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A B S T R A C T

Environmental stressors induce specific physiological responses that can be measured in the blood, notably by 
morphological changes in lymphocytes. Tobacco being the best-known stress in terms of its impact on health, we 
studied the physiological properties of peripheral blood lymphocytes in a population of 33 healthy non-smokers 
and smokers. Proteasome amount, mitochondria energy levels, changes in membrane properties and cell and 
nuclear size were analyzed to obtain 28 parameters from two fluorescence-based techniques: flow cytometry and 
cell imaging. The results showed that none of the parameters alone identified gender and smoking status, but that 
statistical analysis of these parameters, whether or not combined with a third set of data, hematological data, 
can. Statistical analysis of selected parameters clearly discriminates between male and female samples, as well as 
smokers and non-smokers. Effects of tobacco smoke pollutants are more pronounced in female smokers than in 
other groups.

1. Introduction

Circulating lymphocytes are a highly organized living system, easily 
sampled from blood and maintained in culture while preserving their 
properties. Analyzed in various inflammatory diseases, they are a prime 
indicator of the aggression of environmental factors on the human or-
ganism (Orakpoghenor et al., 2019). Tobacco is responsible for millions 
of annual deaths and chronic diseases, many of which occur prema-
turely. Although considered a behavioral risk, it can be seen as an 
environmental factor detrimental to human health, as tobacco smoke 
contains over 4000 compounds, a mixture of toxic compounds such as 
arsenic, for example, with synergistic effects (Talhout et al., 2011). The 
effects of smoking on health are numerous, attacking lung, throat and 
mouth, but also the heart and vessels, inducing cardio-vascular disease, 
among the major risks (Qiu et al., 2017; Ribassin-Majed and Hill, 2015). 
Worldwide, the tobacco control strategy encourages research into the 
consequences of smoking and interventions to reduce cigarette con-
sumption (Reitsma et al., 2017; Shibuya, 2003).

Smoking habits have been shown to influence cellular parameters in 
blood when studying direct blood counts (Malenica et al., 2017; 

Pedersen et al., 2019). The detection of changes in lymphocyte prop-
erties has been studied on lymphocytes subpopulations (Piaggeschi 
et al., 2021; Schaberg et al., 1997), in relation to immune systems 
(Dahdah et al., 2022; Martos et al., 2020; Qiu et al., 2017; Stämpfli and 
Anderson, 2009), chromosomal damages (Farkas et al., 2021), and DNA 
methylation (Su et al., 2016) with sometimes contradictory conclusions. 
Other biomarkers can be evaluated to detect physiological changes in 
lymphocytes. Among these, cell imaging microscopy can be used to 
study the morphology and cellular functions of individual cells. It allows 
to analyze hundreds of cells, but rarely rare events. Data acquisition is 
rapid, and live cells can be labeled with multiple probes. Using triple 
labeling (R123, NR, Ho342) (Lautier et al., 1993; Rocchi et al., 2000; 
Savatier et al., 2012), we can obtain information on mitochondrial en-
ergy levels, changes in membrane properties and cell and nuclear sizes. 
In addition, using flow cytometry, we analyzed the proteasome subunit 
content (Baz et al., 1997; Henry et al., 1997) with specific fluorescent 
tags for 10 proteasome subunits. The amount of proteasome in several 
thousand cells can thus be analyzed. Last but not least, hematological 
parameters obtained from complete blood count (CBC) can be easily 
added to the above information (Gunawardena et al., 2016).
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In a first attempt to investigate differences between normal lym-
phocytes and lymphocytes under environmental stress, we studied the 
effect of tobacco on a human population sample comprising men and 
women. 41 parameters were obtained from CBC and isolated lympho-
cyte analyses. Parameters were compared between smokers and non- 
smokers, taking gender into account, to identify the most relevant pa-
rameters to distinguish gender and smoking status. Based on the selected 
parameters, a multiparametric analysis (discriminant factor analysis, 
DFA) was used. DFA clearly distinguishes smokers from non-smokers 
and women from men. Circulating lymphocytes appear to be an inter-
esting reservoir of information, enabling a quantitative approach to the 
study of the effect of environmental stresses. The aim of this study was to 

determine whether the morphology, physiology, and proteasome con-
tent of lymphocytes could be powerful and sufficient indicators in the 
study of environmental stress.

2. Material and methods

2.1. Patients

Healthy blood donors were prospectively recruited by the Eta-
blissement Français du Sang in the city of Perpignan (Occitanie, France) 
between April 1997 and April 1998. This organization was responsible 
for blood collection and all participants completed a medical 

Table 1 
Characteristics of smoking on blood count parameters and lymphocyte proteasomal, functional and morphological contents, stratified by gender.

