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A ROBUST FAMILY OF EXPONENTIAL ATTRACTORS FOR A LINEAR TIME
DISCRETIZATION OF THE CAHN-HILLIARD EQUATION WITH A

SOURCE TERM

Dieunel Dor1,2 and Morgan Pierre1,*

Abstract. We consider a linear implicit-explicit (IMEX) time discretization of the Cahn-Hilliard
equation with a source term, endowed with Dirichlet boundary conditions. For every time step small
enough, we build an exponential attractor of the discrete-in-time dynamical system associated to the
discretization. We prove that, as the time step tends to 0, this attractor converges for the symmetric
Hausdorff distance to an exponential attractor of the continuous-in-time dynamical system associated
with the PDE. We also prove that the fractal dimension of the exponential attractor (and consequently,
of the global attractor) is bounded by a constant independent of the time step. The results also apply
to the classical Cahn-Hilliard equation with Neumann boundary conditions.
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1. Introduction

We consider the Cahn-Hilliard equation with a source term and Dirichlet boundary conditions. It reads

𝑢𝑡 + ∆2𝑢−∆𝑓(𝑢) + 𝑔(𝑢) = 0 in Ω× (0, +∞), (1.1)
𝑢 = ∆𝑢 = 0 on 𝜕Ω× (0, +∞), (1.2)

𝑢|𝑡=0 = 𝑢0 in Ω, (1.3)

where Ω is a bounded open subset of R𝑑 (𝑑 = 1, 2 or 3) with smooth boundary 𝜕Ω. The unknown function 𝑢 is
the order parameter, 𝑓 is the nonlinear regular potential and 𝑔 is the source term.

When 𝑔 = 0, the PDE (1.1) is known as the Cahn-Hilliard equation [6] and it has been thoroughly studied
(see [25] and references therein). The generalization with a source term 𝑔 has drawn a lot of interest in recent
years, in particular for biological applications [15,17,25,26].

The PDE (1.1) endowed with Dirichlet boundary conditions (1.2) was analyzed in [14, 21, 22] with various
assumptions on 𝑓 and 𝑔 (see also [8]). In particular, global-in-time solutions were shown to exist and their
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asymptotic behaviour was studied. The existence of finite dimensional attractors was established. Numerical
simulations were performed, e.g., in [1, 14,18].

We stress that Neumann boundary conditions are usually prefered for the standard Cahn-Hilliard equation
(𝑔 = 0). The mass is conserved and the analysis is rather similar to the case with Dirichlet boundary conditions.
However, if 𝑔 ̸= 0, the situation is more delicate. We no longer have the conservation of mass and if 𝑔 is a
proliferation term, some solutions may blow up in finite time [7, 23,25].

Our purpose in this manuscript is to obtain a global asymptotic result for a linear time discretization of (1.1)
and (1.2) with fixed time step 𝛿𝑡 > 0. We want a construction of exponential attractors which is robust as
𝛿𝑡 goes to 0. We use a first order implicit-explicit (IMEX) time discretization where the nonlinearities 𝑓 and
𝑔 are treated explicitly and the bilaplacian is treated implicitly. This is a very popular discretization of the
classical Cahn-Hilliard equation which allows the use of the fast Fourier transform (FFT) [5, 30]. It has also
been successfully used in variants of the Cahn-Hilliard equation including a source term [9,10].

An exponential attractor is a compact positively invariant set which contains the global attractor, has fi-
nite fractal dimension and attracts exponentially the trajectories. In comparison with the global attractor, an
exponential attractor is expected to be more robust to perturbations: global attractors are generally upper
semicontinuous with respect to perturbations, but the lower semicontinuity can be proved only in some specific
cases (see [2, 27, 31, 34] and references therein). In particular, the upper semicontinuity of the global attractor
as the mesh step and the time step tend to 0 was proved in [13] for a finite element approximation of the
Cahn-Hilliard equation.

Exponential attractors were first introduced by Eden et al. [11] with a construction based on a “squeezing
property”. In [12], Efendiev, Miranville and Zelik proposed a robust construction of exponential attractors based
on a “smoothing property” and an appropriate error estimate. Their construction has been adapted to many
situations, including singular perturbations. We refer the reader to the review [27] for details.

In [29], a robust family of exponential attractors was built for a time semidiscretization of a generalized
Allen-Cahn equation. An abstract result was first derived, based on the construction in [12], and it was then
applied to the backward Euler scheme. The same approach was successfully applied for a time splitting scheme
in [4], for a discretized Ginzburg Landau equation in [3] and for a space semidiscretization of the Allen-Cahn
equation in [28]. In these papers, the nonlinearity was treated implicitly. Here, we also adapt the approach
introduced in [29], but we focus on a case where the nonlinearity is treated explicitly, thus allowing a linear
scheme.

Since we use an IMEX scheme, the main condition that we impose on the potential is that 𝑓 is Lipschitz
continous on R (cf. (2.2)). This restriction can be well understood for the classical Cahn-Hilliard equation, which
is a gradient flow for the 𝐻−1 inner product, so that there is a Lyapunov functional (the energy) naturally
associated with it. In order for the IMEX scheme to have the same property, it is necessary to assume that 𝑓
is Lipschitz continuous and that the time step is small enough. This is known as energy stability [5, 30].

For 𝑔 ̸= 0, the PDE (1.1) and (1.2) is no longer a gradient flow and there is no Lyapunov functional associated
with it. Nonetheless, the PDE is a dissipative system if 𝑓 satisfies a standard dissipativity assumption (see (2.4))
and if 𝑔 is subordinated to 𝑓 (cf Rem. 2.3). We prove here that the discrete-in-time dynamical system associated
to the IMEX scheme is also dissipative if the time step is small enough (cf Sect. 3.2). However, the smallness
condition required on the time step to prove dissipativity is much stronger than the one required for energy
stability. Typically, 𝑓 can be the usual cubic nonlinearity which is modified into an affine function outside a
compact interval as in (2.8). In turn, a typical choice for 𝑔 is the symport term

𝑔(𝑠) =
𝑘𝑠

𝑘′ + |𝑠|
(𝑠 ∈ R), (1.4)

where 𝑘, 𝑘′ > 0 [19,20,24]. Our analysis also includes the case 𝑔 = 0 (the classical Cahn-Hilliard equation).
Our manuscript is organized as follows. We first give the a priori estimates for the PDE (1.1)–(1.3) in

Section 2. In Section 3, we establish their discrete counterpart for the IMEX scheme. The most technical part
is the dissipative 𝐻2 estimate (Prop. 3.6). An error estimate on finite time intervals is proved in Section 4.
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The main result is given in the last section. For every time step 𝛿𝑡 > 0 small enough, we build an exponential
attractor ℳ𝛿𝑡 of the discrete-in-time dynamical system associated to the IMEX scheme. We prove that ℳ𝛿𝑡

converges to ℳ0 for the symmetric Hausdorff distance as 𝛿𝑡 tends to 0, where ℳ0 is an exponential attractor
of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension
of ℳ𝛿𝑡 (and consequently, of the global attractor) is bounded by a constant independent of 𝛿𝑡. The results also
apply to the classical Cahn-Hilliard equation with Neumann boundary conditions, as pointed out in Remark 5.5.
As a perspective, we note that it would be very interesting to obtain similar results for a space and time
discretization of the PDE (1.1) and (1.2) based on the IMEX scheme.

2. The continuous problem

2.1. Notation and assumptions

We make the following assumptions:

𝑓 ∈ 𝐶1,1(R), 𝑓(0) = 0, (2.1)

𝑓 ′ is bounded on R, (2.2)

𝑓 ′ is piecewise 𝐶1 and 𝑓 ′′ is bounded on R, (2.3)

lim
|𝑠|→∞

inf 𝑓 ′(𝑠) > 0. (2.4)

Assumption (2.4) is the dissipativity condition.
The term of symport 𝑔 satisfies

𝑔 ∈ 𝐶1(R). (2.5)

𝑔 is bounded on R, (2.6)

𝑔′ is bounded on R (2.7)

Example 2.1. The function 𝑔 defined by (1.4) satisfies (2.5)–(2.7). If 𝑔 = 0, then 𝑔 also satisfies (2.5)–(2.7)
and equation (1.1) is the classical Cahn-Hilliard equation.

Remark 2.2. We note that if 𝑓 ∈ 𝐶2(R) with 𝑓 ′′ bounded on R, then assumption (2.3) is satisfied. However, the
weaker assumption (2.3) is interesting because it allows for the usual 𝐶1 regularization of the cubic nonlinearity
𝑠3 − 𝑠, defined by

𝑓(𝑠) = 𝑓𝐾(𝑠) =

⎧⎪⎨⎪⎩
(︀
3𝐾2 − 1

)︀
𝑠− 2𝐾3, 𝑠 > 𝐾,

𝑠3 − 𝑠, 𝑠 ∈ [−𝐾, 𝐾],(︀
3𝐾2 − 1

)︀
𝑠 + 2𝐾3, 𝑠 < −𝐾,

(2.8)

where 𝐾 ≥ 1. Thus, 𝑓𝐾 ∈ 𝐶1(R) has a linear growth at ±∞ with

max
𝑠∈R

|𝑓 ′𝐾(𝑠)| = 3𝐾2 − 1.

This regularization is very popular for the IMEX scheme [5,30].
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Remark 2.3. The growth of 𝑔 is controlled by the growth of 𝑓 in order to ensure that the PDE is dissipative
(see [21, Rem. 2.1]). If we suppress assumption (2.6), then dissipativity is no longer guaranteed. Indeed, let us
choose 𝑓(𝑠) = 𝑠 and 𝑔(𝑠) = −𝛼𝑠 (𝑠 ∈ R) with 𝛼 > 𝜆2

1 + 𝜆1 and 𝜆1 > 0 is the first eigenvalue of the minus
Laplacian operator with Dirichlet boundary conditions. We have −∆𝑒1 = 𝜆1𝑒1 where 𝑒1 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) is
an eigenfunction associated to 𝜆1. Then the function 𝑢(𝑡) = 𝑒𝛽𝑡𝑒1 with 𝛽 = 𝛼 − 𝜆2

1 − 𝜆1 > 0 solves (1.1) and
(1.2) but ‖𝑢(𝑡)‖𝐿2(Ω) → +∞ as 𝑡 → +∞.

We set 𝐻 := 𝐿2(Ω) and we denote by (·, ·) the scalar product both in 𝐻 and in 𝐻𝑑 and by ‖ · ‖ the induced
norm. The symbol ‖ · ‖𝑋 will indicate the norm in the generic real Banach space 𝑋. Next, we set 𝑉 := 𝐻1

0 (Ω),
so that 𝑉 ′ = 𝐻−1(Ω) is the topological dual of 𝑉 . The space 𝑉 is endowed with the Hilbertian norm 𝑣 ↦→ ‖∇𝑣‖
which is equivalent to the usual 𝐻1(Ω)-norm, thanks to the Poincaré inequality.

We also denote by 𝐴 : 𝐷(𝐴) → 𝐻 the (minus) Laplace operator 𝐴 = −∆ with homogeneous Dirichlet
boundary condition, with domain 𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1

0 (Ω). By elliptic regularity [16], the norm 𝑣 ↦→ ‖∆𝑣‖ is
equivalent to the usual 𝐻2(Ω)-norm in 𝐷(𝐴). Moreover,

𝐷
(︀
𝐴2
)︀

=
{︀
𝑣 ∈ 𝐻4(Ω) : 𝑣 = ∆𝑣 = 0 on 𝜕Ω (in the sense of trace)

}︀
,

and the norm 𝑣 ↦→
⃦⃦

∆2𝑣
⃦⃦

is equivalent to the usual 𝐻4(Ω)-norm in 𝐷
(︀
𝐴2
)︀
.

It is well known that 𝐴 is a positive self-adjoint operator with compact resolvent, so that we can define,
for 𝑠 ∈ R, its powers 𝐴𝑠 : 𝐷 (𝐴𝑠) → 𝐻. For each 𝑠 ∈ R, the Hilbert space 𝐷 (𝐴𝑠) is equipped with the norm
‖𝑣‖2𝑠 = ‖𝐴𝑠𝑣‖. We have 𝐷

(︀
𝐴0
)︀

= 𝐻 with ‖ · ‖0 = ‖ · ‖ and 𝐷
(︀
𝐴1/2

)︀
= 𝑉 with ‖ · ‖1 = ‖∇ · ‖. Indeed, an

integration by parts shows that

‖∇𝑣‖2 = (𝐴𝑣, 𝑣) =
⃦⃦⃦
𝐴1/2𝑣

⃦⃦⃦2

, ∀𝑣 ∈ 𝐷(𝐴). (2.9)

We note that for every 𝑠 ∈ R, we have

‖𝑣‖2𝑠 = (𝐴𝑠𝑣, 𝑣) , ∀𝑣 ∈ 𝐷 (𝐴𝑠) ∩𝐻.

If 𝑠1 < 𝑠2, then the space 𝐷 (𝐴𝑠2) is continuously embedded in 𝐷(𝐴𝑠1), i.e.

