
HAL Id: hal-04707344
https://hal.science/hal-04707344v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protection against Source Inference Attacks in
Federated Learning using Unary Encoding and Shuffling

Andreas Athanasiou, Kangsoo Jung, Catuscia Palamidessi

To cite this version:
Andreas Athanasiou, Kangsoo Jung, Catuscia Palamidessi. Protection against Source Inference At-
tacks in Federated Learning using Unary Encoding and Shuffling. ACM CCS 2024, ACM, Oct 2024,
Salt Lake City, United States. �10.1145/3658644.3691411�. �hal-04707344�

https://hal.science/hal-04707344v1
https://hal.archives-ouvertes.fr


Poster: Protection against Source Inference Attacks in Federated
Learning using Unary Encoding and Shuffling

Andreas Athanasiou
∗

andreas.athanasiou@inria.fr

INRIA and LIX, IPP

Palaiseau, France

Kangsoo Jung
∗

gangsoo.zeong@inria.fr

INRIA and LIX, IPP

Palaiseau, France

Catuscia Palamidessi

catuscia@lix.polytechnique.fr

INRIA and LIX, IPP

Palaiseau, France

Abstract
Federated Learning (FL) enables clients to train a joint model with-

out disclosing their local data. Instead, they share their local model

updates with a central server that moderates the process and cre-

ates a joint model. However, FL is susceptible to a series of privacy

attacks. Recently, the source inference attack (SIA) has been pro-

posed where an honest-but-curious central server tries to identify

exactly which client owns a specific data record.

In this work, we propose a defense against SIAs by using a trusted

shuffler, without compromising the accuracy of the joint model. We

employ a combination of unary encoding with shuffling, which can

effectively blend all clients’ model updates, preventing the central

server from inferring information about each client’s model update

separately. In order to address the increased communication cost

of unary encoding we employ quantization. Our preliminary exper-

iments show promising results; the proposed mechanism notably

decreases the accuracy of SIAs without compromising the accuracy

of the joint model.

CCS Concepts
• Security and privacy; • Computing methodologies→Ma-
chine learning;

Keywords
Federated Learning, Source Inference Attack, Unary Encoding, Shuf-

fling

ACM Reference Format:
Andreas Athanasiou

∗
, Kangsoo Jung

∗
, and Catuscia Palamidessi. 2024. Poster:

Protection against Source Inference Attacks in Federated Learning using

Unary Encoding and Shuffling. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3658644.3691411

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3691411

1 Introduction
In FL [7], each client independently trains a model using their

own data and then sends the model update to a central server.

The server aggregates these model updates to create a new joint

model, which is then distributed back to the clients. The process

continues iteratively for multiple rounds, usually until the model

converges. However, in a naive FL architecture, the central server

can directly observe the clients’ reported model updates. This may

lead to various privacy attacks. For example, a colluded server

could launch a membership inference attack (MIA) [4] in order to

find whether a specific data point was included in any client’s

training dataset.

In this paper, we focus on source inference attacks (SIAs) [5],
which aim to identify exactly which client owns a data point, in a

setting where the central server is honest-but-curious. If successful,

a SIA can lead to a severe violation of privacy; for instance, consider

a scenario where several hospitals jointly build a medical model

using patients’ data to treat a disease. If an adversary identifies the

hospital that owns a particular patient’s record, and that hospital

mostly treats COVID-19 patients, the attacker might infer that the

patient suffers from COVID-19.

To the best of our knowledge, no effective defense to prevent

SIAs has been proposed in the literature. A typical approach in

privacy-preserving FL is to use local differential privacy (LDP) [8],

where clients perturb their reported model updates by adding noise.

However, this approach is not very suitable against a SIA, as it has

been shown that the amount of noise necessary to prevent this kind

of attacks would significantly deteriorate the accuracy of the joint

model [5].

Contribution. In this work, our goal is to design a defense against
SIAs that maintains high model accuracy. To this aim, we pro-

pose Unary-Quant; a mechanism involving a trusted shuffler which

blends the clients’ model updates before releasing them to the cen-

tral server. The characteristic of this mechanism is that it does not

require the addition of noise. Instead, it uses a unary encoding

which, combined with shuffling, significantly reduces the amount

of information available to the central server. To counter the high

communication cost of unary encoding, Unary-Quant uses gradient

quantization.

We experimentally evaluate the model accuracy of Unary-Quant

on the MNIST dataset. The results show that almost no accuracy is

*
Primary authors with equal contribution.

