we denote by
τ ∪ σ the tuple mapping z ∈ X ∪ Y to τ(z) if z ∈ X and σ(z) otherwise.

A relation R is a subset of DX . Given τ ∈ DX and Y ⊆ X, we denote by τ|Y the
restriction of τ to Y , that is, the tuple such that τ|Y (y) = τ(y) for every y ∈ Y . For R ⊆ DX ,
we write R|Y for {τ|Y | τ ∈ R}. From now on when mentioning a relation, for example R,
we assume that XR is the set of variables on which it is defined, i.e. R ⊆ DXR . Let τ ∈ DY ,
we denote by R[τ] the relation {σ|XR−Y | σ ∈ R, σ|Y = τ|XR

}. That is R[τ] is obtained by
filtering out every tuple of R that do not agree with τ on the variables Y .

A join query Q over variables X and domain D is a set of relations such that, for every
R ∈ Q, R ⊆ DXR for some XR ⊆ X. Observe that, as it is often done in the literature about
WCOJ algorithms, we slightly deviate from the usual database setting which separates the
data from the query. We can still see a join query as a usual full conjunctive query with
hypergraph (X, {XR | R ∈ Q}) and the data, that is, the tuples of each R ∈ Q.

The answer set of Q, denoted by ans(Q), is defined as the set of tuples τ ∈ DX such
that for every R ∈ Q, τ|XR

∈ R. The join problem is the problem of outputing ans(Q) given
Q as input. The data size of Q, denoted as ∥Q∥, is defined as the number of tuples in its
relations, ∥Q∥ =

∑
R∈Q |R|. Given Y ⊆ X, we denote by Q|Y the join query defined as

{R|Y ∩XR
| R ∈ Q}. Given τ ∈ DY , we define Q[τ] = {R[τ] | R ∈ Q}. We say that τ is

inconsistent with Q if Q[τ] contains an empty relation; τ is otherwise consistent with Q. We
make the following observation that will be crucial for the rest of this paper:

▶ Lemma 1. For every τ ∈ DY , τ ∈ ans(Q|Y) iff τ is consistent with Q.

F. Capelli, O. Irwin and S. Salvati 5

Proof. It is simply a reformulation: if τ ∈ ans(Q|Y) then it means that for every R ∈ Q,
τ|XR∩Y ∈ R|Y . In particular, R[τ] is not empty. Hence τ is consistent with Q. Conversely, if
τ is consistent with Q, then for every R ∈ Q, R[τ] is not empty. That is, there exists some
tuple σ ∈ R such that σ|Y = τ|XR∩Y . In other words, τ|XR∩Y ∈ R|Y for every R ∈ Q, hence,
τ ∈ ans(Q|Y). ◀

In this paper, we will always make the assumption that the domain D of a join query is
its active domain, that is, the set of values that appear in at least one relation. Moreover,
we assume that every value in this active domain is encoded with O(log|D|) bits. While
this is a reasonable assumption, it may not be completely realistic in practice (for example
when using string values). We can still enforce this condition with linear preprocessing by
reencoding the domain using a perfect hash function [3].

Worst-case optimal join. In this section, we give an abstract definition of what we call
a worst-case optimal join algorithm. Let H = (X, E) be a hypergraph and C be a class
of join queries with hypergraph H. We define the worst case of C, denoted by wc(C) as
wc(C) = supQ∈C |ans(Q)|. An algorithm is a worst-case optimal join for C if, on input Q ∈ C,
it outputs ans(Q) in time Õ(wc(C)× poly(n, m)), where Õ(·) hides polylog factors, m = |E|
and n = |X| are parameters that only depend on the structure of the query and not on the
content of the relations. Of course, for this definition to make sense, one needs wc(C) to be
finite. Many such classes have been studied in the literature and many worst-case optimal
join algorithms have been proposed. In this paper, we will focus on the two main classes
that have been considered: classes defined via cardinality constraints and classes defined via
degree constraints.

Cardinality Constraints. Let H = (X, E) be a hypergraph verifying
⋃

E = X (every node
is covered by a hyperedge) and let N ∈ NE . We let CH(⩽ N) be the class of join queries
Q on hypergraph H such that for every e ∈ E, there is Re in Q such that XRe

= e and
|Re| ⩽ N(e). We say that CH(⩽ N) is a class defined via cardinality constraints because
it puts a bound on the cardinality of (the intersection of) the involved relations. Clearly,
wc(CH(⩽ N)) ⩽

∏
e∈E N(e) < ∞. Actually, one can get a sharper, almost optimal upper

bound on wc(CH(⩽ N)) using a result by Grohe and Marx [6] (optimality was proven by
Atserias, Grohe and Marx in [1]) and which has later been known as the AGM bound. For
example, one can show that for the triangle hypergraph H∆ = {e1, e2, e3} where e1 = {1, 2},
e2 = {2, 3} and e3 = {1, 3}, wc(CH∆(⩽ N)) ⩽

√
N(e1)N(e2)N(e3). We delay the precise

presentation of such bounds to Section 5 where we are interested in sampling answer from
conjunctive queries. One strength of our worst case optimal join approach compared to
previous work is that we do not need to have an understanding of the worst case bound to
prove its worst case optimality.

Degree constraints. Another class of join queries which received attention in the literature
on worst-case optimal joins is the class of queries defined with degree constraints. Given
two sets A ⊆ B, a degree constraint is a triplet of the form (A, B, NB|A) with NB|A > 0. A
relation Re on variables e ⊇ B respects the degree constraint (A, B, NB|A) if and only if
maxτ∈DA |R[τ]|B | ⩽ NB|A. It is a generalisation of cardinality constraints since a cardinality
constraint can be seen as a degree constraint of the form (∅, B, NB). It can also be seen as
a generalisation of functional dependencies since a functional dependency X → y can be
seen as the (X, {y}, 1) degree constraint. Let H = (X, E) be a hypergraph and DC be a set
of degree constraints of the form (A, B, NB|A) with A ⊆ B ⊆ X. Each degree constraint

6 A Simple Algorithm for WCO Join and Sampling

δ ∈ DC is associated with an hyperedge eδ ∈ E with eδ ⊇ B which guards it. We let CH(DC)
be the class of queries Q on hypergraph H such that for every δ = (A, B, NB|A) ∈ DC, there
is an atom R in Q such that XR = eδ and R respects δ.

Observe that it may happen that wc(CH(DC)) = +∞. In this paper, we are only
interested in classes where this does not happen. This is often enforced by assuming that⋃

E = X and that for every e ∈ H, at least one constraint in DC is a cardinality constraint
of the form (∅, e, Ne) with guard e that has hence to be respected by a relation R with
XR = e. In this case, as before, wc(CH(DC)) ⩽

∏
e Ne < +∞. Here again, more precise

upper bounds are known on wc(CH(DC)) but they will not be necessary for our worst case
optimal join algorithm and we delay this discussion to Section 5 where we will need them.

