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A B S T R A C T

In this paper, exact controllability problem for a Rayleigh beam with piezoelectric actuator is considered.
Controllability results show that the space of controllable initial data depends on the regularity of the control
and the location of the actuator. Two different spaces of control, 𝐿2(0, 𝑇 ) and (𝐻1(0, 𝑇 ))′, correspond to two
different controllability properties, 𝐿2-controllability and (𝐻1)′-controllability, respectively. The approach to
prove controllability results is based on the Hilbert Uniqueness Method. Some non-controllability results are
also obtained. In particular, non-controllability in short control time is studied by using Riesz basis property
of exponential family in 𝐿2(0, 𝑇 ). Finally, minimal control time for exact controllability is obtained.
1. Introduction and main results

1.1. History

In recent decades, there have been a large number of papers con-
cerning the study of flexible structures. Three main directions of re-
search can be considered: the modelling problem, the controllability
problem and the stabilization problem. Modelling a flexible structure
as a beam equation or a plate equation is an essential research field.
In [1], four types of models for the transversely vibrating uniform
beam, i.e., Euler–Bernoulli beam, Rayleigh beam, shear beam and
Timoshenko beam, were summarized and analysed. In the past few
decades, the study of elastic structures with a piezoelectric actuator
or sensor has gained a lot of attention. See [2,3] for a PDE modelling
elastic structures with a piezoelectric actuator or sensor.

Concerning controllability for PDEs, boundary controllability for
wave equation and plate equation was studied in [4] using the Hilbert
Uniqueness Method (HUM). There were plenty of works on controllabil-
ity for beam and plate based on HUM. In [4,5], boundary controllability
for Kirchhoff plate equation was fully investigated. Exact controllability
was obtained in sufficient large control time with a single boundary
control (active on a sufficiently large portion of the boundary) in the
case of clamped boundary conditions.

As for control problems of beam equation, exact controllability for
Euler–Bernoulli beam hinged at both ends with piezoelectric actuator
was firstly considered in [6]. Since the space dimension is one, Fourier
series was used in [6]. Then [7] studied the exact controllability for
the same beam equation with piezoelectric actuator in a different
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physical configuration: the clamped-free boundary conditions, i.e. a
beam clamped at one end and free at the other end. Besides, the
stabilization problem for the same equation was considered in [8]. In
our previous work [9], the stabilization of the Rayleigh beam equation
with piezoelectric actuator was investigated. Polynomial decay rate was
obtained by an output feedback. In order to handle the piezoelectric
actuator, some results from the theory of Diophantine approximation
are used in [6–9] and in the present work. The controllability or the
stabilization results in these papers are highly relevant to the position
of the piezoelectric actuator. In [10], Ingham inequality (see [11,
12]) was used to obtain exact controllability for Rayleigh beam equa-
tion with a single boundary control among four different boundary
conditions.

In addition, there are many advances in the control literature for
smart-material structures. As for controllability problem, [13] stud-
ied the time optimal control, for a Kirchhoff plate equation with
distributed control. The main contribution of [13] is that the time
optimal control is proved to satisfy the bang–bang property. In this
paper, the optimal control time is also obtained. For the control prob-
lem of piezoelectric beam, [14,15] investigated the well-posedness,
stabilization and exact observability of voltage-actuated piezoelectric
beams with magnetic effects. In [16,17], well-posedness and stabiliza-
tion of current-controlled piezoelectric beams was considered. Con-
cerning the semidiscretized approximation for exact observability and
controllability of beam equation, [18,19] studied approximation of
Euler–Bernoulli beam control system with clamped boundaries and
clamped-free boundaries respectively.
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1.2. Problem statement

In this paper, we consider the control problem modelling the trans-
verse deflection of a Rayleigh beam which is subject to the action of
an attached piezoelectric actuator. Assuming that the beam is hinged
at both ends, the equation of Rayleigh beam can be written as (see, for
instance, [20] where the equations are explicitly derived from [2,3]),
for (𝑥, 𝑡) in (0, 𝜋) × (0,+∞),

𝑡𝑡(𝑥, 𝑡) − 𝛼𝑤𝑥𝑥𝑡𝑡(𝑥, 𝑡) +𝑤𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑢(𝑡) d
d𝑥

[𝛿𝜂(𝑥) − 𝛿𝜉 (𝑥)], (1.1a)

𝑤(0, 𝑡) = 𝑤(𝜋, 𝑡) = 𝑤𝑥𝑥(0, 𝑡) = 𝑤𝑥𝑥(𝜋, 𝑡) = 0, (1.1b)

𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑤𝑡(𝑥, 0) = 𝑤1(𝑥). (1.1c)

In the equations above 𝑤 represents the transverse deflection of the
beam, 𝛼 > 0 is a physical constant, 𝜉 and 𝜂 stand for the ends of the
actuator (0 < 𝜉 < 𝜂 < 𝜋), and 𝛿𝑦 is the Dirac mass at the point 𝑦. The
control is given by the function 𝑢 ∶ [0, 𝑇 ] → R standing for the time
variation of the voltage applied to the actuator.

Our main purpose is to find the initial data that can be steered to
rest by means of the control 𝑢. To give the precise definitions of exact
controllability, let us introduce for any 𝜔 in R the functional space 𝑌𝜔
as follows. Let 𝑌0 = 𝐿2(0, 𝜋). For 𝜔 > 0, let 𝑌𝜔 be the closure in 𝐻𝜔(0, 𝜋)
of the set of 𝑦 in 𝐶∞([0, 𝜋]) satisfying the conditions

𝑦(2𝑛)(0) = 𝑦(2𝑛)(𝜋) = 0 ∀𝑛 ≥ 0. (1.2)

For 𝜔 < 0, let 𝑌𝜔 be the dual space of 𝑌−𝜔 with respect to the space 𝑌0.
Then we give the precise definitions.

Definition 1.1. The initial data (𝑤0, 𝑤1) in 𝑌2 × 𝑌1 is exactly 𝐿2-
controllable in (𝜉, 𝜂) at time 𝑇 if there exists 𝑢 in 𝐿2(0, 𝑇 ) such that
the solution 𝑤 of (1.1) satisfies the condition 𝑤(⋅, 𝑇 ) = 𝑤𝑡(⋅, 𝑇 ) = 0.

Definition 1.2. The initial data (𝑤0, 𝑤1) in 𝑌1 × 𝑌0 is exactly (𝐻1)′-
controllable in (𝜉, 𝜂) at time 𝑇 if there exists 𝑢 in (𝐻1(0, 𝑇 ))′ such that
the solution 𝑤 of (1.1) satisfies the condition 𝑤(⋅, 𝑇 ) = 𝑤𝑡(⋅, 𝑇 ) = 0.

Note that in Definitions 1.1 and 1.2, the spaces where the initial
data (𝑤0, 𝑤1) can be taken depend on the well-posedness of (1.1) (see
Section 3). In Definition 1.2, the space (𝐻1(0, 𝑇 ))′ is the dual space of
𝐻1(0, 𝑇 ) with respect to 𝐿2(0, 𝑇 ). The study of controllability with less
regular control is inspired by [4] which studied the controllability of
changing the norm for wave equation and plate equation. Note that the
system (1.1) is a time-reversible linear system, so exact controllability
is equivalent to null controllability (see Theorem 2.41 of [21, p. 55]).

1.3. Contributions of the paper

In this work, the exact controllability problem is solved for Rayleigh
beam equation given in [20]. To do that, weak control, namely
(𝐻1(0, 𝑇 ))′ control is considered. To this end, a new well-posedess result
is needed and proved. In addition to this controllability result, several
non-controllability results are provided in this paper. The first one
concerns the location of the piezoelectric actuator and describes the
set of actuator ends so that controllability holds or does not hold. The
second one solves the non-controllability problem for less regular initial
data. The third one is about the lack of controllability in short control
time. Especially, the third non-controllability result, together with the
exact controllability results, reveals the minimal control time for this
problem. To the best of our knowledge, this is the first result concerning
the minimal control time of the exact controllability for Rayleigh beam.
2

1.4. Controllability results

In order to state the exact controllability results, let 𝜀 > 0 and let
the sets 𝐴 ⊂ (0, 1) and 𝐵𝜀 ⊂ (0, 1) be the sets defined in Section 2. From
Section 2, the set 𝐴 is uncountable and has zero Lebesgue measure, and
the Lebesgue measure of set 𝐵𝜀 is 1.

Let us first recall a result in the conference paper [22]:

Theorem 1.3 ([22]). Let 𝑇 > 2𝜋
√

𝛼 and 𝜀 > 0.

1. Suppose that 𝜂+𝜉
2𝜋 and 𝜂−𝜉

2𝜋 belong to the set 𝐴. Then all initial data
in 𝑌4 × 𝑌3 are exactly 𝐿2-controllable in (𝜉, 𝜂) at time 𝑇 .

2. Suppose that 𝜂+𝜉2𝜋 and 𝜂−𝜉
2𝜋 belong to the set 𝐵𝜀. Then all initial data

in 𝑌4+2𝜀 × 𝑌3+2𝜀 are exactly 𝐿2-controllable in (𝜉, 𝜂) at time 𝑇 .

Theorem 1.3 states two 𝐿2-controllability results. The first result
hows that, for the end of the piezoelectric actuator in an uncountable
ero measure set, we have 𝐿2-controllability in 𝑌4 × 𝑌3. The second

result implies that, for almost all choices of the end of the piezoelectric
actuator, we have 𝐿2-controllability in more regular Sobolev spaces
than 𝑌4 × 𝑌3.

Our exact controllability results are introduced in the following
theorem which concerns the exact controllability in less regular spaces.

