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Abstract8

Simple Temporal Networks with Uncertainty (STNU) are a well-known constraint-based model9

expressing sets of activities (e.g., a schedule or a plan) related by temporal constraints, each having10

possible durations in the form of convex intervals. Uncertainty comes from some of these durations11

being contingent, i.e., the agent executing the plan cannot decide the actual duration at execution12

time. To check that execution will satisfy all the constraints, three levels of controllability exist:13

the Strong and Dynamic Controllability (SC/DC) has proven both useful in practice and provable14

in polynomial time, while Weak Controllability (WC) is co-NP-complete and has been left aside.15

Moreover, controllability checking algorithms are propagation strategies, which have the usual16

drawback, in case of failure, to prove unable to locate the contingents that explain the source of17

non-controllability. This paper has three contributions: (1) it substantiates the usefulness of WC in18

multi-agent systems (MAS) where another agent controls a contingent, and agents agree just before19

execution on the durations; (2) it provides a new WC-checking algorithm whose performance in20

practice depends on the network structure and is faster in loosely connected ones; (3) it provides21

the failing cycles in the network that explain non-WC.22
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1 Introduction and Related Work26

Temporal Constraint Satisfaction Problems (TCSP) are constraint-based problem formulations27

that allow to represent and reason on temporal constraints. They are used in a lot of domains,28

such as planning and scheduling (on which we will focus), supervision of dynamic systems, or29

workflow design. They are based on a graphical model, the reason why they are usually called30

Temporal Constraint Networks (TCN)[5]: variables/nodes are time-points for which one shall31

assign a timestamp. Constraints/edges express sets of possible durations relating them. A32

key issue is the ability to check the consistency of the whole network. The simplest class,33

called the Simple Temporal Network (STN), arises when they have only binary constraints34

with only convex intervals of values (no disjunctions). One of the main strengths of this35

restricted, but often sufficient in practice, model is that consistency checking is made through36

a polynomial propagation algorithm (the Floyd-Warhsall reduction) and provides a complete37

minimal network in which all inconsistent values are removed.38

An STN with Uncertainty (STNU ) is an extension in which one distinguishes a subset of39

constraints whose effective duration is not assigned but observed (uncontrollable durations).40

This is useful for addressing realistic dynamic and stochastic domains where such durations41

are usually set by the environment.42

In STNUs, the notion of temporal consistency has been redefined in the form of43

controllability: an STNU is controllable if there exists a strategy for executing the schedule,44
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2 A more efficient and informed algorithm to check Weak Controllability

whatever the values are taken by the contingent durations. In [14], the authors introduce45

three levels of controllability that express how and when the uncertainties are resolved:46

the Weak Controllability (WC) proves that a solution exists for any possible combination47

of contingent values. Which requires that some ’oracle’ provides those values before the48

timing of controllable time-points is decided; Dynamic Controllability (DC) assumes that at49

execution time, a strategy can be built based on past observations only thus, whatever the50

contingent durations still to be observed; Strong Controllability (SC) is more demanding51

as it enforces that there is one unique assignment of controllable timepoints values, which52

defines a static control strategy that works whatever the contingent durations will be at53

execution time. WC has often appeared unrealistic in dynamic applications that assume full54

progressive observability at execution time, where DC looks more relevant and have received55

much attention in previous works. In contrast, SC fits perfectly application domains with56

partial or non observability, or when some strict commitment must be made on the execution57

schedule timing for some client.58

Previous works prove that SC and DC can be resolved with specifically designed59

propagation-based algorithms that run in polynomial time [11, 3, 14]. While WC is a60

co-NP-complete problem [12], and only exponential algorithms exist to check WC [4, 14].61

This is another reason why WC has been disregarded [2, 14].62

This paper tackles Weak Controllability by first exhibiting its relevance in several contexts63

(e.g., multi-agent task management) and providing a more efficient algorithm for realistic64

networks, i.e., loosely connected networks. Contrary to the complete propagation algorithms65

proposed for SC and DC, our algorithm maintains and reasons only on the input constraints,66

which form network paths. As in any graph, such paths join and form cycles. We prove that67

it is possible to check the global Weak controllability by locally checking the elementary68

cycles of an STNU. This way, the algorithm can also diagnose the source of uncontrollability69

of a non-WC STNU by detecting the set of constraints (here, cycles) that make the STNU70

not Weakly controllable. This explainability issue was recently addressed and is important71

to repair non-controllable STNUs [9, 2, 1, 13].72

The paper is organized as follows: Section 2 first recalls the necessary background on73

STNU. Section 3 then discusses the usefulness in practical applications of WC. Then, we74

prove in Section 4 how local controllability on cycles is equivalent to global WC. Next,75