Cases Controls

Total Male Female Total Male Female
SM SF nSM nSF

Sample characteristica (n=15) (n=11) (n=4) (n=18) (n=10) (n=8)
Nicotine exposure mg/day (min-max) (36− 72) (36− 72) (36− 72) 0 0 0
Demographics

Male (n (%)) 11 (73 %) - - 10 (55 %) - -
Age, years 43.0 (7) 42.0 (7) 43.3 (6) 46.4 (11) 47.2 (10) 45.5 (13)

Hemogram parameters
WBC 103/mm3 8 (3) 8 (3) 9 (2) 5 (1) 5(1) 5.7 (0.7)
LYMP 102/mm3 28 (6) 29 (6) 25 (1.5) 33 (7) 36 (4) 30 (8)
MONO 102/mm3 5.5 (1) 5.5 (1.5) 5.5 (0.4) 6 (2) 6 (2) 6 (1)
GR 102/mm3 67 (6) 66 (7) 70 (1) 60 (7) 57 (4) 64 (8)
RBC 106/mm3 4.6 (0.3) 4.6 (0.3) 4.6 (0.4) 4.4 (0.3) 4.6 (0.3) 4.1 (0.2)
Hb g/dl 14.5 (1.4) 15 (1) 13.1 (0.5) 14 (1) 14.4 (0.9) 12.7 (0.4)
Hct % 42 (3) 42 (3) 42 (4) 39 (4) 41 (3) 36.5 (1.5)
MCV fL 91 (4) 90 (4) 92 (4) 89 (4) 90 (5) 88 (4)
MCH pg 31.5 (2.6) 32 (2) 29 (3) 31.2 (1.5) 31 (2) 31 (1)
MCHC g/dl 35 (3) 35.9 (0.7) 33 (5) 35 (2) 35 (2) 34.9 (0.9)
RDW % 13.3 (0.8) 13.2 (0.9) 13.4 (0.6) 12.5 (0.6) 12.3 (0.4) 12.6 (0.9)
PLT 103/mm3 231 (50) 232 (50) 230 (50) 212 (30) 205 (25) 221 (35)

added
PLR % = PLT/LYMP 87 (30) 85 (30) 92 (20) 67 (20) 57 (10) 80 (30)

Isolated lymphocytes
Proteasome parameters

Number of treated cells 2900 (500) 3100 (500) 2500 (150) 3200 (100) 3400 (750) 2983 (850)
MFIp21 76 (35) 72 (35) 86 (40) 130 (110) 125 (120) 136 (110)
MFIp23 270 (220) 290 (250) 220 (140) 420 (350) 460 (430) 370 (230)
MFIp25 60 (35) 60 (35) 58 (35) 74 (50) 77 (60) 71 (30)
MFIp27 74 (45) 67 (40) 93 (50) 87 (50) 82 (65) 94 (40)
MFIp29 66 (35) 61 (30) 80 (40) 87 (50) 84 (60) 90 (45)
MFIp3033 60 (30) 60 (30) 62 (35) 89 (70) 93 (90) 84 (50)
MFIp31 65 (30) 60 (25) 79 (35) 92 (60) 88 (70) 97 (40)
%cell+p21 49 (20) 48 (20) 54 (20) 50 (15) 51 (20) 48 (10)
%cell+p23 57 (15) 56 (20) 59 (10) 54 (15) 56 (20) 52 (9)
%cell+p25 38 (15) 39 (20) 36 (4) 42 (15) 45 (20) 38 (10)
%cell+p27 50 (20) 49 (20) 54 (10) 49 (15) 50 (20) 49 (15)
%cell+p29 47 (20) 47 (20) 47 (8) 47 (20) 51 (20) 41 (15)
%cell+p3033 46 (20) 47 (20) 46 (20) 46 (10) 47 (15) 46 (10)
%cell+31 46 (20) 47 (20) 42 (9) 47 (15) 48 (20) 43 (10)

Functional information
Number of treated cells (n) 180 (80) 150 (60) 280 (40) 170 (60) 180 (75) 160 (35)
FI− 1max NR 16,500 (7100) 16,700 (8000) 15,900 (4100) 15,300 (4000) 15,300 (3100) 15,300 (4900)
MFI NR 19,700 (7000) 20,000 (7500) 18,600 (4300) 20,000 (6000) 18,600 (2700) 22,000 (9000)
SD NR 8800 (2500) 9500 (2600) 7000 (1300) 10,000 (5000) 8600 (3400) 12,400 (6600)
FI− 1max R123 1550 (800) 1500 (750) 1700 (850) 1400 (500) 1500 (650) 1200 (360)
MFI R123 1900 (800) 1900 (800) 2000 (980) 2000 (1000) 2000 (1000) 1900 (1000)
SD R123 1100 (700) 1200 (700) 900 (300) 1400 (1000) 1300 (1000) 1500 (1000)

Morphological parameters
Cell− 1max 230 (30) 230 (35) 220 (25) 230 (20) 230 (10) 230 (25)
Mean Cell 250 (30) 250 (40) 230 (15) 250 (25) 250 (25) 250 (25)
SD Cell 71 (40) 79 (40) 49 (6) 76 (40) 67 (30) 87 (50)
% Cell>350 0.1 (0.1) 0.1 (0.1) 0.04 (0.03) 0.10 (0.098) 0.09 (0.08) 0.11 (0.08)
Cell/Nuc− 1max 1.33 (0.08) 1.32 (0.09) 1.375 (0.001) 1.4 (0.1) 1.4 (0.15) 1.4 (0.1)
Mean Cell/Nuc 1.5 (0.3) 1.5 (0.3) 1.49 (0.06) 1.5 (0.2) 1.5 (0.2) 1.5 (0.1)
SD Cell/Nuc 0.6 (0.3) 0.6 (0.4) 0.4 (0.015) 0.5 (0.2) 0.5 (0.2) 0.5 (0.25)
% Cell/Nuc>3 0.05 (0.08) 0.06 (0.09) 0.009 (0.002) 0.03 (0.04) 0.03 (0.04) 0.04 (0.05)

