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Abstract
In 2023, two striking, nearly simultaneous, mathematical discoveries have excited their respective

communities, one by Greenfeld and Tao, the other (the Hat tile) by Smith, Myers, Kaplan and Goodman-
Strauss, which can both be summed up as the following: there exists a single tile that tiles, but not
periodically (sometimes dubbed the einstein problem). The two settings and the tools are quite different
(as emphasized by their almost disjoint bibliographies): one in euclidean geometry, the other in group
theory. Both are highly nontrivial: in the first case, one allows complex shapes; in the second one, also
the space to tile may be complex.

We propose here a framework that embeds both of these problems. We illustrate our setting by
transforming the Hat tile into a new aperiodic group monotile, and we describe its symmetries.

1 Introduction
Tilings were originally defined as coverings of the euclidean plane by compact tiles without overlap. They
have been studied since the ancient Greeks, with a special emphasis on periodic tilings in which a finite
domain is repeated periodically on the whole plane.

Seminal results on tilings include the classification of Archimedean tilings (tilings by regular polygons
where all vertices are the same up to isometry) by Kepler [Kep1619] and the study of the symmetry groups
of periodic tilings (crystallographic space groups) by Bieberbach [Bie1911].

In the 60s emerged the question of aperiodic tilesets [Wan61]. That is: sets of tile that can tile the
whole plane but only in a non-periodic way. Though Wang initially conjectured such tilesets did not exist,
Berger [Ber66] soon provided a first aperiodic tileset of 20426 tiles up to translation.

The first simple geometric aperiodic tileset was found by Robinson in 1971 [Rob71], who defined a set
of 6 geometric tiles up to isometry with the shape of squares with bumps and dents, that can tile the 2-
dimensional plane, but without any translational symmetry. This started the challenge that was taken two
years later by Penrose [Pen74], who defined an aperiodic set of only two geometric tiles. Penrose’s tiling has
fivefold rotational symmetry, and cannot be arranged in a square grid as Robinson’s. In 1992, Ammann,
Grünbaum and Shephard [AGS92] restricted the problem to polyominoes and they found an aperiodic set
of three polyominoes. The tiling problem with polyominoes is more limited, and in 1991, Beauquier and
Nivat [BN91] showed that, if no rotation of the tiles is allowed, then no aperiodic connected polyomino
monotile exists.

The problem of tiling with polyominoes can be expressed in terms of group tiling of Z2, since a polyomino
is a subset of Z2, thus tiling with polyominoes is the same as covering the group Z2 with translations of
finite connected subsets of Z2, taken from a given set.

While we usually consider geometric tilings in R2, group tilings may be defined in any group, which fully
changes the techniques that can be applied to tackle the problem. The problem of tiling Z2 with translations
of only one tile was definitely solved in 2020 by Bhattacharya [Bha20], who proved that no finite set of Z2

(possibly disconnected in the usual Cayley graph) is an aperiodic monotile. Is this a limitation of Z2? Does
it come from the fact of having only one tile? An answer was found in 2023 by Greenfeld and Tao [GT24],
who proved that an aperiodic monotile exists in Zd when d is big enough, and also such a monotile exists
for a group of the form Z2 × H, for a well-chosen finite abelian group H.
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Figure 1: A Hat tiling of R2 and a corresponding Roach tiling on group Γ. The red tricross is a center of
3-fold rotational symmetry.

2



Coming back to geometric tilings, the tiling by Penrose kept the record for tile number for 50 years,
unless one authorizes tiles to be disconnected or to communicate through their vertices, see [ST11]. In 2023,
Smith, Myers, Kaplan and Goodman-Strauss [SMKGS24] described new aperiodic tilings with only one tile.
The work is very interesting, not only because a whole family of aperiodic monotiles was discovered, but
also because two of these tiles (the Hat and the Turtle) are polykites and can be embedded in a Kitegrid,
which is the dual of an Archimedean tiling (which can be seen as the Cayley graph of a group), suggesting
that the Hat and the Turtle tilings can also be seen as tilings of a group.

Given a compact K which tiles the plane periodically, we call poly-K a tile which is a union of copies of
K. Classical examples include polyominoes (K is the unit square), polyamonds (K is the unit equilateral
triangle) and polykites (K is the Kite).

In this paper, we provide a toolkit to translate geometric tilings of a poly-K tile to tilings of the symmetry
group a K-grid. In particular, we apply this toolkit to the Hat polikyte [SMKGS24] to obtain a new aperiodic
monotile (which we call Roach) in an explicit finitely presented group Γ, see Figure 1. It can be compared
to [GT24, Theorem 1.4]: our result is somehow weaker in the sense that the extension of Z2 is not direct.
On the other hand, it is more explicit, and enjoys a nice Coxeter definition, as well as nice pictures.

Section 2 provides terminology and definitions for geometric and group tilings. Section 3 presents our
toolkit on translation from poly-K tiles to group tilings. Section 4 applies this toolkit to the Hat tile.
Section 5 presents more general results on links between geometric and group tilings outside of the poly-K
case.

The readers interested in abstract tilings and the link between geometric and group tilings may skip
Section 4, while readers only interested in the Roach tile can use Corollary 7 as a blackbox and focus on
Section 4.

2 Tilings
Let W be a topological space endowed with a nontrivial Borel measure λ. Let G be a group which acts by self-
homeomorphisms g of W that we assume negligibility-preserving (that is, λ(A) > 0 =⇒ λ(g · A) > 0).
A tile is a positive-measure subset of W (often considered up to negligible sets). A cotiler for a set T of
tiles is a countable subset C ⊂ G × T such that:⊔

(g,T )∈C

g · T ≡λ W,

where ≡λ is an equality and ⊔ a disjoint union, both up to λ-negligible sets. If T admits a cotiler, we say
that T tiles W with respect to G.

The terminology is inspired from the case when T is a singleton {T}; in that case we will say that T tiles
and confuse the cotiler with a subset of G ∼ G × {T}.

The cotiler should not be confused with the tiling {g · T | (g, T ) ∈ C}.

Remark 1. We keep a very large setting because very few assumptions are needed for our results (some more
will be added to the tiles and the group in some results). Nevertheless, one can keep in mind that natural
examples arise when W is a second-countable locally compact space, λ has full support (is positive for every
nonempty open subset), and the tiles T are compact, the closure of their interior, have finite positive measure
and λ-negligible boundaries. In this setting, T ≡λ T ′ if and only if T = T ′.