Section 5 will present how to locally check WC, and Section 6 will present the new algorithm76

for globally checking WC. Some experimental evaluation will be displayed in Section 7 before77

concluding our contribution with some prospects.78

2 Background79

A Simple Temporal Network (STN ) is a pair, (V , E), where V is a set of time-points vi80

representing event occurrence times, and E a set of temporal constraints between these time-81

points, in the form of convex intervals of possible durations [5], in the form vj − vi ∈ [lij , uij ],82

with lower bounds lij ∈ R∪ {−∞} and upper bounds uij ∈ R∪ {+∞}. Interestingly enough,83

this model encompasses the qualitative precedence constraint, since vi precedes vj , noted84

vi ⪯ vj , iff lij ≥ 0. A reference time-point v0 is usually added to V, which is the ’origin of85

time’, depending on the application (might be, e.g., the current day at 0:00). The goal is to86

assign values to time-points such that all constraints are satisfied, i.e., to assign a value to87

each constraint in its interval domain.88

An STN with Uncertainty (STNU ) is an extension in which one distinguishes a subset of89

constraints whose values are parameters that cannot be assigned but will be observed [14].90
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▶ Definition 1. (STNU) An STNU is a tuple (V, E, C) with:91

V a set of time-points {v0, v1, . . . , vn}, partitioned into controllable (Vc) and uncontrollable92

(Vu) and where v0 is the reference time-point: ∀i, v0 ⪯ vi;93

E a set of requirement constraints {e1, . . . , e|E|}, where each ek relates two time-points94

ek = vj − vi ∈ [lij , uij ] with, vi, vj ∈ V .95

C a set of contingent constraints {c1, . . . , c|C|}, where each ck relates two time-points96

ck = vj − vi ∈ [lij , uij ] with, vi ∈ Vc, vj ∈ Vu, and necessarily vi ⪯ vj : 0 ≤ lij ≤ uij .97

Intuitively, controllable time points (Vc) are moments in time to be decided by the scheduling98

agent, which is trying to satisfy all the requirement constraints (E) under any possible99

instantiation of the contingent constraints (C). Moreover, having a contingent duration100

between two unordered time-points is semantically impossible. Figure 1a is the graphical101

representation of an STNU.102

In addition, an STN (and hence an STNU too) has an equivalent distance graph103

representation [5, 7]. Each constraint of the form [l, u] between vi and vj would be represented104

as vi
[l,u]−−→ vj in the STN, or equivalently through two corresponding edges in its distance105

graph: vi
u−→ vj and vj

−l−→ vi.106

107

In STNUs, consistency has been redefined through three levels of controllability, which108

we will recall hereafter before focusing on one of them, namely the Weak controllability.109

▶ Definition 2. (Schedule) A schedule δ of an STNU X is the assignment of one value for110

each controllable time-point δ = {δ(v) | v ∈ Vc}111

▶ Definition 3. (Situation and Projection) Given an STNU X , the situations of X is
a set of tuples Ω defined as the cartesian product of contingent domains:

Ω = ×
c ∈ C

[lc, uc]

A situation is an element ω of Ω and we write ω(c) with c ∈ C to indicate the element in112

ω associated with c in the cross product. A projection Xω = (V, E ∪ Cω) of X is an STN113

where Cω = {[ω(c), ω(c)] | c ∈ C}. Last, a schedule δω which satisfies all the constraints in114

Xω is called a solution of Xω.115

Intuitively, the set of situations defines the space of uncertainty, i.e., the possible values of116

contingent constraints; a projection substitutes all contingent links with a singleton, forcing117

its duration to the value appearing in ω. Now, a network shall be deemed controllable if it118

is possible to schedule the controllable time points to satisfy all requirement constraints in119

any possible projection. But that depends on how and when the contingent durations are120

observed/known by the execution supervisor.121

▶ Definition 4. (Weak Controllability (WC)) An STNU X is Weakly controllable iff122

∀ω ∈ Ω, ∃δω such that δω is a solution of Xω.123

This definition implies that an ’oracle’ communicates contingents’ durations to the124

scheduler before execution time, which requires all projections to be independently consistent.125