Abbreviations: SD, standard-deviation; WBC, white blood cell number, all other abbreviations in Table 2.
a Variable distribution are reported as mean (SD) unless otherwise specified.
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questionnaire on arrival, were informed by an information letter and 
signed a written consent in accordance with the Declaration of Helsinki 
[34]. The donors were living in an agricultural area (south of France). 
The health status of the donors was checked and the sample population 
was free of alcohol drinkers and had normal transaminase levels (SGPT 
and SGOT) excluding a possible effect of hepatic toxic chemicals. The 
smoking criterion was a consumption of 20–40 cigarettes per day 
(nicotine exposure approximately 36–72 mg/day), Table 1. Approval for 
this study was obtained from the local ethics committee at the time of 
patient recruitment, and has recently been updated (CHU Nîmes, ref: 
23.08.08).

2.2. Blood analysis

Three distinct experiments were performed on each blood sample. A 
complete blood count (CBC) was performed immediately after blood 
collection. Following the lymphocyte isolation, the cells were separated 
into two pools, one for flow cytometric analysis of proteasome param-
eters, and the other intended for fluorescence cell imaging to acquire 
morphological parameters and functional information regarding each 
individual cell.

2.2.1. Hematological parameters
The CBC provided numeration of white blood cells (WBC), lympho-

cytes (LYMP), monocytes (MONO), granulocytes (GR) and platelets 
(PLT), as well as measurements on erythrocyte variables, such as the 
number of red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), 
mean corpuscular volume (MCV), mean cell Hb (MCH), mean cell Hb 
concentration (MCHC), red cell distribution width (RDW). The platelet/ 
lymphocyte ratio (PLR) was calculated as an inflammatory marker 
(Tulgar et al., 2016). Raw data and boxplots are presented in supple-
mentary material (Table S1, Fig. S1A).

2.2.2. Isolation of lymphocytes from peripheral blood
Lymphocytes were isolated by Ficoll-gradient centrifugation from 

venous blood in non-heparinized tubes. Cells were then incubated in a 
serum-free culture medium (X-VIVO 10, Bio-Whittaker) at 1 ×106 cells/ 
ml in 25 cm2 culture flask. Lymphocytes cultures were left in an incu-
bator at 37◦C in a humid atmosphere with 5 % CO2, and the lymphocyte 
population was studied within 24 hours. After 4 days more than 99 % of 
lymphocytes still excluded Trypan Blue.

2.2.3. Proteasome parameters
Seven monoclonal antibodies from mouse ascite (distributed by 

Organon Teknica, Turnhoot, Belgium) directed against human core 
proteasome alpha subunits were used (De Sa et al., 1988). Clones 
anti-p23, p25 (clone A 7A11), p27 (IB5), p29 (GD6), p30–33 and p31 
(AA4) respectively recognize proteasomal alpha-subunit PSMA7 (De 
Conto et al., 2000), PSMA3, PSMA6, PSMA9, PSMA2 and PSMA8, while 
clone anti-p21 recognizes protein p21, known as prosome-like particle 
(Akhayat et al., 1987). Protocol of flow cytometry is detailed in (Henry 
et al., 1996). Shortly concerning antibodies: dilution 1/50 and incuba-
tion time 30 min. Flow cytometry and multiple staining of fixed and 
permeabilized (70 % ethanol) cells enabled us to study intra- and 
extracellular proteasomes (Machiels et al., 1995). This protocol makes it 
possible to fix the cells and preserve their structure, while per-
meabilizing them sufficiently for the antibodies to penetrate the cell and 
reach their target. 3100 ± 700 cells per donor were analyzed after 
exclusion of debris of size and morphology for at least three experiments 
(Table S2, Fig. S1B).

2.2.4. Morphological parameters and functional information
Cell morphology and physiology was analyzed using fluorescence 

imaging. Cells were labelled with three fluorescent probes (i.e. triple 
labeling). Hoechst 33342 (Ho342) is a vital nucleus-specific fluorescent 
dye (Bainbridge and Macey, 1983; Fuchs et al., 2023; Lahmy et al., 

1993). Mitochondria-specific Rhodamine 123 (R123) (Darzynkiewicz 
et al., 1981; Johnson et al., 1980) is described as a probe of mitochon-
drial energy status (Johnson et al., 1980; Lahmy et al., 1993), and Nile 
Red (NR) is a fluorescent probe trapped in the plasma membrane 
(Mukherjee et al., 2007; Sackett and Wolff, 1987) that allows clear 
delineation of the cell contour and observation of changes in membrane 
properties (Canitrot et al., 1993). The triple labelling protocol (cell 
labelling, numerical image analysis and recorded parameters) has 
already been described in detail (Savatier et al., 2003) and can be 
consulted in the supplementary materials. The analysis was performed 
on 180 ± 70 cells per donor (Table S3, Fig. S1C).