© A. Athanasiou | ACM 2024. This is the author’s version of the work. It is posted

here for your personal use. Not for redistribution. The definitive Version of Record

was published in Proceedings of the 2024 ACM SIGSAC Conference on Computer and

Communications Security, https://doi.org/10.1145/3658644.3691411

https://orcid.org/0009-0000-3251-2148
https://orcid.org/0000-0003-2070-1050
https://orcid.org/0000-0003-4597-7002
https://doi.org/10.1145/3658644.3691411
https://doi.org/10.1145/3658644.3691411


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Andreas Athanasiou, Kangsoo Jung, & Catuscia Palamidessi

lost, i.e. the model accuracy is close to that of standard FL. Further-

more, we conduct experiments on SIAs. The results indicate that

our proposed defense can significantly decrease the effectiveness

of a SIA, in the sense that the accuracy of a source inference is

reduced to nearly the level of a random guess.

2 Preliminaries
Federated Learning [7]. Federated learning aims to train a global

ML model across 𝑁 clients, each possessing its own local dataset

D𝑖 . First, each client 𝑖 updates the global model𝑊 using its local

data D𝑖 to generate an updated model𝑤𝑖 . Then, the central server

aggregates the local updates from all clients to form the updated

global model:𝑊 ← 1

𝑁

∑𝑁
𝑖=1𝑤𝑖 (FedAvg).

Quantization. In FL, to reduce the communication cost, quanti-
zation can be used to compress the model updates:

Definition 1 ([6]). Let ℎ = (ℎ1, . . . , ℎ𝜆) be the vector represen-
tation of a model parameter 𝑝 . Let ℎmax = max𝑗 (ℎ 𝑗 ) and ℎmin =

min𝑗 (ℎ 𝑗 ). The compressed version (unbiased estimator) of ℎ, denoted

by ˜ℎ, is: ˜ℎ = ℎmax w.p.
ℎ 𝑗−ℎmin
ℎmax−ℎmin

and ˜ℎ = ℎmin w.p.
ℎmax−ℎ 𝑗

ℎmax−ℎmin
.

Trusted Shuffling. In this work, we assume the presence of a

trusted shuffler which has already been studied as a mean to pro-

tect privacy (for instance in the shufflemodel of Differential Privacy

(DP) [1]). Assuming the existence of a trusted shuffler can be con-

sidered as a smaller trust assumption compared to assuming that

the central server is trusted since shuffling is a primitive operation

that can be performed distributively (using MixNets or Multi-Party

Computation) or using trusted hardware [2].

3 Protection against the SIA
First, let us clarify why just using standard (one-message) shuffling

is not enough to efficiently protect against SIAs. While shuffling

does initially break the link between the client and themodel update,

in FL the adversary may be able to re-identify each client. That is

because the adversary might have some statistics over the clients’

training datasets, which is often assumed in the literature of FL [4].

Hence he can use these statistics to remap the data owner and the

reported model update, canceling the effect of the shuffler.

To overcome this obstacle and effectively blend all model updates,

a more sophisticated approach to shuffling is necessary.

3.1 A first approach using Unary Encoding
To begin with, let us set aside the communication cost and discuss

a simplified variant of Unary-Quant.

The core idea is, informally, that releasing a shuffled bit vector is

privacy-wise equivalent to releasing its sum [2]. For example, take

a bit vector of length 4 with 2 ones and 2 zeros. The statements:

"the sum of the vector is 2" and "the values of the vector (after shuf-
fling) are {1, 0, 1, 0}", provide the adversary with the same amount

of information. Observe that this applies only to bit vectors and

not, for example, to integer vectors. However, in reality, most mod-

els involve parameters with values in R, which are then typically

bounded by clipping. In this work we assume w.l.o.g. that they are

clipped in [−1, 1] and introduce an encoding step (Algorithm 1)

based on [2].

Algorithm 1: 𝐸 (𝑥, 𝑟 ): Unary encoding of 𝑥 [2]

Input :𝑥 ∈ R where −1 ≤ 𝑥 ≤ 1, 𝑟 ∈ N
Output : (𝑏1, . . . , 𝑏𝑟 ) ∈ {0, 1}𝑟
if 𝑥 = 0 then

Return {0}𝑟

𝑥 ′ ← (1 + 𝑥)/2;
Let 𝜇 ← ⌈𝑥 ′ · 𝑟⌉ and 𝑞 ← 𝑥 ′ · 𝑟 − 𝜇 + 1
for 𝑗 = 1, . . . , 𝑟 do

b𝑗 =


1 if 𝑗 < 𝜇

Ber(𝑞) if 𝑗 = 𝜇

0 if 𝑗 > 𝜇

Return (𝑏1, . . . , 𝑏𝑟 )

Now consider a mechanism as follows: every client trains their

model and encodes every parameter 𝑝 of the model update to a

bit vector 𝑏 of size 𝑟 using 𝐸 (𝑝, 𝑟 ). Then, every 𝑏 is sent to the

shuffler. Note that each message should also include some metadata

describing what 𝑏 represents (for example its layer number, if CNN

is used). After all these bit vectors are shuffled, they are released

to the central server which can aggregate them and form the joint

model.