We provide the two other controllability levels only for the sake of completeness, though126

they will not be addressed in this paper. Dynamic controllability (DC) demands that the127

assignment of a controllable time-point only depends on past observations, and Strong128

controllability (SC) demands a unique schedule that is totally independent from any129

observation [14].130
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▶ Definition 5. (Dynamic Controllability (DC)) An STNU X is Dynamically controllable131

iff it is Weakly controllable and ∀vi ∈ Vc, ∀ω, ω′ ∈ Ω, ω⪯vi = ω′⪯vi =⇒ δω(vi) = δ′
ω(vi)132

where ω⪯v = {ωk ∈ ω s.t. end(ck) ⪯ v} is the part of the situation ω which contingent133

constraints ending time-points precede v.134

▶ Definition 6. (Strong Controllability (SC)) An STNU X is Strongly controllable135

iff ∃ δ such that ∀ω ∈ Ω, δ is a solution of Xω.136

As said before, polynomial-time propagation-based checking algorithms exist for SC137

and DC [14][11][3]. But not for WC checking, which is co-NP-complete [12]. The original138

algorithm to check WC checks the consistency of all 2|C| STNs obtained by replacing the139

contingents with one of their bounds (upper or lower), which is an exponential algorithm.140

This is enough to check WC as it has been proven in [14] that considering only the bounds141

of contingents is enough to verify any level of controllability in STNUs.142

3 Relevance of Weak Controllability143

In this section, we will argue that WC may be more relevant than DC and SC for some144

applications and, thus, deserves to be investigated.145

In classical planning and scheduling applications, uncertainties come from external causes;146

they are somehow ’controlled by Nature’ and can only be observed at their time of occurrence.147

For instance, the duration of a truck ride to deliver some goods depends on exogenous traffic148

conditions that no one has control over. There, the real duration will be observed only149

at execution time, which calls for DC enforcement. However, in many domains (logistics,150

transport, services), one may have a first strategic phase that builds a plan without assigning151

all real resources; a more precise tactical version will do that later. For instance, in a152

health service or construction site, one needs a weekly plan for visiting patient rooms or153

for construction tasks. Still, the assigned teams (number of people, skills) are unknown,154

resulting in flexible and large enough intervals of possible durations. The precise assignment155

is only known each day for the next day, which allows for a more precise plan just before156

execution, which is exactly the definition of WC.157

Moreover, uncontrollable durations also appear in multi-agent systems, when some acticity158

duration might be controlled by another agent instead of Nature. Thus, some tasks might be159

controllable (requirement) for one agent but uncontrollable for another (contingent). For160

instance, in collaborating hospital services that share common resources: one service might161

need to wait before another one sends a patient. For the other agent controlling the duration,162

that represents a degree of freedom, i.e., the flexibility, that some agent wishes to keep as long163

as possible to be more robust. Then, collaboration may rely on the timely communication of164

effective durations at execution time. But it is also possible that they plan in advance their165

weekly operations with maximum flexibility but must set their own schedules each day for166

the next one. They will communicate their decisions to the agents that depend on them,167

for better coordination. Therefore checking WC instead of DC/SC enables the agents to be168

more robust through least-commitment strategies.169

4 From local controllability to global controlability170

4.1 Updated STNU graphical model171

A starting point for resolving the issue of WC is to add some features to STNU’s graphical172

representation and adapt the model accordingly. Nodes in an STNU will not only be divided173
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between controllable and uncontrollable time-points but also by divergent time-points and174

convergent ones. From Definition 7, a divergent node has at least two outgoing edges in the175

input graph modeling the STNU, and a convergent one has at least two incoming edges.176

▶ Definition 7. (Convergent and Divergent time-points) In a STNU X = (V, E, C) :177

vi ∈ V is called a divergent time-point iff ∃j, k, i ̸= j ≠ k with vi → vj ∈ E ∪C and vi →178

vk ∈ E ∪ C. We denote Vdv as the set of divergent time-points with Vdv ⊆ V ;179

vi ∈ V is called a convergent time-point iff ∃j, k, i ̸= j ̸= k with vj → vi ∈ E ∪180

C and vk → vi ∈ E ∪ C. We denote Vcv, the set of convergent time-points with Vcv ⊂ V ;181

A B

C D
[10, 25]

[10
, 2

0] [5
, 10]

[10
,15]

[20, 30]

(a)

A B

C D
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(b)

Figure 1 An STNU is presented in (a) where time-point A can be seen as the reference point
v0, Vdv = {A, C} (doubly circled nodes) and Vcv = {D, B}. Dotted arrows express contingent
constraints. Hence, C and B are uncontrollable time points, while A and D are controllable ones.
The STNU is not Weakly controllable due to the projection highlighted in bold on the contingent
constraints A

[10, 15]
C and A

[20, 30]
B that violate the synchronization on B. We show in 1b the

controllable bounds graph of the STNU.