2.3. Statistical analysis

Multifactorial analysis and statistical tests were performed using 
XLStat software from Addinsoft®, Paris, France (version 2021–4–1 and 
2022–2–2 BASIC+). Univariable analyses of the 41 parameters were 
performed using tests adapted to small sample sizes and therefore less 
sensitive to data non-normality. To analyze the parameters one-by-one, 
the mean, median and standard deviation was calculated for six sub- 
populations (Table 1) and represented in box plots (Fig. S1). Varia-
tions between sub-populations was assessed in pairs (Fig. 1 and 
Table S4) by calculating (i) the percentage variation using the equation 
% var = (x-y)/mean(x,y) with x represents the parameters for smokers 
or men, and y the parameters for non-smokers or women, and (ii) the 
adjusted p-value calculated using the Benjamini & Hochberg correction. 
Ridge, Lasso, and the combined regressions were performed in order to 
identify and select the most relevant parameters for the analysis, by 
minimizing overfitting and improving the predictive power of the 
model.

Discriminant factors analysis (DFA) is a statistical method for 
multivariate data that distinguishes between ‘x’ predefined sample 
groups. XLStat’s DFA method aims to categorize a set of n donors (i.e. 
training population) into x distinct groups using a set of predictor var-
iables (p, where p < n). This is achieved by creating of discriminant 
functions, representing linear combinations of p variables that best 
discriminate the x pre-defined groups. The results are displayed on x-1 
factorial axes (factor space). In the software, two models are available 
using quadratic or linear discriminant functions. In our case, only the 
linear model was available because of the small number of donors, n. In 
this study we obtained the blood of 33 donors, n=33, and parameters 
was measured or calculated for three set of experimental data (i.e. p =
41 variables). It was therefore necessary to reduce the number of vari-
ables to a number less than n. However, this was not necessary when 
testing univariate or bivariate analyses, using one or two of the three 
experimental sets, as the total number of parameters for bivariate ana-
lyses (≤28) remains lower than the number of donors.

The donor population was divided in groups before the DFA. Four 
groups (x = 4) separating smokers from non-smokers and females from 
male. Three groups excluding female smokers due to the scarcity of this 
group (only four female smokers agreed to take part in the study). But 
also, two groups to assess smoking habit (smokers and non-smokers) or 
gender influence (male and female), separately. When only two groups 
are to be predicted, DFA is close to logistic regression, but present the 
interest to provide graphs. All DFA’s were also performed with and 
without the “fixed class weight” option to test the relevance of this op-
tion. This option provides a compensation when heterogeneity in the 
group size is observed. Not surprisingly, using this option ameliorates all 
DFAs from four group (i.e. including the four female smokers), but not 
DFAs from three groups.

The software facilitates actions such as reclassifying misclassified 
donors into groups and running statistical tests, including the Wilks’ 
Mahalonobis inter-group distance test. It can be used to check on graphs 
(i) whether the groups assigned to donors are distinct on factorial axes, 
(ii) to identify the parameters characterizing the groups on a correlation 
circle. The results are presented as confusion matrices for the training 
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population, expressed as percentages that indicate the training accuracy 
of the classification, with 100 % meaning no misclassification of donors. 
Since the prediction can be overly optimistic, the software offers cross 
validation as a measure of the model’s performance. This involves per-
forming calculations by removing one donor at a time of the training 
population and then predicting the group for that donor (leave-one-out 
method). Expressed as a percentage, a validation accuracy of 100 % 
means that the model has correctly classified all the donors in the 
validation sets.

3. Results

Thirty-three healthy blood donors (21 men and 12 women) agreed to 
take part in the study. Their ages were 44.9 ± 9 and 44.7 ± 9 years 
respectively. They all lived in an agricultural area with little industrial 
activity and a generously ventilated environment in the south of France. 
Our sample included 4 female smokers and 12 male smokers.

3.1. Blood analysis

The blood parameters of each donor were analyzed using three set of 
experimental data: (i) complete blood count, (ii) proteasome analysis by 
lymphocyte flow cytometry and (iii) lymphocyte cell analysis by fluo-
rescence imaging, yielding 41 variables for study (Table 2). Raw data are 
presented in supplementary material (Tables S1–S3 for hematological, 
proteasome and cell imaging data, respectively), along with the box 
plots separated by gender and smoking status (Fig. S1). The amount of 
proteasomal antigen was calculated and presented as mean fluorescence 
intensity per cell (MFI) and percentage of positive cells (% cell+) 
marked by antibodies. Note that the average intensity before correction 
by cell number is very high for the detection of anti-p23 (1650 ± 190) 
with a ratio to irrelevant antibody (total mouse immunoglobins) of 18. 
The p25, p29 et p30–33 subunits (506 ± 29, 370 ± 13, and 490 ± 20, 
respectively) are well detected with a ratio between 4 and 6. In contrast, 
detection of p27 and p31 is poor (184 ± 13, and 165 ± 5, respectively) 
with a ratio below 2. After triple labeling of live lymphocytes, we 

obtained probe intensity (total, mean and standard error for Ho342, 
R123 and NR), parameters more related to physiological cell properties, 
and the number of illuminated pixel (cell and nucleus area and perim-
eter, shape factors), related to morphology. Next, lymphocyte popula-
tion properties were analyzed using histograms of cell population 
distributions for each of the parameters, and the parameter was selected 
when the distribution differed between groups. In addition to the mean 
of the total fluorescence intensity (MTI), we presented the fluorescence 
intensity of the first peak of the distribution (FI-1max) and the standard 
deviation (SD) of the heterogeneous lymphocyte population.