‖𝑣‖2𝑠1 ≤ 𝑐𝑆(𝑠1, 𝑠2)‖𝑣‖2𝑠2 , ∀𝑣 ∈ 𝐷(𝐴𝑠2), (2.10)

where the positive constant 𝑐𝑆 depends on 𝑠1 and 𝑠2. In particular for 𝑠1 = 0 and 𝑠2 = 1/2, we have the Poincaré
inequality

‖𝑣‖ ≤ 𝑐𝑃 ‖∇𝑣‖ , ∀𝑣 ∈ 𝑉, 𝑐𝑃 = 𝑐𝑆(0, 1/2). (2.11)

By (2.1)-(2.2), the map 𝑣 ↦→ 𝑓(𝑣) is Lipschitz continuous from 𝐻 into 𝐻 and from 𝑉 into 𝑉 and we have

‖𝑓(𝑣)− 𝑓(𝑤)‖ ≤ 𝐿𝑓‖𝑣 − 𝑤‖, ∀𝑣, 𝑤 ∈ 𝐻, (2.12)

where 𝐿𝑓 = sup𝑠∈R |𝑓 ′(𝑠)|. Similarly, by (2.5)–(2.7), 𝑣 ↦→ 𝑔(𝑣) is Lipschitz continuous from 𝐻 into 𝐻 and from
𝑉 into 𝑉 and we have

‖𝑔(𝑣)‖ ≤ 𝑐𝑔, ∀𝑣 ∈ 𝐻, (2.13)

‖𝑔(𝑣)− 𝑔(𝑤)‖ ≤ 𝐿𝑔‖𝑣 − 𝑤‖, ∀𝑣, 𝑤 ∈ 𝐻. (2.14)

We define 𝐹 by

𝐹 (𝑠) =
∫︁ 𝑠

0

𝑓(𝑡) d𝑡 (2.15)

We deduce from (2.4) that

𝐹 (𝑠) ≥ 𝛾1𝑠
2 − 𝛾2, ∀𝑠 ∈ R, where 𝛾1 > 0, 𝛾2 ≥ 0. (2.16)
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We deduce from (2.2) that

𝐹 (𝑠) ≤ 𝛾3𝑠
2 + 𝛾4, ∀𝑠 ∈ R, where 𝛾3 > 0, 𝛾4 ≥ 0. (2.17)

By (2.4), we also have
𝑓(𝑠)𝑠 ≥ 𝛾5𝑠

2 − 𝛾6, ∀𝑠 ∈ R, where 𝛾5 > 0, 𝛾6 ≥ 0, (2.18)

and
𝑓 ′(𝑠) ≥ −𝛾7, ∀𝑠 ∈ R, where 𝛾7 ≥ 0. (2.19)

Assumption (2.3) implies that 𝑓 ′′ has a finite number of discontinuities (the corner points of 𝑓 ′). Here, 𝑓 ′′ is
the distributional derivative of 𝑓 ′ since 𝐶1,1(R) = 𝑊 2,∞(R). Moreover, the following chain rule holds [16, Thm.
7.8]: if 𝑣 ∈ 𝐻1(Ω), we have 𝑓 ′(𝑣) ∈ 𝐻1(Ω) and

∇𝑓 ′(𝑣) = 𝑓 ′′(𝑣)∇𝑣.

Consequently, if 𝑣 ∈ 𝐻2(Ω), then 𝑓(𝑣) ∈ 𝐻2(Ω) and

∆𝑓(𝑣) = 𝑓 ′(𝑣)∆𝑣 + 𝑓 ′′(𝑣)|∇𝑣|2. (2.20)

We use here that 𝐻1(Ω) ⊂ 𝐿4(Ω) since 𝑑 ≤ 3, so that |∇𝑣|2 ∈ 𝐿2(Ω).
The abstract version of (1.1) and (1.2) reads

d𝑢

d𝑡
+ 𝐴2𝑢 + 𝐴𝑓(𝑢) + 𝑔(𝑢) = 0 in 𝐷

(︀
𝐴−1

)︀
, for a.e. 𝑡 > 0. (2.21)

It is associated to the variational formulation

𝑑

𝑑𝑡
(𝑢, 𝑣) + (𝐴𝑢, 𝐴𝑣) + (𝑓(𝑢), 𝐴𝑣) + (𝑔(𝑢), 𝑣) = 0 in 𝒟′(0,∞), ∀𝑣 ∈ 𝐷(𝐴).

2.2. The continuous semigroup

We first state the well-posedness result of our model.

Theorem 2.4. For every 𝑢0 ∈ 𝑉 , there exists a unique solution 𝑢 of (1.1)–(1.3) which satisfies

𝑢 ∈ 𝐶0 ([0, 𝑇 ], 𝑉 ) ∩ 𝐿2 (0, 𝑇 ; 𝐷(𝐴)) and 𝑢𝑡 ∈ 𝐿2 (0, 𝑇 ; 𝑉 ′) , ∀𝑇 > 0.

Moreover, if 𝑢0 ∈ 𝐷(𝐴), then 𝑢 satisfies

𝑢 ∈ 𝐶0([0, 𝑇 ], 𝐷(𝐴)) ∩ 𝐿2(0, 𝑇 ; 𝐷(𝐴2)), ∀𝑇 > 0.

Proof. For 𝑢0 ∈ 𝑉 , the proof of existence is based on Proposition 2.5, Proposition 2.6 and a standard Galerkin
scheme. In order to prove that 𝑢 is continuous from [0, 𝑇 ] into 𝑉 , we use a standard argument [25, 32]. We
first show that 𝑢 is weakly continuous into 𝑉 , thanks to the Strauss lemma, and we note that 𝑡 ↦→ ‖∇𝑢(𝑡)‖2

is absolutely continuous since d
d𝑡‖∇𝑢‖2 belongs to 𝐿1(0, 𝑇 ) by (2.32). For 𝑢0 ∈ 𝐷(𝐴), the proof of existence is

based on Proposition 2.7.
The proof of uniqueness and of the continuous dependence with respect to the initial data in the 𝐿2-norm

follow from Lemma 2.10. �

As a consequence, we have the continuous (with respect to the 𝐿2-norm) semigroup 𝑆0(𝑡) defined as

𝑆0(𝑡) : 𝐷(𝐴) → 𝐷(𝐴), 𝑢0 ↦→ 𝑢(𝑡), 𝑡 ≥ 0. (2.22)
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2.3. Dissipative estimates

In this subsection, we first establish some priori estimates for the solution 𝑢 to the system (1.1)–(1.3). These
formal estimates could be rigorously justified by a Galerkin approximation. These dissipative estimates are
useful in the proof of Theorem 2.4. They also show that the semigroup is dissipative. It is an important step in
the construction of an exponential attractor. As a by-product, we obtain the existence of a global attractor.

Proposition 2.5 (Dissipative estimate in 𝐿2(Ω)). We have

‖𝑢(𝑡)‖2 + 𝑒−𝜀0𝑡

∫︁ 𝑡

0

‖∆𝑢(𝑠)‖2 d𝑠 ≤ 𝐶0 ‖𝑢(0)‖2 𝑒−𝜀0𝑡 + 𝑀0, 𝑡 ≥ 0, (2.23)

where the positive constants 𝜀0, 𝐶0 and 𝑀0 are independent of 𝑢(0).

Proof. By multiplying (1.1) by (−∆)−1𝑢 and integrating over Ω, we have

d
d𝑡
‖𝑢‖2−1 + 2‖∇𝑢‖2 + 2(𝑓(𝑢), 𝑢) + 2(𝑔(𝑢), (−∆)−1𝑢) = 0 (2.24)

Using (2.18), we find
(𝑓(𝑢), 𝑢) ≥ 𝛾5‖𝑢‖2 − 𝛾6|Ω|,

where |Ω| =
∫︀
Ω

1 d𝑥. Using (2.13), the continuous injection 𝐻 ⊂ 𝐷(𝐴−1) and Young’s inequality, we find⃒⃒
(𝑔(𝑢), (−∆)−1𝑢)

⃒⃒
≤ ‖𝑔(𝑢)‖

⃦⃦
(−∆)−1𝑢

⃦⃦
≤ 𝑐𝑔𝑐𝑆‖𝑢‖

≤ 𝛾5

2
‖𝑢‖2 +

𝑐2
𝑔𝑐

2
𝑆

2𝛾5
,

where 𝑐𝑆 = 𝑐𝑆(−1, 0) (cf. (2.10)). Combining the above estimates in (2.24), we obtain

d
d𝑡
‖𝑢(𝑡)‖2−1 + 𝑐1

(︁⃦⃦
∇𝑢(𝑡)‖2 + ‖𝑢(𝑡)

⃦⃦2
)︁
≤ 𝑐2, (2.25)

where 𝑐1 = min(2, 𝛾5) > 0 and 𝑐2 = 2𝛾6|Ω|+ 𝑐2
𝑔𝑐

2
𝑆/𝛾5 ≥ 0.

Next, we multiply (1.1) by 𝑢 and we integrate over Ω. We get

d
d𝑡
‖𝑢‖2 + 2‖∆𝑢‖2 + 2(∇𝑓(𝑢),∇𝑢) + 2(𝑔(𝑢), 𝑢) = 0. (2.26)

Thanks to (2.19), we have

(𝑓 ′(𝑢)∇𝑢,∇𝑢) ≥ −𝛾7‖∇𝑢‖2, 𝛾7 > 0.

Using the Cauchy-Schwarz inequality, (2.13) and Young’s inequality, we deduce that

|(𝑔(𝑢), 𝑢)| ≤ ‖𝑔(𝑢)‖ ‖𝑢‖
≤ 𝑐𝑔‖𝑢‖

≤ 𝛾7‖𝑢‖2 +
𝑐2
𝑔

4𝛾7
·

Combining the above estimates in (2.26), we find

d
d𝑡
‖𝑢(𝑡)‖2 + 2 ‖∆𝑢(𝑡)‖2 ≤ 2𝛾7

(︁⃦⃦
∇𝑢(𝑡)‖2 + ‖𝑢(𝑡)

⃦⃦2
)︁

+
𝑐2
𝑔

2𝛾7
· (2.27)
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Summing (2.25) and 𝛼 times (2.27) where 𝛼 > 0 is such that 2𝛼𝛾7 ≤ 𝑐1/2, we obtain

d
d𝑡

𝐸1(𝑡) +
𝑐1

2

(︁⃦⃦
∇𝑢(𝑡)‖2 + ‖𝑢(𝑡)

⃦⃦2
)︁

+ 2𝛼 ‖∆𝑢(𝑡)‖2 ≤ 𝑐2 +
𝛼𝑐2

𝑔

2𝛾7
,

where
𝐸1(𝑡) = 𝛼‖𝑢(𝑡)‖2 + ‖𝑢(𝑡)‖2−1.

Since 𝐻−1(Ω) is continuously embedded in 𝐻 (see (2.10)), we have

𝐸1(𝑡) ≤
(︀
𝛼 + 𝑐2

𝑆

)︀
‖𝑢(𝑡)‖2, 𝑐𝑆 = 𝑐𝑆(−1/2, 0) > 0, (2.28)

and this yields

d
d𝑡

𝐸1(𝑡) + 𝑐3

(︁
𝐸1(𝑡) + ‖∆𝑢(𝑡)‖2

)︁
≤ 𝑐4, (2.29)

where 𝑐3 = min
{︀
𝑐1/
(︀
2𝛼 + 2𝑐2

𝑆

)︀
, 2𝛼

}︀
and 𝑐4 = 𝑐2 + 𝛼𝑐2

𝑔/(2𝛾7). Applying Gronwall’s lemma to (2.29) (see,
e.g., [32]), we find

𝐸1(𝑡) + 𝑐3𝑒
−𝑐3𝑡

∫︁ 𝑡

0

‖∆𝑢(𝑠)‖2 d𝑠 ≤ 𝐸1(0)𝑒−𝑐3𝑡 +
𝑐4

𝑐3
, 𝑡 ≥ 0. (2.30)

Using (2.28) for 𝑡 = 0 and 𝐸1(𝑡) ≥ 𝛼‖𝑢(𝑡)‖2 for all 𝑡 ≥ 0, we obtain Proposition 2.5. �

Proposition 2.6 (Dissipative estimate in 𝐻1(Ω)). We have

‖∇𝑢(𝑡)‖2 + 𝑒−𝜀1𝑡

∫︁ 𝑡

0

‖𝑢𝑡(𝑠)‖2−1𝑑𝑠 ≤ 𝐶1‖∇𝑢(0)‖2𝑒−𝜀1𝑡 + 𝑀1, 𝑡 ≥ 0, (2.31)

where the positive constants 𝜀1, 𝐶1 and 𝑀1 are independent of 𝑢(0).

Proof. Testing (1.1) by (−∆)−1𝑢𝑡 and integrating over Ω, we have

d
d𝑡
‖∇𝑢‖2 + 2‖𝑢𝑡‖2−1 + 2(𝑓(𝑢), 𝑢𝑡) + 2(𝑔(𝑢), (−∆)−1𝑢𝑡) = 0. (2.32)

Using (2.13), the injection 𝐻−1(Ω) ⊂ 𝐷(𝐴−1) and Young’s inequality, we get⃒⃒
(𝑔(𝑢), (−∆)−1𝑢𝑡)

⃒⃒
≤ ‖𝑔(𝑢)‖

⃦⃦
(−∆)−1𝑢𝑡

⃦⃦
≤ 𝑐𝑔‖𝑢𝑡‖−1

≤ 1
2
‖𝑢𝑡‖2−1 +

𝑐2
𝑔

2
·

By (2.15), we get

(𝑓(𝑢), 𝑢𝑡) =
d
d𝑡

∫︁
Ω

𝐹 (𝑢) d𝑥.

This yields
d
d𝑡

(︁
‖∇𝑢(𝑡)‖2 + 2(𝐹 (𝑢), 1)

)︁
+ ‖𝑢𝑡(𝑡)‖2−1 ≤ 𝑐2

𝑔, 𝑡 ≥ 0. (2.33)

Adding (2.29) and 𝛽 times (2.33) where 𝛽 > 0, we deduce that

d
d𝑡

𝐸2(𝑡) + 𝑐5

(︁
𝐸1(𝑡) + ‖∆𝑢(𝑡)‖2 + ‖𝑢𝑡(𝑡)‖2−1

)︁
≤ 𝑐4 + 𝛽𝑐2

𝑔, 𝑡 ≥ 0, (2.34)
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where 𝑐5 = min(𝑐3, 𝛽) > 0 and

𝐸2(𝑡) = 𝐸1(𝑡) + 𝛽‖∇𝑢(𝑡)‖2 + 2𝛽(𝐹 (𝑢), 1).