Please note that if a contingent link is necessarily a directed edge (implicit precedence), a182

requirement link may be a non-directed edge: e.g., vi
[−5,10]−−−−→ vj , imposing some constraint183

on the temporal distance between the time-points but allowing any order between them at184

execution time. Hence, in this example, vi or vj may be considered a divergent time-point,185

depending on the order between them in the input link defined at the design level (here, the186

link will be an outgoing edge from vi). As shown in the next subsection, the beginning and187

end points of the two paths that form a cycle will only change, but the cycle will still remain.188

In addition, Vdv ∩ Vcv may not be void, i.e. any v ∈ V may be convergent, divergent,189

convergent and divergent, or neither convergent nor divergent : these definitions are190

orthogonal to the distinction between controllable and contingent time-points, i.e., a191

controllable time-point might be convergent or divergent, etc., and an uncontrollable one192

alike.193

Of course, by definition, v0 cannot be a convergent time-point, but usually, a divergent194

one, even though the model does not enforce it, as v0 is used to define the absolute time of195

any time-point vi as a constraint between v0 and vi.196

One can see that such a characterization is very similar to what is done in flow networks197

[8]. Still, there the problem is to check that the sum of labels (capacities) that converge198

on a point equals the sum of the labels that exit that node. Here, we will instead use this199
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distinction to look for cycles, i.e., identify that two paths which diverge from one node200

and reunite in a convergent node have compatible overall durations whatever values the201

contingents in those paths will take, which is a local WC condition.202

In Figure 1(a), we present an STNU as defined in definition 1 augmented by definition 7.203

Figure 1(b) exhibits an alternative way to represent the STNU that will be explained later.204

4.1.1 Weak controllability on cycles205

First, we assume there is at least one convergent point (and hence at least one divergent206

point). Otherwise the STNU is necessarily WC since there is no cycle among the input207

constraints and hence no negative one. That means there are paths that diverge at some208

point and merge at another point.209

▶ Definition 8. (Path) A path ρ in X is a sequence of time-points v1, . . . , vp such that210

∀i = 1 . . . p − 1, vi → vi+1 ∈ E ∪ C or vi+1 → vi ∈ E ∪ C, v1 ∈ Vdv and vp ∈ Vcv.211

In that definition, we allow a path to follow edges in the graph in any direction, thus212

ensuring that all possible cycles in the STNU will not be forgotten. For example, in Figure213

1(a), considering divergent node C and convergent node D, there is obviously a path C-B-D,214

but C-A-B-D should also be considered, which is equivalent to stating that there is a path215

in the corresponding distance graph. Somehow, Figure 1(b), if one disregards, for now, the216

labels, can be viewed as such a distance graph, where the path C-A-B-D appears.217

Then, any cycle of input constraints in the STNU can be defined as a pair of distinct218

paths with the same starting v1 ∈ Vdv and ending vp ∈ Vcv time-points. It is a peculiar way219

of defining those cycles that will be useful for our algorithm.220

▶ Definition 9. (WC Divergent Cycle) A divergent cycle M is a pair (ρ1, ρ2) such221

that ρ1 and ρ2 are two paths starting at the same divergent time point vd ∈ Vdv and ending222

at the same converging time point vc ∈ Vcv, where vd, vc are the only common time points in223

ρ1, ρ2, i.e. ρ1 ∩ ρ2 = {vd, vc}.224

A cycle M is said to be Weakly controllable if the sub-STNU restricted to the set of225

time-points and constraints involved in both paths is WC.226

For example, in Figure 1a one has a cycle (ρ1, ρ2) with ρ1 = A-B and ρ2 = A-C-B.227

Then, an STNU is WC only if all divergent cycles are WC. We will present this result in228

two steps, first defining a local property that might be checked for a divergent node and then229

generalizing to all divergent nodes, which will be useful for better explaining our algorithm.230

▶ Definition 10. (Local divergent-WC) Let µ(vd) = {M1, . . . , Mn} the set of all cycles231

starting from vd ∈ Vdv, converging on a set of convergent nodes of Vcv that are necessarily232

ordered (topological ordering) after vd in the STNU X . We say that X is locally divergent-233

WC on vd iff ∀ Mi ∈ µ(vd), Mi is Weakly controllable234

For example, Figure 3d shows the two cycles starting from the divergent time-point A.235

Local divergent-WC does not imply WC, as the corresponding sub-STNU might contain236

other divergent nodes.237

▶ Theorem 11. (Global controllability) X is Weakly controllable (WC) iff ∀vd ∈ Vdv,238

X is locally divergent-WC on vd.239

Theorem 11 implies that checking the local divergent-WC property of all the divergent240

nodes of an STNU is enough to check the global WC.241

242
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Proof: The forward implication is straightforward to prove: if there is a divergent node for243

which at least one divergent cycle (sub-STNU) is not WC, that means there is at least one244

projection for which there is no consistent local schedule. Hence, the STNU will not be WC.245