Theorem 1.4. Let 𝑇 > 2𝜋
√

𝛼 and 𝜀 > 0.

1. Suppose that 𝜂+𝜉
2𝜋 and 𝜂−𝜉

2𝜋 belong to the set 𝐴. Then all initial data
in 𝑌3 × 𝑌2 are exactly (𝐻1)′-controllable in (𝜉, 𝜂) at time 𝑇 .

2. Suppose that 𝜂+𝜉2𝜋 and 𝜂−𝜉
2𝜋 belong to the set 𝐵𝜀. Then all initial data

in 𝑌3+2𝜀 × 𝑌2+2𝜀 are exactly (𝐻1)′-controllable in (𝜉, 𝜂) at time 𝑇 .

In Theorem 1.4, (𝐻1(0, 𝑇 ))′ control brings new difficulties to the
roblem. The well-posedness of (1.1) with 𝑢 in (𝐻1(0, 𝑇 ))′ needs to be
roven while the well-posedness of (1.1) with 𝑢 in 𝐿2(0, 𝑇 ) is a known
esult (see Section 3).

Theorems 1.3 and 1.4 give some sufficient conditions for exact con-
rollability. All the results show the dependence of the space of exactly
ontrollable initial data on the location of actuator. The differences
etween these two theorems are the different spaces of the control and
he different spaces of the controllable initial data. In Theorem 1.4, the
ontrol belongs to (𝐻1(0, 𝑇 ))′ rather than 𝐿2(0, 𝑇 ) and the space of the
ontrollable initial data is larger than the space in Theorem 1.3 with
he same choice of 𝜉 and 𝜂. Roughly speaking, the larger (less regular)
he space of control is, the larger (less regular) the space of controllable
nitial data is. To the best knowledge of the authors, such a result has
ot been developed yet for beam equation with piezoelectric actuator
r internal control.

.5. Non-controllability results

After the controllability results given in the previous subsection, let
s state some non-controllability results. In Section 4, from Proposi-
ions 4.1 and 4.3 and the solution (3.5) of the adjoint problem, we can
ee that condition
𝜂 − 𝜉
2𝜋

,
𝜂 + 𝜉
2𝜋

∈ R ⧵Q (1.3)

s necessary to have any exact controllability result. The first non-
ontrollability result concerns the insufficiency of condition (1.3). Un-
er condition (1.3), there exist 𝜉, 𝜂 and initial condition of prob-
em (1.1) such that no control can steer this initial condition to the
quilibrium.

heorem 1.5.

1. For any 𝛽 ≥ −1, there exist 𝜉 and 𝜂 satisfying (1.3) such that for
any 𝑇 > 0, the space 𝑌𝛽+3 × 𝑌𝛽+2 contains some initial data that are
not exactly 𝐿2-controllable in (𝜉, 𝜂) at time 𝑇 .
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2. For any 𝛽 ≥ −2, there exist 𝜉 and 𝜂 satisfying (1.3) such that for
any 𝑇 > 0, the space 𝑌𝛽+3 × 𝑌𝛽+2 contains some initial data that are
not exactly (𝐻1)′-controllable in (𝜉, 𝜂) at time 𝑇 .

Theorem 1.3 (resp. Theorem 1.4) gives no information on 𝐿2-
controllability (resp. (𝐻1)′-controllability) of initial data in 𝑌𝛽+3 × 𝑌𝛽+2
for 𝛽 < 1 (resp. for 𝛽 < 0). A partial answer is given by the following
result.

Theorem 1.6. Let 𝜀 > 0, 𝑇 > 0 and 𝜉, 𝜂 in (0, 𝜋) be arbitrary.

1. The set 𝑌3−𝜀 × 𝑌2−𝜀 contains some initial data that are not exactly
𝐿2-controllable in (𝜉, 𝜂) at time 𝑇 .

2. The set 𝑌2−𝜀 × 𝑌1−𝜀 contains some initial data that are not exactly
(𝐻1)′-controllable in (𝜉, 𝜂) at time 𝑇 .

Notice that all the exact controllability results in Theorems 1.3 and
1.4 require 𝑇 > 2𝜋

√

𝛼, however, in [6], the exact controllability results
for Euler–Bernoulli beam have no requirement of control time. Conse-
quently, a huge difference between Rayleigh beam and Euler–Bernoulli
beam is revealed, and the reason lies in various distributions of their
eigenvalues. More precisely, under the same boundary condition (1.1b),
the eigenvalues of Rayleigh beam equation are 𝑘4

1+𝛼𝑘2 for 𝑘 in N∗ (see
ection 3.1) while the eigenvalues of Euler–Bernoulli beam equation
re 𝑘4 for 𝑘 in N∗ (see [6]). Roughly speaking, this fact implies that
ayleigh beam equation possesses finite propagation speed and that
uler–Bernoulli beam equation possesses infinite propagation speed.
or this reason, all the exact controllability results for Rayleigh beam
equire 𝑇 > 2𝜋

√

𝛼 while the exact controllability results for Euler–
ernoulli beam hold for all 𝑇 > 0 (see [6]). Based on this fact, we

give the non-controllability results for 0 < 𝑇 < 2𝜋
√

𝛼.

heorem 1.7. Let 0 < 𝑇 < 2𝜋
√

𝛼 and 𝜉, 𝜂 in (0, 𝜋) be arbitrary.

1. For any 𝛽 ≥ −1, the space 𝑌𝛽+3 × 𝑌𝛽+2 contains initial data that are
not exactly 𝐿2-controllable in (𝜉, 𝜂) at time 𝑇 .

2. For any 𝛽 ≥ −2, the space 𝑌𝛽+3 × 𝑌𝛽+2 contains initial data that are
not exactly (𝐻1)′-controllable in (𝜉, 𝜂) at time 𝑇 .

Remark 1.8. For the case 𝑇 = 2𝜋
√

𝛼, whether the exact controllability
till holds remains open.

Notice that in Theorem 1.5, the lack of controllability holds for some
pecial 𝜉 and 𝜂 which are related to the space of initial data. However,
n Theorems 1.6 and 1.7, non-controllability holds for any 𝜉 and 𝜂. The
irst part of this theorem (non-controllability with 𝐿2 control function)
as presented in the conference paper [22]. From Theorem 1.7, we

an see that 𝑇 ≥ 2𝜋
√

𝛼 is necessary for exact controllability for
Rayleigh beam equation. Therefore, minimal control time for exact
controllability is obtained. As far as we know, this is the first result
stating a lack of 𝐿2-controllability as well as (𝐻1)′-controllability for
Rayleigh beam in short control time.

The remaining part of this paper is organized as follows. In Sec-
tion 2, we provide some preliminaries on the theory of Diophantine
approximation and the Riesz basis property of exponential family.
The well-posedness results for the control problem (1.1) are given
in Section 3. The main results are proved in Section 4. Appendix
provides the proof of a technical lemma which is used in the proof of
non-controllability in short control time.

2. Preliminaries

In this section, we provide some known results on the theory of
Diophantine approximation (see [23,24]) and the Riesz basis property
of exponential family (see [25]).

For a real number 𝜌, we denote by ‖𝜌‖Z the difference, taken
positively, between 𝜌 and the nearest integer, i.e., ‖𝜌‖Z = min𝑛∈Z |𝜌 − 𝑛|.
3

Let us denote by 𝐴 the set of all irrationals 𝜌 in (0, 1) such that if
[0, 𝑎1,… , 𝑎𝑛…] is the expansion of 𝜌 as a continued fraction, then (𝑎𝑛)
is bounded. The set 𝐴 is uncountable, and its Lebesgue measure is equal
to zero (see Theorem I of [23, p. 120]). The following property proven
in Theorem 6 of [24, p. 23] is essential for this paper.

Proposition 2.1. A number 𝜌 is in 𝐴 if and only if there exists a constant
𝐶 > 0 such that

‖𝑞𝜌‖Z ≥ 𝐶
𝑞

(2.1)

or any strictly positive integer 𝑞.

The next proposition, which is proved in [23, p. 120], shows that
n inequality slightly weaker than (2.1) holds for almost all points in
0, 1).

Proposition 2.2. For any 𝜀 > 0, there exists a set 𝐵𝜀 ⊂ (0, 1) having
ebesgue measure equal to 1 such that for any 𝜌 in 𝐵𝜀, there exists a constant
> 0 such that for any strictly positive integer 𝑞, we have

𝑞𝜌‖Z ≥ 𝐶
𝑞1+𝜀

. (2.2)

The following proposition on simultaneous approximation proven
n Theorem VII of [23, p. 14] is useful to prove Theorem 1.6.

roposition 2.3. Let 𝜌1,… , 𝜌𝑘 be 𝑘 irrationals in (0, 1). Then there exists
a strictly increasing sequence of natural numbers 𝑞𝑛 such that for all 𝑛 ≥ 1,

1
𝑘
𝑛 max
𝑖=1,…,𝑘

(‖𝑞𝑛𝜌1‖Z,… , ‖𝑞𝑛𝜌𝑖‖Z,… , ‖𝑞𝑛𝜌𝑘‖Z) ≤
𝑘

𝑘 + 1
.

The next proposition proven in Theorem II.4.18 of [25, p. 109] on
the Riesz basis property of exponential family in 𝐿2(0, 𝑇 ) is essential to
prove Theorem 1.7.