3.2. Analyses of the variation of the 41 parameters

Means and standard deviations are presented in Table 1 for six sub- 
populations (controls and smokers as a total population then separated 
by gender). To examine variations according to smoking habit, gender or 
both, five cases were evaluated in pairs (smokers vs. non-smokers in the 
total population and separated by gender, and men vs. women separated 
by smoking habit). Percentage variations between pairs and adjusted p- 
values (Table S4 for the five pairs, Fig. 1 for three selected pairs) were 
calculated for all the 41 parameters. Very few variations are significant 
(adjusted p-value less than 0.05) and only for CBC data (e.g. WBC). It is 
difficult, if not impossible, to obtain a trend from these hematological 
analyses. This is clearer for lymphocyte data: smoking induces a change 
in parameters in the same direction for proteasome-related parameters 
for men and women, but in an opposite direction for morphological and 
physiological parameters.

3.3. DFA analyses to differentiate gender or smoking habit

The three sets of experimental data were tested using univariate or 
bivariate analyses to differentiate between gender (Fig. 2, top) or 
smoking habit (Fig. 2, bottom), with discriminant factor analysis (DFA). 
Confusion matrices shows 100 % training accuracy in separating groups 
by gender, but validation accuracy ranging from 46 % to 69 %. No effect 
of age was observed, but a 64-years-old woman (donor 16) was grouped 
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Fig. 1. Inter-population variations for the 41 parameters. Parameters analyzed individually across three pairs: male smokers versus male non-smokers (black), female 
smokers versus female non-smokers (grey), and male versus female non-smokers (white). See Table S4 for the other two pairs. (A) Hematogram data information (13 
parameters), (B) Proteasome analysis lymphocyte by flow cytometry (14 parameters), (C) Quantitative cellular imaging of lymphocyte (14 parameters of cell 
morphology and physiology). Left: Percentage variation of the mean, with positive variation indicating increase in the parameter. Right: Adjusted p-value (Benjamini 
& Hochberg) on a logarithmic scale.
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close to the males when using hematogram data alone or combined with 
proteasome data. Neither proteasome analysis nor cell imaging analysis 
could distinguish between gender or smoking status (training accuracy 
was less than 86 %) (data not shown). Only the combination of pro-
teasome/hematogram data distinguish smoking status (Fig. 2, bottom). 
Adjusting for the low number of female smokers using the “fixed class 
weight” option slightly improves separation in the CBC data, but has no 
effect on the other analyses.

3.4. DFA analyses to differentiate gender and smoking habit

In a DFA, we classified donors into four groups based on smoking 
status and gender, using univariate or bivariate analyses (Fig. 3). For 
bivariate analyses, training accuracy was 100 %, but validation accu-
racy was low (20 %, 26 % and 30 %, for A, B and C, respectively). In the 
bivariate analyses that combined CBC data (Fig. 3, B and C), the F3 axis 
was needed to distinguished males, though training accuracy remains at 

100 %. None of the univariable analyses could differentiate between the 
four groups, with hematological data (Fig. 3 D) achieving the best 
training accuracy (89 %) and 54 % validation accuracy. Removing fe-
male smokers slightly improved performance, with validation accuracy 
rising to 17 %, 31 % and 41 % (Fig. S3).

3.5. Can the selection of informative parameters improve the performance 
of the discriminant analyses?

To perform DFA with the parameters from the three experimental 
data sets, we needed to reduce the number of parameters to fewer than 
33. We selected parameters (see Table 3) based on the following criteria: 
(i) pairwise variations between sub-populations greater than 12, (ii) 
proximity to the DFA correlation circle with coordinates greater than 0.3 
on the F1 and/or F2 axes, indicating high information content in uni-
variate analyses (iii) identification by Ridge, Lasso and the combination 
(elastic net) regressions from the 41 parameters. For the first two sta-
tistical analyses, DFA successfully separated donors into three or four 
groups with 100 % training accuracy (Fig. 4), but validation accuracy 
was around 50 %. The parameters selected by Ridge/Lasso regressions 
resulted in the lowest training accuracy (< 92 %) but high validation 
accuracy (60–70 %). To improve validation accuracy beyond 50 % 
while maintaining training accuracy at 100 %, we tried various strate-
gies, including statistical clustering of the parameters (hierarchical 
classification and K-mean tests), but these did not yield clear results. 
Only four parameters from lymphocyte image analysis formed a distinct 
cluster. We then excluded and reintegrated parameters one-by-one, 
finding that increasing the number of parameters improved separation 
but often reduced validation accuracy when the added parameters 
provided no additional information. Using the final model with selected 
parameters (Table 2, last column), DFA confirmed the existence of four 
groups (Fig. 5 A) and three groups (Fig. 5 B) with 100 % training ac-
curacy and validation accuracies of 81 % and 79 %, respectively. In the 
four-group analysis, cross-validation suggest that eight male donors 