By (2.17), (2.28) and the Poincaré inequality (2.11), we have

𝐸2(𝑡) ≤
(︀
𝛼 + 𝑐2

𝑆

)︀
‖𝑢‖2 + 𝛽‖∇𝑢‖2 + 2𝛽

(︀
𝛾3‖𝑢‖2 + 𝛾4|Ω|

)︀
≤ 𝑐6‖∇𝑢(𝑡)‖2 + 2𝛽𝛾4|Ω|, (2.35)

where 𝑐6 =
(︀
𝛼 + 𝑐2

𝑆 + 2𝛽𝛾3

)︀
𝑐2
𝑃 + 𝛽 > 0. Since 𝐷(𝐴) ⊂ 𝐻1

0 (Ω) by (2.10), we deduce from (2.34) that

d
d𝑡

𝐸2(𝑡) + 𝑐7

(︁
𝐸2(𝑡) + ‖𝑢𝑡(𝑡)‖2−1

)︁
≤ 𝑐8, 𝑡 ≥ 0, (2.36)

where 𝑐7 = min{𝑐5, 𝑐5/
(︀
𝑐6𝑐𝑆(1/2, 1)2

)︀
} and

𝑐8 = 𝑐4 + 𝛽𝑐2
𝑔 +

2𝑐5𝛽𝛾4|Ω|
𝑐6𝑐𝑆(1/2, 1)2

·

Gronwall’s lemma yields

𝐸2(𝑡) + 𝑐7𝑒
−𝑐7𝑡

∫︁ 𝑡

0

‖𝑢𝑡(𝑠)‖2−1 d𝑠 ≤ 𝐸2(0)𝑒−𝑐7𝑡 +
𝑐8

𝑐7
, 𝑡 ≥ 0. (2.37)

By (2.16), we have
𝐸2(𝑡) ≥ 𝑐9

(︀
‖𝑢(𝑡)‖2 + ‖∇𝑢(𝑡)‖2

)︀
− 2𝛽𝛾2|Ω|, 𝑡 ≥ 0, (2.38)

where 𝑐9 = min{𝛼 + 2𝛽𝛾1, 𝛽} > 0. This estimate, (2.37) and (2.35) give the result of Proposition 2.6. �

Proposition 2.7 (Dissipative estimate in 𝐻2(Ω)). We have

‖∆𝑢(𝑡)‖2 ≤ 𝑄2(‖∆𝑢(0)‖)𝑒−𝜀2𝑡 + 𝑀2, 𝑡 ≥ 0, (2.39)

and ∫︁ 𝑡

0

⃦⃦
∆2𝑢(𝑠)

⃦⃦2
𝑑𝑠 ≤ 𝑄2(‖∆𝑢(0)‖) + 𝐶2𝑡, 𝑡 ≥ 0, (2.40)

where 𝑄2 is a monotonic function and the positive constants 𝜀2, 𝑀2 and 𝐶2 are independent of 𝑢(0).

Proof. We multiply (1.1) by ∆2𝑢 and integrate over Ω, we have

d
d𝑡
‖∆𝑢

⃦⃦
2 + 2‖∆2𝑢

⃦⃦2
+ 2

(︀
𝑔(𝑢), ∆2𝑢

)︀
= 2

(︀
∆𝑓(𝑢), ∆2𝑢

)︀
. (2.41)

Using (2.13) and Young’s inequality, we find⃒⃒
(𝑔(𝑢), ∆2𝑢)

⃒⃒
≤ ‖𝑔(𝑢)‖

⃦⃦
∆2𝑢

⃦⃦
≤ 𝑐𝑔

⃦⃦
∆2𝑢

⃦⃦
≤ 1

4

⃦⃦
∆2𝑢

⃦⃦2
+ 𝑐2

𝑔.

Moreover, we have ⃒⃒
(∆𝑓(𝑢), ∆2𝑢)

⃒⃒
≤ ‖∆𝑓(𝑢)‖

⃦⃦
∆2𝑢

⃦⃦
≤ ‖∆𝑓(𝑢)‖2 +

1
4

⃦⃦
∆2𝑢

⃦⃦2
.
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Thus,

d
d𝑡
‖∆𝑢‖2 + ‖∆2𝑢‖2 ≤ 2‖∆𝑓(𝑢)‖2 + 2𝑐2

𝑔. (2.42)

Using the chain rule (2.20), assumptions (2.2) and (2.3) and interpolation inequalities, we obtain (see [25,32])

‖∆𝑓(𝑢)‖ ≤ ‖𝑓 ′(𝑢)‖𝐿∞(Ω) ‖∆𝑢‖+ ‖𝑓 ′′(𝑢)‖𝐿∞(Ω) ‖∇𝑢‖2𝐿4(Ω)

≤ 𝐿𝑓‖∆𝑢‖+ 𝑐𝑓 ′′‖∇𝑢‖2𝐿4(Ω)

≤ 𝑐′𝑓 ′‖𝑢‖
2
3
𝐻1(Ω)‖𝑢‖

1
3
𝐻4(Ω) + 𝑐′𝑓 ′′‖𝑢‖2

𝐻
7
4
, 𝐻

3
4 ⊂ 𝐿4(Ω)

≤ 𝑐′𝑓 ′‖𝑢‖
2
3
𝐻1(Ω)‖𝑢‖

1
3
𝐻4(Ω) + 𝑐′′𝑓 ′′‖𝑢‖

3
4
𝐻1(Ω)‖𝑢‖

1
4
𝐻4(Ω)

≤ (Thanks to estimate (2.31))

≤ 𝑐′′𝑓 ′(𝑅1)‖𝑢‖
1
3
𝐻4(Ω) + 𝑐′′′𝑓 ′′(𝑅1)‖𝑢‖

1
4
𝐻4(Ω), 𝑡 ≥ 0,

where 𝑅1 = ‖∇𝑢(0)‖. Since the norm 𝑣 ↦→
⃦⃦

∆2𝑣
⃦⃦

is equivalent to the usual 𝐻4(Ω)-norm in 𝐷
(︀
𝐴2
)︀
, we have

‖∆𝑓(𝑢)
⃦⃦

2 ≤ 𝑐10

⃦⃦
∆2𝑢‖ 2

3 + 𝑐11

⃦⃦
∆2𝑢

⃦⃦ 1
2 , (2.43)

where 𝑐10 = 𝑐10 (𝑓 ′, 𝑅1) and 𝑐11 = 𝑐11 (𝑓 ′′, 𝑅1). Hence, by Young’s inequality,

‖∆𝑓(𝑢)‖2 ≤ 1
8

⃦⃦
∆2𝑢

⃦⃦2
+

2
3

(︂
8
3

)︂ 1
2

𝑐
3
2
10 +

1
8

⃦⃦
∆2𝑢

⃦⃦2
+

3
4
× 2

1
3 𝑐

4
3
11

≤ 1
4

⃦⃦
∆2𝑢

⃦⃦2
+ 𝑐12, 𝑐12 = 𝑐12(𝑐10, 𝑐11) ≥ 0. (2.44)

This estimate, combined with (2.42), yields

d
d𝑡
‖∆𝑢(𝑡)‖2 +

1
2

⃦⃦
∆2𝑢(𝑡)

⃦⃦2
𝑑𝑠 ≤ 𝑐13, 𝑐13 = 2𝑐2

𝑔 + 𝑐12(𝑅1) ≥ 0, 𝑡 ≥ 0. (2.45)

Using the dissipative estimate (2.31), we choose a time

𝑡1 = 𝑡1(𝑅1) =
ln
(︀
𝑅2

1

)︀
𝜀1

(2.46)

such that ‖∇𝑢(𝑡)‖2 ≤ 𝐶1 + 𝑀1, for all 𝑡 ≥ 𝑡1, where the constants 𝐶1 and 𝑀1 are independent of 𝑅1. Integrat-
ing (2.45) on the interval [0, 𝑡] for 𝑡 ≤ 𝑡1, we obtain

‖∆𝑢(𝑡)‖2 +
1
2

∫︁ 𝑡

0

⃦⃦
∆2𝑢(𝑠)

⃦⃦2
d𝑠 ≤ ‖∆𝑢(0)‖2 + 𝑐13𝑡1(𝑅1), 𝑡 ∈ [0, 𝑡1]. (2.47)

For 𝑡 ≥ 𝑡1(𝑅1), the constants 𝑐10 and 𝑐11 in (2.43) do not depend on 𝑅1 and consequently, we obtain as in (2.45),

d
d𝑡
‖∆𝑢(𝑡)‖2 +

1
2

⃦⃦
∆2𝑢(𝑡)

⃦⃦2
𝑑𝑠 ≤ 𝑐13, 𝑡 ≥ 𝑡1(𝑅1),

where 𝑐13 does not depend on 𝑅1. Since 𝐷
(︀
𝐴2
)︀
⊂ 𝐷(𝐴) by (2.10), we deduce that

d
d𝑡
‖∆𝑢(𝑡)‖2 + 𝑐14 ‖∆𝑢(𝑡)‖2 +

1
4
‖∆2𝑢(𝑡)‖2 ≤ 𝑐13, 𝑡 ≥ 𝑡1(𝑅1), (2.48)
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where 𝑐14 = 1/𝑐𝑆(1, 2)2 > 0 does not depend on 𝑅1. Applying Gronwall’s lemma, we obtain

‖∆𝑢(𝑡)‖2 ≤ ‖∆𝑢(𝑡1)‖2 𝑒−𝑐14(𝑡−𝑡1) +
𝑐13

𝑐14
, 𝑡 ≥ 𝑡1(𝑅1). (2.49)

By integration on [𝑡1, 𝑡], we also deduce from (2.48) that

1
4

∫︁ 𝑡

𝑡1

⃦⃦
∆2𝑢(𝑠)

⃦⃦2
d𝑠 ≤ ‖∆𝑢(𝑡1)‖2 + 𝑐13(𝑡− 𝑡1), 𝑡 ≥ 𝑡1(𝑅1). (2.50)

Estimate (2.40) follows from (2.47) and (2.50). From (2.47), we deduce that for 𝑡 ∈ [0, 𝑡1(𝑅1)],

‖∆𝑢(𝑡)‖2 ≤ ‖∆𝑢(0)‖2 + 𝑐13(𝑅1)𝑡1(𝑅1)
≤
[︀
‖∆𝑢(0)‖2 + 𝑐13(𝑅1)𝑡1(𝑅1)

]︀
𝑒𝑐14(𝑡1(𝑅1)−𝑡)

≤ 𝑄(‖∆𝑢(0)‖)𝑒−𝑐14𝑡, (2.51)

where 𝑄 is a monotonic function of ‖∆𝑢(0)‖. In the last line above, we used that 𝑅1 = ‖∇𝑢(0)‖, the continuous
injection 𝑉 ⊂ 𝐷(𝐴) (cf. (2.10)) and the fact that 𝑐13 and 𝑡1 are increasing functions of 𝑅1. The dissipative
estimate (2.39) follows from (2.51) and (2.49). �

We deduce from Proposition 2.7 the existence of bounded absorbing set in 𝐷(𝐴) and consequently, of a global
attractor associated with our semigroup 𝑆0(𝑡) [32].

Theorem 2.8. The semigroup 𝑆0(𝑡) has a global attractor 𝒜 ⊂ 𝐷(𝐴) which is invariant (𝑆0(𝑡)𝒜 = 𝒜), bounded
in 𝐻2(Ω), compact in 𝐿2(Ω), and which attracts the bounded sets of 𝐷(𝐴) for the 𝐿2(Ω)-norm.

The following estimate shows that the semigroup is Hölder continuous in time.

Lemma 2.9. Let 𝑇 > 0. If 𝑢0 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω), then

‖𝑢(𝑡1)− 𝑢(𝑡2)‖2 ≤ 𝑄(𝑇, ‖𝑢0‖2)|𝑡1 − 𝑡2|, ∀𝑡1, 𝑡2 ∈ [0, 𝑇 ]. (2.52)

Proof. We multiply (1.1) by 𝑢𝑡 and integrate over Ω. We find

d
d𝑡
‖∆𝑢(𝑡)‖2 + 2‖𝑢𝑡(𝑡)‖2 − 2(∆𝑓(𝑢), 𝑢𝑡) + 2(𝑔(𝑢), 𝑢𝑡) = 0. (2.53)

Using the Cauchy-Schwarz inequality, (2.13) and Young’s inequality, we obtain

|(𝑔(𝑢), 𝑢𝑡)| ≤ ‖𝑔(𝑢)‖ ‖𝑢𝑡‖
≤ 𝑐𝑔‖𝑢𝑡‖

≤ 1
4
‖𝑢𝑡‖2 + 𝑐2

𝑔.

Similarly, we have

|(∆𝑓(𝑢), 𝑢𝑡)| ≤ ‖∆𝑓(𝑢)‖ ‖𝑢𝑡‖

≤ 1
4
‖𝑢𝑡‖2 + ‖∆𝑓(𝑢)‖2

≤ (Estimate (2.44))

≤ 1
4
‖𝑢𝑡‖2 +

1
2

⃦⃦
∆2𝑢

⃦⃦2
+ 𝑐12(𝑅1),
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where 𝑅1 = ‖∇𝑢(0)‖. Combining the above estimates in (2.53), we find

d
d𝑡
‖∆𝑢(𝑡)‖2 + ‖𝑢𝑡(𝑡)‖2 ≤

⃦⃦
∆2𝑢(𝑡)

⃦⃦2
+ 2𝑐12(𝑅1), 𝑡 ≥ 0.

Integrating on [0, 𝑇 ], we obtain

‖∆𝑢(𝑇 )‖2 +
∫︁ 𝑇

0

‖𝑢𝑡(𝑡)‖2𝑑𝑡 ≤
∫︁ 𝑇

0

⃦⃦
∆2𝑢(𝑡)

⃦⃦2
d𝑡 + 2𝑐12(𝑅1)𝑇.

Thus, by Proposition 2.7, ∫︁ 𝑇

0

‖𝑢𝑡(𝑡)‖2 d𝑡 ≤ 𝑄(‖𝑢(0)‖2, 𝑇 ), (2.54)

where 𝑄 is a continuous and monotonic function of its arguments.
Let 𝑡1, 𝑡2 ∈ [0, 𝑇 ]. Using the Cauchy-Schwarz inequality, we have

‖𝑢(𝑡1)− 𝑢(𝑡2)‖ =
⃦⃦⃦⃦∫︁ 𝑡2

𝑡1

𝑢𝑡(𝑠) d𝑠

⃦⃦⃦⃦
≤
⃒⃒⃒⃒∫︁ 𝑡2

𝑡1

‖𝑢𝑡(𝑠)‖ d𝑠

⃒⃒⃒⃒

≤ |𝑡1 − 𝑡2|
1
2

⃒⃒⃒⃒∫︁ 𝑡2

𝑡1

‖𝑢𝑡(𝑠)‖2 d𝑠

⃒⃒⃒⃒ 1
2

. (2.55)

Lemma 2.9 follows from (2.54) and (2.55). �

2.4. Estimates for the difference of two solutions

Let now 𝑢1 and 𝑢2 be two solutions of system (1.1)–(1.3) with initial data 𝑢0,1 and 𝑢0,2, respectively. We set
𝑢 = 𝑢1 − 𝑢2 and 𝑢0 = 𝑢0,1 − 𝑢0,2 and we have, for all 𝑇 > 0,

𝑢𝑡 + 𝐴2𝑢 + 𝐴 (𝑓(𝑢1)− 𝑓(𝑢2)) + (𝑔(𝑢1)− 𝑔(𝑢2)) = 0 in 𝐿2
(︀
0, 𝑇 ; 𝐷(𝐴−1)

)︀
, (2.56)

𝑢|𝑡=0 = 𝑢0 (= 𝑢0,1 − 𝑢0,2) in 𝑉. (2.57)

We first prove:

Lemma 2.10 (Uniqueness). For all 𝑡 ≥ 0, we have

‖𝑢1(𝑡)− 𝑢2(𝑡)‖2 +
∫︁ 𝑡

0

‖∆𝑢(𝑠)‖2 d𝑠 ≤ 𝑒𝑐𝑓,𝑔𝑡‖𝑢0,1 − 𝑢0,2‖2, (2.58)

where the positive constant 𝑐𝑓,𝑔 depends only on 𝐿𝑓 and 𝐿𝑔.