Proposition 2.4. Let {𝜆𝑛}𝑛∈Z be a sequence of complex numbers such
that sup𝑛∈Z |Im𝜆𝑛| < ∞ and inf𝑛≠𝑚 |𝜆𝑚 − 𝜆𝑛| > 0. Let 𝑁(𝑥, 𝑟) ∶= ♯{𝜆𝑛|𝑥 ≤
Re𝜆𝑛 < 𝑥+ 𝑟} for 𝑥 in R and 𝑟 > 0, where ♯ is the number of elements in
the set . Assume that for some 𝑇 > 0,

lim
𝑟→∞

𝑁(𝑥, 𝑟)
𝑟

= 𝑇
2𝜋

olds uniformly relative to all 𝑥 in R. Then for any 𝑇 ′ in (0, 𝑇 ), {e𝑖𝜆𝑛𝑡}𝑛∈Z
contains a subfamily {e𝑖𝜆𝑞𝑛 𝑡}𝑛∈Z that forms a Riesz basis in 𝐿2(0, 𝑇 ′).
Moreover, if {𝜆𝑛}𝑛∈Z is a sequence of real numbers such that 𝜆𝑛 = −𝜆−𝑛,
the subsequence {𝜆𝑞𝑛}𝑛∈Z satisfies 𝜆𝑞𝑛 = −𝜆𝑞−𝑛 .

3. Well-posedness of (1.1)

In Section 3.1, we show the well-posedness result of system (1.1)
with 𝑢 in 𝐿2(0, 𝑇 ) which has been proved in [20]. In Section 3.2, we
prove the well-posedness and regularity results of system (1.1) with 𝑢
in (𝐻1(0, 𝑇 ))′. The approach is inspired by [4].

3.1. Well-posedness of (1.1) with control in 𝐿2(0, 𝑇 )

In this section, let us recall two results in [20]. The first one
provided the well-posedness of (1.1) with 𝑢 in 𝐿2(0, 𝑇 ). The second one
gave the well-posedness of the adjoint problem of (1.1) and some trace
regularities. We keep the proof of the second one since some part of
the proof is also used in other sections.

The following theorem is the well-posedness result of (1.1) with 𝑢
in 𝐿2(0, 𝑇 ).

Theorem 3.1. Suppose that (𝑤0, 𝑤1) belongs to 𝑌2 × 𝑌1. For any 𝑢 in
𝐿2(0, 𝑇 ) and for any 𝜉 and 𝜂 in (0, 𝜋), the initial and boundary value
problem (1.1) admits a unique solution 𝑤 having the regularity

1
𝑤 ∈ 𝐶([0, 𝑇 ]; 𝑌2) ∩ 𝐶 ([0, 𝑇 ]; 𝑌1). (3.1)
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Then let us consider the adjoint problem of (1.1) in (0, 𝜋) × (0,+∞),

𝜙𝑡𝑡(𝑥, 𝑡) − 𝛼𝜙𝑥𝑥𝑡𝑡(𝑥, 𝑡) + 𝜙𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 0, (3.2a)

𝜙(0, 𝑡) = 𝜙(𝜋, 𝑡) = 𝜙𝑥𝑥(0, 𝑡) = 𝜙𝑥𝑥(𝜋, 𝑡) = 0, (3.2b)

𝜙(𝑥, 0) = 𝜙0(𝑥), 𝜙𝑡(𝑥, 0) = 𝜙1(𝑥). (3.2c)

The next lemma provides the well-posedness of the adjoint problem
(3.2) and some trace regularities needed in the proof of the main
results.

Lemma 3.2. For any initial data (𝜙0, 𝜙1) in 𝑌2 ×𝑌1, there exists a unique
weak solution 𝜙 of (3.2) in the class 𝐶([0, 𝑇 ]; 𝑌2)∩𝐶1([0, 𝑇 ]; 𝑌1). Moreover,
for any 𝜒 in (0, 𝜋), 𝜙𝑥(𝜒, ⋅) belongs to 𝐻1(0, 𝑇 ), and there exist 𝐶,𝐶 ′ > 0
such that

‖𝜙𝑥(𝜒, ⋅)‖2𝐻1(0,𝑇 )
≤ 𝐶(‖𝜙0

‖

2
𝐻2(0,𝜋)

+ ‖𝜙1
‖

2
𝐻1(0,𝜋)

), (3.3)

‖𝜙𝑥(𝜒, ⋅)‖2𝐿2(0,𝑇 )
≤ 𝐶 ′(‖𝜙0

‖

2
𝐻1(0,𝜋)

+ ‖𝜙1
‖

2
𝐿2(0,𝜋)

). (3.4)

Proof. It is easy to see, by the semigroup method, that the problem
(3.2) admits a unique solution 𝜙 in 𝐶([0, 𝑇 ]; 𝑌2)∩𝐶1([0, 𝑇 ]; 𝑌1) (see [26,
p. 104]).

Next we prove (3.3) and (3.4). Since the family of functions {𝑥 ↦

sin(𝑘𝑥)}𝑘∈N∗ is the orthogonal basis of 𝑌1 and 𝑌2 respectively, let 𝜙0(𝑥) =
∑

𝑘≥1 𝑎𝑘 sin(𝑘𝑥) and 𝜙1(𝑥) =
∑

𝑘≥1 𝑏𝑘 sin(𝑘𝑥) with (𝑘2𝑎𝑘) and (𝑘𝑏𝑘) in
𝑙2(R). By standard computation, we have

𝜙(𝑥, 𝑡) =
∑

𝑘≥1

[

𝑎𝑘 cos

(

𝑘2
√

1 + 𝛼𝑘2
𝑡

)

+
𝑏𝑘
√

1 + 𝛼𝑘2

𝑘2
sin

(

𝑘2
√

1 + 𝛼𝑘2
𝑡

)]

sin(𝑘𝑥). (3.5)

Then for all 𝑇 > 0, 𝜙𝑥(𝜒, ⋅) belongs to 𝐻1(0, 𝑇 ) and

∫

𝑇

0
|𝜙𝑥𝑡(𝜒, 𝑡)|

2d𝑥 ≤ 𝐶
∑

𝑘≥1
𝑘2(𝑎2𝑘𝑘

2 + 𝑏2𝑘),

which yields (3.3). And simultaneously we have

∫

𝑇

0
|𝜙𝑥(𝜒, 𝑡)|

2d𝑥 ≤ 𝐶 ′
∑

𝑘≥1
(𝑎2𝑘𝑘

2 + 𝑏2𝑘),

which clearly yields (3.4). □

3.2. Well-posedness of (1.1) with control in (𝐻1(0, 𝑇 ))′

As the control 𝑢 belongs to (𝐻1(0, 𝑇 ))′, the dual space of 𝐻1(0, 𝑇 ),
we need to define the solution of (1.1) in the weak form. The next
proposition is the Riesz Representation Theorem for 𝐻1(0, 𝑇 ) (see [27,
p. 62]).

Proposition 3.3. For every 𝑢 in (𝐻1(0, 𝑇 ))′, there exist functions 𝑢0 and
𝑢1 in 𝐿2(0, 𝑇 ) such that for all 𝜙 in 𝐻1(0, 𝑇 ),

⟨𝑢, 𝜙⟩(𝐻1(0,𝑇 ))′×𝐻1(0,𝑇 ) = ∫

𝑇

0
(𝑢0𝜙 + 𝑢1𝜙𝑡)d𝑡. (3.6)

Note that 𝑢0 and 𝑢1 also define a distribution 𝑢̃ in ′(0, 𝑇 ) as 𝑢̃ =
𝑢0 − 𝑢1,𝑡. We know from [27, p. 63] that the element 𝑢 of (𝐻1(0, 𝑇 ))′ is
an extension to 𝐻1(0, 𝑇 ) of the distribution 𝑢̃.

Inspired by [4], we define the weak solution of (1.1) by transpo-
sition and prove the well-posedness. We explain the results in three
steps.

1. Prove the well-posedness and the trace regularity of a non-
homogeneous problem (3.8).

2. Define the weak solution of (1.1) by transposition.
3. Prove the well-posedness of (1.1).
4

‖

Before we start, let us introduce two linear operators

 ∶= 𝐼 − 𝛼𝜕𝑥𝑥,  ∶= (𝐼 − 𝛼𝜕𝑥𝑥)−1. (3.7)

It follows from Lax–Milgram Theorem that the operator  (resp. ) is
an isomorphism from 𝑌𝑖 to 𝑌𝑖−2 (resp. 𝑌𝑖−2 to 𝑌𝑖), 𝑖 = 0, 1, 2.

Step 1. Let {𝑓, 𝜃0, 𝜃1} belong to 𝐿1(0, 𝑇 ; 𝑌−1) × 𝑌2 × 𝑌1. Let us consider
the following backward non-homogeneous problem in (0, 𝜋) × (0, 𝑇 ),

𝜃𝑡𝑡(𝑥, 𝑡) − 𝛼𝜃𝑥𝑥𝑡𝑡(𝑥, 𝑡) + 𝜃𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡), (3.8a)

𝜃(0, 𝑡) = 𝜃(𝜋, 𝑡) = 𝜃𝑥𝑥(0, 𝑡) = 𝜃𝑥𝑥(𝜋, 𝑡) = 0, (3.8b)

𝜃(𝑥, 𝑇 ) = 𝜃0, 𝜃𝑡(𝑥, 𝑇 ) = 𝜃1. (3.8c)

The following proposition provides the well-posedness and the trace
regularity of (3.8). Our approach to prove this proposition is inspired
by methods used in [20,28].