Here are some classical examples of settings.

Example 2. Relevant examples of spaces W include the following:

• W = Rd endowed with canonical topology, Lebesgue measure, G = Rd acting by translations or G =
Isom+(Rd) ≃ Rd ⋊ SOd(R) acting by direct isometries or G = Isom(Rd) ≃ Rd ⋊ Od(R) acting by
isometries. We are also interested in tilings with respect to some countable subgroups of these. It is
also natural to require additional constraints over the tiles, like polygonality. . .
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• Consider a countable group W = G endowed with discrete topology, the counting measure, self-acting
by left multiplication. The notion of monotileable group [CC17] and its generalization into polytileable
group fit in this framework.

• More generally, W = G is a locally compact group endowed with the Haar measure, self-acting by left
multiplication.

• W = H2, the hyperbolic plane and G = Isom(H2) ≃ PGL2(R) or G = Isom+(H2) ≃ PSL2(R).

• Tilings of half-planes like N×Z or R+ ×R could be handled via a suitable generalization of our theory
to monoids, which would nevertheless have the price of a complexification of many notions.

The simplest examples of tilings are periodic tilings, introduced through the following formalism.

Definition 3. A finite tileset K tiles with cotiler C = G × K if, and only if, G is countable and
⊔

K∈K K is,
up to λ-negligible sets, a fundamental domain for G ↷ W. We then say that K yields a grid, in the sense
that:

W =
⊔

(h,K)∈G×K

h · K.

This includes regular tilings like the square lattice, but also some with different tiles like hexagonal-
square-triangle lattice (note that K can include several tiles from the same translation class).

Remark 4.

1. Any tiling with respect to some G can always be considered as a tiling with respect to the group of all
negligibility-preserving self-homeomorphisms. Nevertheless, our goal is to reduce G as much as possible
(while still allowing tilings).

2. If T tiles with some cotiler C, then a relevant group of self-homeomorphisms of W is the (countable)
cotiler group GC := ⟨gh−1 | (g, T ), (h, T ) ∈ C, T ∈ T ⟩. Indeed, for every (gT )T ∈T such that (gT , T ) ∈
C, one can see that the tileset {gT · T | T ∈ T } (essentially equal to T , up to translating each tile) tiles
with cotiler {(gg−1

T , gT · T ) | (g, T ) ∈ C} ⊆ GC × {gT · T | T ∈ T }.

2.1 Periods
In general, if T tiles, then it admits many cotilers. Let us denote CG(T ) the set of its cotilers.

G acts naturally on CG(T ) by g · C := { (gh, T )| (h, T ) ∈ C}. CG(T ) can be seen as some kind of SFT
(or as a Delone set with local rules), that is, one can check that something is indeed a cotiler by looking at
bounded windows: one can encode it as a configuration x ∈ (2T )G (where 2T consists of the subsets of T ),
defined by xg = {T ∈ T | (g, T ) ∈ C}.

A period for a cotiler C is some h ∈ G such that h · C = C. The stabilizer of C is the subgroup
Stab(C) ≤ G of its periods. A cotiler C is:

• weakly periodic if Stab(C) is nontrivial.

• mildly periodic if Stab(C) is infinite.

• strongly periodic if Stab(C) ↷ W cocompactly (in the case when W = G is a discrete group, this is
equivalent to the classical definition that Stab(C) has finite index in G).

A tileset which tiles is strongly (resp. mildly, weakly) aperiodic if no cotiler is weakly (resp. mildly,
strongly) periodic. Of course, strong periodicity implies mild periodicity, which implies weak periodicity,
except in the case of finite groups (where all cotilers are strongly, but not mildly, periodic), which does not
interest us.

Note also that in the case when G contains other isometries than translations, (a)periodicity differs from
the usual notion of (a)periodicity with respect to the subgroup of translations.
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A classical metaquestion, in each world W (and with some constraints on G and on the possible tiles),
is whether there exists a finite aperiodic tileset. In Z and R, the answer is “no” (folklore), and the proof
carries to virtually-Z groups. In R2 and Z2, the answer is “yes”. The technique of turning colored tiles into
shapes could be extended to prove that the answer is still “yes” in Rd and Zd, for d ≥ 2. We are not aware of
other groups for which this question has been studied (though extensive literature exists for sets of “colored
tiles”; see [Bit24] for a pleasant survey).

In cases where aperiodic tilesets do exist, it is then natural to look for the simplest ones; in particular,
in the recent decades, the community has asked about the existence of an aperiodic monotile, that is, an
aperiodic tile singleton. In some settings no weakly aperiodic monotile exists, in particular:

• in Z2 [Bha20, GT21];

• in R2 when G is the group of translations and the tile is required to be a topological disk [BN91, GBN91];

• in Rn when G is the group of translations and the tile is required to be convex [Ven54, McM80];

• in R2 when G is Isom(R2) the group of isometries of the plane and the tile is required to be a convex
polygon [Rao17].

Nevertheless, there exist weakly aperiodic monotiles in some other settings:

• in R2 when G is the group of isometries and the tile is connected [SMKGS24];

• in R2 when G is the group of direct isometries ([ST11] with a disconnected tile, or more recently
[SMKGS23] with a connected tile);

• in Z2 × H for some finite abelian group H [GT24, Theorem 1.3];

• in some Zd for some large d ∈ N [GT24, Corollary 1.5].

There is a very tight boundary between group Z2 which does not admit aperiodic monotile, and some
commensurable groups which do. It is interesting to understand how small such a group can be.

3 Discretization of poly-K tiles
This section is devoted to the translation between two worlds: a geometric, continuous world, and a combi-
natorial, countable world.

Remark 5. If G is a group and K is any finite set, G naturally acts on G ↷ G × K by g · (h, K) 7→ (gh, K).
Tiling G × K is equivalent to tiling G with K layers that are synchronized (such considerations are used in
[GT21, Section 3]): If T ⊂ G×K is a tileset, and K ∈ K, one can define the set TK of tiles {g| (g, K) ∈ T},
for T ∈ T . Then the cotiler sets are related by CG(T ) =

⋂
K∈K CG(TK).

Let K be a finite set of tiles K ⊂ W that yields a grid with respect to G in the sense of Definition 3, that
is: K tiles W with G as a cotiler for each tile.

