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A Grasping Movement Intention Estimator
for Intuitive Control of Assistive Devices

Etienne Moullet, Justin Carpentier, Christine Azevedo-Coste and François Bailly

Abstract— This study introduces i-GRIP, an innovative move-
ment goal estimator designed to facilitate the control of as-
sistive devices for grasping tasks in individuals with upper-
limb impairments. The algorithm operates within a collab-
orative control paradigm, eliminating the need for specific
user actions apart from naturally moving their hand toward
a desired object. i-GRIP analyzes the hand’s movement in
an object-populated scene to determine its target and select
an appropriate grip. In an experimental study involving 11
healthy participants, i-GRIP showed promising goal estimation
performances and responsiveness and the potential to facilitate
the daily use of assistive devices for individuals with upper-limb
impairments in the future.

I. INTRODUCTION

Upper-limb impairments, such as spinal cord injury,
stroke, or amputation, can significantly impact an indi-
vidual’s quality of life and autonomy. These impairments
can make it difficult or impossible to perform many daily
activities that require grasping, such as eating, dressing, and
grooming. Various approaches and assistive devices have
been developed to compensate for these difficulties, in-
cluding functional electrical stimulation (FES), exoskeletons,
and prostheses. However, despite continuous improvements
in terms of actuation speed, accuracy, and strength, these
devices still face major challenges regarding their human
interfaces [1]. Indeed, regardless of their control modalities
(manipulating joystick/switch buttons, detection of neural ac-
tivity, muscular activation or stereotypical movements, voice
recognition etc. [2], [3]), a most crucial design constraint
remains that controlling an assistive device should not hinder
the user in the task execution.

In spinal cord injury, this constraint is particularly hard
to resolve. Individuals with quadriplegia often have a sig-
nificantly reduced control over their body to express their
intent, and current human-machine interfaces provide limited
inputs for controlling devices [3]. Current approaches often
rely on state machines to alternatively set a given user’s
action as the control input for a given movement elicited
by the device. However, this requires the user to constantly
switch between modes to achieve daily tasks, which can be
cognitively demanding, result in saccadic movements, and,
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most importantly, impact the user’s ability to perform the
task effectively.

In this study, we present i-GRIP, a novel movement goal
estimator for controlling upper-limb assistive devices during
grasping movement. i-GRIP operates within a collaborative
control paradigm, requiring no specific action from the users
except naturally moving their hand toward the object they
wish to grasp. The algorithm performs a kinematic analysis
of the hand’s movement in the observed scene to identify
the targeted object and an appropriate grip to grasp it. This
estimated movement goal will be used to control assistive
devices in future work.

II. METHODS AND MATERIALS

A. i-GRIP algorithm

i-GRIP is designed to work downstream of a scene ob-
servation process that provides hands and objects spatial
observations. Detected hands and objects are represented
in a virtual 3D duplicate scene for analysis (see Fig. 1-
b). The algorithm first performs a kinematic analysis of
the hands’ motions to predict their near-future trajectories.
Then, each detected object is treated as a potential target
for a given hand. At each time step and new measurement,
four confidence scores are computed for each hand-object
pair based on metrics that describe the motion of a hand h
relatively to the object oj :

• number of ray impacts: the number of impacts onto
the object’s mesh from cones of rays that are cast from
near-future trajectory points in the direction of the local
velocity vector,

• distance derivative: the time derivative of the distance
between the hand’s position and the position of the
center of the object’s mesh,

• distance: the distance between the hand’s position and
the object’s mesh,

• future distance: the distance between the barycenter of
near-future trajectory points and the object’s mesh.

Next, a velocity-dependent weighted sum of these 4 con-
fidence scores is performed, defining a global confidence
score cglob(h|oj). Then, the target of the hand’s movement is
identified as the observed object with the highest confidence
score:

target(h) = argmax
oj

(cglob(h|oj)) (1)

Finally, the appropriate grip is determined by the hand’s
position relative to the detected objects and their shapes. In
its current version, i-GRIP focuses on oblong objects that



Fig. 1. Experimental setup and pre-processing: (a) - Example of a video
frame captured during a trial overlaid with green rectangles marking the
detected objects and multicolored landmarks marking hands keypoints. (b)
- Corresponding 3D virtual scene: Orange, yellow, red, and green objects
are the rendered meshes of the detected objects. Big blue and red spheres
represent the 3D positions of, respectively, left and right hands. The middle-
sized red and green spheres represent, respectively, the past and expected
future trajectory of the right hand. The black lines are a cone of rays
expanding from the expected future trajectory of the right hand, and whose
impacts are the small magenta dots on the mesh.

may be grasped using two main grips used in daily life [5]:
palmar and pinch grips. First, the mesh of each detected
object oj is bounded by a cylinder. Its axis of revolution
defines the z-axis of the object’s reference frame Rj whose
origin is placed at the center of gravity of the mesh. Then, a
grip for each hand-object pair grip(h|oj) is determined by
the z-component of the hand’s position in Rj (see Fig. 2).
Finally, the grip appropriate for the analyzed movement is
the grip corresponding to the target found with (1):

grip(h) = grip(h|target(h)) (2)

B. Experimental study

An experimental study approved by INRIA ethical
committee (COERLE Decision 2024-01) involving eleven
healthy participants was conducted to evaluate i-GRIP’s
performance. Participants were seated in front of a table
(see Fig. 1-a) and performed 128 grasping movements under
homogeneously drawn conditions among the following:

• which hand to use: left or right,
• which objects to target among 4 objects from the YCB

set [4] placed on the table: a mustard bottle, a bleach
bottle, a tomato can or a box of cheez’it,

• which grip to apply: pinch or palmar,
• whether to execute the grip (actually grasping the ob-

ject) or simulate it (not moving their fingers during
movement nor grasping the object).

Two stereoscopic cameras (OAK-D S2, Luxonis) were placed
on the left and right sides of participants at shoulder level
and filmed the whole scene (hands and the four objects on
the table). RGB frames and depth maps were recorded and
processed offline with computer vision tools (that are not
part of i-GRIP, but upstream of it) to extract the hands’
and objects’ observations i-GRIP takes as inputs. Hands
3D positions were estimated using mediapipe [7] and depth
maps. Objects 6D poses were estimated using a version of
CosyPose [6] trained on the YCB dataset [4]. Video trials for

Fig. 2. Bleach bottle from YCB set [4] (left) and a visualization of the
corresponding grip selection process (right). Transparent grey volume is the
bounding cylinder of the mesh. Red arrow figures the z-axis of the object’s
frame. The yellow zone illustrates the z-values corresponding to a palmar
grip, while the green zone and outwards correspond to a pinch grip.

which hands or object detections were not successful enough
were excluded from the study.

III. RESULTS

i-GRIP successfully identified the target in 89.9% of the
recorded movements and selected the correct grip in 94.8%
of them. Targets were identified within a mean delay of
0.52s and grips within a mean delay of 0.39s, leaving
mean temporal margins before the end of the movement of,
respectively, 0.67s and 0.80s.

IV. CONCLUSION

i-GRIP effectively identified the target of grasping move-
ment and selected appropriate grips within less than half the
mean duration of movements, regardless of the experimental
conditions (camera placement and movement type). Further
studies must assess i-GRIP’s effectiveness in real-life scenar-
ios, pathologies, and assistive devices and possibly fine-tune
its parameters accordingly.
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