Proposition 3.4. For any initial data (𝜃0, 𝜃1) in 𝑌2 × 𝑌1 and 𝑓 in
𝐿1(0, 𝑇 ; 𝑌−1), there exists a unique weak solution 𝜃 of (3.8) in the class
𝐶([0, 𝑇 ]; 𝑌2) ∩𝐶1([0, 𝑇 ]; 𝑌1). Moreover, for any 𝜒 in (0, 𝜋), 𝜃𝑥(𝜒, ⋅) belongs
to 𝐻1(0, 𝑇 ), and there exists 𝐶 > 0 such that

‖𝜃𝑥(𝜒, ⋅)‖𝐻1(0,𝑇 ) ≤ 𝐶(‖𝜃0‖𝐻2(0,𝜋) + ‖𝜃1‖𝐻1(0,𝜋) + ‖𝑓‖𝐿1(0,𝑇 ;𝑌−1)). (3.9)

Proof. Applying  to both sides of (3.8a), we obtain

𝜃𝑡𝑡(𝑥, 𝑡) +𝜃𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡). (3.10)

Notice that 𝑓 is in 𝐿1(0, 𝑇 ; 𝑌1). Then the problem (3.10) admits a
unique solution 𝜃 in 𝐶([0, 𝑇 ]; 𝑌2) ∩ 𝐶1([0, 𝑇 ]; 𝑌1) by the classical semi-
group method (see [26, p. 106]). Moreover, there exists a constant
𝐶𝑇 > 0 such that

‖𝜃‖𝐶([0,𝑇 ];𝑌2) ≤ 𝐶𝑇 (‖𝜃0‖𝐻2(0,𝜋) + ‖𝜃1‖𝐻1(0,𝜋) + ‖𝑓‖𝐿1(0,𝑇 ;𝑌−1)). (3.11)

Then we need to prove inequality (3.9). The following lemma
proved in [20,28] shows that the operator 𝜕𝑥𝑥𝑥𝑥 is ‘‘similar’’ to the
elliptic operator − 1

𝛼 𝜕𝑥𝑥.

Lemma 3.5. The linear operator 𝐿 = − 1
𝛼 𝜕𝑥𝑥−𝜕𝑥𝑥𝑥𝑥 is bounded from 𝑌2

to 𝑌2.

Using this lemma, we can reduce the proof of (3.9) to a regularity
property for a string equation. We consider the initial value problem in
(0, 𝜋) × (0, 𝑇 ),

𝜃1,𝑡𝑡(𝑥, 𝑡) −
1
𝛼
𝜃1,𝑥𝑥(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡),

𝜃1(0, 𝑡) = 𝜃1(𝜋, 𝑡) = 0,

𝜃1(𝑥, 𝑇 ) = 𝜃0, 𝜃1,𝑡(𝑥, 𝑇 ) = 𝜃1.

The relations above imply that in (0, 𝜋) × (0, 𝑇 ), 𝜃2 = 𝜃 − 𝜃1 satisfies

2,𝑡𝑡(𝑥, 𝑡) −
1
𝛼
𝜃2,𝑥𝑥(𝑥, 𝑡) = 𝐿𝜃,

𝜃2(0, 𝑡) = 𝜃2(𝜋, 𝑡) = 0,

𝜃2(𝑥, 𝑇 ) = 0, 𝜃2,𝑡(𝑥, 𝑇 ) = 0.

Since 𝜃 belongs to 𝐶([0, 𝑇 ]; 𝑌2) and 𝐿 is bounded from 𝑌2 to 𝑌2, 𝐿𝜃
elongs to 𝐶([0, 𝑇 ]; 𝑌2). Then by the classical theory for evolution equa-
ions of hyperbolic type (see [29]), 𝜃2 belongs to 𝐶([0, 𝑇 ];𝐻3(0, 𝜋)) ∩
1([0, 𝑇 ];𝐻2(0, 𝜋)), and there exists a constant 𝐶1

𝑇 > 0 such that

(𝜃2, 𝜃2,𝑡)‖𝐶([0,𝑇 ];𝐻3(0,𝜋)×𝐻2(0,𝜋)) ≤ 𝐶1
𝑇 ‖𝜃‖𝐶([0,𝑇 ];𝑌2).

This inequality, combined with (3.11) and the standard trace theorem
of hyperbolic equation, implies that there exists a constant 𝐶2

𝑇 > 0 such
hat for any 𝜒 in (0, 𝜋),

2 0 1
𝜃2,𝑥(𝜒, ⋅)‖𝐻1(0,𝑇 ) ≤ 𝐶𝑇 (‖𝜃 ‖𝐻2(0,𝜋) + ‖𝜃 ‖𝐻1(0,𝜋) + ‖𝑓‖𝐿1(0,𝑇 ;𝑌−1)). (3.12)
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As for 𝜃1, it is already proved in [30] that there exists a constant 𝐶3
𝑇 > 0

uch that for any 𝜒 in (0, 𝜋),

𝜃1,𝑥(𝜒, ⋅)‖𝐻1(0,𝑇 ) ≤ 𝐶3
𝑇 (‖𝜃

0
‖𝐻2(0,𝜋) + ‖𝜃1‖𝐻1(0,𝜋) + ‖𝑓‖𝐿1(0,𝑇 ;𝑌−1)). (3.13)

Then inequality (3.9) follows from (3.12) and (3.13). □

Step 2. Now we give the definition of the weak solution of (1.1).
Denote by  a Banach space consisting of 𝜃, the solution of (3.8).

nd give  a natural Banach structure such that {𝑓, 𝜃0, 𝜃1} ↦ 𝜃 is an
somorphism from 𝐿1(0, 𝑇 ; 𝑌−1) × 𝑌2 × 𝑌1 to  . From Proposition 3.4, 
s contained in 𝐶([0, 𝑇 ]; 𝑌2) ∩ 𝐶1([0, 𝑇 ]; 𝑌1), and (3.9) holds for all 𝜃 in

and 𝜒 in (0, 𝜋).
Assume that {𝑓, 𝜃0, 𝜃1} belongs to 𝐿1(0, 𝑇 ; 𝑌−1) × 𝑌2 × 𝑌1 and that

𝑢,𝑤0, 𝑤1} belongs to 𝐿2(0, 𝑇 )×𝑌2×𝑌1. Denote by 𝜃 the solution of (3.8)
nd by 𝑤 the solution of (1.1) given by Theorem 3.1. Denote by ⟨𝑓1, 𝑓2⟩
he linear form between 𝑌−𝛾 and 𝑌𝛾 for any 𝛾 ≥ 0 and by ⟨𝑔1, 𝑔2⟩∗ the
inear form between 𝐿∞(0, 𝑇 ; 𝑌1) and 𝐿1(0, 𝑇 ; 𝑌−1). Multiplying (1.1a)
y 𝜃 and integrating by parts, we obtain

𝑤, 𝑓⟩∗ + ⟨𝑤𝑡(𝑇 ), 𝜃0⟩ + ⟨−𝑤(𝑇 ), 𝜃1⟩

−∫

𝑇

0
𝑢(𝑡)(𝜃𝑥(𝜂, 𝑡) − 𝜃𝑥(𝜉, 𝑡))d𝑡 + ⟨𝑤1, 𝜃(0)⟩ + ⟨−𝑤0, 𝜃𝑡(0)⟩.

ow relaxing the assumption of {𝑢,𝑤0, 𝑤1} belonging to 𝐿2(0, 𝑇 )×𝑌2×𝑌1
o {𝑢,𝑤0, 𝑤1} belonging to (𝐻1(0, 𝑇 ))′ × 𝑌1 × 𝑌0 and considering the
ntegral ∫ 𝑇0 𝑢(𝑡)(𝜃𝑥(𝜂, 𝑡) − 𝜃𝑥(𝜉, 𝑡))d𝑡 as the linear form between 𝑢 and
𝑥(𝜂, ⋅) − 𝜃𝑥(𝜉, ⋅), we obtain from (3.6) that there exist functions 𝑢0 and
1 in 𝐿2(0, 𝑇 ) such that

𝑤, 𝑓⟩∗ + ⟨𝑤𝑡(𝑇 ), 𝜃0⟩ + ⟨−𝑤(𝑇 ), 𝜃1⟩

−∫

𝑇

0
[𝑢0(𝑡)(𝜃𝑥(𝜂, 𝑡) − 𝜃𝑥(𝜉, 𝑡)) + 𝑢1(𝑡)(𝜃𝑥𝑡(𝜂, 𝑡) − 𝜃𝑥𝑡(𝜉, 𝑡))]d𝑡

⟨𝑤1, 𝜃(0)⟩ + ⟨−𝑤0, 𝜃𝑡(0)⟩, (3.14)

where 𝑤1 is in 𝑌−2 and 𝑤0 is in 𝑌−1 due to the Lax–Milgram Theorem.
Thus ⟨𝑤1, 𝜃(0)⟩ and ⟨−𝑤0, 𝜃𝑡(0)⟩ are well-defined. Let (3.14) be the
definition of the weak solution.

Definition 3.6. Let 𝑇 > 0, 𝑢 in (𝐻1(0, 𝑇 ))′ and (𝑤0, 𝑤1) in 𝑌1 × 𝑌0
be given. A weak solution of the problem (1.1) is a function 𝑤 in
𝐶([0, 𝑇 ]; 𝑌1) such that for every {𝑓, 𝜃0, 𝜃1} in 𝐿1(0, 𝑇 ; 𝑌−1)×𝑌2×𝑌1, (3.14)
holds, and (𝑤(𝑇 ), 𝑤𝑡(𝑇 )) belongs to 𝑌1 × 𝑌0.

Step 3. Then we are able to prove the well-posedness of (1.1) when 𝑢
belongs to (𝐻1(0, 𝑇 ))′.

Theorem 3.7. Suppose (𝑤0, 𝑤1) belongs to 𝑌1 × 𝑌0. For any 𝑢 in
(𝐻1(0, 𝑇 ))′ and for any 𝜉 and 𝜂 in (0, 𝜋), the initial and boundary value
problem (1.1) admits a unique weak solution 𝑤 in sense of Definition 3.6.
And the map {𝑤0, 𝑤1, 𝑢} ↦ {𝑤,𝑤(𝑇 ), 𝑤𝑡(𝑇 )} is continuous and linear with
respect to the corresponding norm.