One says that a tile T is a poly-K if it is (up to λ-negligible sets) the disjoint union of finitely many
copies of tiles from K, that is,

T ≡λ

⊔
(h,K)∈ΨK(T )

h · K,

for some finite ΨK(T ) ⊂ G × K. For K ∈ K, let us also denote ΨK(T ) := ΨK(T ) ∩ G × {K}.

Theorem 6 (Main result; poly-K version). Let G be countable and K a finite set which yields a grid for
G ↷ W. Then ΨK is a bijection from the set of (≡λ-classes of) poly-K sets T of W onto the set of finite
tilesets of G × K, such that the cotiler sets CG(ΨK(T )) and CG(T ) are equal, up to syntactically renaming
each tile T into ΨK(T ).
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Formally, the last equality means that CG(ΨK(T )) = {{ (g, ΨK(T ))| (g, T ) ∈ C} | C ∈ CG(T )}. Conse-
quently, W admits (weakly, mildly, strongly) aperiodic poly-K sets (for the action of G) if, and only if, G×K
admits (weakly, mildly, strongly) aperiodic sets of finite tiles, with the same number of tiles.

Let us restate the particular case when K is a singleton {K} (in that case we talk about poly-K) and T
is a singleton {T}.

Corollary 7. Let G be countable and K ⊂ W yield a grid for G ↷ W. Then ΨK is a bijection from the set
of (≡λ-classes of) poly-K T of W onto the set of finite tilesets of G, such that CG(ΨK(T )) = CG(T ), up to
syntactically renaming T into ΨK(T ).

Proof of Theorem 6. The fact that ΨK is a bijection comes directly from the definition and that h · K and
h′ · K ′ do not intersect if (h, K) ̸= (h′, K ′).

C is cotiler for T if and only if:

⇐⇒ W ≡λ

⊔
(g,T )∈C

g · T (definition of cotiler)

⇐⇒ W ≡λ

⊔
(g,T )∈C

⊔
(h,K)∈ΨK(T )

g · h · K (T is poly-K)

⇐⇒
⊔

(h,K)∈G×K

h · K ≡λ

⊔
(g,T )∈C

⊔
(h,K)∈ΨK(T )

g · h · K (K yields a grid)

⇐⇒
⊔

(h,K)∈G×K

{(h, K)} =
⊔

(g,T )∈C

⊔
(h,K)∈ΨK(T )

{g · h, K} (h · K ∩ h′ · K ′ ≡λ ∅ if (h, K) ̸= (h′, K ′))

⇐⇒ G × K =
⊔

(g,T )∈C

g · ΨK(T ),

which means that { (g, ΨK(T ))| (g, T ) ∈ C} is a cotiler for tile ΨK(T ).

4 Application to the Hat
4.1 The Hat
The Hat is a polykite tile, hence we first define the kite and Kitegrid.

Definition 8 (Kite and Kitegrid). We call Kite the quadrilateral from Figure 2, which we consider as a
compact subset of R2. We call Kitegrid the periodic Kite tiling which consists of the superposition of a
hexagonal grid (with sides 2) and a triangular grid (with sides 2

√
3), superimposed in such a way that the

center of the hexagons are the vertices of the triangle, see Figure 2.
We also call Semikite the right triangle obtained when bisecting the Kite along its long diagonal, and

Semikitegrid the periodic Semikite tiling obtained from bisecting the Kites of the Kitegrid into Semikites,
see Figure 3 (right).

We call symmetry of a tiling T an isometry of the plane that preserves the tiling, that is, h ∈ Isom(R2)
is a symmetry of T = {g · T |(g, T ) ∈ C} when hT = T. Denote Sym(T) the group of the symmetries of T.
Similarly, we call symmetry of a tileset T an isometry of the plane that sends a tile T ∈ T to some tile
T ′ ∈ T (possibly the same tile).

Let us emphasize that h is a symmetry of a tiling T with cotiler C when for any (g, T ) ∈ C there exists
(g′, T ) ∈ C such that h · g · T = g′ · T (here the equality is as subsets of W), whereas h is a period of C when
for any (g, T ) ∈ C there exists (g′, T ) ∈ C such that (h · g, T ) = (g′, T ), that is, h · g = g′. In particular, the
symmetry group Sym(T) includes the stabilizer Stab(C) of the cotiler as a subgroup. These two groups are
not always equal: in particular for the Kitegrid, the stabilizer contains only direct isometries of the plane
whereas the symmetry group also contains reflections.
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Figure 2: The Kite (left) and Kitegrid (right).

However, if the tileset has no non-trivial symmetry itself, then Stab(C) = Sym(T).
An Archimedean tiling is a tiling of R2 by regular polygons such that every vertex has the same

configuration (the same sequence of polygons when reading around the vertex), see Figure 3 in black. An
Archimedean tiling is characterized by this vertex configuration; for example the 4.3.4.6 Archimedean tiling
is a tiling by regular triangles, squares and hexagons such that around each vertex there is a square, a
triangle, another square and a hexagon, see Figure 3 (left).

The dual tilings of Archimedean tilings are called Laves tiling, see Figure 3 in grey. Laves tilings are
characterized by the vertex configuration of their dual Archimedean tiling, and have only one tile up to
isometry. The Kitegrid is the 4.3.4.6 Laves tiling, and the Semikitegrid is the 4.6.12 Laves tiling.

Figure 3: The Kitegrid (left) and Semikitegrid (right) in light grey, with their dual graph.
The dual graphs induce the Archimedean tilings of vertex configurations 3.4.6.4 (left) and 4.6.12 (right).

Definition 9 (Hat). We call Hat the 13-gon tile represented in Figure 4 as a union of 8 kites.

Note that we can either see the Hat as a 13-gon (6 edges of length
√

3, 6 edges of length 1 and 1 edge of
length 2) or as a 14-gon with two adjacent colinear edges (6 edges of length

√
3 and 8 edges of length 1).

We now consider tilings of W = R2 with respect to the group G of isometries of R2.
Among the main known results on the Hat tilings, we now present two that are useful in our construction.

Theorem 10 (Hat tilings [SMKGS24]).

1. The Hat is an aperiodic geometric monotile [SMKGS24, Theorem 1.1]; in our terminology: the Hat
tiles R2 with respect to G = Isom(R2); and no stabilizer of a cotiler for the Hat contains a translation,
in particular it is weakly aperiodic.
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Figure 4: The Hat tile as a polykite.