For the reverse implication, suppose the global STNU is not WC. Then there is at least246

one projection for which the corresponding STN is inconsistent; that is equivalent to having247

a negative cycle somewhere in that STN[14]; and that negative cycle necessarily relates248

time-points that form a divergent cycle in the STNU, which in turn is not WC following249

Definition 9.250

5 Local Weak Controllability251

In this section, we show how to check the local WC of a cycle by exploiting the convexity of252

the problem, only considering the contingents bounds [14].253

▶ Definition 12. (Controllable Bounds) Given an STNU X = (V, E, C), and vj − vi ∈
E ∪ C. The controllable bounds of vj − vi, denoted Πctl

ij , is the pair of discrete values

Πctl
ij = ⟨minctl

ij , maxctl
ij ⟩

where, minctl
ij and maxctl

ij respectively represent the minimal and maximal duration that can254

be guaranteed for vj − vi.255

Any requirement constraint ek = [lij , uij ] has a minimal and maximal duration that can256

be guaranteed with minctl
ij = lij and maxctl

ij = uij . For a contingent constraint ck ∈ C,257

we cannot guarantee that at execution time its duration will be lower (resp. greater) than258

its maximum bound uij (resp. its minimal bound lij). Hence, we have minctl
ij = uij and259

maxctl
ij = lij . Intuitively, e.g., minctl

ij is the worst-case scenario for a contingent duration260

when trying to control the maximum possible total duration of a path it belongs to. We261

generalize Πctl
ij as follows:262

Πctl
ij =

{
⟨uij , lij⟩ iff vj − vi ∈ C

⟨lij , uij⟩ iff vj − vi ∈ E
(1)263

Then, from Equation 1, it is actually possible to represent an STNU X in terms of its264

controllable bounds graph denoted Πctl
X , similar to a distance graph but more suited to our265

algorithm, which is shown in Figure 1 (b). This graph considers each original constraint and266

its inverse. A requirement constraint ek = [lij , uij ], equivalently lij ≤ (vj − vi) ≤ uij , has an267

inverse constraint e′
k: −uij ≤ (vi − vj) ≤ −lij equivalently represented as e′

i = [−uij , −lij ].268

The same transformation is applied to contingent constraints.269

From this transformation, it is possible to compute the controllable bounds of a path ρ270

composed of constraints in E ∪ C by propagating such bounds from v1 to vp.271

▶ Definition 13. (Controllable Path Bounds)
Let ρ be a path in Πctl

X , with v1, . . . , vp the sequence of time-points of ρ. The controllable
path bounds denoted Πctl

ρ is defined as follows:

Πctl
ρ = ⟨

∑
minctl

ij ,
∑

maxctl
ij ⟩

From this point, it’s possible to check the WC controllability of a cycle M = (ρ1, ρ2) through272

the controllable paths bounds Πctl
ρ1

and Πctl
ρ2

. Indeed, we need to guarantee that the minimum273

controllable duration of ρ1 is less than or equal to the maximum controllable duration of ρ2274
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and vice-versa. Intuitively, if the condition is not satisfied, then there exists a projection of275

M such that ρ1 and ρ2 cannot synchronize on vp as Πct
ρ represent the worst-case scenarios276

of ρ: the worst cases for synchronizing two paths are when, for one path, its contingents take277

their minimal bounds lij and for the second one, their maximal bounds uij .278

▶ Theorem 14. (Cycle WC property)279

Given a cycle M = (ρ1, ρ2) and the controllable paths bounds Πctl
ρ1

= ⟨minctl
ρ1

, maxctl
ρ1

⟩ and280

Πctl
ρ2

= ⟨minctl
ρ2

, maxctl
ρ2

⟩, M is weakly controllable iff:281

(minctl
ρ1

≤ maxctl
ρ2

) ∧ (minctl
ρ2

≤ maxctl
ρ1

) (2)282

Proof: If M is WC, then whatever the bounds of the contingents in M, there always exists283

a schedule that satisfies the constraints of M. Let’s suppose Equation 2 is false. It means284

there exists a projection of ρ1 and ρ2 such that the synchronization on vp is impossible and285

forms a negative cycle. Thus, such a projection is inconsistent, and M is not WC.286

For the reverse implication, let us suppose M is not WC, but Equation 2 is satisfied.287

Then, it means that the projections of the two worst-case scenarios of M are consistent288

as there exists at least one schedule that guarantees the synchronization on vp. Thus, any289

projection satisfies the synchronization on vp. This is not possible as M is not WC, which290

implies the sub-STNU has a negative cycle [14].291

292

Obviously, one can see that only one of the literal can be false, i.e., either (minctl
ρ1