3 Branch and bound algorithm for join queries

In this section, we propose a simple branch and bound algorithm to compute join queries and
provide an easy upper bound on its complexity. We will show later how this upper bound
can be proved to be worst case optimal for some classes of instances. The algorithm can be
seen as an instance of GenericJoin from [12] but it is given in an extremely simple form and
its analysis is elementary. Written in this way, the algorithm is not worst case optimal but a
simple algorithmic trick will allow us to recover known results, presented in Section 4.

The algorithm, whose pseudo code is given in Algorithm 1, is a simple recursive search:
assume a fixed order (x1, . . . , xn) is given on variables X. We find the answers of Q by
setting variables sequentially according to this order, trying each possible value in the domain.
Whenever the current partial assignment is inconsistent with Q, it is not further expanded.
If every variable is assigned and the assignment is consistent with Q, then it is output.

Algorithm 1 An algorithm to compute join queries

1: procedure WCJ(Q, τ)
2: if Q[τ] contains an empty relation then return
3: i← last variable assigned by τ ;
4: if i = n then output τ . return
5: for d ∈ D do WCJ(Q, τ ∪ ⟨xi+1 ← d⟩)
6: end procedure

Correction of the algorithm. Starting with a call WCJ(Q, ⟨⟩), every recursive call is of the
form WCJ(Q, τ) where τ is a tuple in DXi where Xi := {x1, . . . , xi}. We claim that for every
τ which assigns variables Xi, then WCJ(Q, τ) outputs τ ∪ σ for every answer σ of Q[τ]. The
proof is by induction on i. If i = n, then τ is output if and only if Q[τ] does not contain the
empty relation, which by Lemma 1 means that τ is an answer of Q. Now assume i < n. If τ

is inconsistent with Q then nothing is output, this is coherent with our induction hypothesis
since Q[τ] contains an empty relation, meaning that any tuple σ so that σ|Xi

= τ is not in
ans(Q). Otherwise, by induction, WCJ(Q, τ ∪ ⟨xi+1 ← d⟩) outputs τ ∪ ⟨xi+1 ← d⟩ ∪ σ for
every σ ∈ ans(Q[τ ∪⟨xi+1 ← d⟩]), that is, for every σ ∈ ans(Q[τ]). It completes the induction
and it directly follows that WCJ(Q, ⟨⟩) outputs ans(Q).

Number of recursive calls. We claim that Algorithm 1 does at most (1+|D|)·
∑

i⩽n |ans(Q|Xi
)|

recursive calls. Indeed, as stated before, every recursive call is of the form WCJ(Q, τ) where
τ is a tuple of DXi . In the first case, assume that Q is consistent with τ , which means in

F. Capelli, O. Irwin and S. Salvati 7

particular that τ is in ans(Q|Xi
) by Lemma 1. Hence, there are at most

∑
i⩽n |ans(Q|Xi

)|
recursive calls of this type. In the second case, assume that τ is inconsistent with Q. Then
the recursive call with parameters (Q, τ) has been issued from a call of the form (Q, τ ′) where
τ = τ ′ ∪ ⟨xi ← d⟩ for some d ∈ D. In particular, τ ′ is consistent with Q, otherwise such a
recursive call would not have happened. Hence, τ ′ ∈ ans(Q|Xi−1) and there are at most |D|
possible τ for a given τ ′ ∈ ans(Q|Xi−1). Therefore, there are at most |D| ·

∑
i⩽n |ans(Q|Xi

)|
recursive calls of this form, this in total, (|D|+ 1)

∑
i⩽n |ans(Q|Xi

)| recursive calls.

Efficient implementation. Now we explain how, using a very simple data structure, one
can assume that each recursive call is executed in Õ(m) where m is the number of atoms in
Q. The only non trivial thing is to check whether Q[τ] contains an empty relation. To do
that, we simply assume that every relation is given sorted in lexicographical order, for the
attribute order x1, . . . , xn. This could be obtained via a preprocessing that is quasi linear in
the data (or linear in the RAM model, but since we ignore polylogarithmic factors, it does not
matter much). Now observe that if R is a relation of Q and τ a tuple in DXi , then all tuples
from R[τ] are consecutively stored in the table. Hence we can represent R[τ] by keeping two
pointers p1, p2 on the tuples of R: one towards the first tuple and one towards the last tuple
in R[τ]. To check whether R[τ] is consistent, it is enough to check that p1 ⩽ p2. To go from
the representation of R[τ] to the representation of R[τ ∪ ⟨xi+1 ← d⟩], we simply need to find
the first and last tuple between p1 and p2 where xi+1 = d. This can be done via a binary
search in time O(log|R|). Hence, each recursive join can be executed in time O(mlog∥Q∥,
that is, Õ(m). A slightly more involved data structure would allow us to compute in time
O(m) by representing R as a trie as in [15]. We just proved:

▶ Theorem 2. Given a join query Q on domain D with m atoms and (x1, . . . , xn) an order
on the variables of Q, WCJ(Q, ⟨⟩) computes ans(Q) in time Õ(m|D| ·

∑
i⩽n |ans(Q|Xi

)|),
where Xi = {x1, . . . , xi}.

4 Worstcase optimality

4.1 Prefix closed classes
To show that Algorithm 1 is worst case optimal on a class C of instances, we need to bound
Theorem 2 by Õ(wc(C)). Of course, this will not be true for any class of instances but it turns
out that we can easily do so on classes defined by cardinality constraints or by acyclic degree
constaints. Theorem 2 motivates the following definition: a class C is prefix closed for the
order π = (x1, . . . , xn) if and only if for every i ⩽ n and Q ∈ C, |ans(Q|Xi

)| ⩽ wc(C). Indeed,
if C is prefix closed for an order π, then computing ans(Q) for Q ∈ C using Algorithm 1 with
order π will take Õ(mn · |D| · wc(C)), where D is the domain of Q.

▶ Theorem 3. For every class C that is prefix closed for an order (x1, . . . , xn) and join query
Q ∈ C with n variables and m relations, WCJ(Q, ⟨⟩) returns ans(Q) in time Õ(nm·|D|·wc(C)).

While m and n are considered constant in our setting, we cannot assume so for |D|.
Hence, Theorem 2 and prefix closedness will not be enough to establish worst case optimality
of Algorithm 1. That being said, we present a simple trick in Section 4.2 which allows us
to circumvent this issue easily. The main classes for which worst case optimal algorithms
are known are prefix closed, at least for one order. Even if cardinality constraints are less
general than degree constraints, we start by showing it for the former as a warmup, even if
the proof is essentially the same for the latter:

8 A Simple Algorithm for WCO Join and Sampling

▶ Theorem 4. Let CH(⩽ N) be a class of join queries defined for hypergraph H = (X, E)
and cardinality constraints N ⊆ NE. Then CH(⩽ N) is prefix closed for every order.