2. Decomposing any Hat tiling in kites yields the Kitegrid [SMKGS24, Lemma A.6]; in our terminology:
any cotiler group of the Hat is included in the symmetry group Γ of the Kitegrid.

Remark 11. Though it is not formally stated in the original paper, the stabilizer of the Hat is finite, so
that it is mildly aperiodic. This comes from the fact that Γ is virtually Z2 (see Section 4.2, thus any infinite
subgroup contains a translation. This remark also holds for the weakly aperiodic monotile from [GT24,
Theorem 1.3].

Section 4.2 presents the symmetry group Γ of the Kitegrid; Section 4.3 describes the possible stabilizers
of Hat tilings; and Section 4.4 introduces the Roach, a mildly aperiodic monotile in Γ derived from the Hat.

Sections 4.2 and 4.3 are mostly independent.

4.2 The symmetry group of the Kitegrid
In this Section, we present the symmetry group of the Kitegrid, which we denote Γ. The readers who want
to avoid some group formalism can refer to the Cayley graph from Figure 5.

Let R6 be the rotation of angle π/3 centered at the tail of (any fixed translate of) the Kite and R3 be the
rotation of angle 2π/3 centered at the head of the Kite. Let Γ+ := ⟨R6, R3⟩ be the subgroup of Isom+(R2)
(the group of orientation-preserving isometries of R2) generated by these two rotations. Γ+ is the cotiler of
the Kite K yielding the Kitegrid, or equivalently, K is a fundamental domain for the action of Γ+ (up to
λ-negligible sets):

W = R2 =
⊔

g∈Γ+

g · K, up to λ-negligible sets.

We remark that t1 = R−1
6 R3R−1

6 and t2 = R−2
6 R3 are two translations of the plane that generate a lattice

L = ⟨t1, t2⟩ ≃ Z2. The regular hexagon
⊔5

i=0 Ri
6 · K is a fundamental domain for the group L acting on the

plane.
We also remark that the equilateral triangle

⊔3
i=0 Ri

3 · K is a fundamental domain for the action of
Γ′ := L ⋊ ⟨R3

6⟩ = ⟨t1, t2, R3
6⟩ ≃ Z2 ⋊ Z/2Z.

For the sake of completeness, we remark that Γ+ = L ⋊ ⟨R6⟩ = Γ′ ⋊ ⟨R2
6⟩ = Γ′ ⋊ ⟨R3⟩ ≃ Z2 ⋊ Z/6Z.

We now add the reflection β along the axis of the Kite going from the tail to the head. We get a group
Γ := Γ+ ⋊ ⟨β⟩ = ⟨R6, R3, β⟩ which is the cotiler of the Semikite K+ yielding the Semikitegrid; equivalently,
K+ is a fundamental domain for the action of Γ (up to λ-negligible sets). The reflections α = R−1

6 ◦ β and
γ = R3 ◦ β along the other two sides of the Semikite (see Figure 6) are also in the group Γ.

Remark 12. The group Γ+ of the Kitegrid acts freely and transitively on the vertices of the Archimedean
tiling 4.3.4.6; it acts freely on edges with two orbits: one orbit for the sides of the hexagons, one orbit for the
sides of the triangles. Labelling the edges around the hexagons by R6 and edges around triangles by R3, we
get that the 1-skeleton of the 4.3.4.6 Archimedean tiling is the Cayley graph of Γ+ with respect to generators
{R6, R3}.
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The group Γ of the Semikitegrid acts freely and transitively on the vertices of the Archimedean tiling
4.6.12. Labelling the edges of the Archimedean tiling 4.6.12 by α, β and γ according to the edge of the
Semikitegrid that they cross, we get that the 1-skeleton of the Archimedean tiling 4.6.12 is the Cayley graph
of Γ with respect to generators {α, β, γ} (with non-oriented edges, because α, β and γ are involutions).

The symmetry group Γ of the Semikitegrid has presentation:

Γ = ⟨α, β, γ|α2, β2, γ2, (αβ)6, (βγ)3, (αγ)2⟩,

which is the presentation of a Coxeter group.
Remark that Γ is also the symmetry group of the Kitegrid.
Its index-2 subgroup Γ+ has presentation ⟨R3, R6|R3

3, R6
6, (R3R6)2⟩ with R3 = γβ and R6 = βα.

Figure 5 shows the Cayley graph of the group Γ.

Figure 5: The Cayley graph of Γ. As the generators α, β and γ are involutions, the edges are not directed.

In two senses, these groups are not far from Z2.
Remark 13. Γ+ and Γ are virtually Z2 and both admit planar Cayley graphs (see Figures 3 and 5).

Figure 6: The symmetries of the Semikitegrid.
Any semikite in the tiling is the image of the grey semikite by a composition of the reflections α, β and γ.
In particular the semikite in dotted lines is the image of the grey semikite by αβαβ.

4.3 Stabilizers of Hat tilings
In this section, we study symmetries and periods of the Hat tilings. We chose to make these statements and
proofs as independent as possible from the formalism of Section 3 so that a reader might choose to avoid
most of the group-action formalism.
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Recall that since the Hat tiles has no symmetries, for any Hat tiling T with cotiler C ⊂ Isom(R2) we
have Stab(C) = Sym(T).

Recall that R3 is the rotation of angle 2π
3 around the origin head of the Kite, that we assume to be on

the origin 0 ∈ R2.

Proposition 14. The symmetry group of any Hat tiling is either {id} or conjugated to {id, R3, R2
3}.

Proof. From Item 2 of Theorem 10, any Hat tiling yields the Kitegrid when decomposing the tiles in kites,
so that its symmetries must be included in the symmetry group Γ of the Kitegrid.

Let us analyse the subgroups of Γ which could be candidate for stabilizers of Hat tilings:

• From Item 1 of Theorem 10, no Hat tiling admits a translation as a symmetry.

• no reflection is possible: indeed the axis of a reflection symmetry of a Hat tiling cannot intersect the
interior of any tile. As any Hat tiling induces a Kitegrid when decomposing the tiles, such an axis
would be a line in the Kitegrid. There are only two such lines on the boundary of a Hat (which do not
intersect its interior), both of which are obstructed by a neighbouring tile, see Figure 7. Hence a Hat
tiling does not admit reflection symmetries.

Figure 7: A Hat tile and its two non-intersecting adjacent KiteGrid axes (dashed), in red the obstructing
kites: any neighbour Hat tile containing a red kite would intersect the corresponding axis.