Proof. On multiplying (2.56) by 𝑢 in 𝐻, we obtain

d
d𝑡
‖𝑢‖2 + 2‖𝐴𝑢‖2 + 2(𝑓(𝑢1)− 𝑓(𝑢2), 𝐴𝑢) + 2(𝑔(𝑢1)− 𝑔(𝑢2), 𝑢) = 0. (2.59)

From (2.14), we deduce that

|(𝑔(𝑢1)− 𝑔(𝑢2), 𝑢)| ≤ ‖𝑔(𝑢1)− 𝑔(𝑢2)‖ ‖𝑢‖
≤ 𝐿𝑔‖𝑢‖2.
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Using (2.12) and Young’s inequality, we find

|(𝑓(𝑢1)− 𝑓(𝑢2), 𝐴𝑢)| ≤ ‖𝑓(𝑢1)− 𝑓(𝑢2)‖ ‖𝐴𝑢‖
≤ 𝐿𝑓‖𝑢‖ ‖𝐴𝑢‖

≤
𝐿2

𝑓

2
‖𝑢‖2 +

1
2
‖𝐴𝑢‖2.

Thus,

d
d𝑡
‖𝑢(𝑡)‖2 + ‖𝐴𝑢(𝑡)‖2 ≤ 𝑐𝑓,𝑔‖𝑢(𝑡)‖2, 𝑐𝑓,𝑔 =

(︀
2𝐿𝑔 + 𝐿2

𝑓

)︀
> 0, 𝑡 ≥ 0. (2.60)

We finally conclude (2.58) from (2.60) and Gronwall’s lemma. �

Next, we show a 𝐿2−𝐻1 smoothing property which is essential in the construction of an exponential attractor.

Lemma 2.11. If ‖𝑢𝑖(0)‖2 ≤ 𝑅2 (i=1,2), then for all 𝑡 > 0, we have

‖𝑢(𝑡)‖21 ≤
𝑐𝑆

𝑡
exp(𝑐(𝑅2)𝑡)‖𝑢0‖2. (2.61)

Proof. We multiply (2.56) by 2𝑡𝐴−1𝑢𝑡 in 𝐻. We deduce

d
d𝑡

(𝑡‖∇𝑢‖2) + 2𝑡‖𝑢𝑡‖2−1 + 2𝑡
(︀
𝑔(𝑢1)− 𝑔(𝑢2), (−∆)−1𝑢𝑡

)︀
+ 2𝑡 (𝑓(𝑢1)− 𝑓(𝑢2), 𝑢𝑡) = ‖∇𝑢‖2. (2.62)

Using (2.14), (2.10), Poincaré’s inequality (2.11) and Young’s inequality, we have⃒⃒
(𝑔(𝑢1)− 𝑔(𝑢2), (−∆)−1𝑢𝑡)

⃒⃒
≤ ‖𝑔(𝑢1)− 𝑔(𝑢2)‖

⃦⃦
(−∆)−1𝑢𝑡

⃦⃦
≤ 𝐿𝑔‖𝑢‖ 𝑐𝑆‖𝑢𝑡‖−1

≤ 𝐿𝑔𝑐𝑆𝑐𝑃 ‖∇𝑢‖ ‖𝑢𝑡‖−1

≤ 𝐿2
𝑔𝑐

2
𝑆𝑐2

𝑃 ‖∇𝑢‖2 +
1
4
‖𝑢𝑡‖2−1.

Next, we use the Cauchy-Schwarz inequality and (2.9):

|(𝑓(𝑢1)− 𝑓(𝑢2), 𝑢𝑡)| =
⃒⃒⃒
(𝐴

1
2 (𝑓(𝑢1)− 𝑓(𝑢2)), 𝐴−

1
2 𝑢𝑡)

⃒⃒⃒
≤
⃦⃦⃦⃦
∇
(︂∫︁ 1

0

𝑓 ′(𝑢1 + 𝑠(𝑢2 − 𝑢1)) d𝑠𝑢

)︂⃦⃦⃦⃦
‖𝑢𝑡‖−1

≤
⃦⃦⃦⃦∫︁ 1

0

𝑓 ′(𝑢1 + 𝑠(𝑢2 − 𝑢1)) d𝑠∇𝑢

⃦⃦⃦⃦
‖𝑢𝑡‖−1

+
⃦⃦⃦⃦∫︁ 1

0

𝑓 ′′(𝑢1 + 𝑠(𝑢2 − 𝑢1))(∇𝑢1 + 𝑠∇(𝑢2 − 𝑢1)) d𝑠𝑢

⃦⃦⃦⃦
‖𝑢𝑡‖−1

Consequently, using (2.2) and (2.3), we have

|(𝑓(𝑢1)− 𝑓(𝑢2), 𝑢𝑡)| ≤ 𝑐𝑓 (‖∇𝑢‖+ ‖|𝑢| |∇𝑢1|‖+ ‖|𝑢| |∇𝑢2|‖) ‖𝑢𝑡‖−1

≤ 𝑐𝑓 (‖∇𝑢‖+ ‖𝑢‖𝐿4(Ω)

(︀
‖∇𝑢1‖𝐿4(Ω) + ‖∇𝑢2‖𝐿4(Ω)

)︀
‖𝑢𝑡‖−1

≤ (thanks to the continuous embedding 𝐻1(Ω) ⊂ 𝐿4(Ω))
≤ 𝑐(‖∇𝑢‖+ ‖∇𝑢‖

(︀
‖𝑢1‖𝐻2(Ω) + ‖𝑢2‖𝐻2(Ω)

)︀
‖𝑢𝑡‖−1

≤ (since 𝑢1, 𝑢2 are bounded in 𝐻2(Ω) by (2.39))

≤ 𝑐(𝑅2)‖∇𝑢‖2 +
1
4
‖𝑢𝑡‖2−1. (2.63)
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Combining the above estimates in (2.62), we find

d
d𝑡

(︀
𝑡‖∇𝑢(𝑡)‖2

)︀
+ 𝑡‖𝑢𝑡(𝑡)‖2−1 ≤ 𝑐′𝑡‖∇𝑢(𝑡)‖2 + ‖∇𝑢(𝑡)‖2, 𝑡 ≥ 0,

where 𝑐′ = 2𝐿2
𝑔𝑐

2
𝑆𝑐2

𝑃 + 2𝑐(𝑅2). By Gronwall’s lemma,

𝑡‖∇𝑢(𝑡)‖2 ≤ 𝑒𝑐′𝑡

∫︁ 𝑡

0

‖∇𝑢(𝑠)‖2 d𝑠, 𝑡 ≥ 0.

We conclude from (2.58) and (2.10) that (2.61) holds with 𝑐(𝑅2) = 𝑐′ + 𝑐𝑓,𝑔. �

3. The time semidiscrete problem

3.1. The discrete semigroup

For the time semidiscretization, we apply the semi-implicit Euler scheme to (1.1). In the remainder of the
manuscript, 𝛿𝑡 > 0 denotes the time step. The scheme reads : let 𝑢0 ∈ 𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1

0 (Ω) and for
𝑛 = 0, 1, 2, · · · , let 𝑢𝑛+1 ∈ 𝐷(𝐴) solve

𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡
+ 𝐴2𝑢𝑛+1 + 𝐴𝑓 (𝑢𝑛) + 𝑔 (𝑢𝑛) = 0. (3.1)

This is a linear scheme known as the IMEX (Implicit-Explicit) scheme: at each time step, 𝑢𝑛+1 is computed by
solving a linear system whose right-hand side involves 𝑢𝑛. By elliptic regularity, for 𝑢𝑛 ∈ 𝐷(𝐴), 𝑢𝑛+1 is unique
and belongs to 𝐷(𝐴). The following result shows that the discrete semigroup 𝑆𝑛

𝛿𝑡𝑢
0 = 𝑢𝑛 is well-defined on

𝐷(𝐴).

Theorem 3.1. Assume that 𝛿𝑡 ≤ 1/(2𝐿𝑔), where 𝐿𝑔 is the constant in (2.14). Then for every 𝑢𝑛 ∈ 𝐷(𝐴),
there exists a unique 𝑢𝑛+1 ∈ 𝐷(𝐴) which solves (3.1). Moreover, the mapping 𝑆𝛿𝑡 : 𝑢𝑛 ↦→ 𝑢𝑛+1 is Lipschitz
continuous for the 𝐿2(Ω)-norm from 𝐷(𝐴) into 𝐷(𝐴).

The Lipschitz continuity in 𝐿2(Ω) follows from Lemma 3.7.
The following regularity result will prove useful for the dissipative estimate in 𝐻2(Ω).

Lemma 3.2. If 𝑢𝑛 ∈ 𝐷(𝐴), then 𝑢𝑛+1 = 𝑆𝛿𝑡𝑢
𝑛 belongs to 𝐷

(︀
𝐴2
)︀

and

𝛿𝑡
⃦⃦
𝐴2𝑢𝑛+1

⃦⃦2 ≤ 2 ‖∆𝑢𝑛‖2 + 𝐶𝛿𝑡
(︁
‖∆𝑢𝑛‖4 + 1

)︁
, (3.2)

where the positive constant 𝐶 is independent of 𝛿𝑡 and 𝑢𝑛. Moreover,⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ ‖∆𝑢𝑛‖2 + 𝐶𝛿𝑡
(︁
‖∆𝑢𝑛‖4 + 1

)︁
. (3.3)

Proof. By (3.1), 𝑢𝑛+1 solves
𝑢𝑛+1 − 𝑢𝑛 + 𝛿𝑡𝐴2𝑢𝑛+1 = 𝛿𝑡 ℎ (3.4)

where ℎ = ∆𝑓 (𝑢𝑛)− 𝑔 (𝑢𝑛). By the chain rule (2.20), ℎ ∈ 𝐿2(Ω) with

‖ℎ‖ ≤ ‖𝑓 ′(𝑢𝑛)‖𝐿∞(Ω) ‖∆𝑢𝑛‖+ ‖𝑓 ′′(𝑢𝑛)‖𝐿∞(Ω) ‖∇𝑢𝑛‖2𝐿4(Ω) + ‖𝑔(𝑢𝑛)‖

≤
(︀
𝐻1(Ω) ⊂ 𝐿4(Ω

)︀
, (2.2), (2.3) and (2.13))

≤ 𝐿𝑓 ‖∆𝑢𝑛‖+ 𝑐𝑓 ′′𝑐
2
𝑆 ‖∆𝑢𝑛‖2 + 𝑐𝑔. (3.5)
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Since 𝑢𝑛, 𝑢𝑛+1 and ℎ belong to 𝐿2(Ω), we deduce from (3.4) that 𝑢𝑛+1 ∈ 𝐷
(︀
𝐴2
)︀
. Next, we take the 𝐿2-scalar

product of (3.4) with 𝑢𝑛+1 − 𝑢𝑛. This yields⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2
= 𝛿𝑡

(︀
∆𝑢𝑛+1, ∆𝑢𝑛

)︀
+ 𝛿𝑡

(︀
ℎ, 𝑢𝑛+1 − 𝑢𝑛

)︀
≤ 𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦
‖∆𝑢𝑛‖+ 𝛿𝑡

⃦⃦
ℎ‖ ‖𝑢𝑛+1 − 𝑢𝑛

⃦⃦
.

From Young’s inequality, we deduce that⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 𝛿𝑡 ‖∆𝑢𝑛‖2 + 𝛿𝑡2‖ℎ‖2. (3.6)

Now, we take the 𝐿2-scalar product of (3.4) with 𝐴2𝑢𝑛+1. We find

𝛿𝑡
⃦⃦
𝐴2𝑢𝑛+1

⃦⃦2
= −

(︀
𝑢𝑛+1 − 𝑢𝑛, 𝐴2𝑢𝑛+1

)︀
+ 𝛿𝑡

(︀
ℎ, 𝐴2𝑢𝑛+1

)︀
≤ 1

𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+

𝛿𝑡

4

⃦⃦
𝐴2𝑢𝑛+1

⃦⃦2
+ 𝛿𝑡‖ℎ‖2 +

𝛿𝑡

4

⃦⃦
𝐴2𝑢𝑛+1

⃦⃦2
.

Thus, by (3.6),
𝛿𝑡
⃦⃦
𝐴2𝑢𝑛+1

⃦⃦2 ≤ 2‖∆𝑢𝑛
⃦⃦

2 + 4𝛿𝑡
⃦⃦

ℎ‖2.

Using (3.5), we find (3.2). From (3.6) and (3.5), we also deduce that⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ ‖∆𝑢𝑛‖2 + 𝛿𝑡‖ℎ‖2

≤ ‖∆𝑢𝑛‖2 + 𝐶𝛿𝑡
(︁
‖∆𝑢𝑛‖4 + 1

)︁
.

This is (3.3). �

3.2. Dissipative estimates, uniform with respect to the time step

In this subsection, we first establish some priori estimates for the scheme (3.1). The following well-known
identity will be frequently used:

(𝑎− 𝑏, 𝑎) =
1
2
(︀
‖𝑎‖2 − ‖𝑏‖2 + ‖𝑎− 𝑏‖2

)︀
, 𝑎, 𝑏 ∈ 𝐿2(Ω) (3.7)

In (3.7), we may also replace the inner product and the norm in 𝐿2(Ω) by another inner product and the norm
associated to it. We recall a discrete Gronwall lemma.