Proof. Since 𝑢 belongs to (𝐻1(0, 𝑇 ))′, there exist 𝑢0 and 𝑢1 in 𝐿2(0, 𝑇 )
such that (3.6) holds . Moreover, the map {𝑓, 𝜃0, 𝜃1} ↦ 𝜃 is an
isomorphism from 𝐿1(0, 𝑇 ; 𝑌−1) × 𝑌2 × 𝑌1 to  . Therefore, we define a
linear form 𝛤 on  such that

𝛤 (𝜃) = −∫

𝑇

0
[𝑢0(𝑡)(𝜃𝑥(𝜂, 𝑡) − 𝜃𝑥(𝜉, 𝑡)) + 𝑢1(𝑡)(𝜃𝑥𝑡(𝜂, 𝑡) − 𝜃𝑥𝑡(𝜉, 𝑡))]d𝑡

+⟨𝑤1, 𝜃(0)⟩ + ⟨−𝑤0, 𝜃𝑡(0)⟩. (3.15)

Since (𝑤0, 𝑤1) belongs to 𝑌1 × 𝑌0, (𝑤0,𝑤1) belongs to 𝑌−1 × 𝑌−2. It
follows from Proposition 3.4 that 𝛤 is a continuous linear form on  .
Therefore, for the linear form 𝛤 in  ′, there exists a unique element
{𝑤, 𝜁∗, 𝜁} in 𝐿∞(0, 𝑇 ; 𝑌1) × 𝑌−2 × 𝑌−1 such that

⟨𝑤, 𝑓⟩ + ⟨𝜁 , 𝜃0⟩ + ⟨−𝜁, 𝜃1⟩ = 𝛤 (𝜃) ∀𝜃 ∈  . (3.16)
5

∗ ∗ r
Next we claim that 𝑤 above is actually the weak solution of (1.1). It is
sufficient to prove that 𝑤 satisfies (1.1) in weak sense, 𝑤(𝑇 ) = 𝜁 and
𝑤𝑡(𝑇 ) = 𝜁∗.

Notice that {𝑥 ↦ sin(𝑘𝑥)}𝑘∈N∗ is the family of eigenfunctions of
𝜕𝑥𝑥𝑥𝑥. Let 𝑚(𝑥) = sin(𝑘𝑥) for some 𝑘 in N∗ and ℎ belong to 𝐿1(0, 𝑇 ).
Firstly we set 𝑓 (𝑡) = ℎ(𝑡)𝑚, 𝜃0 = 0 and 𝜃1 = 0, and hence 𝑓 (𝑡) = ℎ(𝑡)𝑚.
Denote by 𝜆2 = 𝑘4∕(1 + 𝛼𝑘2) the corresponding eigenvalue, and take
𝜆 positively. Then we obtain from Proposition 3.4 that for 𝑡 in (0, 𝑇 ),
𝜃(𝑡) = 𝑞(𝑡)𝑚, where 𝑞 satisfies 𝑞𝑡𝑡 + 𝜆2𝑞 = ℎ and 𝑞(𝑇 ) = 𝑞𝑡(𝑇 ) = 0. Clearly
we have 𝑞(𝑡) = − 1

𝜆 ∫
𝑇
𝑡 sin(𝜆(𝑡 − 𝜎))ℎ(𝜎)d𝜎. Then we obtain from (3.15)

and (3.16) that

∫

𝑇

0
⟨𝑤,𝑚⟩(𝑞𝑡𝑡 + 𝜆2𝑞)d𝑡 = ⟨𝑤, 𝑓⟩∗ = 𝛤 (𝜃)

= −(𝑚𝑥(𝜂) − 𝑚𝑥(𝜉))∫

𝑇

0
[𝑢0(𝑡)𝑞(𝑡) + 𝑢1(𝑡)𝑞𝑡(𝑡)]d𝑡

𝑞(0)⟨𝑤1, 𝑚⟩ − 𝑞𝑡(0)⟨𝑤0, 𝑚⟩. (3.17)

otice that ⟨𝑤,𝑚⟩ = ⟨𝑤,𝑚⟩. Then (3.17) implies that

𝑤,𝑚⟩𝑡𝑡 + 𝜆2⟨𝑤,𝑚⟩ = − (𝑚𝑥(𝜂) − 𝑚𝑥(𝜉))𝑢,

⟨𝑤,𝑚⟩(0) =⟨𝑤0, 𝑚⟩,

⟨𝑤,𝑚⟩𝑡(0) =⟨𝑤1, 𝑚⟩.

(3.18)

ote that the first equation of (3.18) holds in (𝐻1(0, 𝑇 ))′. Since 𝑚(𝑥) =
in(𝑘𝑥) and 𝑘 ≥ 1 is an arbitrary natural number, then 𝑤 satisfies (1.1)
n weak sense.

Now we set 𝑓 = 0, 𝜃0 = 0 and 𝜃1 = −𝑚. Then for 𝑡 in (0, 𝑇 ),
(𝑡) = 1

𝜆 sin(𝜆(𝑇 − 𝑡))𝑚. Therefore, (3.15) and (3.16) imply that

𝜁, 𝑚⟩ = 𝛤 (𝜃) = ⟨𝑤1, 𝑚⟩
sin(𝜆𝑇 )
𝜆

+ ⟨𝑤0, 𝑚⟩ cos(𝜆𝑇 )

(𝑚𝑥(𝜂) − 𝑚𝑥(𝜉))∫

𝑇

0

[

𝑢0(𝑡)
sin(𝜆(𝑇 − 𝑡))

𝜆
− 𝑢1(𝑡) cos(𝜆(𝑇 − 𝑡))

]

d𝑡. (3.19)

oreover, it follows from (3.18) that

𝑤,𝑚⟩(𝑇 ) = ⟨𝑤0, 𝑚⟩ cos(𝜆𝑇 ) + ⟨𝑤1, 𝑚⟩
sin(𝜆𝑇 )
𝜆

−
𝑚𝑥(𝜂) − 𝑚𝑥(𝜉)

𝜆
⟨𝑢, sin(𝜆(𝑇 − ⋅))⟩(𝐻1(0,𝑇 ))′×𝐻1(0,𝑇 ). (3.20)

Comparing (3.20) to (3.19), we obtain that ⟨𝑤,𝑚⟩(𝑇 ) = ⟨𝜁, 𝑚⟩, which
proves 𝑤(𝑇 ) = 𝜁 .

Next let 𝑓 = 0, 𝜃0 = 𝑚 and 𝜃1 = 0. Then for 𝑡 in (0, 𝑇 ), 𝜃(𝑡) =
cos(𝜆(𝑇 − 𝑡))𝑚. Thus (3.15) and (3.16) imply that

𝜁∗, 𝑚⟩ = 𝛤 (𝜃) = ⟨𝑤1, 𝑚⟩ cos(𝜆𝑇 ) − ⟨𝑤0, 𝑚⟩𝜆 sin(𝜆𝑇 )

(𝑚𝑥(𝜂) − 𝑚𝑥(𝜉))∫

𝑇

0
[𝑢0(𝑡) cos(𝜆(𝑇 − 𝑡)) + 𝑢1(𝑡)𝜆 sin(𝜆(𝑇 − 𝑡))]d𝑡. (3.21)

oreover, (3.18) implies that

𝑤,𝑚⟩𝑡(𝑇 ) = ⟨𝑤1, 𝑚⟩ cos(𝜆𝑇 ) − ⟨𝑤0, 𝑚⟩𝜆 sin(𝜆𝑇 )

(𝑚𝑥(𝜂) − 𝑚𝑥(𝜉))⟨𝑢, cos(𝜆(𝑇 − ⋅))⟩(𝐻1(0,𝑇 ))′×𝐻1(0,𝑇 ). (3.22)

omparing (3.22) to (3.21), we obtain that ⟨𝑤,𝑚⟩𝑡(𝑇 ) = ⟨𝜁∗, 𝑚⟩, which
mplies 𝑤𝑡(𝑇 ) = 𝜁∗.

Now we have proved that there exists a unique element
𝑤,𝑤(𝑇 ), 𝑤𝑡(𝑇 )} in 𝐿∞(0, 𝑇 ; 𝑌1) × 𝑌1 × 𝑌0 such that (3.14) holds, and
he map {𝑤0, 𝑤1, 𝑢} ↦ {𝑤,𝑤(𝑇 ), 𝑤𝑡(𝑇 )} is continuous and linear with
espect to the corresponding norm. In fact we have the property of

belonging to 𝐶([0, 𝑇 ]; 𝑌1). Since when the known data {𝑤0, 𝑤1, 𝑢}
elongs to 𝑌2 × 𝑌1 ×𝐿2(0, 𝑇 ), we have (3.1). Using a density argument,
e conclude the proof of Theorem 3.7. □

. Proofs of the main results

In this section, we prove the main results. On the one hand, for
ontrollability results, namely Theorem 1.4, we first use the HUM to
ewrite the control problem into observability inequality of the adjoint
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equation. Then we derive the observability inequality by applying the
Ingham inequality. The methods for proving Theorem 1.4 are inspired
by the ideas and methods used in [6] for Euler–Bernoulli beam with
piezoelectric actuator. On the other hand, for non-controllability re-
sults, namely Theorems 1.5–1.7, we exhibit initial conditions so that
the observability inequalities are false. The approaches in proofs of
Theorems 1.5 and 1.6 are inspired by [6]. And the proof of the lack
of the controllability in short control time, namely Theorem 1.7, is
inspired by the methods used in [31].