• no nontrivial sliding reflection is possible: otherwise iterating it twice would give a translation symme-
try.

• rotations of order 6 are not possible either: indeed the Hat tile does not have a symmetry of order
6, so a center of symmetry would have to be a vertex; this it is impossible because the Hat has only
angles of π

2 and 2π
3 .

This leaves only the rotations of order 3 as possible symmetries for Hat tilings. Every rotation of order 3 in
Γ is conjugated to R3 by some translation of Γ.

This results gives us an upper bound on the stabilizers and symmetry group of Hat tilings.
We now prove that this bound is tight, that is: there exists a Hat tiling T = (Hat, C) such that

Sym(T) = Stab(C) = {id, R3, R2
3}.

As a tool to generate tilings, we introduce an auxiliary tileset of 4 polysemikites called HTPF , which
was introduced in [SMKGS24], see Figure 9 in dotted lines, and a substitution on this tileset, see Figure 8.
Note that the H, T , P and F tiles have an arrow as label, this arrow is an important part of the tiles; in
particular adjacent tiles cannot have arrows facing each other.

We call substitution a function that maps each tile to a patch of tiles, see Figure 8. Note that in
Figure 8, only the tiles in full lines and with labels are in the image, and the shapes in dotted lines are called
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forced-neighbour tiles. The substitution is then extended to patches of tiles by applying it separately
to each tile and gluing together the obtained patches (on the forced-neighbour tiles in our case). For more
about geometric and combinatorial substitutions see for example [Jol13].

A substitution σ is called well-defined when for any single tile, the substitution can be iterated infinitely
many times and in iterating the substitution the whole plane is covered. In this case, we call admissible
any pattern that is a subpattern of σk(t) for some integer k and tile t. An infinite tiling T is called valid
for the substitution if all of its patterns M ⊏ T is admissible.

We call scaling a substitution σ for which there exists a scalar λ > 1 such that for any admissible pattern
M , we have λsupp(M) ⊂ supp(σ(M)), where supp(M) is the support of the pattern (the union of its tiles).

Theorem 15 (HTPF substitution [SMKGS24]).

• The HTPF substitution from Figure 8 is well-defined and scaling;

• Any HTPF tiling which is valid for the substitution can be decomposed into a Hat tiling (see Figure 9)
with the same symmetries [SMKGS24, proof of Theorem 2.1].

The original proof that the Hat can tile the whole plane is based on the HTPF substitution. Note that
in [SMKGS24], a second substitution (with clusters H7 and H8) is proposed, but it is less suited to our needs
as it is not scaling.

Figure 8: The HTPF substitution. In the image of the tiles, shapes drawn in dotted lines are forced-
neighbour tiles.

Proposition 16. There exists a Hat tiling T with cotiler C whose stabilizer is exactly {id, R3, R2
3}, that is:

Stab(C) = Sym(T) = {id, R3, R2
3}.

Proof. We use the HTPF substitution to construct a fixpoint (limit) tiling with symmetries {id, R3, R2
3}.

We denote by σ the HTPF substitution.

11



Figure 9: HTPF tiles as clusters of Hats, note that these clusters can also be defined as polysemikites.

We use the fylfot or F3 pattern consisting of 3 F tiles (see Figure 10 left) with the central vertex on the
origin 0 ∈ R2. First note that this pattern is admissible for the substitution as it appears in σ2(H). When
iterating σ on the fylfot, we see that F3 is at the center of σ2(F3) up to a rotation of angle π, so that F3
appears exactly at the center of σ4(F3). From this we deduce that the sequence (σ4n(F3))n∈N is a increasing
(for inclusion) sequence of patches. This, together with the fact that the substitution is well-defined and
scaling, gives us the existence of a limit tiling THT P F

R3
to this sequence. THT P F

R3
is a fixpoint of σ4 and is

invariant under rotations R3 and R2
3. Decomposing the HTPF clusters into Hat tiles in THT P F

R3
, we obtain

a Hat tiling THat
R3

which also has symmetries {id, R3, R2
3}.

Remark 17. As the HTPF substitution σ is sufficiently well-behaved, we can also construct a limit tiling
without any non-trivial symmetry.

Indeed, a variation around classical recognizability arguments [Sol98] gives that every valid HTPF tiling
has a unique preimage by the substitution. Also, no Hat decomposition of HTPF tile t has a 3-fold symmetry,
and this is inherited to supertiles σk(t), where k ∈ N. The latter property forces any center of 3-fold symmetry
in a tiling to be at the boundary of an infinite-level supertile, and the former states that the boundary of
infinite-level supertiles is uniquely defined.

As the triangle T is at the center of σ2(T ) up to a rotation of angle π
3 , we construct the fixpoint (limit)

tiling THT P F
id by iterating σ12 from T . This tiling has no non-trivial symmetry because no point is at the

boundary of an infinite-level supertile. We can then decompose THT P F
id in THat

id without any non-trivial
symmetry.

4.4 The Roach
Recall that Γ+ ↷ W = R2 and Γ ↷ W properly discontinuously, and their fundamental domains (up to
λ-negligible sets) are the Kite K and the Semikite K+. The Hat is a polykite and a polysemikite, which
allow to apply the work of Section 3.

We get
ΨΓ+,K(Hat) = {1, R6, R−1

6 , R−2
6 , R3, R2

3, R3R−1
6 , R2

3R−1
6 } ⊂ Γ+

and

ΨΓ,K+(Hat) = {1, α, β, γ, αβ, βα, βγ, γβ, αβα, βαβ, βαγ, βγβ, γβα, αβαβ, βαγβ, γβαβ} ⊂ Γ;
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Figure 10: Iterating the HTPF substitution on the fylfot (left) pattern. We observe the fylfot at the center
of the second iteration.

Figure 11: Group tiles induced in Γ+ (left) and Γ (right) by the Hat.
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the latter is called Roach.
Figure 11 shows the two sets ΨΓ+,K(Hat) and ΨΓ,K(Hat) as subsets of the Cayley graphs of the groups

Γ+ and Γ.

Theorem 18 (Aperiodic monotile in Γ). The Roach is a mildly aperiodic monotile of the group Γ. More
precisely, the possible stabilizers of cotilers of the Roach are {id} or conjugated to {id, R3, R2

3}, both cases
being reached.