Lemma 3.3. Let 𝐶, 𝛾 > 0 and (𝑎𝑛), (𝑏𝑛) be two sequences of nonnegative real numbers such that

𝑎𝑛+1 + 𝛿𝑡𝑏𝑛+1 ≤ (1− 𝛾𝛿𝑡)𝑎𝑛 + 𝛿𝑡𝐶, ∀𝑛 ≥ 0, (3.8)

where 𝛿𝑡 ∈ (0, 1/(2𝛾)]. Then for all 𝑛 ≥ 0, we have

𝑎𝑛 ≤ 𝑒−𝑛𝛾𝛿𝑡𝑎0 +
𝐶

𝛾
(3.9)

and

𝛿𝑡

𝑛−1∑︁
𝑘=0

𝑏𝑘+1 ≤ 𝑎0 + 𝑛𝛿𝑡𝐶. (3.10)

By convention, for 𝑛 = 0, the sum in the left-hand side of (3.10) is zero.
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Proof. Since
𝑎𝑛+1 ≤ (1− 𝛾𝛿𝑡)𝑎𝑛 + 𝛿𝑡𝐶, ∀𝑛 ≥ 0,

we find by induction that for all 𝑛 ≥ 0,

𝑎𝑛 ≤ (1− 𝛾𝛿𝑡)𝑛𝑎0 + 𝛿𝑡𝐶

𝑛−1∑︁
𝑘=0

(1− 𝛾𝛿𝑡)𝑘

≤ (1− 𝛾𝛿𝑡)𝑛𝑎0 +
𝐶

𝛾
·

By convexity, we have 1− 𝑠 ≤ 𝑒−𝑠 for all 𝑠 ≥ 0. Thus, for all 𝑛 ≥ 0,

𝑎𝑛 ≤ 𝑒−𝑛𝛾𝛿𝑡𝑎0 +
𝐶

𝛾
·

This is (3.9). By (3.8), we also have

𝑎𝑛+1 + 𝛿𝑡𝑏𝑛+1 ≤ 𝑎𝑛 + 𝛿𝑡𝐶, ∀𝑛 ≥ 0.

By summing from 𝑛 = 0 to 𝑛 = 𝑁 − 1, we find

𝑎𝑁 + 𝛿𝑡

𝑁−1∑︁
𝑛=0

𝑏𝑛+1 ≤ 𝑎0 + 𝑁𝛿𝑡𝐶.

This yields (3.10). �

Proposition 3.4 (Dissipative estimate in 𝐿2(Ω)). If 𝛿𝑡 is small enough, then

‖𝑢𝑛‖2 ≤ 𝐶0‖𝑢0‖2𝑒−𝜀0𝑛𝛿𝑡 + 𝑀0, ∀𝑛 ≥ 0, (3.11)

and

𝛿𝑡

𝑛−1∑︁
𝑘=0

‖∆𝑢𝑘+1‖2 ≤ 𝐶 ′0‖𝑢0‖2 + 𝑛𝛿𝑡𝑀 ′
0, ∀𝑛 ≥ 0, (3.12)

where the positive constants 𝐶0, 𝜀0, 𝑀0, 𝐶 ′0 and 𝑀 ′
0 are independent of 𝑢0 and 𝛿𝑡.

Proof. We multiply (3.1) by 𝐴−1𝑢𝑛+1 in 𝐻. Using (3.7), we have

1
2𝛿𝑡

(︁⃦⃦
𝑢𝑛+1

⃦⃦2

−1
− ‖𝑢𝑛‖2−1 +

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1

)︁
+
⃦⃦
∇𝑢𝑛+1

⃦⃦2
+
(︀
𝑓
(︀
𝑢𝑛+1

)︀
, 𝑢𝑛+1

)︀
+
(︀
𝑓(𝑢𝑛)− 𝑓

(︀
𝑢𝑛+1

)︀
, 𝑢𝑛+1

)︀
+
(︁
𝑔 (𝑢𝑛) , (−∆)−1

𝑢𝑛+1
)︁

= 0. (3.13)

Thanks to (2.18), we have (︀
𝑓
(︀
𝑢𝑛+1

)︀
, 𝑢𝑛+1

)︀
≥ 𝛾5

⃦⃦
𝑢𝑛+1

⃦⃦2 − 𝛾6|Ω|.

Using the Cauchy-Schwarz inequality, (2.12) and Young’s inequality, we find⃒⃒
(𝑓(𝑢𝑛)− 𝑓

(︀
𝑢𝑛+1

)︀
, 𝑢𝑛+1)

⃒⃒
≤
⃦⃦
𝑓 (𝑢𝑛)− 𝑓

(︀
𝑢𝑛+1

)︀⃦⃦ ⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝐿𝑓

⃦⃦
𝑢𝑛 − 𝑢𝑛+1

⃦⃦ ⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝛾5

4

⃦⃦
𝑢𝑛+1

⃦⃦2
+

𝐿2
𝑓

𝛾5

⃦⃦
𝑢𝑛 − 𝑢𝑛+1

⃦⃦2
.
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Moreover, by (2.10) and (2.13),⃒⃒(︀
𝑔 (𝑢𝑛) , (−∆)−1𝑢𝑛+1

)︀⃒⃒
≤ ‖𝑔 (𝑢𝑛)‖ ‖(−∆)−1𝑢𝑛+1‖
≤ 𝑐𝑔𝑐𝑆

⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝛾5

4

⃦⃦
𝑢𝑛+1

⃦⃦2
+

𝑐2
𝑔𝑐

2
𝑆

𝛾5
·

Let us combine the above estimates in (3.13). We find

1
2𝛿𝑡

⃦⃦
𝑢𝑛+1

⃦⃦2

−1
+

𝛾5

2

⃦⃦
𝑢𝑛+1

⃦⃦2
+
⃦⃦
∇𝑢𝑛+1

⃦⃦2
+

1
2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1

≤ 1
2𝛿𝑡

‖𝑢𝑛‖2−1 +
𝐿2

𝑓

𝛾5

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+

𝑐2
𝑔𝑐

2
𝑆

𝛾5
+ 𝛾6|Ω|. (3.14)

Now, we multiply (3.1) by 𝑢𝑛+1 in 𝐻. We obtain

1
2𝛿𝑡

(︁⃦⃦
𝑢𝑛+1

⃦⃦2 − ‖𝑢𝑛‖2 +
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
)︁

+
⃦⃦

∆𝑢𝑛+1
⃦⃦2

−
(︀
𝑓 (𝑢𝑛) , ∆𝑢𝑛+1

)︀
+
(︀
𝑔 (𝑢𝑛) , 𝑢𝑛+1

)︀
= 0. (3.15)

By (2.12), (2.1) and Young’s inequality, we have⃒⃒
(𝑓 (𝑢𝑛) , ∆𝑢𝑛+1)

⃒⃒
≤ ‖𝑓(𝑢𝑛)‖

⃦⃦
∆𝑢𝑛+1

⃦⃦
≤ 𝐿𝑓 ‖𝑢𝑛‖

⃦⃦
∆𝑢𝑛+1

⃦⃦
≤

𝐿2
𝑓

2
‖𝑢𝑛‖2 +

1
2

⃦⃦
∆𝑢𝑛+1

⃦⃦2
.

Owing to (2.13) and Young’s inequality, we have⃒⃒(︀
𝑔 (𝑢𝑛) , 𝑢𝑛+1

)︀⃒⃒
≤ ‖𝑔 (𝑢𝑛)‖

⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝑐𝑔

⃦⃦
𝑢𝑛+1

⃦⃦
≤ 1

4

⃦⃦
𝑢𝑛+1

⃦⃦2
+ 𝑐2

𝑔.

Combining the above estimates in (3.15), we obtain

1
2𝛿𝑡

⃦⃦
𝑢𝑛+1

⃦⃦2
+

1
2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+

1
2

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 1
2𝛿𝑡

‖𝑢𝑛‖2 +
𝐿2

𝑓

2
‖𝑢𝑛‖2 +

1
4

⃦⃦
𝑢𝑛+1

⃦⃦2
+ 𝑐2

𝑔. (3.16)

On summing (3.14) and 𝛼 (3.16) with 𝛼 > 0, we conclude that

1
2𝛿𝑡

⃦⃦
𝑢𝑛+1

⃦⃦2

−1
+

𝛼

2𝛿𝑡

⃦⃦
𝑢𝑛+1

⃦⃦2
+
(︁𝛾5

2
− 𝛼

4

)︁ ⃦⃦
𝑢𝑛+1

⃦⃦2
+
⃦⃦
∇𝑢𝑛+1

⃦⃦2

+
1

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

𝛼

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+

𝛼

2

⃦⃦
∆𝑢𝑛+1

⃦⃦2

≤ 1
2𝛿𝑡

‖𝑢𝑛‖2−1 +
𝛼

2𝛿𝑡
‖𝑢𝑛‖2 +

𝐿2
𝑓

𝛾5

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝛼

𝐿2
𝑓

2
‖𝑢𝑛‖2 + 𝑐′, (3.17)

where 𝑐′ =
𝑐2
𝑔𝑐

2
𝑆

𝛾5
+ 𝛾6|Ω| + 𝛼𝑐2

𝑔. Now, we use the Poincaré inequality (2.11) for the term ‖∇𝑢𝑛+1‖2, we choose

𝛼 > 0 small enough so that 𝛼 ≤ 𝛾5 and 𝛼𝐿2
𝑓/2 ≤ 1/𝑐2

𝑃 , and we set

𝑎𝑛 = ‖𝑢𝑛‖2−1 + 𝛼‖𝑢𝑛‖2 +
2𝛿𝑡

𝑐2
𝑃

‖𝑢𝑛‖2. (3.18)
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Then (3.17) yields

1
2𝛿𝑡

𝑎𝑛+1 +
𝛾5

4

⃦⃦
𝑢𝑛+1

⃦⃦2
+

𝛼

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+

𝛼

2

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 1
2𝛿𝑡

𝑎𝑛 +
𝐿2

𝑓

𝛾5

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝑐′.

Then, for 𝛿𝑡 small enough so that 𝛼/(2𝛿𝑡) ≥ 𝐿2
𝑓/𝛾5, we obtain

1
2𝛿𝑡

𝑎𝑛+1 +
𝛾5

4

⃦⃦
𝑢𝑛+1

⃦⃦2
+

𝛼

2

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 1
2𝛿𝑡

𝑎𝑛 + 𝑐′.

By (2.10),

𝑎𝑛 ≤
(︂

𝑐2
𝑆 + 𝛼 +

2𝛿𝑡⋆

𝑐2
𝑃

)︂
‖𝑢𝑛‖2 , (3.19)

where 𝛿𝑡⋆ is the maximum value of the time step. This yields

1
2𝛿𝑡

𝑎𝑛+1 +
𝑐′1
2

𝑎𝑛+1 +
𝛼

2

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 1
2𝛿𝑡

𝑎𝑛 + 𝑐′, 𝑐′1 = 𝛾5/

(︂
2𝑐2

𝑆 + 2𝛼 +
4𝛿𝑡⋆

𝑐2
𝑃

)︂
> 0.

Thus,

𝑎𝑛+1 +
𝛼𝛿𝑡

1 + 𝑐′1𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ 1
1 + 𝑐′1𝛿𝑡

𝑎𝑛 +
2𝛿𝑡

1 + 𝑐′1𝛿𝑡
𝑐′.

Next, we use that
1
2
≤ 1

1 + 𝑠
≤ 1− 𝑠

2
, ∀𝑠 ∈ [0, 1]. (3.20)

By choosing 𝑠 = 𝑐′1𝛿𝑡 we obtain that for 𝛿𝑡 small enough (𝛿𝑡 ≤ 1/𝑐′1),

𝑎𝑛+1 +
𝛼

2
𝛿𝑡
⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤
(︂

1− 𝑐′1
2

𝛿𝑡

)︂
𝑎𝑛 + 2𝑐′𝛿𝑡. (3.21)

We deduce from Lemma 3.3 that for all 𝑛 ≥ 0,

𝑎𝑛 ≤ 𝑒−𝑐′1𝑛𝛿𝑡/2𝑎0 +
4𝑐′

𝑐′1

and
𝛼

2
𝛿𝑡

𝑛−1∑︁
𝑘=0

⃦⃦
∆𝑢𝑘+1

⃦⃦2 ≤ 𝑎0 + 2𝑐′𝑛𝛿𝑡.

Finally, we note that 𝑎𝑛 ≥ 𝛼 ‖𝑢𝑛‖2. These estimates, together with (3.19), conclude the proof of
Proposition 3.4. �

Proposition 3.5 (Dissipative estimate in 𝐻1(Ω)). If 𝛿𝑡 is small enough, then

‖∇𝑢𝑛‖2 ≤ 𝐶1𝑒
−𝜀1𝑛𝛿𝑡

⃦⃦
∇𝑢0

⃦⃦2
+ 𝑀1, ∀𝑛 ≥ 0, (3.22)

and
1
𝛿𝑡

𝑛−1∑︁
𝑘=0

⃦⃦
𝑢𝑘+1 − 𝑢𝑘

⃦⃦2

−1
≤ 𝐶 ′1

⃦⃦
∇𝑢0

⃦⃦2
+ 𝑀 ′

1(1 + 𝑛𝛿𝑡), ∀𝑛 ≥ 0,

where the positive constants 𝐶1, 𝜀1, 𝑀1, 𝐶 ′1 and 𝑀 ′
1 are independent of 𝑢0 and 𝛿𝑡.
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Proof. We multiply (3.1) by 𝐴−1
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡
in 𝐻. We obtain

1
𝛿𝑡2
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

1
2𝛿𝑡

(︁⃦⃦
∇𝑢𝑛+1

⃦⃦2 − ‖∇𝑢𝑛‖2 +
⃦⃦
∇
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2
)︁

+
1
𝛿𝑡

(︀
𝐹
(︀
𝑢𝑛+1

)︀
− 𝐹 (𝑢𝑛) , 1

)︀
+
(︂

𝑔 (𝑢𝑛) , (−∆)−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂
=

1
2𝛿𝑡

∫︁
Ω

𝑓 ′
(︀
𝜁𝑢𝑛+1,𝑢𝑛

)︀ (︀
𝑢𝑛+1 − 𝑢𝑛

)︀2
d𝑥. (3.23)

Here, we used that for all 𝑟, 𝑠 ∈ R,

𝐹 (𝑠) = 𝐹 (𝑟) + 𝑓(𝑟)(𝑠− 𝑟) + 𝑓 ′(𝜉𝑠,𝑟)
(𝑠− 𝑟)2

2
, for some 𝜉𝑠,𝑟 ∈ [𝑟, 𝑠],

and (𝑟, 𝑠) ↦→ 𝑓 ′(𝜉𝑠,𝑟) is a continuous function on R2, since 𝐹 ∈ 𝐶2(R).
Using (2.2) and Young’s inequality, we obtain⃒⃒⃒⃒∫︁

Ω

𝑓 ′
(︀
𝜁𝑢𝑛+1,𝑢𝑛

)︀ (︀
𝑢𝑛+1 − 𝑢𝑛

)︀2
d𝑥

⃒⃒⃒⃒
≤ ‖𝑓 ′‖𝐿∞(Ω)

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

≤ 𝐿𝑓

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

≤ 𝐿𝑓

⃦⃦
∇
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦ ⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦
−1

≤ 1
2

⃦⃦
∇
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2
+

𝐿2
𝑓

2

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
.