4.1. Exact (𝐻1)′-controllability (proof of Theorem 1.4)

We use the HUM to rewrite the controllability problem. Let (𝜙0, 𝜙1)
in (𝐶∞[0, 𝜋])2 satisfy the compatibility conditions (1.2). Denote by 𝜙 the
olution of (3.2) with initial value (𝜙0, 𝜙1). Let 𝑢1(𝑡) = 𝜙𝑥𝑡(𝜂, 𝑡)−𝜙𝑥𝑡(𝜉, 𝑡).
unction 𝑢1 belongs to 𝐿2(0, 𝑇 ) due to (3.3). Then define 𝑢 in (𝐻1(0, 𝑇 ))′

s follows,

𝑢, 𝑓⟩(𝐻1(0,𝑇 ))′×𝐻1(0,𝑇 ) = ∫

𝑇

0
𝑢1𝑓𝑡d𝑡, ∀𝑓 ∈ 𝐻1(0, 𝑇 ). (4.1)

Then consider the backward system in (0, 𝜋) × (0, 𝑇 )

𝑡𝑡(𝑥, 𝑡) − 𝛼𝜓𝑥𝑥𝑡𝑡(𝑥, 𝑡) + 𝜓𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑢(𝑡) d
d𝑥

[𝛿𝜂(𝑥) − 𝛿𝜉 (𝑥)], (4.2a)

𝜓(0, 𝑡) = 𝜓(𝜋, 𝑡) = 𝜓𝑥𝑥(0, 𝑡) = 𝜓𝑥𝑥(𝜋, 𝑡) = 0, (4.2b)

𝜓(𝑥, 𝑇 ) = 𝜓𝑡(𝑥, 𝑇 ) = 0. (4.2c)

Problem (4.2) admits a weak solution 𝜓 in 𝐶([0, 𝑇 ]; 𝑌1) due to Theo-
rem 3.7. Taking the linear form between (4.2a) and 𝜙 and integrating
by parts, we obtain

⟨𝜓𝑡(⋅, 0), 𝜙0
⟩ + ⟨−𝜓(⋅, 0), 𝜙1

⟩

= ⟨𝑢, 𝜙𝑥(𝜂, ⋅) − 𝜙𝑥(𝜉, ⋅)⟩(𝐻1(0,𝑇 ))′×𝐻1(0,𝑇 )

= ∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡. (4.3)

Define the linear operator 𝛬∗ by, for all (𝜙0, 𝜙1) in (𝐶∞[0, 𝜋])2 satisfy
the compatibility conditions (1.2),

𝛬∗(𝜙0, 𝜙1) = (𝜓𝑡(⋅, 0),−𝜓(⋅, 0)). (4.4)

Since 𝜓 is in 𝐶([0, 𝑇 ]; 𝑌1), (𝜓𝑡(⋅, 0),−𝜓(⋅, 0)) belongs to 𝑌−2 ×𝑌−1, and
therefore, the operator 𝛬∗ is well defined. In particular, we have

⟨𝛬∗(𝜙0, 𝜙1), (𝜙0, 𝜙1)⟩ = ∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡.

Therefore, we can define a seminorm

‖(𝜙0, 𝜙1)‖𝐹∗ ∶=
(

∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡
)

1
2
,

or all (𝜙0, 𝜙1) in (𝐶∞[0, 𝜋])2 satisfying the compatibility conditions
1.2).

A classical argument in HUM implies the following proposition.

roposition 4.1. All initial data in 𝑌𝛽+3 × 𝑌𝛽+2 are exactly (𝐻1)′-
ontrollable in (𝜉, 𝜂) at time 𝑇 if and only if there exists a constant 𝑐 > 0
uch that

∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡 ≥ 𝑐(‖𝜙0
‖

2
𝐻−𝛽 + ‖𝜙1

‖

2
𝐻−𝛽−1 ) (4.5)

for all (𝜙0, 𝜙1) in (𝐶∞[0, 𝜋])2 satisfying the compatibility conditions (1.2).

As in the proof of Lemma 3.2, the solution 𝜙 of the adjoint problem
(3.2) has the form of (3.5), which implies

∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡

= 4∫

𝑇 |

|

|

|

∑

𝑘 sin
(

𝑘(𝜂 + 𝜉)
2

)

sin
(

𝑘(𝜂 − 𝜉)
2

)

{

𝑏𝑘 cos

(

𝑘2𝑡
√

)

6

0 |

|

𝑘≥1 1 + 𝛼𝑘2
−
𝑎𝑘𝑘2

√

1 + 𝛼𝑘2
sin

(

𝑘2𝑡
√

1 + 𝛼𝑘2

)}

|

|

|

|

|

|

2

d𝑡. (4.6)

To prove the observability inequality (4.5) for some 𝛽, we apply the
ollowing Ingham inequality (see [11,12]).

emma 4.2. Let (𝜈𝑘)𝑘∈Z be a strictly increasing sequence of real numbers
nd 𝛾∞ be defined by 𝛾∞ = lim inf

|𝑘|→∞ |𝜈𝑘+1 − 𝜈𝑘|. Assume that 𝛾∞ > 0.
or any real 𝑇 > 2𝜋∕𝛾∞, there exist two constants 𝐶1, 𝐶2 > 0 such that for
ny sequence (𝑥𝑘)𝑘∈Z in 𝑙2(C),

1
∑

𝑘∈Z
|𝑥𝑘|

2 ≤ ∫

𝑇

0

|

|

|

|

|

∑

𝑘∈Z
𝑥𝑘e𝑖𝜈𝑘𝑡

|

|

|

|

|

2

d𝑡 ≤ 𝐶2
∑

𝑘∈Z
|𝑥𝑘|

2.

We apply Lemma 4.2 with

𝑘 = −𝜈−𝑘 =
𝑘2

√

1 + 𝛼𝑘2
, 𝑘 ∈ N,

2𝑥𝑘 = 2𝑥−𝑘 =

(

𝑏𝑘 + 𝑖
𝑎𝑘𝑘2

√

1 + 𝛼𝑘2

)

⋅ 𝑘 sin
(

𝑘(𝜂 + 𝜉)
2

)

sin
(

𝑘(𝜂 − 𝜉)
2

)

, 𝑘 ∈ N∗,

𝑥0 = 0.

s lim
|𝑘|→∞ |𝜈𝑘+1 − 𝜈𝑘| = 1∕

√

𝛼, then for any real 𝑇 > 2𝜋
√

𝛼, there exists
a constant 𝐶1 > 0 such that

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡

𝐶1
∑

𝑘≥1
𝑘2

(

𝑏2𝑘 +
𝑎2𝑘𝑘

4

1 + 𝛼𝑘2

)

[

sin
(

𝑘(𝜂 + 𝜉)
2

)

sin
(

𝑘(𝜂 − 𝜉)
2

)]2
. (4.7)

When 𝜂+𝜉
2𝜋 and 𝜂−𝜉

2𝜋 belong to 𝐴, it follows from (2.1) that there exists
a constant 𝐶 > 0 such that for all 𝑘 ≥ 1,
|

|

|

|

|

sin
(

𝑘(𝜂 ± 𝜉)
2

)

|

|

|

|

|

=
|

|

|

|

|

sin
{

𝜋
[

𝑘(𝜂 ± 𝜉)
2𝜋

− 𝑝
]}

|

|

|

|

|

≥
|

|

|

|

sin
(𝜋𝐶
𝑘

)

|

|

|

|

≥ 𝐶
𝑘
. (4.8)

Inequalities (4.7) and (4.8) imply that there exists a constant 𝑐 > 0 such
that

∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡 ≥ 𝑐
∑

𝑘≥1
(𝑎2𝑘 + 𝑏

2
𝑘𝑘

−2),

which is exactly (4.5) when 𝛽 = 0. This completes the proof of the first
part of Theorem 1.4.

When 𝜂+𝜉
2𝜋 and 𝜂−𝜉

2𝜋 belong to 𝐵𝜀, it follows from (2.2) that there
exists a constant 𝐶 > 0 such that for all 𝑘 ≥ 1,
|

|

|

|

|

sin
(

𝑘(𝜂 ± 𝜉)
2

)

|

|

|

|

|

≥ 𝐶
𝑘1+𝜀

. (4.9)

Inequalities (4.7) and (4.9) imply that there exists a constant 𝑐 > 0 such
that

∫

𝑇

0
|𝜙𝑥𝑡(𝜂, 𝑡) − 𝜙𝑥𝑡(𝜉, 𝑡)|

2d𝑡 ≥ 𝑐
∑

𝑘≥1
(𝑎2𝑘𝑘

−4𝜀 + 𝑏2𝑘𝑘
−2−4𝜀),

which is exactly (4.5) when 𝛽 = 2𝜀. This completes the proof of the
second part of Theorem 1.4.

4.2. The condition (1.3) is not sufficient (proof of Theorem 1.5)

In order to prove Theorem 1.5, let us recall the following proposi-
tion from the conference paper [22].

Proposition 4.3. All initial data in 𝑌𝛽+3×𝑌𝛽+2 are exactly 𝐿2-controllable
in (𝜉, 𝜂) at time 𝑇 if and only if there exists a constant 𝑐 > 0 such that

∫

𝑇

0
|𝜙𝑥(𝜂, 𝑡) − 𝜙𝑥(𝜉, 𝑡)|

2d𝑡 ≥ 𝑐(‖𝜙0
‖

2
𝐻−𝛽 + ‖𝜙1

‖

2
𝐻−𝛽−1 ) (4.10)

0 1 ∞ 2
for all (𝜙 , 𝜙 ) in (𝐶 [0, 𝜋]) satisfying the compatibility conditions (1.2).
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We aim to prove the condition (1.3) is not sufficient for any con-
trollability result in this section. From Proposition 4.3, it is sufficient
to show that for any 𝛽 ≥ −1, there exist 𝜉 and 𝜂 satisfying (1.3) such
hat (4.10) is false for any 𝑐 > 0. For any 𝛽 ≥ −1, let

> max
(3
2
𝛽 + 1, 2

)

. (4.11)

We choose
𝜂 + 𝜉
2𝜋

=
∞
∑

𝑛=1

𝑎𝑛
10𝑛!