Proof. First, we apply Item 2 of Remark 4: as any Hat tiling sits on a Kitegrid, any cotiler of the Hat with
respect to Isom(R2) is also (up to a global isometry g ∈ Isom(R2)) a cotiler of the Hat with respect to Γ.

We then apply Corollary 7 to obtain that the set of cotilers for the Hat and Roach with respect to Γ are
identical.

Now, Proposition 14 gives that any possible cotiler stabilizer for Roach is a subgroup of {id, R3, R2
3}.

By Proposition 16, we obtain that this bound is tight, that is: there exists a cotiler C for the Roach with
Stab(C) = {id, R3, R2

3}.

Figure 12: The Roach tile: the Γ-tile induced by the Hat.

Remark 19. The set ΨΓ+,K(Hat) does not tile the group Γ+.
Indeed, using the same reasoning, we obtain that the set of cotilers of ΨΓ+,K(Hat) is equal to the set of

cotilers of the Hat with respect to Γ+. As Γ+ is a subgroup of the group of direct isometries of R2 (it contains
no reflection), and the Hat does not tile R2 without reflections [SMKGS24], we obtain that the set of cotilers
of ΨΓ+,K(Hat) is empty.

However, using the reflection α around a Kitegrid axis, the set {ΨΓ+,K(Hat), ΨΓ+,K(α(Hat))} is a 2-tile
mildly aperiodic tileset in Γ+, see Figure 13.

The Turtle tile [SMKGS24] (Figure 14) or Hat-Turtle systems [SMKGS23] (Figure 15) can also be turned
group-theoretic.

Note that the group Γ is obtained by adding a reflection to the group Γ+: Γ = Γ+⋊⟨α⟩. Thus the Cayley
graph of Γ+ can be recovered from two interlaced copies inside the Cayley graph of Γ. We can restrict to
the Roach and Figure 16 shows two interlaced copies of ΨΓ+,K(Hat) inside the Roach.

14



Figure 13: The 2-tile mildly aperiodic tileset induced by the Hat and its symmetric in Γ+ (up to translation);
the two tiles are not Γ+-translations of each other.

Figure 14: The Turtle tile [SMKGS24] induces a second mildly aperiodic monotile in Γ.

Figure 15: The Hat-Turtle system [SMKGS23] induces a 2-tile mildly aperiodic tileset in Γ+ (without the
reflections).
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Figure 16: We can partition the vertices of the Roach into two copies of the Γ+-discrete Hat (from Figure 11,
left), each of which corresponds to one orientation (even / odd signature of the transformation).

5 General version
In this section, we consider a topological space W endowed with a nontrivial Borel measure λ, a group G
acting on it by negligibility-preserving self-homeomorphisms, and a finite set T of positive-measure tiles
T ⊂ W.

When is the discretization as performed in Section 3 possible? We need a transformation map turning
geometric tiles into group tiles. The first candidate is the following. Given a base point 0 ∈ W, one
can define its orbit map from G to W: ω0 : g 7→ g · 0. One can build, from any set T ⊂ W, the set
Ψ0(T ) := ω−1

0 (T ) = {g ∈ G| g · 0 ∈ T} ⊂ G.
In this section, we give two general statements: one for transitive actions (Subsection 5.1), and one for

discrete actions (Subsection 5.2, somewhat generalizing Section 3).

5.1 Building tiles in continuous groups
Here is a continuous variation on our theorem. We include it for completeness and the parallelism with the
discrete version.

We assume in this subsection that G is a topological group endowed with some nontrivial Borel measure.
A map between measure spaces is nonsingular if the preimage of any negligible subset is negligible. It is
finite-measure-preserving if the image of any finite-measure subset has finite measure. An action of a
topological group G on W is proper if for every compact K, K ′ ⊂ W, {g ∈ G| g · K ∩ K ′} is compact.

The tile obtained in the group enjoys nice properties.

Remark 20.

1. If ω0 is negligibility-preserving and T has positive measure, then Ψ0(T ) has positive measure.

2. If ω0 is finite-measure-preserving and T has finite measure, then Ψ0(T ) has finite measure.

3. If G ↷ W is proper and T is relatively compact, then Ψ0(T ) is compact.

Proposition 21. Endow G with a measure and chose 0 such that ω0 is nonsingular.
If C is a cotiler of T in W with respect to G, then C is a cotiler of Ψ0(T ) in G, up to syntactically

renaming each T into Ψ0(T ).

Proof. By nonsingularity and the covering condition for tilings, for λ-almost all g ∈ G, there exists a unique
(g, T ) ∈ C such that g · 0 ∈ h · T , which is equivalent to h−1 · g ∈ Ψ0(T ), and to g ∈ h · Ψ0(T ). This proves
that

G ≡λ

⊔
(g,T )∈C

g · Ψ0(T ).
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Theorem 22 (Main result; continuous setting). If G ↷ W is transitive and T is any tile, then ω0(Ψ0(T )) =
T . Moreover, if T is a finite tileset, µ is a measure on G which makes ω0 nonsingular and negligibility-
preserving, then T and Ψ0(T ) have the same cotilers (up to syntactically renaming each T into Ψ0(T )).

Proof. ω0(Ψ0(T )) = G · 0 ∩ T . If the action is transitive, then this is equal to T . By Proposition 21, the
cotilers of T are (up to name change) cotilers of Ψ0(T ). Conversely, if G ≡µ

⊔
(g,Ψ0(T ))∈C g · Ψ0(T ), then

G · 0 ≡λ

⊔
(g,Ψ0(T ))∈C g · ω0(Ψ0(T )). This gives W ≡λ

⊔
(g,Ψ0(T ))∈C g · T . By the assumption on the tiles,

W ≡λ

⊔
(g,Ψ0(T ))∈C g · T .

5.2 Building tiles in discrete groups
Rather than tiling with respect to continuous groups (often Lie groups) such as Isom(Rd) like in the previous
subsection, we are now interested in countable subgroups (like lattices over Lie groups), for which the orbit
map is generally singular; hence Theorem 22 does not apply.

We propose two constructions for carrying a tiling inside the group.

5.2.1 Using the orbit map

In this subsection, G is a countable group, endowed with discrete topology and counting measure. Although
Theorem 22 does not apply, we can compensate by a suitable choice of base point.

An immediate remark is that our discretization map is relevant for ≡λ-classes of subsets.