Proof. Let Q ∈ CH(⩽ N), (x1, . . . , xn) be an order on X and i ⩽ n. We need to show that
ans(Q|Xi

) ⩽ wc(CH(⩽ N)). To do so, we construct Q∗ ∈ CH(⩽ N) such that |ans(Q|Xi
)| =

|ans(Q∗)|. Since Q∗ ∈ CH(⩽ N), we have by definition that ans(Q∗) ⩽ wc(CH(⩽ N)), hence
ans(Q|Xi

) ⩽ wc(CH(⩽ N)).
Assume that Q is on domain D ̸= ∅ and let d ∈ D be some fixed element of D. We

denote by dY ∈ DY the tuple defined as dY (y) = d for every y ∈ Y . Let R ∈ Q|Xi
. By

definition, R = Re|Xi
for some e ∈ E. Hence, |R| ⩽ |Re| ⩽ N(e). We define R∗

e ⊆ De

as R × {de\Xi}, that is, we extend every tuple from R to variables e by setting every
missing variable to d. Clearly, |R∗| = |R| ⩽ |Re| ⩽ N(e). Hence the query Q∗ defined as
{R∗ | R ∈ Q|Xi

} is in CH(⩽ N). Moreover, we clearly have ans(Q∗) = ans(Q|Xi
)× {dX\Xi},

therefore |ans(Q∗)| = |ans(Q|Xi
)| as needed to complete the proof. ◀

We now generalise the previous result to classes defined via degree constraints. Observe
however that such classes may not always be prefix closed, or sometimes only for some
particular order. For example, consider the query Q = R(x3, x1)∧S(x3, x2) and consider the
class C respecting functional dependencies x3 → x1 and x3 → x2 and cardinality constraints
|R| ⩽ N and |S| ⩽ N . Clearly, wc(CQ) ⩽ N since once x3 is fixed, so are x1 and x2. Now,
consider an instance Q∗ where R∗ = S∗ = {(i, i) | 0 < i ⩽ N}. It is easy to see that Q∗ ∈ C
and that Q∗

|{x1,x2} has N2 > wc(CQ) answers. The previous example is not prefix closed
for (x1, x2, x3) because we chose an order that goes in the wrong direction in regard to the
functional dependencies. One can check that CQ is prefix closed for the order (x3, x2, x1).

This motivates the following definition: for H = (X, E) a hypergraph and DC a set of
degree constraints, we define the dependency graph GDC as the graph whose vertex set is
X and where there is an edge u→ v if and only if there is a degree constraint (A, B, NB|A)
in DC with u ∈ A and v ∈ B. We say that DC is acyclic if GDC is acyclic. In this case,
an order (x1, . . . , xn) is said to be compatible with DC if this is a topological sort of GDC .
Unsurprisingly, this allows to prove the following generalisation of Theorem 4:

▶ Theorem 5. Let CH(DC) be a class of join queries defined for hypergraph H = (X, E)
and acyclic degree constraints DC. Then CH(DC) is prefix closed for every order compatible
with DC.

Proof. The proof is very similar to the proof of Theorem 4. Let Q ∈ CH(DC) and i ⩽ n. We
construct Q∗ as in Theorem 4. We still have |ans(Q|Xi

)| = |ans(Q∗)|. We only have to check
that Q∗ ∈ CH(DC). Let δ = (A, B, NB|A) ∈ DC be a cardinality constraint. By definition,
it is respected by an atom R of Q on variables e ⊇ B. We claim that R∗ ∈ Q∗ also respects δ.
Indeed Xi∩e ⊆ A, then for every τ ∈ DA, there is at most one tuple in R∗[τ] which is τ×de\Xi ,
hence |R∗[τ]|B | ⩽ 1 ⩽ NB|A. Otherwise, since the order is compatible with DC, A ⊆ Xi.
Hence R∗[τ] = R|Xi

[τ]× de\Xi . In particular |R∗[τ]| = |R|Xi
[τ]| ⩽ |R[τ]|. Hence projecting

out on B, |R|Xi
[τ]|B | ⩽ |R[τ]|B | ⩽ NB|A since R respects the degree constraint (A, B, NB|A).

Hence, R∗ also respects this degree constraint. Since this reasoning works for every R∗ ∈ Q∗,
we conclude that Q∗ ∈ CH(DC). Hence |ans(Q|Xi

)| = |ans(Q∗)| ⩽ wc(CH(DC)), which is
what we needed to prove. ◀

A direct corollary of Theorems 3 and 5 is that Algorithm 1 is almost worst case optimal
on classes defined by acyclic degree constraints.

F. Capelli, O. Irwin and S. Salvati 9

▶ Corollary 6. Let CH(DC) be a class of join queries defined for hypergraph H = (X, E),
m = |E|, n = |X| and acyclic degree constraints DC. Assume (x1, . . . , xn) is an order
compatible with DC. Then for every Q ∈ CH(DC), WCJ(Q, ⟨⟩) returns ans(Q) in time
Õ(mn · |D| · wc(CH(DC))).

Observe that in order to prove worst case optimality of Algorithm 1 in Corollary 6, we
have not used any knowledge on the actual value of wc(CH(DC)), which makes our approach
simpler than existing analysis of worst case optimal join algorithms.

4.2 Binarisation
We have seen that Algorithm 1 achieves Õ(mn|D| ·wc(C)) complexity when C is prefix closed,
which does not qualify as a worst case optimal join yet. The extra |D| factor comes from the
fact that we are testing every possible value of d ∈ D for each variable, even if many of them
will directly lead to inconsistencies. We could overcome this issue by exploring only relevant
values, using for example the trie join algorithm from [15] which allows to enumerate values
present in the intersection of every relation in time O(log|D|) or Hash indices as in [11].
While these techniques are interesting for practical implementation, our goal in this paper is
to use as little technical tools as possible. Hence, we present here a new simple technique
to remove the extra |D| factor. The main idea is that instead of testing every value in the
domain for each variable, we fix its value bit by bit. This could be implemented directly
by modifying Algorithm 1 or, as we chose to present it, by transforming any join query Q

on domain D with n variables into a join query Q̃b with n · b variables where b = ⌈log|D|⌉
variables on domain {0, 1} such that the answers of Q̃b are in one-to-one correspondence
with the answers of Q. We do this by reencoding each element of the domain D in binary.