Table 2 
List of 41 parameters and their abbreviations. 14 morphological and physio-
logical parameters obtained by fluorescence cell imaging on lymphocytes, 14 
proteasomal parameters obtained by flow cytometry on lymphocytes and 13 
hematological parameters from CBC examination.

no. Abbreviation Meaning of the parameter

Cell imaging on lymphocytes
1 FI¡1max NR Nil Red: Max Fluorescence Intensity of the 1st peak of the 

distribution
2 MFI NR Nil Red: Mean of Fluorescence Intensity
3 SD NR Nil Red: Standard Deviation
4 FI¡1max R123 R123: Max Fluorescence Intensity of the 1st peak of the 

distribution
5 MFI R123 R123: Mean Fluorescence Intensity
6 SD R123 R123: Standard Deviation
7 Cell¡1max Cell Area: Max of the 1st peak of the distribution
8 Mean Cell Cell Area: Mean of the pixel inside NR staining
9 SD Cell Cell Area: Standard Deviation
10 Cell/ 

Nuc¡1max

Ratio Cell Area/Nucleus Area: Max of the 1st peak of the 
distribution

11 Mean Cell/ 
Nuc

Ratio Cell Area/Nucleus Area: Mean

12 SD Cell/Nuc Ratio Cell Area/Nucleus Area:: Standard Deviation
13 %c Cell>350 % size of lymphocytes > 350 pixels
14 %c Cell/ 

Nuc>3
% ratio Cell Area/Nucleus Area > 3

Proteasome parameters for lymphocytes
15 MFIp21 Proteasome 21 K: Mean Fluorescence Intensity
16 MFIp23 Proteasome 23 K: Mean Fluorescence Intensity
17 MFIp25 Proteasome 25 K: Mean Fluorescence Intensity
18 MFIp27 Proteasome 27 K: Mean Fluorescence Intensity
19 MFIp29 Proteasome 29 K: Mean Fluorescence Intensity
20 MFIp30–33 Proteasome 30–33 K: Mean Fluorescence Intensity
21 MFIp31 Proteasome 31 K: Mean Fluorescence Intensity by cell
22 %cellþp21 % positive cells proteasome 21 K
23 %cellþp23 % positive cells proteasome 23 K
24 %cellþp25 % positive cells proteasome 25 K
25 %cellþp27 % positive cells proteasome 27 K
26 %cellþp29 % positive cells proteasome 29 K
27 %cellþp30–33 % positive cells proteasome 30–33 K
28 %cellþ31 % positive cells proteasome 31 K

Hemological parameters
29 WBC White blood cell number
30 LYMP Lymphocyte number
31 MONO Monocyte number
32 GR Granulocyte number
33 RBC Red blood cell number
34 Hb Hemoglobin
35 Hct Hematocrit
36 MCV Mean corpuscular volume
37 MCH Mean cell Hb
38 MCHC Mean cell Hb concentration
39 RDW RCB distribution width
40 PLT Platelet number
41 PLR Platelet-Lymphocyte ratio

-6 -4 -2 0 2 4 6 8 10 12

F1 - factor axis

Female Male

Smokers Non-Smokers

Cell imaging + Proteaso.*

Cell imaging + Proteasom.

Cell imaging + Hematog.*

Cell imaging + Hematog.

Proteasome + Hematog.*

Proteasome + Hematog. *

Donor 16

Hematogram data

Fig. 2. Classification by DFA with the donors divided in two groups. Top: 
Subgroups by sex. Bottom: Subgroups by smoking habit. The three set of 
experimental data: quantitative lymphocytes cells imaging (p = 14), lympho-
cyte proteasome analysis by flow cytometry (p = 14) and hematogram data 
information (p = 13), were taken one at a time (univariate analysis) or two at a 
time (bivariate analysis). All DFAs presented are run using “fixed class weight” 
option. The asterisk means that the confusion matrices for the training popu-
lation have a training accuracy of 100 %. Validation accuracy, from top to 
bottom, is 80 %, 46 %, 60 %, 69 % for gender and 48 %, 63 % and 48 % for 
smoking habit.
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(four smokers and four non-smokers) might be classified differently 
based on smoking status. In the three-group analysis (excluding female 
smokers), six donors might have been reassigned: two male smokers to 
the non-smokers group, two male non-smokers to the smoker groups and 
two female non-smokers to the male non-smokers group.

4. Discussion

Analyzing each parameter individually showed that some varied 
little or not at all due to gender or smoking habit. Some parameters, like 
RDW, showed minimal variation but had high adjusted p-value, while 
others, like MONO, showed the opposite. There was no clear relation-
ship between high variation and a low p-value. For each experiment, we 
looked for parameters that best reflect smoking habits and also distin-
guish men from women. Smoking was more closely associated with WCB 
and PLR, which increased with smoking and showed significant varia-
tion and acceptable adjusted p-values. Indeed, elevate WCB is often 
consider a non-specific predictor of poor health conditions and a good 
candidate for assessing smoking (Kabat et al., 2017; Smith et al., 2003). 
More recently, increased PLR, typically related to environmental stress, 
has been linked to smoking (Pujani et al., 2021; Tulgar et al., 2016). 
However, those two parameters were not selected for inclusion in the 

final model because they did not significantly help distinguish between 
groups and could reduce the overall classification accuracy. LYMP and 
MONO decrease with smoking in both men and women, and although 
some p-value were initially below 0.05, they became non-significant 
after adjustment. Gender differences were also observed, with higher 
LYMP and Hb levels and lower WBC levels in both smokers and 
non-smokers. However, it is challenging, if not impossible, to identify a 
clear trend from these individual analyses. If a parameter shows a 
distinct pattern in one group, such as Hct in non-smoking women, it can 
skew the results for sex, gender, and the overall population