In the third inequality above, we used the interpolation inequality

‖𝑣‖2 =
(︁
𝐴1/2𝑣, 𝐴−1/2𝑣

)︁
≤ ‖𝑣‖1‖𝑣‖−1, ∀𝑣 ∈ 𝑉.

By (2.13) and (2.10), ⃒⃒⃒⃒(︂
𝑔 (𝑢𝑛) , (−∆)−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂⃒⃒⃒⃒
≤ ‖𝑔 (𝑢𝑛)‖

⃦⃦⃦⃦
(−∆)−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦
≤ 𝑐𝑔𝑐𝑆

⃦⃦⃦⃦
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦
−1

≤ 1
2𝛿𝑡2

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

𝑐2
𝑔𝑐

2
𝑆

2
·

Combining the above estimates in (3.23), we get

1
2𝛿𝑡

⃦⃦
∇𝑢𝑛+1

⃦⃦2
+

1
𝛿𝑡

(︀
𝐹
(︀
𝑢𝑛+1

)︀
, 1
)︀

+
1

2𝛿𝑡2
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

1
4𝛿𝑡

⃦⃦
∇(𝑢𝑛+1 − 𝑢𝑛)

⃦⃦2

≤ 1
2𝛿𝑡

‖∇𝑢𝑛‖2 +
1
𝛿𝑡

(𝐹 (𝑢𝑛) , 1) +
𝐿2

𝑓

4𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

𝑐2
𝑔𝑐

2
𝑆

2
· (3.24)

Let 𝛿𝑡 be small enough so that (3.21) holds and 𝛿𝑡 ≤ 1/𝐿2
𝑓 . Adding (3.21) and 2𝛿𝑡𝛽 times (3.24) where 𝛽 > 0,

we find that
𝐸𝑛+1

2 +
𝛼

2
𝛿𝑡
⃦⃦

∆𝑢𝑛+1
⃦⃦2

+
𝛽

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
≤ 𝐸𝑛

2 +
(︀
2𝑐′ + 𝛽𝑐2

𝑔𝑐
2
𝑆

)︀
𝛿𝑡, (3.25)

where
𝐸𝑛

2 = 𝑎𝑛 + 𝛽 ‖∇𝑢𝑛‖2 + 2𝛽 (𝐹 (𝑢𝑛) , 1)
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and 𝑎𝑛 is defined by (3.18). By (2.16), 𝐹 (𝑠) + 𝛾2 ≥ 0 for all 𝑠 ∈ R, so that

�̃�𝑛
2 = 𝐸𝑛

2 + 2𝛽(𝛾2, 1) ≥ 0, ∀𝑛 ≥ 0.

Moreover, by (2.17), (3.19) and the Poincaré inequality, we have

�̃�𝑛
2 ≤ 𝑐1 ‖∇𝑢𝑛‖2 + 𝑐2, 𝑐1, 𝑐2 > 0. (3.26)

By (2.10),

‖∆𝑢𝑛‖2 ≥ 1
𝑐1𝑐𝑆

�̃�𝑛
2 −

𝑐2

𝑐1𝑐𝑆
,

so that (3.25) yields

�̃�𝑛+1
2 + 𝑐3𝛿𝑡�̃�

𝑛+1
2 +

𝛽

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
≤ �̃�𝑛

2 + 𝑐4𝛿𝑡,

where 𝑐3 = 𝛼/(2𝑐1𝑐𝑆) and 𝑐4 = 2𝑐′ + 𝛽𝑐2
𝑔𝑐

2
𝑆 + 𝛼𝑐2/(2𝑐1𝑐𝑆). Thus,

�̃�𝑛+1
2 +

1
1 + 𝑐3𝛿𝑡

𝛽

2𝛿𝑡

⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
≤ 1

1 + 𝑐3𝛿𝑡
�̃�𝑛

2 +
𝑐4

1 + 𝑐3𝛿𝑡
𝛿𝑡.

By (3.20), for 𝛿𝑡 small enough (𝛿𝑡 ≤ 1/𝑐3), we have

�̃�𝑛+1
2 +

𝛽𝛿𝑡

4

⃦⃦⃦⃦
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦2

−1

≤
(︁

1− 𝑐3

2
𝛿𝑡
)︁

�̃�𝑛
2 + 𝑐4𝛿𝑡.

We may apply Lemma 3.3, which yields

�̃�𝑛
2 ≤ 𝑒−𝑛𝑐3𝛿𝑡/2�̃�0

2 +
2𝑐4

𝑐3
(3.27)

and
𝛽

4𝛿𝑡

𝑛−1∑︁
𝑘=0

⃦⃦
𝑢𝑘+1 − 𝑢𝑘

⃦⃦2

−1
≤ �̃�0

2 + 𝑛𝛿𝑡𝑐4, (3.28)

for all 𝑛 ≥ 0. Finally, we note that
�̃�𝑛

2 ≥ 𝛽 ‖∇𝑢𝑛‖2 ,

and this estimate, together with (3.26)–(3.28), concludes the proof. �

Proposition 3.6 (Dissipative estimate in 𝐻2(Ω)). For 𝛿𝑡 small enough, we have

‖∆𝑢𝑛‖2 ≤ 𝑄2

(︀⃦⃦
∆𝑢0

⃦⃦)︀
𝑒−𝜀2𝑛𝛿𝑡 + 𝑀2, ∀𝑛 ≥ 0, (3.29)

and
𝑛−1∑︁
𝑘=0

⃦⃦
∆
(︀
𝑢𝑘+1 − 𝑢𝑘

)︀⃦⃦2 ≤ 𝑄2

(︀⃦⃦
∆𝑢0

⃦⃦)︀
+ 𝑀 ′

2𝑛𝛿𝑡, 𝑛 ≥ 0, (3.30)

where 𝑄2 is a monotonic function and the positive constants 𝜀2, 𝑀2 and 𝑀 ′
2 are independent of 𝑢0 and 𝛿𝑡.

Proof. By Lemma 3.2, we know that for all 𝑛 ≥ 1, 𝑢𝑛 ∈ 𝐷
(︀
𝐴2
)︀
. By multiplying (3.1) by 𝐴2𝑢𝑛+1 in 𝐻 and

using (3.7), we obtain

1
2𝛿𝑡

(︁⃦⃦
∆𝑢𝑛+1

⃦⃦2 − ‖∆𝑢𝑛‖2 +
⃦⃦

∆
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2
)︁

+
⃦⃦

∆2𝑢𝑛+1
⃦⃦2

= −
(︀
𝑔 (𝑢𝑛) , ∆2𝑢𝑛+1

)︀
+
(︀
∆𝑓 (𝑢𝑛) , ∆2𝑢𝑛+1

)︀
. (3.31)
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Using (2.13) and Young’s inequality yields⃒⃒(︀
𝑔 (𝑢𝑛) , ∆2𝑢𝑛+1

)︀⃒⃒
≤ ‖𝑔(𝑢𝑛)‖

⃦⃦
∆2𝑢𝑛+1

⃦⃦
≤ 𝑐𝑔

⃦⃦
∆2𝑢𝑛+1

⃦⃦
≤ 1

4

⃦⃦
∆2𝑢𝑛+1

⃦⃦2
+ 𝑐2

𝑔.

Similarly, we have⃒⃒(︀
∆𝑓 (𝑢𝑛) , ∆2𝑢𝑛+1

)︀⃒⃒
≤ ‖∆𝑓 (𝑢𝑛)‖

⃦⃦
∆2𝑢𝑛+1

⃦⃦
≤ 1

4

⃦⃦
∆2𝑢𝑛+1

⃦⃦2
+ ‖∆𝑓 (𝑢𝑛) ‖2.

Therefore, we have

1
2𝛿𝑡

(︁⃦⃦
∆𝑢𝑛+1

⃦⃦2 − ‖∆𝑢𝑛‖2 +
⃦⃦

∆
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2
)︁

+
1
2

⃦⃦
∆2𝑢𝑛+1

⃦⃦2 ≤ ‖∆𝑓 (𝑢𝑛)‖2 + 𝑐2
𝑔. (3.32)

Arguing as in the continuous case (cf. (2.44)) and using the 𝐻1-estimate (3.22), we find that for all 𝑛 ≥ 1, we
have

‖∆𝑓 (𝑢𝑛)‖ ≤ 1
4

⃦⃦
∆2𝑢𝑛

⃦⃦2
+ 𝑐12(𝑅1), (3.33)

where 𝑐12 depends on 𝑅1 = ‖∇𝑢(0)‖. The estimate (3.32) becomes

1
2𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2
+

1
2

⃦⃦
∆2𝑢𝑛+1

⃦⃦2
+

1
2𝛿𝑡

⃦⃦
∆
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2 ≤ 1
2𝛿𝑡

‖∆𝑢𝑛‖2 +
1
4

⃦⃦
∆2𝑢𝑛

⃦⃦2
+ 𝑐5,

where 𝑐5(𝑅1) = 𝑐2
𝑔 + 𝑐12(𝑅1). We multiply this estimate by 2𝛿𝑡 and we obtain

�̃�𝑛+1 +
𝛿𝑡

2

⃦⃦
∆2𝑢𝑛+1

⃦⃦2
+
⃦⃦

∆
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2 ≤ �̃�𝑛 + 2𝑐5𝛿𝑡, (3.34)

where
�̃�𝑛 = ‖∆𝑢𝑛‖2 +

𝛿𝑡

2

⃦⃦
∆2𝑢𝑛

⃦⃦2
.

Using that 𝛿𝑡 is bounded from above and that (2.10) holds for 𝑠1 = 1 and 𝑠2 = 2, we find

�̃�𝑛 ≤ 𝑐6

⃦⃦
∆2𝑢𝑛

⃦⃦2
, ∀𝑛 ≥ 1

for some constant 𝑐6 > 0 independent of 𝛿𝑡. Thus, (3.34) implies

�̃�𝑛+1 +
𝛿𝑡

2𝑐6
�̃�𝑛+1 + ‖∆(𝑢𝑛+1 − 𝑢𝑛)‖2 ≤ �̃�𝑛 + 2𝑐5𝛿𝑡, ∀𝑛 ≥ 1.

Therefore, by (3.20), for 𝛿𝑡 ≤ 2𝑐6, we have

�̃�𝑛+1 +
1
2

⃦⃦
∆
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦2 ≤ (1− 𝑐7𝛿𝑡)�̃�𝑛 + 2𝑐5𝛿𝑡 ∀𝑛 ≥ 1, (3.35)

where 𝑐7 = 1/(4𝑐6). By Lemma 3.3,

�̃�𝑛 ≤ 𝑒−(𝑛−1)𝑐7𝛿𝑡�̃�1 +
2𝑐5

𝑐7
, ∀𝑛 ≥ 1, (3.36)

and
1
2

𝑛−1∑︁
𝑘=1

⃦⃦
∆
(︀
𝑢𝑘+1 − 𝑢𝑘

)︀⃦⃦2 ≤ �̃�1 + (𝑛− 1)𝛿𝑡
2𝑐5

𝑐7
, ∀𝑛 ≥ 1. (3.37)
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Thanks to the dissipative estimate (3.22), there exists a time 𝑡1 = 𝑡1(𝑅1) such that

‖∇𝑢𝑛‖2 ≤ 𝐶1 + 𝑀1, ∀𝑛 ≥ 𝑡1/𝛿𝑡,

where 𝐶1 and 𝑀1 are independent of 𝑅1 and 𝛿𝑡. Let 𝑛1 = ⌈𝑡1/𝛿𝑡⌉, where ⌈·⌉ denotes the integer ceiling function.
Then for 𝑛 ≥ 𝑛1, the constant 𝑐12 in (3.33) no longer depends on 𝑅1. Consequently, (3.35) holds for all 𝑛 ≥ 𝑛1

with 𝑐5 and 𝑐7 independent of 𝑅1. By induction (as in Lem. 3.3), we have

�̃�𝑛 ≤ 𝑒−(𝑛−𝑛1)𝑐7𝛿𝑡�̃�𝑛1 +
2𝑐5

𝑐7
, ∀𝑛 ≥ 𝑛1, (3.38)

and
1
2

𝑛−1∑︁
𝑘=𝑛1

⃦⃦
∆
(︀
𝑢𝑘+1 − 𝑢𝑘

)︀⃦⃦2 ≤ �̃�𝑛1 + (𝑛− 𝑛1)𝛿𝑡
2𝑐5

𝑐7
, ∀𝑛 ≥ 𝑛1. (3.39)

The dissipative estimate (3.29) follows from (3.38) (for 𝑛 ≥ 𝑛1), (3.36) (for 1 ≤ 𝑛 ≤ 𝑛1) and Lem. 3.2 (for
𝑛 = 0). Estimate (3.30) follows from (3.39) (for 𝑛 ≥ 𝑛1), (3.37) (for 1 ≤ 𝑛 ≤ 𝑛1), (3.36) (for �̃�𝑛1) and Lem. 3.2
(for 𝑛 = 0). �

3.3. Estimates for the difference of solutions, uniform with respect to the time step

Let 𝑣𝑛 and 𝑤𝑛 be two sequences generated by the scheme (3.1) and corresponding to the initial data 𝑣0 and
𝑤0 respectively. We denote 𝑢𝑛 = 𝑣𝑛 − 𝑤𝑛 their difference, which satisfies

𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡
+ 𝐴2𝑢𝑛+1 + 𝐴 (𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛)) + (𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛)) = 0, ∀𝑛 ≥ 0. (3.40)

Lemma 3.7. Assume that 𝛿𝑡 < 1/(2𝐿𝑔). Then for all 𝑛 ≥ 1, we have

‖𝑢𝑛‖2 +
𝑛−1∑︁
𝑘=0

⃦⃦
𝑢𝑘+1 − 𝑢𝑘

⃦⃦2
+ 𝛿𝑡

𝑛−1∑︁
𝑘=0

⃦⃦
∆𝑢𝑘+1

⃦⃦2 ≤ exp (𝑐𝑓,𝑔𝑛𝛿𝑡)
⃦⃦
𝑢0
⃦⃦2

. (3.41)

Proof. We multiply (3.40) by 𝑢𝑛+1 in 𝐻. We obtain

1
2𝛿𝑡

(︁⃦⃦
𝑢𝑛+1

⃦⃦2 − ‖𝑢𝑛‖2 +
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
)︁

+
⃦⃦

∆𝑢𝑛+1
⃦⃦2

=
(︀
𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛) , ∆𝑢𝑛+1

)︀
−
(︀
𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛) , 𝑢𝑛+1

)︀
. (3.42)

Owing to (2.14) and Young’s inequality, we have⃒⃒(︀
𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛) , 𝑢𝑛+1

)︀⃒⃒
≤ ‖𝑔(𝑣𝑛)− 𝑔 (𝑤𝑛)‖

⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝐿𝑔 ‖𝑢𝑛‖

⃦⃦
𝑢𝑛+1

⃦⃦
≤ 𝐿𝑔

2

⃦⃦
𝑢𝑛+1

⃦⃦2
+

𝐿𝑔

2
‖𝑢𝑛‖2 .