More formally, let Q be a join query on variables X and domain D. Without loss of
generality, we assume that D = {1, . . . , d} for some d and we let b = ⌈log d⌉ to be the number
of bits needed to encode every element of D. We represent each element k in D by the binary
number k̃b representing k and written with b bits. For 1 ⩽ i ⩽ b, let k̃b[i] be the ith bit of a
binary representation of k ∈ D. The function ·̃b is a bijection between D and its image.

We now lift the functions ·̃b to pairs of bijections over tuples, relations and then over
join queries. For a set of variables Y , we denote by Ỹ b the set {yi | y ∈ Y, 1 ⩽ i ⩽ b}, that
is, the set containing b distinct copies of each variable of Y . For τ ∈ DY , we define τ̃ b as
follows: for every y ∈ Y and i ∈ [b], τ̃ b(yi) = τ̃(y)

b
[i]. Given a relation R ⊆ DY we let

R̃b = {τ̃ b | τ ∈ R}. Finally, given a join query Q over variables X and domain D, we let
Q̃b = {R̃b | R ∈ Q}. Obviously, the answers of Q̃b are in one-to-one correspondence with the
answers of Q. Moreover, we have that the cardinalities of the relations are invariant under
this transformation, i.e. |R̃b| = |R|. Applying Theorem 2 on Q̃b directly yields the following:

▶ Theorem 7. Given a join query Q on domain D ⊆ [2b] with m atoms, (x1, . . . , xn) an
order on the variables of Q, WCJ(Q̃b, ⟨⟩) with order (x1

1, . . . , xb
1, . . . , x1

n, . . . , xb
n) computes

ans(Q) in time Õ(m
∑

i⩽n

∑
j⩽b |ans(Q̃b

|Xj
i

)|) where Xj
i = {x1

1, . . . , xb
1, . . . , x1

i , . . . , xj
i}.

To show worst case optimality, it remains to bound maxi,j |ans(Q̃b
|Xj

i

)| by wc(C). We

do this by showing that in the case of acyclic degree constraint, Q̃b belongs to a class C̃b

defined by acyclic degree constraints where wc(C̃b) ⩽ wc(C) and such that if C is prefix
closed for x1, . . . , xn then C̃b is prefix closed for x1

1, . . . , xb
1, . . . , x1

n, . . . , xb
n. The idea is to

binarise the degree constraints as follows: for b ∈ N and a degree constraint δ = (A, B, N),
we denote by δ̃b the degree constraint (Ãb, B̃b, N) and for a set DC of degree constraints, let
D̃C

b
:= {δ̃b | δ ∈ DC}. We show:

10 A Simple Algorithm for WCO Join and Sampling

▶ Lemma 8. Let DC be a set of degree constraints, H a hypergraph and b ∈ N. For every
Q ∈ CH(DC) on domain D ⊆ [2b], we have Q̃b ∈ C

H̃b(D̃C
b
). Moreover, wc(C

H̃b(D̃C
b
)) ⩽

wc(Q̃b). Finally, if DC is acyclic and x1, . . . , xn is an order compatible with DC, then D̃C
b

is acyclic and x1
1, . . . , xb

1, . . . , x1
n, . . . , xb

n is an order compatible with D̃C
b
.

Proof. The first part of the statement follows from the following observation: let δ = (A, B, N)
be a degree constraint and R a relation on variables e ⊇ B which respects δ, then R̃b respects
δ̃b. Indeed, let τ be an assignment of Ãb and let τ ′ be the corresponding assignment of
A on domain 2b defined as τ ′(x) =

∑b
i=1 2i−1τ(xi). Then it is easy to see that R[τ ′]|Y

is in one-to-one correspondence with R̃b[τ]|
Ỹ b by using the same encoding. In particular,

|R̃b[τ]|
Ỹ b | = |R[τ ′]|Y | ⩽ N .

Now let Q′ ∈ C
H̃b(D̃C

b
) be a query on domain D. We let Q to be the query on hypergraph

H on domain Db where each relation R′ of Q′ on variables Ỹ b is transformed into a relation
R on variables Y as follows: for a tuple τ ′ ∈ R′, we build the tuple τ ∈ R by taking for
each y ∈ Y , τ(y) =×j⩽b

τ ′(yj). It is easy to see that if R′ respects degree constraint δ̃b,
then R respects δ and that ans(Q) and ans(Q′) are in one-to-one correspondence. Hence
Q ∈ CH(DC) and then wc(C

H̃b(D̃C
b
)) ⩽ wc(CH(DC)).

Finally, by definition, it is clear that there is an edge in GDC between x and y if and
only if there is an edge between xi and yj for every i, j ⩽ b in G

D̃C
b . Assume towards a

contradiction that there is a path from xj
i to xℓ

k for some i ⩾ k in G
D̃C

b . Then there is
necessarely a path from xi to xk in GDC from what precedes, which contradicts the fact that
(x1, . . . , xn) is a topological sort of GDC . ◀

A direct consequence of Lemma 8 is that C
H̃b(D̃C

b
) is prefix closed and its worst case is

not greater than the worst case of CH(DC). Since for any Q ∈ CH(DC), the domain of Q̃b is
two and has bn = Õ(n) variables, we have a worst case optimal join algorithm for CH(DC):

▶ Corollary 9. Let CH(DC) be a class of join queries defined for hypergraph H = (X, E),
m = |E|, n = |X| and acyclic degree constraints DC. Assume x1, . . . , xn is an order
compatible with DC. Then for every Q ∈ CH(DC) on domain D ⊆ [2b], WCJ(Q̃b, ⟨⟩) on
order x1

1, . . . , xb
1, . . . , x1

n, . . . , xb
n returns ans(Q) in time Õ(mn · wc(CH(DC))).

There is a slight abuse in the statement of Corollary 9 as the algorithm does not
directly return ans(Q) but a binary representation of each tuple in ans(Q). However, it is
straightforward to turn each answer of Q̃b back to the corresponding answer of Q in Õ(1).

Comparison with Generic Join and Leapfrog Triejoin. Our algorithm is quite similar to
Generic Join[12, Algoritm 3] and Leapfrog Trie Join [15], which can already be seen as a
particular case of Generic Join. Similarly, Algorithm 1 can be seen as a degenerated form of
Generic Join. The main difference in the approach is that both Generic Join and Trie Join
use a specific algorithm (trie join algorithm and m-way sort merge respectively) to ensure
that a variable x is branched only on values that would not introduce any inconsistency.
We circumvent this need by using binarisation instead, which can be seen, from a higher
perspective, as simply branching on the bits of each value instead.