The mean fluorescence intensity (MFI) per cell of all tested protea-
somes (p21, p23, p25, p29, p30–33 and p31), differed between smokers 
and non-smokers, with tag intensity – indicating the amount of protea-
somes - decreasing in smokers. This aligns with existing literature, which 
reported that cigarette smoke inhibits proteasome activity both in vitro, 
in vivo (Van Rijt et al., 2012). However, no significant difference was 
observed in our study. Furthermore, while the MFI of all proteasomes 
decreased in both male and female smokers, no consistent 
gender-related trend was observed. Although sex hormones are known 
to affect proteasome function, with studies suggesting higher protea-
some activity in female mice tissues (Jenkins et al., 2020), activity and 
quantity are not directly comparable. The percentage of positively 
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Fig. 3. Classification by DFA with the donors separated in four groups using univariate or bivariate analyses. Projection of the donors on the first two axes (F1 and 
F2) with confidence circles. Correlation circles provided in supplementary material (Fig. S2). SM: smoking male, SF: smoking female, nSM: non-smoking male, nSF: 
non-smoking female. (A) Lymphocyte-based analyses (Proteasome and imaging) (p = 28), (B) Proteasome and CBC data (p = 27), (C) Lymphocyte imaging and CBC 
data (p = 27), (D) CBC data only (p = 13). Statistical analyses were performed on 33 donors; analyses excluding female smokers (three groups) provided in sup-
plementary material (Fig. S3).
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labelled cells showed little variation, particularly between male smokers 
and non-smokers, again these differences were not significant. Overall, 
the labelling by our antibody pool tended to decrease under stress 
conditions, which is consistent with expectations.

Lymphocyte morphology and physiology showed a greater differ-
ence between smokers and non-smokers in women, with opposite pat-
terns often observed in smoking men. However, similar to the 
proteasome data, none of the p-values, whether adjusted or not, were 
significant. Cell morphology parameters such as SD Cell, SD Cell/Nuc, 
and the percentage of ‘abnormal cells’ increased in male smokers but 
surprisingly decreased in female smokers. The number of large lym-
phocytes (% Sc > 350) and those with small nuclei (% Sc/Sn > 3) is 
extremely low in female smokers. This finding should be tempered by 
the fact that only four female smokers participated in the study. Func-
tional parameters coming from membrane and mitochondrial markers 
(NR and R123, respectively), also showed varying tends depending on 
gender, resulting in no overall variation. Although mitochondrial 
labelling (FI-1max R123) increased in both male and female smokers, it 
was extremely low in female non-smokers, but was not selected in the 
final model.

In summary, unlike proteasomal and most CBC measurements, 
cellular imaging provides parameters that vary differently according to 
sex and smoking habits. If men and women are not analyzed separately, 
general trends such as decreased proteasomes and increased leukocytes 
will be observed, but this will mask the specific effects of smoking on 

lymphocyte morphology and physiology. This highlights the importance 
of considering gender when studying the effects of smoking.

Given the lack of significant variations in individual lymphocyte 
parameters, analyzing the experiments as a whole was crucial. The three 
experimental datasets were tested separately and in pairs to differentiate 
between gender or smoking habit. Of the analyses, only the CBC data 
differentiated gender, but not smoking habit. Interestingly, all pairwise 
analyses successfully distinguished men from women, while only one 
combination -proteasome combined with hematogram data- effectively 
predicted smoking habits. The other two combinations misclassified one 
or two donors, different each time. Despite this, a trend emerged. To 
further investigate, the same procedure was used to separate the donors 
into four groups based on gender and smoking habits using univariate or 
bivariate analyses. Only pairwise analyses successfully distinguished all 
four groups, showing a clear separation between men and women, with 
one of the factorial axes capturing this distinction when proteasome and 
imaging data were combined. However, no factorial axis contained in-
formation on smoking habits, likely due to cell imaging data revealing 
predominantly opposite patterns for male and female smokers. Cross- 
validation remains low, with more than half of the donors potentially 
reassigned to a different group. By selecting more informative parame-
ters, with the greatest variation or with highest information (as defined 
by the position on correlation circle), gender and/or smoking habit 
separated more clearly on the F1/F2 factor space, eliminating the 
inversion of positions for male and female smokers. Together, these 

Table 3 
Summary of informative parameters selected from the three experimental datasets. The selected parameters were used in DFA with the donors divided in four groups 
and three groups (without female smokers). The results are presented as training accuracy and validation accuracy (in brackets) as percentages. Column 1: Inter-groups 
mean variation greater than 12. Column 2: Parameters closest to the DFA correlation circle, with coordinates greater than 0.3 in the univariate analyses (Fig. S2). 
Column 3: Parameters identified by Elastic Net regression (see Table S5 for more details). Column 4: Parameters yielding the best validation accuracy for DFA in four 
groups. Column 5: Parameters giving the best validation accuracy for DFA in three groups.