≤ maxctl
ρ2

)293

or (minctl
ρ2

≤ maxctl
ρ1

) is false. For the sake of simplicity, we denote M ctl a worst-case scenario294

of M. The left network of Figure 3d forms a non-WC cycle. The controllable bounds295

are {30, 20} on (A-B) that forms a path ρ1, {10, 20} on (C-B) and {15, 10} on (A-C) that296

together form a path ρ2. We have Πctl
ρ1

= {30, 20} and Πctl
ρ2

= {25, 30}, which does not satisfy297

minctl
ρ2

≤ maxctl
ρ1

.298

6 The WC-Checking algorithm299

6.1 Description of the algorithm300

In this section, we present the new WC-checking algorithm for an STNU X , which comprises301

two parts: the first finds the cycles from a divergent time-point, and the second checks those302

cycles. It is based on the following basic structures:303

A path ρ is divided into two projection paths ρmin and ρmax where only the minimal304

(ρmin) or maximal (ρmax) controllable bounds are computed: Πctl
ρmax

= maxctl
ρ and305

Πctl
ρmin

= minctl
ρ . Given η = {min, max}, a projection path is of the form ρη =306

⟨ηctl
ρ , Cρη

, Vρη
⟩ such that307

ηctl
ρ is the controllable bound of ρη (maxctl

ρ or minctl
ρ );308

Cρη
is the set of contingent constraints of ρη (Cρη

⊆ C);309

Vρη the set of time-points of ρη (Vp ⊆ V).310

One can notice that ρmin and ρmax represent the two worst-case scenarios of ρ.311

P(vd) is the set of projection paths P(vd) = {ρη1 , . . . , ρηm
} from the divergent time-312

point vd.313

the minimal divergent cycles Dmin(vd) is a mapping of convergent time points vc ∈ Vcv314

to a set of projection paths (Pmin
vc

) that converge on vc from vd such that each of them η315

= min (ρmin): ∀ρη ∈ Pmin
vc

, ηctl
ρ = minctl

ρ .316
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the maximal divergent cycles Dmax(vd) is similar as Dmin(vd) but each projection317

path in Pmax
vc

, η = max (ρmax): ∀ρη ∈ Pmax
vc

, ηctl
ρ = maxctl

ρ .318

We introduce in Algorithm 1 the findDivergentCycles algorithm in charge of finding the cycles319

from a divergent time-point vd. To avoid going through all possible paths in the controllable320

bounds graph Πctl
X , we prune the number of paths in two ways:321

We first add the notion of rank, which is common in qualitative temporal networks [6]:322

it is possible to define a partial order of all time-points with regard to the precedence323

relation; rank(vz) = 0, then for all vi such that vz ⪯ vi ∈ E ∪ C and there is no vj such324

that vz ⪯ vj ∈ E ∪ C and vj ⪯ vi ∈ E ∪ C, rank(vi) = 1, and so on and so forth.325

Using that rank, a forward search is then applied by ordering the time-points through a326

topological ordering algorithm from vz (rank 0). This enables us to avoid any time-point327

vi with a lower rank than the current divergent time-point vd. Figures 3a to 3c highlight328

only the edges considered by the forward search.329

To distinguish between the minimal and maximal controllable bounds of a path, we apply330

two forward searches: one that computes the paths with only the maximal controllable331

bound and one with the minimal controllable bound. This allows us to prune the paths332

that converge to any convergent time-point to keep only stricter ones. For example,333

it is easy to see that for two projection paths ρη and ρ′
η such that Cpη

= Cp′
η

= {∅}334

(only requirement constraints) ρη is stricter than ρ′
η if η = min and minctl

ρ > minctl
ρ′335

(respectively, η = max and maxctl
ρ < maxctl

ρ′ ). Hence, it’s useless to consider further ρ′
η as336

ρη is a stricter projection path, and only ρη is kept in Dmin(vd) or Dmax(vd) depending on337

the computed controllable bound (η). This also holds for a path ρ′
η such that Cρ′

η
̸= {∅}338

(with contingent constraints). However, when Cρη
and Cρ′

η
are not empty, applying these339

rules is impossible as it might result in removing an inconsistent cycle in the graph.340

Suppose we have the minimal controllable bounds of ρ and ρ′ (minctl
ρ and minctl

ρ′ ) and341

the maximal controllable bounds of a path ρ′′ (maxctl
ρ′′ ) such that the pair ⟨ρ′, ρ′′⟩ forms342

a cycle M ctl. Then, if ρmin is stricter than ρ′
min and ρ′

min is not kept, M ctl will never343

be checked likewise for the WC of X . Therefore, both ρmin and ρ′
min must be kept in344