The main novelty in our work is the complexity analysis. The analysis for Generic Join
from [12] relies on the knowledge of the value of the worst case, known as the AGM bound for
cardinality constraints and polymatroid bound for acyclic degree constraints. While proofs
of these bounds can be found in numerous references (see [14] for a survey), they add a layer

F. Capelli, O. Irwin and S. Salvati 11

of complexity in the understanding of why these simple branch and bound strategies achieve
worst case optimality. Our analysis instead relies on a very easy to check property of the
classes considered, namely the prefix closedness property: “forgetting” variables in the tables
will not allow to create an instance having more answers than the worst case. Proving that
classes defined by cardinality constraints or acyclic degree constraints are prefix closed is
elementary and very natural. Our approach is closer in spirit with the one taken in [15] where
the concept of renumbering is introduced, and the analysis of the runtime is bounded by the
runtime of the algorithm on a normalised instance where some values have been changed.
While the approach is similar, we feel that prefix closedness is an easier notion.

5 Uniform Sampling

There has been significant work around extending WCOJ algorithms into sampling algorithms.
It is known that if Q ∈ C for C a class of queries defined by cardinality constraints [4, 8] or by
acyclic degree constraints [16], one can uniformly sample τ ∈ ans(Q) in time Õ(|wc(C)|

max(1,|ans(Q)|)).
We recover both results using an elementary algorithm, adaptated from [13] to uniformly
sample leaves from a tree without exploring it completely.

5.1 Efficiently sampling the leaves of a tree

Our core technique relies on the problem of sampling uniformly a leaf of a rooted tree. We
aim at designing an algorithm which avoids exploring the tree exhaustively. This question
has already been addressed by Rosenbaum in [13] where he proposes an algorithm exploring
the tree in a top-down manner, and whenever it encouters a leaf, either returns it or fails.
To remove bias toward subtrees having many leaves in the algorithm, he guides the search
with upper bounds on the number of leaves of each subtree, obtained from the depth and
the branching size of the tree.

We adapt Rosenbaum’s algorithm in a slightly more general setting. Indeed, in our
approach, the leaves of the tree will correspond to cases where the recursion of Algorithm 1
stops. In this case, either a solution is found and we are interested in the leaf, or a
inconsistency is found and we want to reject the leaf. We adapt the algorithm to be able
to work on a tree when we want to sample only a subset of its leaves. Moreover, the upper
bounds on the leaves used in [13] is too coarse for our purposes, we therefore describe the
algorithm by using oracle calls to a function (over-)estimating this number of leaves. This
motivates the following definition:

▶ Definition 10. Let T be a rooted tree. A leaf estimator upb for T is a function map-
ping nodes of T to positive values such that: (i) for every node t with children t1, . . . , tn,
upb(t) ⩾

∑n
i=1 upb(ti); we call functions with this property tree-superadditive; and (ii) if t

is a leaf, then upb(t) ∈ {0, 1}.

We denote by upb(T) the value of upb(r) where r is the root of T . Now, given a tree
T and a leaf estimator upb for T , we say that a leaf ℓ of T is a 1-leaf of T if and only if
upb(ℓ) = 1 and denote by leaves1(T) the set of 1-leaves of T . Our goal is to uniformly sample
ℓ ∈ leaves1(T). Observe that since upb is a tree-superadditive function, for any node t, we
have that upb(t) is an upper bound on the number of 1-leaves below t. We define children(t)
as the function that, given a node t, returns the list of its direct children.

We define our algorithm recursively as follows:

12 A Simple Algorithm for WCO Join and Sampling

Algorithm 2 A variation of the Rosenbaum algorithm [13]
Sample a leaf in the subtree root in t as follows:

if t is a leaf belonging to leaves1(T), output the leaf with probability 1;
it t is any other leaf, fail with probability 1; and
if t has children t1, . . . , tn, recursively sample a 1-leaf in ti with probability upb(ti)

upb(t) and
return it if the recursive call in ti succeeds and fail otherwise. Note that we may directly
fail without recursively sampling with probability 1−

∑
i

upb(ti)
upb(t) .

▶ Theorem 11. Let T be a tree rooted in r and upb a leaf estimator for T . Let out be the
output of Algorithm 2 on input r. Then, for any leaf ℓ ∈ leaves1(T), we have that Algorithm 2
is a uniform Las Vegas sampler with guarantees:

Pr(out = ℓ) = 1
upb(T) and Pr(out = fail) = 1− |leaves1(T)|

upb(T)

Algorithm 2 consists of O(B · depth(T)) calls to upb, where B is the branching size of the
tree, in O(depth(T)) calls to the children function.

Proof. We proceed by induction on the depth of the tree T . If the tree T is of depth 1,
then it can be one of two cases: either it belongs to leaves1(T) and then |leaves1(T)| = 1 and
therefore it is trivial to see that the algorithm samples this leaf with probability 1

upb(T) = 1,
or it does not belong to leaves1(T) and then there is nothing to sample, so the algorithm
fails inevitably.

Supposing that the property holds for a tree T ′ of depth at most k, if we now have a
tree T of depth k + 1, then it has children (t1, . . . , tn) each of depth at most k. Then, by
induction, Algorithm 2 samples from a given ti with probability upb(ti)

upb(t) . If the recursive
call has succeeded, then the algorithm has sampled a leaf from ti with probability 1

upb(ti) .
Since the random choices are independent, the probability of outputing this leaf from t is
upb(ti)
upb(t) ×

1
upb(ti) = 1

upb(t) .
The complexity statement is straightforward. We need to evaluate the number of selected

leaves in each subtree along a path from the root to a leaf, leading to O(B · depth(T)) calls
to upb and for each node we visit, we need to find the list of children, leading to O(depth(T))
calls to children. ◀

We can extend Theorem 11 with the following corollary:

▶ Corollary 12. Given a tree T with branching size B and oracle access to a leaf estimator
function upb(·), we can sample the leaves in leaves1(T) with uniform probability 1

|leaves1(T)| ,
when |leaves1(T)| > 0 or answer that |leaves1(T)| = 0. This is done by repeating Algorithm 2
an expected O(upb(T)

max(1,|leaves1(T)|)) number of times and thus with an expected number of calls to
upb in O(upb(T)

max(1,|leaves1(T)|) ·B · depth(T)) and to children in O(upb(T)
max(1,|leaves1(T)|) · depth(T)).