Observe that the released output of the shuffler completely pre-

vents the adversary from distinguishing each local model and there-

fore performing a SIA. This is because only a shuffled vector of bits

is available to the adversary. The only information from this vector

that is useful to her is its sum, which only allows her to construct

the joint aggregated model.

The Achilles’ heel of this approach is its communication com-

plexity. For example, if a CNN is used with 𝑛 layers and each layer

𝑖 has 𝜆𝑖 parameters, then each client has to send 𝑟 · ∑𝑛
𝑖=1 𝜆𝑖 bits.

Despite the fact that this solution may still be applicable to the

so-called cross-silo setting of FL, where each client typically has

increased communication capabilities, we are about to explore in

the following section a variant that decreases the cost while still

offering sufficient protection.

3.2 Unary-Quant
Quantization can efficiently compress a model update, and since

the result is an unbiased estimator of the initial value the impact

on the model’s accuracy is expected to be negligible.

The core idea of Unary-Quant is to use the expensive approach

of Section 3.1 to transmit only the first 𝑘 decimal places of each

parameter of the model update; the rest can be transmitted through

the cheaper (in terms of communication cost) quantization. In other

words, we decompose each parameter 𝑝 into two segments: 𝑝𝑎 and

𝑝𝑏 s.t. 𝑝𝑎 contains the first 𝑘 decimal places of the value and 𝑝𝑏

contains the rest. Then unary encoding is used in the part 𝑝𝑎 and

quantization is used in the part 𝑝𝑏 . The central server can combine

the two parts, after they are shuffled, to form the joint model. Al-

gorithm 2 provides an outline of Unary-Quant and Algorithm 3

shows how it is used in FL.

In essence, the adversary can only use the 𝑝𝑏 segment to per-

form a SIA. Moreover, re-identifying each client only by her 𝑝𝑏 is

challenging and requires arguably strong assumptions (for example



Poster: Protection against Source Inference Attacks in Federated Learning using Unary Encoding and Shuffling CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

the adversary knowing the clients’ corresponding ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 ).

Note that in Algorithm 2, we applied 1-bit quantization, but it can

be extended to 𝑛-bit quantization by dividing the range ℎ𝑚𝑖𝑛 and

ℎ𝑚𝑎𝑥 into 2
𝑛
equal intervals [6].

Algorithm 2: Unary-Quant

Input :𝑥 𝑗 ∈ 𝑤 𝑗

𝑡+1, 𝑟 ∈ N, 𝑘 ∈ N, where 𝑥 𝑗 has 𝜆
parameters and each parameter 𝑝 is −1 ≤ 𝑝 ≤ 1

Output :𝑈 = (𝑢1, . . . , 𝑢𝜆), 𝐻 = (ℎ1, . . . , ℎ𝜆)
ℎ𝑚𝑎𝑥 := −1; ℎ𝑚𝑖𝑛 := 1

for each parameter 𝑝𝑖 = 𝑝1 . . . 𝑝𝜆 of 𝑥 𝑗 do
// Split 𝑝𝑖 in parts

𝑝𝑎
𝑖
:= 𝑖𝑛𝑡 (𝑝𝑖 ) + ⌊10

𝑘 𝑓 𝑟𝑎𝑐 (𝑝𝑖 ) ⌋
10

𝑘

𝑝𝑏
𝑖
:= 𝑝𝑖 − 𝑝𝑎𝑖

// Unary encoding of 𝑝𝑎
𝑖

𝑈𝑖 ← 𝐸 (𝑝𝑎
𝑖
, 𝑟 )

// Calculate ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛

if 𝑝𝑏
𝑖
> ℎ𝑚𝑎𝑥 then

ℎmax=𝑝
𝑏
𝑖

if 𝑝𝑏
𝑖
< ℎ𝑚𝑖𝑛 then

ℎmin=𝑝
𝑏
𝑖

// Quantization

for each 𝑝𝑏
𝑖
= 𝑝𝑏

1
, . . . , 𝑝𝑏

𝜆
do

𝐻𝑖 ← Quantization(𝑝𝑏
𝑖
,ℎmax,ℎmin)

Return𝑈 , 𝐻

Algorithm 3: Federated Learning

Input :Number of rounds 𝑇 , number of clients 𝑁

Output :Final global model𝑤𝑅

Initialize global model𝑤0

for each round 𝑡 = 1, 2, . . . ,𝑇 do
// Server-side
Randomly select a subset of clients 𝑆𝑡 of size 𝑛 ≤ 𝑁

BroadcastGlobalModel(𝑆𝑡 ,𝑊𝑡 )