Remark 23. If 0 /∈ G · (T∆T ′) (where ∆ stands for the symmetric difference), then Ψ0(T ) = Ψ0(T ′).
In particular, if T ≡λ T ′, then for λ-almost every 0, Ψ0(T ) = Ψ0(T ′).

One says that the action G ↷ W is λ-properly discontinuous if for every compact K ⊂ W, only
finitely many g · K intersect K λ-non-trivially. Note that this property is equivalent to: for every relatively
compact (that is, included in a compact) K, K ′ ⊂ W, only finitely many g · K intersect K ′ λ-non-trivially.
Any properly discontinuous (in the sense that for every compact K ⊂ W, only finitely many g · K intersect
K) action is λ-properly discontinuous for every measure λ.

Our transformation map is nice in the sense that the tiles enjoy simpleness properties inherited from the
action.

Proposition 24. Let T be relatively compact and G ↷ W be properly discontinuous (resp, λ-properly
discontinuous), then Ψ0(T ) is finite for every (resp, λ-almost every) 0 ∈ W.

Proof. Ψ0(T ) can be written as {g ∈ G| T ∩ g · {0} ≠ ∅}, which is finite if the action is properly discontinuous.
If the action is λ-properly discontinuous, this implies that U := {g ∈ G| λ(T ∩ g · T ) > 0} is finite. By
definition and countable additivity, R := G ·

⋃
g /∈U T ∩ g · T has measure 0. For every 0 /∈ R, Ψ0(T ) ⊂ U ,

which is finite.

Proposition 25. Let G be a countable group, endowed with the counting measure. If C is a cotiler of T
in W, then for almost every 0 ∈ W, C is a cotiler of Ψ0(T ) (with respect to G) in G (up to syntactically
renaming each T into Ψ0(T )).

Proof. Let us show the result for 0 in the set
⋂

h∈G h·(
⋃

(g,T )∈C g·Ψ0(T )\
⋃

(g,T )̸=(g′,T ′)∈C g·Ψ0(T )∩g′·Ψ0(T ′)).
By definition of tilings and countable additivity of the measure, this set has full measure.

By construction, for every (g, T ), (g′, T ′) ∈ C, g · Ψ0(T ) ∩ g′ · Ψ0(T ′) = ∅, unless (g, T ) = (g′, T ′); and for
every h ∈ G, there exists (g, T ) ∈ C such that h · 0 ∈ g · Ψ0(T ).

5.2.2 Decomposing tiles

We now propose an alternative approach to the orbit map.
We assume that G is a countable group acting cocompactly λ-properly discontinuously on W and that

T is a finite set of relatively compact tiles.
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Let F be a relatively compact fundamental domain. For x ∈ F , consider the set χ(x) := { (g, T ) ∈ G × T | x ∈ g · T}
of tiles that could cover x according to some transformation. We also define the cell Kx := χ−1({χ(x)}) ⊂ F
of x.

Let K := {Kx| x ∈ F, λ(Kx) > 0}.

Lemma 26.

1. Every K ∈ K has the form K = χ−1({χ(x)}) for some finite (possibly empty) χ(x).

2. K is finite.

3.
⊔

K∈K K ≡λ F .

Proof. Since the action is λ-properly discontinuous and the tiles are relatively compact, the set ST of g ∈ G
such that g · T intersects F λ-nontrivially is finite, for each T ∈ T . The set S :=

⊔
T ∈T ST × {T} is still

finite, and by construction, ∀(g, T ) /∈ S, λ(F ∩ g · T ) = 0. Let F ′ := {x ∈ F | χ(x) ⊂ S}. We have:

F \ F ′ =
⋃

(g,T )/∈S

{x ∈ F | (g, T ) ∈ χ(x)}

=
⋃

(g,T )/∈S

F ∩ g · T.

By definition of S (and countable additivity), λ(F \ F ′) = 0. We get that if λ(Kx) > 0, then χ(x) ⊂ S. This
gives Item 1, and since each K ∈ K has the form χ−1(χ(x)) for some χ(x) ∈ S, we get Item 2.

By definition of Kx as preimages, we know that they are all disjoint. Now

F \
⊔

K∈K
K ⊂ (F \ F ′) ∪

⋃
S′⊂S,λ(χ−1(S′))=0

χ−1(S′).

By finite additivity, this set has measure 0. This gives Item 3.

Lemma 27. Every tile T ∈ T is poly-K.

Proof. By Item 3 of Lemma 26, T ⊂ W ≡λ

⊔
(g,K)∈G×K g · K. Moreover, if g · K nontrivially intersects T ,

this means that K nontrivially intersects g−1 · T : (g−1, T ) ∈ χ(K). Hence K ⊂ g−1 · T , and g · K ⊂ T .
Finally, λ-proper discontinuity gives that the set ΨK(T ) of (g, K) such that g · K intersects T nontrivially is
finite. We obtain T ≡λ

⊔
(g,K)∈ΨK(T ) g · K.

Theorem 28 (Main result; discrete setting). Assume that G is countable and acts on W cocompactly λ-
properly discontinuously, and that T is a finite set of relatively compact subsets of W. Then there exists a
finite set K of relatively compact tiles yielding a grid on W such that the tiles in T are poly-Ks, and T and
Ψ0(T ) have the same cotilers (up to syntactically renaming each T into Ψ0(T )).

Consequently, if G is countable and G ↷ W is λ-properly discontinuous and admits some (weakly, mildly,
strongly) aperiodic set of relatively compact tiles in W, then one can find some (weakly, mildly, strongly)
aperiodic set of finite tiles in G.

Proof. This comes directly from Lemma 26, Lemma 27, and Theorem 6.

The following proposition links the discretization as poly-K with the discretization Ψ0, which is always
possible but allows in general only one inclusion between the cotiler sets. It can be applied for instance just
after Theorem 28, to cocompact λ-properly discontinuous actions.
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Proposition 29. If K yields a grid, then for λ-almost every 0 ∈ W, there exists a unique (g, K) ∈ G × K
such that 0 ∈ g · K. Then if T is poly-K, then Ψ0(T ) = Ψg·K(T ). In particular, if 0K ∈ K is such a generic
point for each K ∈ K, then

T ≡λ

⊔
K∈K

Ψ0K
(T ) · K).

In particular, if T is a set of poly-K, then (up to syntactically renaming each T into Ψ0(T )):

CG(T ) =
⋂

K∈K
CG(Ψ0K

(T )) =
⋂

0∈W′

CG(Ψ0(T )),

for some full-measure subset W ′ ⊂ W.