Proof. We first treat the case where |leaves1(T)| = n > 0. Algorithm 2 can either fail or
produce a leaf that has been sampled with uniform probability. It is a Las Vegas algorithm.
It samples leaves1(T) of T with uniform probability 1

upb(T) . When |leaves1(T)| = n > 0, it
thus outputs some data with probability n

upb(T) or fails with probability 1− n
upb(T) . Now if

we repeat the algorithm until it succeeds, as each leaves1(T) has the same probability to
be outputted in one repetition, they all have the same probability to be outputted at the
end of this process. In a nutshell, this procedure uniformly chooses amongst the leaves1(T)

F. Capelli, O. Irwin and S. Salvati 13

of T which all have probability 1
n to be outputted. Moreover, the number of repetitions of

Algorithm 2 until it succeeds follows a geometric distribution and its expected value is thus
upb(T)

n .
The case where |leaves1(T)| = 0 is a little trickier. Since Algorithm 2 can only fail,

repeating it would result in an infinite loop. We can circumvent this in one of two ways.
Either we start a full exploration of T in parallel and if it does not find any leaves1(T) in

T , we stop running Algorithm 2 (if Algorithm 2 returns a 1-leaf, we stop the exploration). A
second method would be to improve Algorithm 2 by maintaining the parts of T that have
already been explored and by updating the values of upb(t) for each subtree that is explored
by using the information from its children. Eventually, the algorithm explores T entirely.
Indeed parts of T that have been explored are known not to contain data and have thus
probability 0 to be explored again. In the end, updating the upb(t) value of each node will
result in having upb(T) = 0, meaning that leaves1(T) is empty. We then stop the search.
Both methods would cost a time of O(upb(T)). ◀

▶ Remark 13. Notice that the second method presented in the proof may also be useful
when |leaves1(T)| is small compared to upb(T). Indeed, updating upb(·) at each failure of the
algorithm increases the probability of success of the next iteration of the algorithm resulting
in an overall improvement in the speed of convergence.

5.2 Applying Algorithm 2 to join queries
There is a strong link between the tree structure used in the aforementioned sampling method
and Algorithm 1. Assume that we want to sample uniformly the results of the query Q

with relations over variables X = {x1, . . . , xn} and domain D. For this, we can follow the
structure of the execution of Algorithm 1 when it uses the order (x1, . . . , xn) on variables.
The execution of Algorithm 1 naturally constructs a tree structure whose nodes are some
assignments of DXi for some i ∈ [0, n] corresponding to the input of recursive calls. We call
this tree the trace tree of Q and denote it by TQ. In TQ, an assignment τ ∈ DXi is the parent
of another assignment τ ′ when τ ′ = τ ∪ ⟨xi+1 ← d⟩. Among all the possible assignments, the
ones that are nodes in TQ are those that are consistent with Q or those that are inconsistent
with Q but have a parent that is consistent with Q. Figure 1 depicts such a tree: assignments
that are inconsistent with Q are labelled ⊥, those that are elements of the answer set are
labelled ⊤. Moreover, the assignment corresponding to a node in Figure 1 can simply be
read off the path from the root to that particular node.

The leaves of TQ that we want to sample in this tree are simply the elements of DXn

that are consistent with Q, namely the solutions of Q. Algorithm 2 can then be applied to
TQ. Thus we call Q-estimator a function q_upb on the nodes of TQ that verifies:

when τ is a node of TQ in DXi that is consistent with Q, q_upb(τ) ⩾
∑

d∈D q_upb(τ ∪
⟨xi+1 ← d⟩) (i.e. q_upb is tree-superadditive),
q_upb(τ) = 1 when τ ∈ ans(Q)
q_upb(τ) = 0 when τ is inconsistent with Q.

▶ Theorem 14. Given a Q-estimator q_upb(τ) that can be evaluated in time t for every τ ,
it is possible to uniformly sample ans(Q) with expected time O(q_upb(⟨⟩)

max(1,|ans(Q)|) · |X| · |D| · t).

Proof. This is a consequence of Corollary 12. The depth of TQ is |X| and its branching size
is |D|. ◀

14 A Simple Algorithm for WCO Join and Sampling

5.3 Tree-superadditive worst-case bounds
It now remains to define Q-estimators when Q belongs to CH(⩽ N) or to CH(DC). This will
allow us to recover the sampling results from the literature [4, 8, 16] by using Theorem 14 and
the binarisation technique Section 4.2. As the class CH(DC) generalises the class CH(⩽ N),
we could have only treated the first case. We think however that the CH(⩽ N) being
simpler, it conveys more intuition. Our main tool is a simple consequence of an inequality by
Friedgut [5].

▶ Lemma 15 (Friedgut, [5, Lemma 3.3]). For every finite sets I and J , every family of
positive real numbers (ωj)j∈J so that

∑
j∈J ωj ⩾ 1, and every family of positive real numbers

(ai,j)i∈I,j∈J , we have:

∑
i∈I

∏
j∈J

a
ωj

i,j ⩽
∏
j∈J

(∑
i∈I

ai,j

)ωj

.

Proof. This is a consequence of the Generalised Weighted Entropy Lemma in [5, Lemma 3.3].
The statement of this lemma is depends on the following objects:

A hypergraph H = (X, E).
A finite set L.
A family of subsets of X (Fl)l∈L. Let el = e∩Fl for every e ∈ E. And let El = {el | e ∈ E}.
A family of weights W = (wl)l∈L: wl associates a positive real number to the elements of
El.
A family of positive real numbers A = (αl)l∈L so that for every x ∈ X,

∑
l|x∈Fl

αl ⩾ 1.

Then it states that:∑
e∈E

∏
l∈L

wl(el) ⩽
∏
l∈L

(∑
el∈El

wl(el)1/αl

)αl

.

The statement of the lemma we want to prove is obtained by setting:

X = I, E = {{i} | i ∈ I},
L = J and for every j ∈ J , Fj = I, as a consequence for every e ∈ E and j ∈ J , ej = e,
and thus Ej = E.
For each j ∈ J , we let wj({i}) = a

ωj

i,j .
Finally, we let A = (ωj)j∈J . As for every i ∈ I and j ∈ J , we have that i ∈ Fj , the
hypothesis that A must satisfy is a consequence of the hypothesis

∑
j∈J ωj ⩾ 1.

In this setting, the Generalised Weighted Entropy Lemma gives us:∑
i∈I

∏
j∈J

a
ωj

i,j ⩽
∏
j∈J

(∑
i∈I

(aωj

i,j)1/ωj

)ωj

=
∏
j∈J

(∑
i∈I

ai,j

)ωj

.

Which is the expected inequality. ◀

Cardinality constraints. Let CH(⩽ N) be a class of join queries defined for hypergraph
H = (X, E) (with X = {x1, . . . , xn} and E = {e1, . . . , em}) and cardinality constraints
N ⊆ NE . In [1], Atserias, Grohe and Marx show that wc(CH(⩽ N)) can be computed from
the solutions of the following linear program:

min
m∑
j

ωj log(N(ej)) s.t.,∀i = 1, . . . , n
∑

j:xi∈Ej

ωj ⩾ 1

F. Capelli, O. Irwin and S. Salvati 15

and prove wc(CH(⩽ N)) is
∏m

j=1 N(ej)ωj up to polylogarithmic factors. The vector ω is
called a fractional cover of H.