Dmin(vd). 1 We illustrate such case in Figure 2345

Lines 1 to 3 initialize the maps Dmax(vd) and Dmin(vd), and the set of paths P(vd).346

Then, lines 5-16 propagate the paths in P(vd) to find and keep all stricter paths of vd in347

Dmax(vd) until P(vd) = {∅}. In fact, in line 14, we also update P(vd) and Pvj
by removing348

the paths that are not stricter anymore. A second forward search is done for Dmin(vd)349

where P(vd) is reset. Once the forward searches are over, the maps Dmax(vd) and Dmin(vd)350

contain all the restrictive paths from vd to a convergent time-point vc. Then, we execute351

the checkCycles algorithm (see Algorithm 2) in charge of checking the WC of the cycles of352

vd. This algorithm is trivial as it simply searches and checks for each vc in Dmax(vd) and353

Dmin(vd) all the pairs of paths (ρmin, ρmax) that converge on vc and form a cycle M ctl
354

where Vρmin
∩ Vρmax

= {vd, vc}.355

Finally, Algorithm 3 presents the WC-checking algorithm that, for a given STNU X ,356

computes its controllable bounds graph Πctl
X (line 1), determines the topological ordering of357

the time-points (line 2), and find and check the cycles of each divergent time-point in Vdv.358

We show the execution of our algorithm for Divergent time-point A in Figure 3 using359

A → C → B → D as the order for the forward searches. We highlight the search and360

1 This is actually the reason why full reduction of intervals through the intersection of different edges is
not possible, and hence, a polynomial time algorithm cannot be found, unlike DC and SC.
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Algorithm 1 findDivergentCycles algorithm

Input: vd:(time-point), Πctl
X : (graph), rank: map

Output: Boolean
1 Dmin(vd) = Dmax(vd) = {}
2 P(vd) = [⟨0, [], [vd]⟩]
3 A first forward search for Dmax

4 while P(vd) not empty do
5 ρmax = P (vd)[0] ρmax is removed in P(vd)
6 for each child vj of vm ∈ Vρmax

with rank(vj) ≥ rank(vd) and vj ̸∈ Vρmax
do

7 ρmax = propagateMaxPath(Πctl
X , ρmax, maxctl

mj)
8 if vj is a convergent time point (vj ∈ Vcv) then
9 if vj not in Dmax(vd) then

10 add vj → [ρmax] in Dmax(vd)
11 else
12 if ρmax is a restrictive path in Pmax

vj
then

13 add ρmax to Pmax
vj

and to P(vd)

14 else
15 add ρmax to P(vd)

16 A second forward search for Dmin(vd) with ρmin

17 return checkCycles(Dmax(vd), Dmin(vd))

Algorithm 2 checkCycles algorithm

Input: Dmax(vd), Dmin(vd)
Output: Boolean

1 for each vc → Pmin
vc

in Dmin(vd) do
2 for each ρmin in Pmin

vc
do

3 for each ρmax in Pmax
vc

in Dmax(vd) do
4 if (ρmin, ρmax) is of the form M ctl then
5 if minctl

ρ > maxctl
ρ then

6 return False Or the cycle

7 return True

Algorithm 3 WC-Checking algorithm

Input: X : STNU(V,E,C)
Output: Boolean

1 Πctl
X = getDistanceGraph(X )

2 rank = orderFromRank(X )
3 for each vd in Vdv do
4 if findDivergentCycles(vd, Πctl

X , rank ) == False then
5 return False Or non-WC cycles of vd

6 return True Or all non-WC cycles
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Figure 2 This figure illustrates the special case of the pruning rules when Cρη and Cρ′
η

are
not empty. Figure a) shows a non-Weakly controllable STNU, whereas Figure b) shows its only
non-WC cycle. Figure c) highlights the computed projection paths pmin, p′

min, and p′′
max of the

given example. One can see that if p′
min is not kept in Dmin(vd), the inconsistent cycle will never

be checked as the pair ⟨pmin, p′′
max⟩ do not form a cycle Mctl. Hence, such pruning rules cannot be

applied when Cρη and Cρ′
η

are not empty.

the paths (min and max) forming the non-Weakly controllable cycle. Please note that we361

simplified the example by not showing how Dmin and Dmax are incrementally changed.362

6.2 Features and Complexity363

The algorithm presented in the previous section returns the set of negative cycles of a364

non-Weakly controllable STNU (see Algorithms 2, 3), which is important for explainability,365

i.e., necessary for the repair problem. Moreover, divergent time-points are independent,366

which makes parallelization possible. In addition, the usual pseudo-controllability step from367