Proof. Let R := G ·
⋃

λ(g·K∩T )=0(g · K ∩ T ). By countable additivity, λ(R) = 0. By construction, for every
0 ∈ g · K \ R, h · 0 ∈ T ⇐⇒ λ(hg · K ∩ T ) > 0, which means that Ψ0(T ) = Ψg·K(T ). We conclude by
Theorem 6.

5.3 Crystallographic groups
From the Hat and our constructions above, we get a finite monotile that tiles mildly aperiodically the group
Γ. Moreover, the dual tiling of the Semikitegrid is an Archimedean tiling and its 1-skeleton can be labelled
to become a Cayley graph of Γ. Thus, the geometric propreties of the Hat carry towards the monotile of Γ:
it is finite and connected.

This highly favorable context is that of crystallographic groups which we explore in this subsection.
A crystallographic group G is a group acting properly discontinuously and cocompactly on a euclidian

space W = E.
From the classical work of Bieberbach, the subgroup L of the translations in G is generated by n linearly

independant translations, is isomorphic to Zn and has finite index in G. For such a crystallographic group
G, there exists a compact convex polytope K that yields a grid. From Corollary 7 a poly-K monotile T is
strongly (resp. mildly) aperiodic with respect to G if, and only if, the monotile ΨK(T ) is strongly (resp.
mildly) aperiodic in G.

In dimension n = 2, following Grünbaum and Shephard [GS87, Statement 4.3.1], the crystallographic
grid is the Laves tiling of an Archimedean tiling. The finite set S = {s ∈ G | s · K and K share a hyperface}
generates G. Labelling its edges, the 1-skeleton of the dual Archimedean tiling is the Cayley graph of (G, S)
(there is a subtlety regarding orientation of edges: S contains s−1 for each of its element s; if such an s is a
reflection, then one needs not choose an orientation). The geometric properties of T translate to geometric
properties of ΨK(T ); for instance, if T is connected, then ΨK(T ) is connected.

We warn that we only consider tilings by T with respect to G, that is to say the cotilers are inside G.
It may happen that using more isometries G ≤ G′ allows new tilings by T . This situation happened for
the Hat: adding a reflection α to G = Γ+, we studied the group G′ = Γ and the Semikitegrid. The Hat
does not tile with respect to Γ+, but tiles (aperiodically) with respect to Γ. For the Hat, no other isometry
can be added: two adjacent copies of the Hat have to share edges and thus have to be drawn on the same
Semikitegrid.

In this context, we raise the following two questions:

Question 30. For which crystallographic groups does there exist a mildly aperiodic monotile?
For the Laves tiling of which Archimedean tiling does there exist a mildly aperiodic poly-K monotile?

6 Conclusion
We are interested in the following metaquestion:

Question 31. Which settings G ↷ W admit aperiodic monotiles (or aperiodic finite tilesets)? Which
countable groups G (with translation action)?
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After the big 2023 breakthroughs on monotileability, our work brings: a general framework to compare
the results, a tool to transfer geometric tiles into group tiles, and an explicit construction for an original
aperiodic monotile in a very small group (in the sense that it is close to a group where such monotiles do
not exist). The result is comparable to [GT24, Theorem 1.3], yet more explicit. On the other hand, the
direct product is replaced in our construction by some semi-direct product. This prevents to use the lifting
operation from [MSS22] in order to recover (an explicit version for) [GT24, Corollary 1.5], building a weakly
aperiodic monotile for some Zd (and some Rd). It is not clear how to do a similar operation for semi-direct
products.

Expliciting the stabilizers also quantifies somehow how far we are from strong aperiodicity. A great
improvement would be to obtain strong aperiodicity (in the sense that the tilings have no symmetry at all,
instead of the order-3 R3 for our tile). One strategy could be to start modify our existing Roach tile into
something that breaks the rotation (while still tiling), up to finitely extending the group Γ.

Another strategy would be to use our translation result to groupify a geometric strongly aperiodic
monotile. But, though this is not emphasized in the geometric literature (where aperiodicity simply in-
volves translations), it is surprising to notice that strongly aperiodic monotiles are unknown in all settings,
including both the geometric and the group settings.

In particular, the Spectre from [SMKGS23] also admits tilings with stabilizer {id, R3, R2
3} (which are

combinatorially equivalent to tilings by the Hat). Anyway, though it is tempting to think of the Spectre as
having fewer symmetries, because it tiles with respect to Isom+(R2) (unlike the Hat), on the contrary, the
cotiler group of any tiling is much bigger for the Spectre than for the Hat, in the sense that the action is
minimal (the orbits are dense), as seen by the fact that the tiling does not lie over an Archimedean tiling.
This is also true for other famous examples of tilesets, like Penrose’s.

Question 32. Does there exist a geometric monotile whose cotilers have trivial stabilizers? Does there exist
one which is union of tiles from an Archimedean tiling?

Another remark is that our Theorem 6 is an equivalence, which could in theory lift some results from the
group world to the geometric world: for instance, if one knows that G admits no aperiodic monotile, then
no space W over which it acts properly discontinuously admits an aperiodic monotile with respect to G. An
example is that R2 cannot have aperiodic monotiles with respect to Z2, thanks to the discrete result from
[Bha20], but this is already folklore.

The link formalized in this paper could help formalize the parallelism between the theory of FLC tilings
and symbolic dynamics that can be read in many results with similar flavor.

Finally, let us note that aperiodic tilings are an important ingredient for undecidability results (since
settings where aperiodic tile sets do not exist imply decidability of tileability and of many properties), both
in logical or in algorithmic terms. The first undecidability results about monotileability were achieved by
[GT23] in some virtually-Z2 group. Along history, each work establishing the possibility of aperiodicity in
some setting was simultaneous to or soon followed by some work establishing undecidability in this setting
(and usually based on similar constructions). We are thus expecting more of them.

Question 33. Is it undecidable whether a polygonal monotile tiles R2? Is it undecidable whether a finite
monotile tiles the symmetry group Γ of the Semikite grid? Does there exist a dimension d ∈ N such that it
is undecidable whether a finite monotile tiles Zd?

Acknowledgements: We thank Ch. Goodman-Strauss and T. Meyerovitch for discussions related to some
points of this article, and N. Pytheas Fogg for raising the discussion that brought the original idea.
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