// Client-side

for 𝑗 ∈ 𝑆𝑡 in parallel do
𝑤

𝑗

𝑡+1 ←𝑊𝑡 − 𝜂∇ℓ (𝑊𝑡 ;D𝑘 )
𝑈 𝑗 , 𝐻 𝑗

= Unary-Quant(𝑤
𝑗

𝑡+1, 𝑟 , 𝑘)
Send𝑈 𝑗 , 𝐻 𝑗

to shuffler

// Shuffler-side

Concatenate all𝑈 𝑗
and 𝐻 𝑗

to a single vector𝑈 and 𝐻

Send Shuffle(𝑈 ) and Shuffle(𝐻 ) to the server

// Server-side
𝑊𝑡+1 ← FedAvg(𝑈 ) + FedAvg(𝐻 )

Return :Final global model𝑤𝑅

4 Preliminary Evaluation
In this section, we conduct a preliminary experiment to measure

the effectiveness of Unary-Quant, in terms of both model accuracy

and preventing SIAs, comparing it to the baseline of standard FL (i.e.

without any defensemechanism).We use theMNIST dataset with 10

clients and use a Dirichlet distribution (setting its hyperparameter

𝛼 to 0.1) to simulate the heterogeneity of the training data. We use

a CNN model and the total number of model parameters is 421642.

First we measure the model loss using Unary-Quant with 𝑘 = 2

and 𝑘 = 4 while setting 𝑟 = 10
𝑘
; Figure 1 shows that in both cases

themodel loss quickly approaches that of standard FL as the number

of rounds increase. Table 1 shows that Unary-Quant achieves model

accuracy nearly identical to standard FL while effectively protecting

against SIAs: reducing their accuracy from 44.5% to 14.7%. Recall

that the baseline of random guess is 10% (assumed to be uniform

over all clients).

Method Model Accuracy SIA accuracy

Standard FL 98.8 44.5

Unary-Quant (𝑘 = 3, 𝑟 = 10
3
) 98.1 14.7

Table 1: Model and SIA accuracy after 15 rounds (percentage)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
M

od
el

L
os

s
Unary-Quant (k = 2)

Unary-Quant (k = 4)

Standard FL

Figure 1: Model Loss

5 Discussion
The benefit of our approach is that it is primarily based on en-

coding, allowing for direct integration with other methods in FL

that already use a trusted shuffler (e.g. the shuffle model of DP

[3]). Our experiments indicate that Unary-Quant achieves model

accuracy similar to that of standard FL while notably protecting

against SIAs. More experiments should follow, measuring its ef-

fectiveness across multiple datasets with varying parameters (e.g.

degree of heterogeneity, number of clients). Finally it is vital to

explore additional gradient compression techniques as to further

reduce the communication cost.

Acknowledgments
The work of Andreas Athanasiou was supported by the project

CRYPTECS, funded by the ANR (project number ANR-20-CYAL-

0006) and by the BMBF (project number 16KIS1439). The work of

Kangsoo Jung was supported by the project ELSA, funded by the

Horizon Europe Framework (project number 101070617). The work



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Andreas Athanasiou, Kangsoo Jung, & Catuscia Palamidessi

of Catuscia Palamidessi was supported by the project HYPATIA,

funded by the ERC (grant agreement number 835294).

References
[1] A. Bittau, Ú. Erlingsson, and P. Maniatis et al. 2017. Prochlo: Strong Privacy for

Analytics in the Crowd. In SOSP. ACM.

[2] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. 2019. Distributed Differ-

ential Privacy via Shuffling. In EUROCRYPT. Springer.
[3] A. M. Girgis et al. 2021. Shuffled Model of Federated Learning: Privacy, Accuracy

and Communication Trade-Offs. IEEE J. Sel. Areas Inf. Theory 2, 1 (2021), 464–478.

[4] Reza Shokri et al. 2017. Membership Inference Attacks Against Machine Learning

Models. In 2017 IEEE SP. 3–18. https://doi.org/10.1109/SP.2017.41

[5] H. Hu, Z. Salcic, L. Sun, G. Dobbie, and X. Zhang. 2021. Source Inference Attacks

in Federated Learning. In ICDM. IEEE.

[6] J. Konečný and H. B. McMahan et al. 2016. Federated Learning: Strategies for

Improving Communication Efficiency. CoRR abs/1610.05492 (2016).

[7] H. B. McMahan and E. et al. Moore. 2017. Communication-Efficient Learning of

Deep Networks from Decentralized Data. In AIST. PMLR.

[8] Y. Miao, R. Xie, X. Li, X. Liu, Z. Ma, and R. H. Deng. 2022. Compressed Federated

Learning Based on Adaptive Local Differential Privacy. In ACSAC. ACM.

https://doi.org/10.1109/SP.2017.41

	Abstract
	1 Introduction
	2 Preliminaries
	3 Protection against the SIA
	3.1 A first approach using Unary Encoding
	3.2 Unary-Quant

	4 Preliminary Evaluation
	5 Discussion
	Acknowledgments
	References