By (2.12) and Young’s inequality,⃒⃒(︀
𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛) , ∆𝑢𝑛+1

)︀⃒⃒
≤ ‖𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛)‖

⃦⃦
∆𝑢𝑛+1

⃦⃦
≤ 𝐿𝑓 ‖𝑢𝑛‖

⃦⃦
∆𝑢𝑛+1

⃦⃦
≤

𝐿2
𝑓

2
‖𝑢𝑛‖2 +

1
2

⃦⃦
∆𝑢𝑛+1

⃦⃦2
.
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Plugging this in (3.42) times 2𝛿𝑡, we find

(1− 𝐿𝑔𝛿𝑡)
⃦⃦
𝑢𝑛+1

⃦⃦2
+
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ (1 + 𝑐𝛿𝑡) ‖𝑢𝑛‖2 , (3.43)

where 𝑐 = 𝐿2
𝑓 + 𝐿𝑔. We divide this estimate by (1− 𝐿𝑔𝛿𝑡) and we obtain that for 𝛿𝑡 ≤ 1/(2𝐿𝑔),⃦⃦

𝑢𝑛+1
⃦⃦2

+
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2
+ 𝛿𝑡

⃦⃦
∆𝑢𝑛+1

⃦⃦2 ≤ (1 + 𝑐′𝛿𝑡) ‖𝑢𝑛‖2 , ∀𝑛 ≥ 0, (3.44)

where 𝑐′ = 𝑐′(𝑐, 𝐿𝑔). We apply the estimate

1 + 𝑠 ≤ exp (𝑠), ∀𝑠 ∈ R, (3.45)

to 𝑠 = 𝑐′𝛿𝑡 and we obtain (3.41) by induction, with 𝑐𝑓,𝑔 = 𝑐′. �

Next, we show a 𝐿2-𝐻1 smoothing property.

Lemma 3.8. Let 𝑅2 > 0 and 𝛿𝑡 < 1/(2𝐿𝑔). If
⃦⃦
𝑣0
⃦⃦

2
≤ 𝑅2 and

⃦⃦
𝑤0
⃦⃦

2
≤ 𝑅2, then for all 𝑛 ≥ 1, we have

𝑛𝛿𝑡 ‖𝑢𝑛‖21 ≤ 𝑐𝑆 exp (𝑐 (𝑅2) 𝑛𝛿𝑡)
⃦⃦
𝑢0
⃦⃦2

. (3.46)

Proof. We multiply (3.40) by 𝐴−1
(︀
𝑢𝑛+1 − 𝑢𝑛

)︀
/𝛿𝑡 in 𝐻 and we find

1
𝛿𝑡2
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
+

1
2𝛿𝑡

(︁⃦⃦
∇𝑢𝑛+1

⃦⃦2 − ‖∇𝑢𝑛‖2 +
⃦⃦
∇(𝑢𝑛+1 − 𝑢𝑛

)︀⃦⃦⃦2

)

+
(︂

𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛) ,
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂
+
(︂

𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛) , 𝐴−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂
= 0. (3.47)

Using (2.14), (2.10), the Poincaré inequality (2.11) and Young’s inequality, we get⃒⃒⃒⃒(︂
𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛) , (−∆)−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂⃒⃒⃒⃒
≤ ‖𝑔 (𝑣𝑛)− 𝑔 (𝑤𝑛)‖

⃦⃦⃦⃦
(−∆)−1 𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦
≤ 𝐿𝑔 ‖𝑢𝑛‖ 𝑐𝑆

⃦⃦⃦⃦
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦
−1

≤ 𝐿2
𝑔𝑐

2
𝑆𝑐2

𝑃 ‖∇𝑢𝑛‖2 +
1

4𝛿𝑡2
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
.

Thanks to (3.29), we know that (𝑣𝑛) and (𝑤𝑛) are bounded in 𝐻2(Ω). Arguing as in the continuous case
(see (2.63)), we obtain⃒⃒⃒⃒(︂

𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛) ,
𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

)︂⃒⃒⃒⃒
≤
⃦⃦⃦
𝐴

1
2 (𝑓 (𝑣𝑛)− 𝑓 (𝑤𝑛))

⃦⃦⃦ ⃦⃦⃦⃦𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡

⃦⃦⃦⃦
−1

≤ 𝑐(𝑅2) ‖∇𝑢𝑛‖2 +
1

4𝛿𝑡2
⃦⃦
𝑢𝑛+1 − 𝑢𝑛

⃦⃦2

−1
.

We combine the above estimates in (3.47) and we deduce that

1
2𝛿𝑡

⃦⃦
∇𝑢𝑛+1

⃦⃦2 ≤ 1
2𝛿𝑡

‖∇𝑢𝑛‖2 + 𝑐′ ‖∇𝑢𝑛‖2 , ∀𝑛 ≥ 0,

where 𝑐′ = 𝑐′(𝑅2) = 𝐿2
𝑔𝑐

2
𝑆𝑐2

𝑃 + 𝑐(𝑅2). We multiply this by 2𝑛𝛿𝑡 and we add
⃦⃦
∇𝑢𝑛+1

⃦⃦2 on both sides. This yields

(𝑛 + 1)
⃦⃦
∇𝑢𝑛+1

⃦⃦2 ≤ (1 + 2𝑐′𝛿𝑡) 𝑛 ‖∇𝑢𝑛‖2 +
⃦⃦
∇𝑢𝑛+1

⃦⃦2
, ∀𝑛 ≥ 0.
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Let 𝑑𝑛 = 𝑛 ‖∇𝑢𝑛‖2. By (2.10), we have

𝑑𝑛+1 ≤ (1 + 2𝑐′𝛿𝑡) 𝑑𝑛 + 𝑐𝑆

⃦⃦
∆𝑢𝑛+1

⃦⃦2
, ∀𝑛 ≥ 0.

Using 𝑑0 = 0, we deduce by induction that

𝑑𝑛 ≤ (1 + 2𝑐′𝛿𝑡)𝑛

(︃
𝑐𝑆

𝑛−1∑︁
𝑘=0

⃦⃦
∆𝑢𝑘+1

⃦⃦2

)︃
, ∀𝑛 ≥ 1.

The conclusion (3.46) follows from (3.41) and from (3.45) with 𝑠 = 2𝑐′𝛿𝑡. �

4. Finite time uniform error estimate

The error estimate between the continuous semigroup and the discrete semigroup is the last essential step in
order to build a robust family of exponential attractors.

For the error estimate on a finite time interval, we follow the methodology in [29,33]. We consider a sequence
(𝑢𝑛) in 𝐷(𝐴) generated by (3.1). To the sequence (𝑢𝑛), we associate three functions 𝑢𝛿𝑡, 𝑢𝛿𝑡, 𝑢𝛿𝑡 : R+ → 𝐷(𝐴),
namely

𝑢𝛿𝑡 = 𝑢𝑛 +
𝑡− 𝑛𝛿𝑡

𝛿𝑡

(︀
𝑢𝑛+1 − 𝑢𝑛

)︀
, 𝑡 ∈ [𝑛𝛿𝑡, (𝑛 + 1)𝛿𝑡),

𝑢𝛿𝑡 = 𝑢𝑛+1, 𝑡 ∈ [𝑛𝛿𝑡, (𝑛 + 1)𝛿𝑡),
𝑢𝛿𝑡 = 𝑢𝑛, 𝑡 ∈ [𝑛𝛿𝑡, (𝑛 + 1)𝛿𝑡).

We note that 𝑢𝛿𝑡 ∈ 𝐶0([0, 𝑇 ], 𝐷(𝐴)) is piecewise linear, 𝑢𝛿𝑡 ∈ 𝐿∞(0, 𝑇 ; 𝐷(𝐴)) and 𝑢𝛿𝑡 ∈ 𝐿∞(0, 𝑇 ; 𝐷(𝐴)), for all
𝑇 > 0. The scheme (3.1) can be rewritten

d𝑢𝛿𝑡

d𝑡
+ 𝐴2𝑢𝛿𝑡 + 𝐴𝑓(𝑢𝛿𝑡) + 𝑔(𝑢𝛿𝑡) = 0 in 𝐷(𝐴−1), for a.e. 𝑡 > 0. (4.1)

Equivalently, we have

𝑑𝑢𝛿𝑡

𝑑𝑡
+ 𝐴2𝑢𝛿𝑡 + 𝐴𝑓(𝑢𝛿𝑡) + 𝑔(𝑢𝛿𝑡) = 𝐴2(𝑢𝛿𝑡 − 𝑢𝛿𝑡) + 𝐴(𝑓(𝑢𝛿𝑡)− 𝑓(𝑢𝛿𝑡)) + (𝑔(𝑢𝛿𝑡)− 𝑔(𝑢𝛿𝑡)) (4.2)

in 𝐷(𝐴−1), for a.e. 𝑡 > 0. We denote by 𝑢 the solution to (2.21) with initial condition 𝑢0 ∈ 𝐷(𝐴) and we set

𝑒𝛿𝑡(𝑡) = 𝑢𝛿𝑡(𝑡)− 𝑢(𝑡).

The error estimate reads:

Theorem 4.1. For all 𝑇 > 0 and for all 𝑅2 > 0, there is a constant 𝐶(𝑇, 𝑅2) independent of 𝛿𝑡 such that
𝑢0 = 𝑢0 and

⃦⃦
𝑢0
⃦⃦

2
≤ 𝑅2 imply

sup
𝑡∈[0,𝑁𝛿𝑡]

‖𝑒𝛿𝑡(𝑡)‖ ≤ 𝐶(𝑇, 𝑅2) (𝛿𝑡)
1
2 , (4.3)

where 𝑁 = ⌊𝑇/𝛿𝑡⌋ and ⌊·⌋ denotes the integer floor function.

Proof. On subtracting (2.21) from (4.2), we find

d𝑒𝛿𝑡

d𝑡
+∆2𝑒𝛿𝑡 +𝐴(𝑓(𝑢𝛿𝑡)−𝑓(𝑢))+(𝑔(𝑢𝛿𝑡)−𝑔(𝑢)) = 𝐴2(𝑢𝛿𝑡−𝑢𝛿𝑡)+𝐴(𝑓(𝑢𝛿𝑡)−𝑓(𝑢𝛿𝑡))+(𝑔(𝑢𝛿𝑡)−𝑔(𝑢𝛿𝑡)). (4.4)
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We multiply (4.4) by 𝑒𝛿𝑡 in 𝐻. We obtain

1
2

d
d𝑡
‖𝑒𝛿𝑡(𝑡)‖2 + ‖∆𝑒𝛿𝑡(𝑡)‖2 − (𝑓 (𝑢𝛿𝑡)− 𝑓(𝑢), ∆𝑒𝛿𝑡) + (𝑔(𝑢𝛿𝑡)− 𝑔(𝑢), 𝑒𝛿𝑡)

= (∆(𝑢𝛿𝑡 − 𝑢𝛿𝑡), ∆𝑒𝛿𝑡)− (𝑓(𝑢𝛿𝑡)− 𝑓(𝑢𝛿𝑡), ∆𝑒𝛿𝑡) + (𝑔(𝑢𝛿𝑡)− 𝑔(𝑢𝛿𝑡), 𝑒𝛿𝑡). (4.5)

Estimate (2.14) and Young’s inequality yield

|(𝑔(𝑢𝛿𝑡)− 𝑔(𝑢), 𝑒𝛿𝑡)| ≤ ‖𝑔(𝑢𝛿𝑡)− 𝑔(𝑢)‖ ‖𝑒𝛿𝑡‖
≤ 𝐿𝑔‖𝑒𝛿𝑡‖2

and

|(𝑔(𝑢𝛿𝑡)− 𝑔(𝑢𝛿𝑡), 𝑒𝛿𝑡)| ≤ ‖𝑔(𝑢𝛿𝑡)− 𝑔(𝑢𝛿𝑡)‖ ‖𝑒𝛿𝑡‖
≤ 𝐿𝑔‖𝑢𝛿𝑡 − 𝑢𝛿𝑡‖ ‖𝑒𝛿𝑡‖

≤
𝐿2

𝑔

4
‖𝑢𝛿𝑡 − 𝑢𝛿𝑡‖2 + ‖𝑒𝛿𝑡‖2.

Moreover, by (2.12),

|(𝑓(𝑢𝛿𝑡)− 𝑓(𝑢), ∆𝑒𝛿𝑡)| ≤ ‖𝑓(𝑢𝛿𝑡)− 𝑓(𝑢)‖ ‖∆𝑒𝛿𝑡‖
≤ 𝐿𝑓‖𝑒𝛿𝑡‖ ‖∆𝑒𝛿𝑡‖

≤ 𝐿2
𝑓‖𝑒𝛿𝑡‖2 +

1
4
‖∆𝑒𝛿𝑡‖2

and

|(𝑓(𝑢𝛿𝑡)− 𝑓(𝑢𝛿𝑡), ∆𝑒𝛿𝑡)| ≤ ‖𝑓(𝑢𝛿𝑡)− 𝑓(𝑢𝛿𝑡)‖ ‖∆𝑒𝛿𝑡‖
≤ 𝐿𝑓‖𝑢𝛿𝑡 − 𝑢𝛿𝑡‖ ‖∆𝑒𝛿𝑡‖

≤ 𝐿2
𝑓‖𝑢𝛿𝑡 − 𝑢𝛿𝑡‖2 +

1
4
‖∆𝑒𝛿𝑡‖2.

We also have

|(∆(𝑢𝛿𝑡 − 𝑢𝛿𝑡), ∆𝑒𝛿𝑡)| ≤ ‖∆(𝑢𝛿𝑡 − 𝑢𝛿𝑡)‖ ‖∆𝑒𝛿𝑡‖

≤ ‖∆(𝑢𝛿𝑡 − 𝑢𝛿𝑡)‖2 +
1
4
‖∆𝑒𝛿𝑡‖2.