Morris [10] is not required for constraint bounds with finite values (lij ̸= −∞ and uij ̸= +∞).368

Thus, an incremental execution is possible as divergent time-points are independent. Indeed,369

when adding new constraints, it’s not necessary to recompute the minimal network; hence,370

checking only the cycles of divergent time points of the same rank or lesser (topological371

ordering) is enough to guarantee WC. Still, it is not optimal as unnecessary cycles might be372

checked. The drawback of the algorithm is that the minimal network is not computed.373

The temporal complexity of the algorithm depends on the number of cycles to check,374

which is related to multiple parameters such as the number of contingents, the number375

of divergent time-points, and the number of successors per divergent time-point. For a376

complete graph, the algorithm is exponential and not better than the original algorithm377

(2|C|). However, our interest lies in realistic graphs where the sparsity of the graph is low by378

restricting these parameters. Thus, the next section compares our algorithm (new_WC) with379
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Figure 3 This Figure shows, in a simplified manner, a running example of Algorithm 1 with
divergent time-point A. We highlight the edges taken at each step according to line 7. Figures 3a to
3c show the search, while Figure 3d shows the cycles to check for A, with the left one being not
Weakly controllable. After step 3, Dmin and Dmax contain all the restrictive paths (only those that
need to be kept) with, in a simplified manner, Dmin = {C : ⟨15, AC⟩, B : [⟨20, AB⟩, ⟨25, ACB⟩], D :
[⟨15, ACD⟩, ⟨35, ABD⟩, ⟨30, ACBD⟩]} and Dmax = {C : ⟨10, AC⟩, B : [⟨20, AB⟩, ⟨30, ACB⟩], D :
[⟨25, ACD⟩, ⟨30, ABD⟩, ⟨40, ACBD⟩]}. We highlight the paths of the non-Weakly controllable cycle.

the original one (old_WC) using the Floyd-Warshall algorithm (APSP) as a time metric only380

to see how close they are to a polynomial behavior when parameters are restricted enough.381

7 Experiments382

To empirically test the effectiveness of the proposed algorithm, we consider the execution383

time as the execution of all computations and not after finding an inconsistency as existing384

checking algorithms do. The benchmark comes from a random generator we implemented385

that can generate sparse STNUs. It creates an STNU in the form of a complete directed386

acyclic graph (DAG), then randomly removes several edges depending on parameters: the387

number of time points n, the percentage of divergent time points rd, the maximum number388

of their successors nc, and the percentage of contingent constraints rc.389

All the experiments have been performed on a machine equipped with an Intel Core390

processor: 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz 2.50 GHz. We used a391

time/memory limit of 10 minutes/4GB and sequential, single-core computation.392

We experiment under different settings: n = {20, 50, 100, 200, 500, 1000}, rd = {0.1, 0.2, 0.3}393

meaning 10 to 30% of divergent time-points, rc = {0.2, 0.3}, and nc = 3. For each combination394

of parameters, we generate 20 STNUs and compute the average execution time. We show395

in Figure 4b that, in general, our algorithm clearly outperforms the old-WC algorithm and396

has a behavior slightly worse than the APSP algorithm up to 20% of contingent constraints.397
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This shows that the parameters were bounded enough to have a polynomial-like behavior.398

However, beyond this threshold, our algorithm starts to show its limit. This shows the399

sensitivity of our algorithm to the parameters (see Figure 4c). In addition, we observe from400

the experimentation that the position of contingents can impact the number of cycles to401

check. The closer to v0 contingents are, the higher the number of cycles to check. Such a402

case is shown in Figure 4a where the dotted line for the case of 10% of divergent time-points403

(new_WC) overlaps the other two (20 and 30 %).404

8 Conclusion405

This paper introduced a novel approach for checking the WC of an STNU by checking the406

consistency of its elementary cycles. Interesting features of our algorithm to consider further407

are as follows: it can identify the constraints causing the uncontrollability, and it can be408

executed in an incremental way (not optimal) and in a parallelized way. However, it is not409

capable of computing the minimal network of an STNU. Moreover, we exhibited that the410

algorithm’s complexity depends on the sparsity of the STNU, which makes it exponential in411

the worst cases. However, experiments show that in loosely connected STNU, the algorithm412

tends to behave in a polynomial-like way. Finally, the paper argues the relevance of the413

problem of WC in a multi-agent setting, where uncontrollable events are not controlled by414

Nature but by other agents in the system. Further work will tackle the problem of repairing415

negative cycles by negotiating the duration of the uncontrollable events, whose duration416

depends on the other agents’ decisions.417
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(a)

(b)

(c)

Figure 4 Experimentation with 10% (a)), 20% (b), and 30% (c) of contingent constraints
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