Let us fix a fractional cover ω of H, for a query Q in CH(⩽ N). For every j ∈ [1, m], we
let Rj ∈ Q be a relation such that |Rj | ⩽ N(ej) (which exists by definition of CH(⩽ N)).
We take as Q-estimator agm_upb(τ) as follows:

agm_upb(τ) =
{

0 when τ is inconsistent with Q∏m
j=1 |Rj [τ]|ωj otherwise .

When τ is inconsistent with Q, then, by definition, agm_upb(τ) = 0. Furthermore,
when τ is in ans(Q), for every j, |Rj [τ]| = 1 and therefore, agm_upb(τ) = 1. To show that
agm_upb is a Q-estimator, we finally need to show that for every τ that is consistent with
Q, we have agm_upb(τ) ⩾

∑
d∈D agm_upb(τ ∪ ⟨xi+1 ← d⟩).

For every j we have:

|Rj [τ]| =
∑

d∈D

∣∣Rj [τ ∪ ⟨xi+1 ← d⟩]
∣∣ when xi+1 is in XRj

−Xi

|Rj [τ]| = |Rj [τ ∪ ⟨xi+1 ← d⟩]| for every d ∈ D otherwise.

We let K = {k ∈ [1, m] | xi+1 ∈ XRj
−Xi} and L = [1, m] \K. Since

⋃
E = X, we must

have K ̸= ∅. We thus have:∑
d∈D

agm_upb(τ ∪ ⟨xi+1 ← d⟩) =
∑
d∈D

∏
k∈K

|Rk[τ ∪ ⟨xi+1 ← d⟩]|ωk ×
∏
l∈L

|Rl[τ ∪ ⟨xi+1 ← d⟩]|ωl

=
∑
d∈D

∏
k∈K

|Rk[τ ∪ ⟨xi+1 ← d⟩]|ωk ×
∏
l∈L

|Rl[τ]|ωl

=
∏
l∈L

|Rl[τ]|ωl ×
∑
d∈D

∏
k∈K

|Rk[τ ∪ ⟨xi+1 ← d⟩]|ωk

Then agm_upb(τ) ⩾
∑

d∈D agm_upb(τ ∪ ⟨xi+1 ← d⟩) follows from:

∑
d∈D

∏
k∈K

∣∣Rk[τ ∪ ⟨xi+1 ← d⟩]
∣∣ωk ⩽

∏
k∈K

(∑
d∈D

∣∣Rk[τ ∪ ⟨xi+1 ← d⟩
∣∣)ωk

.

By definition of K and since (ωj) is a fractional cover of H, we have
∑

k∈K ωk ⩾ 1. Hence
we can directly get the bound using Lemma 15.

▶ Theorem 16. Given CH(⩽ N) a class of join queries defined for hypergraph H = (X, E)
and cardinality constraints N ⊆ NE, for every query Q in CH(⩽ N), it is possible to uniformly
sample ans(Q) with expected time Õ(wc(CH (⩽N))

max(1,|ans(Q)|) · |X| · log(|D|) · |E|).

Proof. Given Q with active domain D, we let b = ⌈log(|D|)⌉ and we are going to sample
Q̃b. As we have seen in Section 4.2, ans(Q) and ans(Q̃b) can be considered to be the same
set. Moreover Q̃b belongs to a class C̃b defined by cardinality constraints where wc(C̃b) ⩽
wc(CH(⩽ N)). Therefore, there is a Q̃b-estimator agm_upb(·). Using the data structure
described in Section 3 to represent R[τ] or a trie structure annotated with cardinalities
to represent every relation of Q, we can compute

∣∣Rk[τ ∪ ⟨xi+1 ← d⟩]
∣∣ in constant time.

Therefore, computing agm_upb(·) takes time Õ(|E|). Finally, by definition of agm_upb(·),
we have agm_upb(⟨⟩) ⩽ wc(C̃b). This allows us to apply Theorem 14 and yields the claimed
complexity. ◀

16 A Simple Algorithm for WCO Join and Sampling

Polymatroid. Let CH(DC) be a class of join queries defined for hypergraph H = (X, E) (with
X = {x1, . . . , xn} and E = {e1, . . . , em}) and acyclic degree constraints (Aδ, Bδ, Nδ)δ∈DC .
The polymatroid bound is a generalisation of the AGM bound that can be formulated on
acyclic degree constraints with the solutions of the following linear program:

min
∑

δ∈DC

ωδ log(Nδ) s.t.,∀x ∈ X,
∑

δ:x∈Bδ\Aδ

ωδ ⩾ 1 . (2)

For this program to have a solution, we need to assume that for every x ∈ X, there is at
least one constraint δ such that x ∈ Bδ \Aδ. As stated in Section 2, to ensure that acyclic
degree constraints induce a finite worst case, we generally assume that

⋃
E = X and that for

each e ∈ E, we have at least one cardinality constraint (∅, e, Ne). We assume this condition
to be met here. Now for any solution ωδ of the previous program, it has been shown [9] that
wc(CH(DC)) is

∏
δ∈DC Nωδ

δ up to some polylogarithmic factors.
Let us fix a solution ω of (2), and an order (x1, . . . , xn) on X compatible with DC. For

a query Q in CH(DC) and δ = (Aδ, Bδ, Nδ) in DC, we let Rδ to be a relation in Q that
respects δ and such that XRδ

= eδ (in other words, the relation guards this constraint). To
lighten notations, we denote by R′

δ = Rδ|Bδ
, since the degree constraint is applied to this

projection of Rδ and not Rδ itself. Moreover, given τ in DXi , we let:

Nδ[τ] =

0 if τ is inconsistent with Q

Nδ if Aδ \Xi ̸= ∅
|R′

δ[τ]| otherwise

We now take as Q-estimator pm_upb(τ) as follows:

pm_upb(τ) =
∏

δ∈DC

Nδ[τ]ωδ .

When τ is inconsistent with Q, by definition of Nδ[τ], pm_upb(τ) = 0. If τ is in ans(Q),
since for every δ, Aδ \Xn = ∅, Nδ[τ] = |R′

j [τ]| = 1 and therefore, pm_upb(τ) = 1. Proving
that pm_upb is a Q-estimator finally requires to show that for every τ that is consistent
with Q, we have pm_upb(τ) ⩾

∑
d∈D pm_upb(τ ∪ ⟨xi+1 ← d⟩).

We let K = {δ ∈ DC | xi+1 ∈ Bδ \Aδ} and L = DC \K. As stated before, for the linear
program to have a solution, we assumed K ̸= ∅. We make two observations:

1. For δ ∈ K, Nδ[τ] = |R′
δ[τ]| and for any d ∈ D, Nδ[τ ∪ ⟨xi+1 ← d⟩] = |R′

δ[τ ∪ ⟨xi+1 ← d⟩]|,
2. For d ∈ D, Nδ[τ ∪ ⟨xi+1 ← d⟩] ⩽ Nδ[τ].