Inserting the estimates above into (4.5), we find

d
d𝑡
‖𝑒𝛿𝑡(𝑡)‖2 +

1
2
‖∆𝑒𝛿𝑡(𝑡)‖2 ≤ 𝑐1

⃦⃦
𝑒𝛿𝑡(𝑡)‖2 + 𝑐2

⃦⃦
𝑢𝛿𝑡 − 𝑢𝛿𝑡

⃦⃦
2 + 2‖∆(𝑢𝛿𝑡 − 𝑢𝛿𝑡)

⃦⃦2
, (4.6)

where 𝑐1 = 2𝐿𝑔 + 2 + 2𝐿2
𝑓 and 𝑐2 = 𝐿2

𝑔/2 + 2𝐿2
𝑓 .

Let 𝑇 > 0 and 𝑁 = ⌊𝑇/𝛿𝑡⌋. Thanks to 𝑒𝛿𝑡(0) = 0 and the classical Gronwall lemma applied to (4.6), we
obtain

‖𝑒𝛿𝑡(𝑡)‖2 ≤ exp (𝑐1𝑇 )
∫︁ 𝑁𝛿𝑡

0

𝑐2 ‖𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠)‖2 d𝑠

+ exp (𝑐1𝑇 )
∫︁ 𝑁𝛿𝑡

0

2 ‖∆(𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠))‖2 d𝑠, ∀𝑡 ∈ [0, 𝑁𝛿𝑡]. (4.7)
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On the interval [𝑛𝛿𝑡, (𝑛 + 1)𝛿𝑡), we have

‖𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠)
⃦⃦
≤ ‖𝑢𝑛+1 − 𝑢𝑛

⃦⃦
and ‖∆(𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠))‖ ≤

⃦⃦
∆(𝑢𝑛+1 − 𝑢𝑛)

⃦⃦
.

Thus, ∫︁ 𝑁𝛿𝑡

0

𝑐2 ‖𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠)‖2 d𝑠 ≤ 𝑐2𝛿𝑡

𝑁−1∑︁
𝑘=0

⃦⃦
𝑢𝑘+1 − 𝑢𝑘

⃦⃦2

and ∫︁ 𝑁𝛿𝑡

0

‖∆(𝑢𝛿𝑡(𝑠)− 𝑢𝛿𝑡(𝑠))‖2 d𝑠 ≤ 𝛿𝑡

𝑁−1∑︁
𝑘=0

⃦⃦
∆(𝑢𝑘+1 − 𝑢𝑘)

⃦⃦2
.

Plugging these estimates into (4.7), we obtain

‖𝑒𝛿𝑡(𝑡)‖2 ≤ exp (𝑐1𝑇 )

(︃
𝑐2

𝑁−1∑︁
𝑘=0

⃦⃦
𝑢𝑘+1 − 𝑢𝑘

⃦⃦2
+ 2

𝑁−1∑︁
𝑘=0

⃦⃦
∆(𝑢𝑘+1 − 𝑢𝑘)

⃦⃦2

)︃
𝛿𝑡

≤ 𝑐3 exp (𝑐1𝑇 )
𝑁−1∑︁
𝑘=0

⃦⃦
∆
(︀
𝑢𝑘+1 − 𝑢𝑘

)︀⃦⃦2
𝛿𝑡, (4.8)

where 𝑐3 = 𝑐2𝑐
2
𝑆 + 2. By (3.30),

‖𝑒𝛿𝑡(𝑡)‖2 ≤ 𝑐3 exp (𝑐1𝑇 )
(︀
𝑄2

(︀⃦⃦
∆𝑢0

⃦⃦)︀
+ 𝑀 ′

2𝑇
)︀
𝛿𝑡, ∀𝑡 ∈ [0, 𝑁𝛿𝑡].

This concludes the proof. �

5. Convergence of exponential attractors

5.1. Some definitions

Before stating our main result, we recall some definitions (see e.g. [12, 32]). We recall that 𝐻 = 𝐿2(Ω) and
𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1

0 (Ω). A continuous-in-time semigroup {𝑆(𝑡), 𝑡 ∈ R+} on 𝐷(𝐴) is a family of (nonlinear)
operators such that 𝑆(𝑡) is a continuous operator (for the 𝐿2(Ω)-norm) from 𝐷(𝐴) into itself, for all 𝑡 ∈ R+,
with 𝑆(0) = 𝐼𝑑 (identity) and

𝑆(𝑡 + 𝑠) = 𝑆(𝑡) ∘ 𝑆(𝑠), ∀𝑠, 𝑡 ∈ R+.

A discrete-in-time semigroup {𝑆(𝑡), 𝑡 ∈ N} on 𝐷(𝐴) is a family of (nonlinear) operators which satisfy these
properties with R+ replaced by N. A discrete-in-time semigroup is usually denoted {𝑆𝑛, 𝑛 ∈ N}, where 𝑆(=
𝑆(1)) is a continuous (nonlinear) operator from 𝐷(𝐴) into itself.

A (continuous or discrete) semigroup {𝑆(𝑡), 𝑡 ≥ 0} defines a (continuous or discrete) dynamical system: if
𝑢0 is the state of the dynamical system at time 0, then 𝑢(𝑡) = 𝑆(𝑡)𝑢0 is the state at time 𝑡 ≥ 0. The term
“dynamical system” will sometimes be used instead of “semigroup”.

Definition 5.1 (Global attractor). Let {𝑆(𝑡), 𝑡 ≥ 0} be a continuous or discrete semigroup on 𝐷(𝐴). A
bounded set 𝒜 ⊂ 𝐷(𝐴) is called the global attractor of the dynamical system if the following three conditions
are satisfied:

(1) 𝒜 is compact in 𝐻;
(2) 𝒜 is invariant, i.e. 𝑆(𝑡)𝒜 = 𝒜, for all 𝑡 ≥ 0;
(3) 𝒜 attracts all bounded sets in 𝐷(𝐴), i.e., for every bounded set 𝐵 in 𝐷(𝐴),

lim
𝑡→+∞

𝑑𝑖𝑠𝑡𝐻(𝑆(𝑡)𝐵,𝒜) = 0.



1780 D. DOR AND M. PIERRE

Here, 𝑑𝑖𝑠𝑡𝐻 denotes the non-symmetric Hausdorff semidistance in 𝐻 between two subsets, which is defined as

𝑑𝑖𝑠𝑡𝐻(𝐵1, 𝐵2) = sup
𝑏1∈𝐵1

inf
𝑏2∈𝐵2

‖𝑏1 − 𝑏2‖𝐻 .

It is easy to see, thanks to the invariance and the attracting property, that the global attractor, when it exists,
is unique [32].

Let 𝑋 ⊂ 𝐻 be a (relatively compact) subset of 𝐻. For 𝜀 > 0, we denote 𝑁𝜀(𝑋, 𝐻) the minimum number of
balls of 𝐻 of radius 𝜀 > 0 which are necessary to cover 𝑋. The fractal dimension of 𝑋 (see e.g. [11, 32]) is the
number

𝑑𝑖𝑚𝐹 (𝑋) = lim sup
𝜀→0

log(𝑁𝜀(𝑋, 𝐻))
log(1/𝜀)

∈ [0, +∞].

Definition 5.2 (Exponential attractor). Let {𝑆(𝑡), 𝑡 ≥ 0} be a continuous or discrete semigroup on 𝐷(𝐴). A
bounded set ℳ ⊂ 𝐷(𝐴) is an exponential attractor of the dynamical system if the following three conditions
are satisfied:

(1) ℳ is compact in 𝐻 and has finite fractal dimension;
(2) ℳ is positively invariant, i.e. 𝑆(𝑡)ℳ⊂ℳ, for all 𝑡 ≥ 0;
(3) ℳ attracts exponentially the bounded subsets of 𝐷(𝐴) in the following sense:

∀𝐵 ⊂ 𝐷(𝐴) bounded, 𝑑𝑖𝑠𝑡𝐻(𝑆(𝑡)𝐵,ℳ) ≤ 𝒬(‖𝐵‖𝐻)𝑒−𝛼𝑡, 𝑡 ≥ 0,

where the positive constant 𝛼 and the monotonic function 𝒬 are independent of 𝐵. Here, ‖𝐵‖𝐻 =
sup𝑏∈𝐵 ‖𝑏‖𝐻 .

It is easy to see that the exponential attractor, if it exists, contains the global attractor.

5.2. The main result

We have seen that {𝑆0(𝑡), 𝑡 ∈ R+} defined by (2.22) is a continuous-in-time dynamical system on 𝐷(𝐴),
and that for every 𝛿𝑡 > 0 small enough, {𝑆𝑛

𝛿𝑡, 𝑛 ∈ N} defines a discrete-in-time dynamical system on 𝐷(𝐴)
(Thm. 3.1). We have:

Theorem 5.3. Let 𝛿𝑡⋆ > 0 be small enough. For every 𝛿𝑡 ∈ (0, 𝛿𝑡⋆], the discrete dynamical system {𝑆𝑛
𝛿𝑡, 𝑛 ∈ N}

possesses an exponential attractor ℳ𝛿𝑡 in 𝐷(𝐴), and the continuous dynamical system {𝑆0(𝑡), 𝑡 ∈ R+} possesses
an exponential attractor ℳ0 in 𝐷(𝐴) such that:

(1) the fractal dimension of ℳ𝛿𝑡 is bounded, uniformly with respect to 𝛿𝑡 ∈ [0, 𝛿𝑡⋆],

𝑑𝑖𝑚𝐹ℳ𝛿𝑡 ≤ 𝑐1,

where 𝑐1 is independent of 𝛿𝑡;
(2) ℳ𝛿𝑡 attracts the bounded sets of 𝐷(𝐴), uniformly with respect to 𝛿𝑡 ∈ (0, 𝛿𝑡⋆], i.e. for all 𝛿𝑡 ∈ (0, 𝛿𝑡⋆],

∀𝐵 ⊂ 𝐷(𝐴) bounded , 𝑑𝑖𝑠𝑡𝐻 (𝑆𝑛
𝛿𝑡𝐵,ℳ𝛿𝑡) ≤ 𝒬(‖𝐵‖𝐻)𝑒−𝑐2𝑛𝛿𝑡, 𝑛 ∈ N,

where the positive constant 𝑐2 and the monotonic function 𝒬 are independent of 𝛿𝑡;
(3) the family {ℳ𝛿𝑡, 𝛿𝑡 ∈ [0, 𝛿𝑡⋆]} is continuous at 0,

𝑑𝑖𝑠𝑡𝑠𝑦𝑚(ℳ𝛿𝑡,ℳ0) ≤ 𝑐3(𝛿𝑡)𝑐4 ,

where 𝑐3 and 𝑐4 ∈ (0, 1) are independent of 𝛿𝑡 and 𝑑𝑖𝑠𝑡𝑠𝑦𝑚 denotes the symmetric Hausdorff distance
between sets, defined by

𝑑𝑖𝑠𝑡𝑠𝑦𝑚(𝐵1, 𝐵2) := max{𝑑𝑖𝑠𝑡𝐻(𝐵1, 𝐵2), 𝑑𝑖𝑠𝑡𝐻(𝐵2, 𝐵1)}.
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Proof. We apply Theorem 2.5 in [29] with the spaces 𝐻 = 𝐿2(Ω) and 𝑉 = 𝐻1
0 (Ω) and the set

ℬ = {𝑣 ∈ 𝐷(𝐴) : ‖𝑣‖2 ≤ 𝑀2 + 1} ,

where 𝑀2 is the constant in (2.39) and (3.29). We note that 𝑉 is compactly imbedded in 𝐻 and that an 𝐻-𝑉
smoothing property holds, uniformly with respect to 𝛿𝑡 (Lems. 2.11 and 3.8). Moreover, ℬ is absorbing in 𝐷(𝐴),
uniformly with respect to 𝛿𝑡 ∈ [0, 𝛿𝑡0], where 𝛿𝑡0 > 0 is chosen small enough. The estimates of Sections 2–4
show that assumptions (H1)–(H9) of Theorem 2.5 in [29] are satisfied. Thus, the conclusions of Theorem 5.3
hold for 𝛿𝑡 ∈ [0, 𝛿𝑡⋆], for some 𝛿𝑡⋆ ∈ (0, 𝛿𝑡0] small enough. We note that Theorem 2.5 in [29] is stated for a family
of semigroups which act on the whole space 𝐻, but with a minor modification of the proof, it can be applied
to our situation where the semigroup acts on 𝐷(𝐴) and is continuous for the 𝐻-norm. The main tool is the
construction of exponential attractors based on a uniform smoothing property proposed by Efendiev, Miranville
and Zelik in [12, Thm. 4.4]. �

As in [29, Cor. 6.2], we have:

Corollary 5.4. For every 𝛿𝑡 ∈ [0, 𝛿𝑡⋆], the semigroup {𝑆𝛿𝑡(𝑡), 𝑡 ≥ 0} possesses a global attractor 𝒜𝛿𝑡 in 𝐷(𝐴)
which is bounded in 𝐷(𝐴) and compact in 𝐻. Moreover, 𝑑𝑖𝑠𝑡𝐻(𝒜𝛿𝑡,𝒜0) → 0 as 𝛿𝑡 → 0+, and the fractal
dimension of 𝒜𝛿𝑡 is bounded by a constant independent of 𝛿𝑡.

Remark 5.5. Let us replace the Dirichlet boundary conditions (1.2) with Neumann boundary conditions, which
read

𝜕𝑛𝑢 = 𝜕𝑛∆𝑢 = 0 on 𝜕Ω× (0, +∞), (5.1)

where 𝑛 is the unit outer normal to 𝜕Ω.
If 𝑔 = 0 in (1.1), we deal with the classical Cahn-Hilliard equation and a result similar to Theorem 5.3 can

be obtained. In this case, we have the conservation of mass and it is convenient to introduce the function spaces

𝐻𝛽 =
{︂

𝑣 ∈ 𝐻 :
∫︁

Ω

𝑣 = 𝛽

}︂
and ℋ𝛼 =

⋃︁
|𝛽|≤𝛼

𝐻𝛽 ,

as in [4, 32], where 𝛽 ∈ R and 𝛼 > 0.
If 𝑔 ̸= 0, the situation is more delicate because we no longer have the conservation of mass [21, Rem. 5.7]. If

𝑔 is a proliferation term, the mass may even blow up in finite time [7, 23,25].
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