, (4.12)

where 𝑎𝑛 belongs to {0, 1,… , 9} for all 𝑛 ≥ 1, and 𝑎𝑛 is not identically
zero for great 𝑛. According to [32] the right-hand side of (4.12) is a
Liouville number, i.e., it is transcendental, and there exists a strictly
increasing sequence of integers 𝑞𝑛 such that
|

|

|

|

|

sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

|

|

|

|

|

≤ 𝜋
𝑞𝜈𝑛

∀𝑛 ≥ 1. (4.13)

Now we consider the sequence of initial data

𝜙0
𝑛(𝑥) = 𝑞𝜇𝑛 sin(𝑞𝑛𝑥), 𝜙1

𝑛(𝑥) = 0 ∀𝑥 ∈ (0, 𝜋), (4.14)

where 𝜇 = 3
2 𝛽 if 𝛽 > 0, and 𝜇 = 1 if −1 ≤ 𝛽 ≤ 0. Obviously, (𝜙0

𝑛, 𝜙
1
𝑛)

elongs to (𝐶∞[0, 𝜋])2 and satisfies compatibility conditions (1.2) and

𝜙0
𝑛‖

2
𝐻−𝛽 + ‖𝜙1

𝑛‖
2
𝐻−𝛽−1 → ∞. (4.15)

oreover, we obtain from (3.5), (4.11) and (4.13) that
𝑇

0
|𝜙𝑛,𝑥(𝜂, 𝑡) − 𝜙𝑛,𝑥(𝜉, 𝑡)|

2d𝑡

4∫

𝑇

0

|

|

|

|

|

|

|

|

𝑞𝑛 sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

sin
(

𝑞𝑛
𝜂 − 𝜉
2

)

𝑞𝜇𝑛 cos

⎛

⎜

⎜

⎜

⎝

𝑞2𝑛
√

1 + 𝛼𝑞2𝑛
𝑡

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

2

d𝑡

≤ 4𝑇 𝑞2(𝜇+1)𝑛

|

|

|

|

|

sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

|

|

|

|

|

2

≤ 4𝜋𝑇 𝑞2(𝜇+1−𝜈)𝑛 → 0, as 𝑛→ ∞. (4.16)

Relations (4.15) and (4.16) show that (4.10) is false for any 𝑐 > 0.
Similarly, because of Proposition 4.1, it is sufficient to show that

for any 𝛽 ≥ −2, there exist 𝜉 and 𝜂 satisfying (1.3) such that (4.5) is
false for any 𝑐 > 0. The proof is quite similar to the proof above in this
section. For any fixed 𝛽 ≥ −2, we only need to change 𝜈 as

𝜈 > max
(3
2
𝛽 + 2, 3

)

, (4.17)

and to set 𝜇 = 3
2 𝛽 if 𝛽 > 0, and 𝜇 = 1 if −2 ≤ 𝛽 ≤ 0. By similar

alculation, we obtain that (4.5) is false for any 𝑐 > 0.

.3. Non-controllability for initial data in less regular set (proof of Theo-
em 1.6)

Similarly to the previous section, we aim to prove (4.10) (resp.
4.5)) is false. According to Proposition 2.3, for any 𝜉 and 𝜂 in (0, 𝜋),
here exists a strictly increasing sequence of positive integers {𝑞𝑛}𝑛≥1
uch that for all 𝑛 ≥ 1,
|

|

|

|

|

sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

|

|

|

|

|

≤ 𝜋
√

𝑞𝑛
,

|

|

|

|

|

sin
(

𝑞𝑛
𝜂 − 𝜉
2

)

|

|

|

|

|

≤ 𝜋
√

𝑞𝑛
. (4.18)

First we consider the sequence of initial data

𝜙0
𝑛(𝑥) = sin(𝑞𝑛𝑥), 𝜙1

𝑛(𝑥) = 0 ∀𝑥 ∈ (0, 𝜋). (4.19)

We note that for any 𝜀 > 0,

‖𝜙0
𝑛‖

2
𝐻𝜀 + ‖𝜙1

𝑛‖
2
𝐻𝜀−1 = 𝐶𝑞2𝜀𝑛 → ∞, 𝑛→ ∞, (4.20)

where 𝐶 is a positive constant. By (3.5) and (4.18) we have that for all
𝑛 ≥ 1,

𝑇
|𝜙𝑛,𝑥(𝜂, 𝑡) − 𝜙𝑛,𝑥(𝜉, 𝑡)|

2d𝑡
7

∫0
= 4∫

𝑇

0

|

|

|

|

|

𝑞𝑛 sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

sin
(

𝑞𝑛
𝜂 − 𝜉
2

)

⋅ cos

⎛

⎜

⎜

⎜

⎝

𝑞2𝑛
√

1 + 𝛼𝑞2𝑛
𝑡

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

2

d𝑡 ≤ 𝐾, (4.21)

where 𝐾 is a positive constant. So (4.20) and (4.21) show that (4.10)
is false for 𝛽 = −𝜀 and arbitrary 𝑐 > 0.

Then we choose the sequence of initial data

𝜙0
𝑛(𝑥) = 𝑞−1𝑛 sin(𝑞𝑛𝑥), 𝜙1

𝑛(𝑥) = 0 ∀𝑥 ∈ (0, 𝜋). (4.22)

e note that for any 𝜀 > 0,

𝜙0
𝑛‖

2
𝐻𝜀+1 + ‖𝜙1

𝑛‖
2
𝐻𝜀 = 𝐶𝑞2𝜀𝑛 → ∞, 𝑛→ ∞, (4.23)

here 𝐶 is a positive constant. By (3.5) and (4.18) we have that for all
≥ 1,
𝑇

0
|𝜙𝑛,𝑥𝑡(𝜂, 𝑡) − 𝜙𝑛,𝑥𝑡(𝜉, 𝑡)|

2d𝑡

4∫

𝑇

0

|

|

|

|

|

sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

sin
(

𝑞𝑛
𝜂 − 𝜉
2

)

⋅
𝑞2𝑛

√

1 + 𝛼𝑞2𝑛
sin

⎛

⎜

⎜

⎜

⎝

𝑞2𝑛
√

1 + 𝛼𝑞2𝑛
𝑡

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

2

d𝑡 ≤ 𝐾, (4.24)

where 𝐾 is a positive constant. So (4.23) and (4.24) show that (4.5) is
false for 𝛽 = −𝜀 − 1 and arbitrary 𝑐 > 0.

4.4. The lack of controllability in short control time (proof of Theorem 1.7)

We prove the lack of (𝐻1)′-controllability when 0 < 𝑇 < 2𝜋
√

𝛼 in
this section. As for the proof of the lack of 𝐿2-controllability, one can
find in [22]. Let 0 < 𝑇 < 2𝜋

√

𝛼 and 𝜉, 𝜂 in (0, 𝜋) be arbitrary. For any
𝛽 ≥ −2, we aim to find {(𝜙0

𝑚, 𝜙
1
𝑚)}𝑚∈N∗ such that

∫

𝑇

0
|𝜙𝑚,𝑥𝑡(𝜂, 𝑡) − 𝜙𝑚,𝑥𝑡(𝜉, 𝑡)|

2d𝑡 → 0, as 𝑚 → ∞,

and

‖𝜙0
𝑚‖

2
𝐻−𝛽 + ‖𝜙1

𝑚‖
2
𝐻−𝛽−1 ≥ 𝑐 > 0

for any 𝑚 ≥ 1. As in Section 4.1, we denote

𝜆𝑛 = −𝜆−𝑛 =
𝑛2

√

1 + 𝛼𝑛2
, 𝑛 ∈ N∗. (4.25)

Obviously, {𝜆𝑛}𝑛∈Z∗ is a strictly increasing sequence, and
lim

|𝑛|→∞ |𝜆𝑛+1 − 𝜆𝑛| = 1∕
√

𝛼 > 0. Adding or subtracting finite numbers
n the sequence does not affect the result of Proposition 2.4, so we
an apply Proposition 2.4 to the sequence {𝜆𝑛}𝑛∈Z∗ . Define 𝑁(𝑥, 𝑟) as
n Proposition 2.4 corresponding to {𝜆𝑛}𝑛∈Z∗ . We have the following
emma.

emma 4.4. Let {𝜆𝑛}𝑛∈Z∗ and 𝑁(𝑥, 𝑟) be defined above. We have that
𝑁(𝑥, 𝑟)
𝑟

→
√

𝛼, as 𝑟 → ∞ (4.26)

holds uniformly relative to 𝑥 in R.