Mean variation Correlation Circle* Elastic Net Regression final reduction final reduction

4 groups 3 groups 4 groups 3 groups 4 groups 3 groups 4 groups 3 groups 4 groups 3 groups
100 % (42 %) 100 % (26 %) 100 % (49 %) 100 % (38 %) 92 % (71 %) 93 % (62 %) 100 % (81 %) 95 % (65 %) 100 % (71 %) 100 % (79 %)

MFI NR
SD NR SD NR SD NR SD NR
FI− 1max R123

MFI R123
SD R123 (80 % without)

Cell/Nuc− 1max

SD Cell SD Cell SD Cell SD Cell
SD Cell/Nuc SD Cell/Nuc (F2) SD Cell/Nuc SD Cell/Nuc
% Cell>350 % Cell>350 % Cell>350 % Cell>350
% Cell/Nuc>3 % Cell/Nuc>3 % Cell/Nuc>3 % Cell/Nuc>3
MFIp21 MFIp21 (F2)
MFIp23 MFIp23 (F2)
MFIp25
MFIp27 MFIp27 (F2) MFIp27 MFIp27
MFIp29 MFIp29 (F2) MFIp29 MFIp29
MFIp3033 MFIp3033 (F2) MFIp3033 MFIp3033
MFIp31 MFIp31 (F2) MFIp31 MFIp31 MFIp31
%cell+p21
%cell+p23
%cell+p25
%cell+p29
%cell+31
WBC WBC
LYMP LYMP LYMP
MONO

GR GR GR
RBC (F2) RBC RBC RBC

Hb Hb Hb Hb
Hct Hct (F2) Hct Hct
MCV MCV
MCH MCH MCH MCH

MCHC
RDW RDW RDW RDW

PLR PLR

* close to F2 axis if indicated between brackets, close to F1 axis if not.
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selections improved validation accuracy up to 50 %. The parameters 
selected by Ridge, Lasso and Elastic Net regressions are listed in 
Table S5. All these parameters were already identified and included in 
the final model, except for Cell/Nuc-F1max. They are necessary but not 
sufficient to achieve a clear separation into four groups. Here again, it 
would be interesting to test what happens with a larger number of do-
nors. An additional manual selection of a dozen parameters allows us to 
better distribute information on gender and smoking habit between the 
two axes, with a visual separation of smokers and gender on the F1/F2 
factors axes. In addition, this method finally achieves validation accu-
racy of 80 %. Interestingly, although no statistical effect of age was 
observed, donors 16 and 12 aged 64 and 63 respectively, were among 
the donors reassigned during cross validation.

This study identified several key parameters that appear consistently 
in the different statistical analysis. Parameters related to cell 
morphology, derived from cell imaging, were retained. While protea-
some intensity parameters were retained, no parameters related to the 
percentage of marked cells were included. Most of the parameters 
retained were derived from CBC, even though parameters such as GR, 
RBC and RDW did not show high inter-population variation or signifi-
cant p-values. Contrary to expectations, the addition of parameters (SD 
NR and LYM) improved separation when smokers were excluded from 
the dataset.

5. Conclusions

In this study, we combined a small number of donors, in particular 
female smokers, with a statistical method, ADF, which requires a smaller 
number of experimental parameters than the number of donors. Despite 
this limitation, the process of reducing the number of parameters 
allowed us to identity key parameters and highlight the relevance of 
lymphocytic cells. A larger population would likely provide a deeper 
understanding of these parameters and improve the selection process 
needed to confidently separate the four groups. Integrating the three 
experimental datasets with multiparametric statistics demonstrated that 
the effect of smoking on blood tests and lymphocytes is significant, 
especially in women, emphasizing the importance of considering gender 
when studying the effect of smoking. This work also underscores the 
potential of fluorescence imaging in revealing the wealth of lympho-
cytes properties. This approach could be valuable for studying the effect 
of tobacco, classifying control individuals, and conducting more 
detailed analyses, such as assessing consumption levels, the impact of 
smoking cessation, alternatives to cigarettes, or nicotine substitutes. 
Additionally, it could be highly useful for monitoring environmental 
stressors or endocrine disruptors.

Fig. 4. DFA classification into four groups using a reduced number of parameters. Parameters selected based on the following criteria: (A, B) Inter-groups mean 
variation greater than 12 %. (C, D) Proximity to the DFA correlation circle with coordinates greater than 0.3 on the F1 and/or F2 axes in the three univariable DFA 
analyses. (A, C) Projection of donors onto the factor space (F1 and F2) with confidence circles; (B, D) Correlation circle showing the projection of parameters on the 
factor space. A zoomed in view is provided to distinguish between parameters. In these two DFAs, all the donors were correctly separated (training accuracy 100 %). 
Validation accuracy: (A) 42 % (26 % for three groups), (C) 49 % (38 % for three groups).
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Farkas, G., Kocsis, Z.S., Székely, G., Dobozi, M., Kenessey, I., Polgár, C., Jurányi, Z., 
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