The first observation follows directly from the facts that xi+1 ∈ Bδ \Aδ by definition of
K and that x1, . . . , xn is compatible with DC which implies that for any δ ∈ K, Aδ ⊆ Xi.
For the second inequality, first assume Aδ \ Xi+1 ̸= ∅. Then both sides are equal to Nδ.
Now assume Aδ \ Xi+1 = ∅. Then Nδ[τ ∪ ⟨xi+1 ← d⟩] = |R′

δ[τ ∪ ⟨xi+1 ← d⟩]| and either
Nδ[τ] = |R′

δ[τ]|, then the equality is clear, or Nδ[τ] = Nδ and the inequality follows from the
fact that Rδ respects δ by definition. Then we obtain:∑

d∈D

pm_upb(τ ∪ ⟨xi+1 ← d⟩) =
∑
d∈D

∏
δ∈K

|R′
δ[τ ∪ ⟨xi+1 ← d⟩]|ωδ ×

∏
δ∈L

Nδ[τ ∪ ⟨xi+1 ← d⟩]ωδ

⩽
∑
d∈D

∏
δ∈K

|R′
δ[τ ∪ ⟨xi+1 ← d⟩]|ωδ ×

∏
δ∈L

Nδ[τ]ωδ

=
∏
δ∈L

Nδ[τ]ωδ ×
∑
d∈D

∏
δ∈K

|R′
δ[τ ∪ ⟨xi+1 ← d⟩]|ωδ

F. Capelli, O. Irwin and S. Salvati 17

We hence get
∑

d∈D pm_upb(τ ∪ ⟨xi+1 ← d⟩) ⩽ pm_upb(τ) by showing that:

∑
d∈D

∏
δ∈K

∣∣R′
δ[τ∪⟨xi+1 ← d⟩]

∣∣ωδ ⩽
∏
δ∈K

(∑
d∈D

∣∣R′
δ[τ ∪ ⟨xi+1 ← d⟩

∣∣)ωδ

=
∏
δ∈K

R′
δ[τ]ωδ =

∏
δ∈K

Nδ[τ]ωδ .

The above inequality is a consequence of Lemma 15. Indeed,
∑

δ∈K ωδ ⩾ 1 by definition
of K and because of the constraints ωδ verifies in the linear program. We then conclude with
this result, obtained exactly in the same way as Theorem 16.

▶ Theorem 17. Given CH(DC) a class of join queries defined for hypergraph H = (X, E)
and acyclic degree constraints DC, for every query Q in CH(DC), it is possible to uniformly
sample ans(Q) with expected time O(wc(CH (DC))

max(1,|ans(Q)|) · |X| · log(|D|) · |E|).

18 A Simple Algorithm for WCO Join and Sampling

References
1 Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for Relational

Joins. SIAM Journal on Computing, 42(4):1737–1767, 2013. doi:10.1137/110859440.
2 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in

relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, STOC ’77, pages 77–90, New York, NY, USA, 1977. ACM. doi:10.1145/800105.
803397.

3 Zbigniew J Czech, George Havas, and Bohdan S Majewski. Perfect hashing. Theoretical
Computer Science, 182(1-2):1–143, 1997.

4 Shiyuan Deng, Shangqi Lu, and Yufei Tao. On Join Sampling and the Hardness of Com-
binatorial Output-Sensitive Join Algorithms. In Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 99–111. ACM, 2023.
doi:10.1145/3584372.3588666.

5 Ehud Friedgut. Hypergraphs, entropy, and inequalities. The American Mathematical Monthly,
111(9):749–760, 2004. URL: http://www.jstor.org/stable/4145187.

6 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. ACM
Transactions on Algorithms, 11(1):1–20, 2014. doi:10.1145/2636918.

7 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to do with one another? In Emanuel Sallinger,
Jan Van den Bussche, and Floris Geerts, editors, Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017, pages 429–444. ACM, 2017. doi:10.1145/3034786.3056105.

8 Kyoungmin Kim, Jaehyun Ha, George Fletcher, and Wook-Shin Han. Guaranteeing the
Õ(AGM/OUT) Runtime for Uniform Sampling and Size Estimation over Joins. In Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 113–125. ACM, 2023. doi:10.1145/3584372.3588676.

9 Hung Q. Ngo. Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 111–124. ACM, 2018. doi:10.1145/3196959.3196990.

10 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms:
[extended abstract]. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, edit-
ors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 37–48. ACM,
2012.

11 Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):1–40, 2018.

12 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013. doi:10.1145/2590989.2590991.

13 Paul R. Rosenbaum. Sampling the Leaves of a Tree with Equal Probabilities. Journal of
the American Statistical Association, 88(424):1455–1457, 1993. doi:10.1080/01621459.1993.
10476433.

14 Dan Suciu. Applications of information inequalities to database theory problems. In 38th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2023, Boston, MA, USA,
June 26-29, 2023, pages 1–30. IEEE, 2023. doi:10.1109/LICS56636.2023.10175769.

15 Todd Veldhuizen. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. Proceedings
of the 17th International Conference on Database Theory (ICDT), Athens, Greece, 2014,
17(13):96–106, 2014. doi:10.5441/002/ICDT.2014.13.

16 Ru Wang and Yufei Tao. Join Sampling Under Acyclic Degree Constraints and (Cyclic)
Subgraph Sampling. In Graham Cormode and Michael Shekelyan, editors, 27th International
Conference on Database Theory (ICDT 2024), volume 290 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 23:1–23:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –

https://doi.org/10.1137/110859440
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/3584372.3588666
http://www.jstor.org/stable/4145187
https://doi.org/10.1145/2636918
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/3584372.3588676
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1080/01621459.1993.10476433
https://doi.org/10.1080/01621459.1993.10476433
https://doi.org/10.1109/LICS56636.2023.10175769
https://doi.org/10.5441/002/ICDT.2014.13

F. Capelli, O. Irwin and S. Salvati 19

Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.ICDT.2024.23, doi:10.4230/LIPIcs.ICDT.2024.23.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.23
https://doi.org/10.4230/LIPIcs.ICDT.2024.23

	1 Introduction
	2 Preliminaries
	3 Branch and bound algorithm for join queries
	4 Worstcase optimality
	4.1 Prefix closed classes
	4.2 Binarisation

	5 Uniform Sampling
	5.1 Efficiently sampling the leaves of a tree
	5.2 Applying alg:rosenbaum to join queries
	5.3 Tree-superadditive worst-case bounds