We will prove this lemma in Appendix. As 0 < 𝑇 < 2𝜋
√

𝛼, we can
choose 𝑇 ′ such that 0 < 𝑇 < 𝑇 ′ < 2𝜋

√

𝛼. Let 𝑓 in 𝐿2(0, 2𝜋
√

𝛼) be a real
valued function such that 𝑓 (𝑡) = 0 if 0 ≤ 𝑡 ≤ 𝑇 and ‖𝑓‖𝐿2(0,𝑇 ′) ≠ 0.
According to Lemma 4.4 and Proposition 2.4, the family {e𝑖𝜆𝑛𝑡}𝑛∈Z∗

contains a subfamily {e𝑖𝜆𝑞𝑛 𝑡}𝑛∈Z∗ which forms a Riesz basis in 𝐿2(0, 𝑇 ′).
oreover, the subsequence {𝜆𝑞𝑛}𝑛∈Z satisfies 𝜆𝑞𝑛 = −𝜆𝑞−𝑛 . Then for the

unction 𝑓 in 𝐿2(0, 𝑇 ′) defined above, there exists a sequence {𝑙𝑛}𝑛∈Z∗

n 𝑙2(C) such that 𝑓 (𝑡) =
∑

𝑛∈Z∗ 𝑙𝑛e
𝑖𝜆𝑞𝑛 𝑡 holds in 𝐿2(0, 𝑇 ′), and 0 <

2 𝑙 .
𝑛∈Z∗ |𝑙𝑛| < ∞. Since 𝑓 (𝑡) is a real valued function, we have 𝑙𝑛 = −𝑛
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Now we can define the sequence {(𝜙0
𝑚, 𝜙

1
𝑚)}𝑚∈N∗ of initial data as the

ollowing,

0
𝑚(𝑥) = 2

𝑚
∑

𝑛=1
Re(𝑙𝑛)

[

𝑞𝑛 sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

⋅ sin
(

𝑞𝑛
𝜂 − 𝜉
2

)]−1
√

1 + 𝛼𝑞2𝑛
𝑞2𝑛

sin(𝑞𝑛𝑥),

𝜙1
𝑚(𝑥) = −2

𝑚
∑

𝑛=1
Im(𝑙𝑛)

[

𝑞𝑛 sin
(

𝑞𝑛
𝜂 + 𝜉
2

)

⋅ sin
(

𝑞𝑛
𝜂 − 𝜉
2

)]−1
sin(𝑞𝑛𝑥). (4.27)

Notice that (1.3) holds. Consequently, the sequence {(𝜙0
𝑚, 𝜙

1
𝑚)}𝑚∈N∗ of

initial data is well-defined.
Since 0 <

∑

𝑛∈Z∗ |𝑙𝑛|
2 <∞ and 𝑙𝑛 = 𝑙−𝑛, there exists 𝑚0 ≥ 1 such that

𝑙𝑚0
≠ 0. So for 𝑚 ≥ 𝑚0 and for any 𝛽 ≥ −2,

‖𝜙0
𝑚‖

2
𝐻−𝛽 + ‖𝜙1

𝑚‖
2
𝐻−𝛽−1 ≥ ‖𝜙0

𝑚0
‖

2
𝐻−𝛽 + ‖𝜙1

𝑚0
‖

2
𝐻−𝛽−1 = 𝑐 > 0. (4.28)

Moreover, thanks to (3.5), we have

∫

𝑇

0
|𝜙𝑚,𝑥𝑡(𝜂, 𝑡) − 𝜙𝑚,𝑥𝑡(𝜉, 𝑡)|

2d𝑡 = 4∫

𝑇

0

|

|

|

|

|

|

𝑚
∑

𝑛=−𝑚,𝑛≠0
𝑙𝑛e

𝜆𝑞𝑛 𝑡
|

|

|

|

|

|

2

d𝑡. (4.29)

Since 0 = 𝑓 (𝑡) =
∑

𝑛∈Z∗ 𝑙𝑛e
𝜆𝑞𝑛 𝑡 in 𝐿2(0, 𝑇 ), we obtain that

∫

𝑇

0
|𝜙𝑚,𝑥𝑡(𝜂, 𝑡) − 𝜙𝑚,𝑥𝑡(𝜉, 𝑡)|

2d𝑡→ 0, as 𝑚 → ∞. (4.30)

Relations (4.28) and (4.30) finish the proof of the lack of (𝐻1)′-
ontrollability for any 𝛽 ≥ −2.

. Conclusion

The exact controllability problem for Rayleigh beam equation with
iezoelectric actuator has been fully considered. The exact controllabil-
ty in less regular spaces, namely (𝐻1)′-controllability, are investigated.
oreover, several non-controllability results are proved. Especially,
inimal control time for the exact controllability is deduced from

he non-controllability result in short control time. As written in Re-
ark 1.8, exact controllability in critical time is an open problem. Con-

rollability problem for other types of beam equation with piezoelectric
ctuator, such as shear beam equation, remains also open.
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ppendix. Proof of Lemma 4.4

Solving 𝑘2
√

1+𝛼𝑘2
< 𝑟, we obtain that 𝑘 < [(𝛼𝑟2 + 𝑟

√

𝛼2𝑟2 + 4)∕2]
1
2 .

Thus we define a real function 𝑔 ∶ (0,+∞) → (0,+∞) as 𝑔(𝑟) =
[(𝛼𝑟2 + 𝑟

√

𝛼2𝑟2 + 4)∕2]
1
2 and {𝑥} = 𝑞(𝑥)−1, where 𝑞(𝑥) = min𝑞∈Z{𝑞 ≥ 𝑥}.

bviously, 𝑥 − 1 ≤ {𝑥} < 𝑥. Then we have 𝑁(0, 𝑟) = {𝑔(𝑟)}. Notice that
or 𝑥 ≥ 0, 𝑁(𝑥, 𝑟) = 𝑁(0, 𝑥+ 𝑟) −𝑁(0, 𝑥) = {𝑔(𝑥+ 𝑟)} − {𝑔(𝑥)}. Therefore,
e have 𝑔(𝑥+ 𝑟) − 𝑔(𝑥) − 1 ≤ 𝑁(𝑥, 𝑟) ≤ 𝑔(𝑥+ 𝑟) − 𝑔(𝑥) + 1. Now we need

o estimate 𝑔(𝑥 + 𝑟) − 𝑔(𝑥) for 𝑥, 𝑟 > 0.
Let 𝑓 (𝑥) = 𝑥2

√

1+𝛼𝑥2
for 𝑥 > 0. Then simple calculation shows that

0 < 𝑥 <
√

2∕𝛼 implies 𝑓 ′′(𝑥) > 0. Therefore, there exists 𝑁0 in N
satisfying 𝑁0 >

√

2∕𝛼 + 1 such that for all 𝑛 ≥ 𝑁0, 𝜆𝑛+1 − 𝜆𝑛 decreases
and converges to 1∕

√

𝛼.
Then for 𝑥 ≥ 𝑁0, 𝑁(𝑁0, 𝑟) ≤ 𝑁(𝑥, 𝑟) ≤ lim𝑥→+∞𝑁(𝑥, 𝑟). Simple

alculation shows that lim𝑥→+∞[𝑔(𝑥 + 𝑟) − 𝑔(𝑥)] =
√

𝛼𝑟. Therefore, we
obtain that 𝑔(𝑁0 + 𝑟) − 𝑔(𝑁0) − 1 ≤ 𝑁(𝑥, 𝑟) ≤

√

𝛼𝑟 + 1 holds for 𝑥 ≥ 𝑁0.
For 0 ≤ 𝑥 ≤ 𝑁0, 𝑁(𝑥, 𝑟) ≤ 𝑁(0, 𝑁0) + 𝑁(𝑁0, 𝑟) ≤

√

𝛼𝑟 + 1 + 𝑔(𝑁0).
ssuming that 𝑟 > 𝑁0, we have

(𝑥, 𝑟) ≥ 𝑁(𝑁0, 𝑟 −𝑁0 + 𝑥) = 𝑁(0, 𝑥 + 𝑟) −𝑁(0, 𝑁0)

𝑔(𝑥 + 𝑟) − 𝑔(𝑁0) − 1 ≥ min
𝑥∈[0,𝑁0]

𝑔(𝑥 + 𝑟) − 𝑔(𝑁0) − 1.

hen for all 𝑥 ≥ 0 and 𝑟 > 𝑁0, min𝑥∈[0,𝑁0] 𝑔(𝑥+ 𝑟)−𝑔(𝑁0)−1 ≤ 𝑁(𝑥, 𝑟) ≤
𝛼𝑟 + 1 + 𝑔(𝑁0), and hence

lim
𝑟→∞

𝑁(𝑥, 𝑟)
𝑟

=
√

𝛼 (A.1)

holds uniformly relative to 𝑥 ≥ 0.
For −𝑟 ≤ 𝑥 < 0,

𝑁(0, |𝑥|) +𝑁(0, 𝑟 − |𝑥|) ≤ 𝑁(𝑥, 𝑟) ≤ 𝑁(0, |𝑥|) +𝑁(0, 𝑟 − |𝑥|) + 1.

Let 𝜃 belong to [0, 1] and |𝑥| = 𝜃𝑟. Note that 𝑁(0, |𝑥|) + 𝑁(0, 𝑟 −
|𝑥|) = {𝑔(𝜃𝑟)} + {𝑔((1 − 𝜃)𝑟)}. We obtain from the expression of 𝑔 that
lim𝑟→∞ 𝑔(𝜃𝑟)∕𝑟 =

√

𝛼𝜃. Consequently, (A.1) holds uniformly relative to
−𝑟 ≤ 𝑥 < 0.

For 𝑥 < −𝑟, 𝑁(|𝑥|−𝑟, 𝑟) ≤ 𝑁(𝑥, 𝑟) ≤ 𝑁(|𝑥|−𝑟, 𝑟)+1. Let 𝑡 = |𝑥|−𝑟 ≥ 0.
hen as same as in the situation 𝑥 ≥ 0, we have that (A.1) holds
niformly relative to 𝑡 ≥ 0, which means that (A.1) holds uniformly
elative to 𝑥 < −𝑟.

Combining all the situations, we have that (A.1) holds uniformly
elative to 𝑥 in R. Lemma 4.4 is thus proved.
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