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Abstract—In this study, we introduce a novel technique that
incorporates an MCMC-based algorithm within a Bayesian
framework to estimate the parameters of trainable activation
functions and model weights in deep neural networks. This
approach aims to enhance network performance by effectively
tackling the challenges of parameter learning and reducing the
risk of overfitting. Our method leverages an efficient sampling
process to accelerate convergence times. The efficacy of the
proposed activation function is demonstrated through experi-
ments on two datasets within the remote sensing domain. These
experiments reveal that our approach enables neural networks to
achieve high levels of accuracy, reaching up to 92%, while keeping
the model complexity low. This suggests that the proposed method
could offer significant benefits for deep learning applications,
particularly in fields requiring precise and reliable predictive
modeling.

Index Terms— M CMC, ns-HMC, Activation function, Deep
neural networks, Optimization

I. INTRODUCTION

The field of remote sensing stands at the forefront of
machine learning advancements, serving as a critical arena
for the application of Convolutional Neural Networks (CNNs)
[1–3]. These networks have profoundly transformed our
capability to analyze and interpret the intricate details
of high-dimensional satellite imagery. Such analyses are
indispensable for a myriad of applications, including but not
limited to environmental monitoring, urban planning, and
agricultural management. The remarkable success of CNNs
in these areas underscores the importance of sophisticated
computational techniques in deepening our understanding of
and interaction with the Earth’s surface.
CNNs have significantly altered machine learning by
simplifying complex data into digestible, low-dimensional
outputs via hierarchical layers that systematically abstract
data for improved pattern recognition. The activation function,
a core element of CNNs, provides the necessary non-linearity
to capture complex relationships in data. The pursuit of the
optimal activation function, from fixed to trainable types,
underscores the ongoing evolution in neural network research
[4].
Within this context, Bayesian methods, particularly Markov
Chain Monte Carlo (MCMC) techniques [5, 6], have become
prominent for their robustness in integrating prior knowledge
with empirical data, offering a nuanced approach to complex
data challenges. These methods facilitate more efficient

optimization in neural networks compared to traditional
approaches.
This paper contributes to the field by introducing an
MCMC-based model for estimating the parameters of a
trainable activation function and model weights, extending
our previous research on non-smooth Hamiltonian methods
for fitting sparse neural networks [7, 8]. Our model enhances
sampling efficiency, even with non-differentiable energy
functions from sparse regularization.
The document is organized as follows: The problem statement
is outlined in the initial section. The hierarchical Bayesian
model employed is described in detail (Section III), followed
by the development of our proposed Bayesian inference
scheme (Section IV), and its empirical validation using
datasets in the realm of remote sensing (Section V). The
conclusion summarizes our findings and outlines potential
directions for future research (Section VI).

II. PROBLEM FORMULATION

Activation functions are pivotal in neural networks, adopting
various forms such as conventional ones like the sigmoid
[9], hyperbolic tangent (tanh) [10], and ReLU [11], alongside
trainable versions such as FReLU [12] and MeLU [13], which
adjust their parameters through gradient descent. Addition-
ally, non-traditional approaches like the Maxout network [14]
broaden the scope of neural computation beyond standard
paradigms.
However, these methods face challenges including extensive
computational demands and the issue of vanishing gradients,
which may cause models to get trapped in local optima,
adversely affecting their performance [15]. The adaptability
of these functions and the accuracy of parameter estimation
remain unresolved questions.
In our work, we propose a refined version of the MeLU [13]
activation function, incorporating its parameter optimization
within a comprehensive Bayesian optimization framework.
This approach is motivated by MeLU’s notable efficiency and
its potential for encouraging sparsity. Nonetheless, the primary
drawbacks of the MeLU function include its computational
intensity and significant memory usage.
To mitigate these issues, we introduce the Modified Mexican
ReLU (MMeLU) activation function, designed to simplify the
complexity and enhance the performance of models. MMeLU
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necessitates a reduced number of parameters for estimation
compared to MeLU, and it is optimized through a Bayesian
framework known for its precision and rapid convergence [7].
We now proceed to define the MMeLU function. The formula

fγ,b(x) = max(b− |x− γ|, 0). (1)

describes the calculation within a neural network layer, where
x represents the input, and γ, b are parameters represented by
real numbers. The MMeLU activation function, incorporating
this calculation, is expressed as:

MMeLU(x) = ReLU(x) + c fγ,b(x). (2)

with c being another real number parameter alongside γ and
b, all of which are to be optimized.
Building upon our preceding contributions [8], this research in-
troduces an innovative trainable activation function, MMeLU,
which along with the network’s parameters, is optimized
within a Bayesian framework, diverging from conventional
methods such as the ADAM optimizer. This novel approach,
detailed in our recent work, leverages the non-smooth Hamil-
tonian Monte Carlo algorithm for the sparse optimization of
neural network weights [7, 16], offering applications not only
in classification tasks but also in regression scenarios aiming
to delineate and predict the dynamics between dependent and
independent variables.
In this context, the objective is to determine the weights vector
W ∈ RN that minimizes the quadratic error across M input
data points during the training phase, as articulated by the
optimization problem:

Ŵ = argmin
W

L(W )

= argmin
W

M∑
m=1

∥MMeLU(xm;W )− y(m)∥22 + λ∥W∥1,

(3)

where λ is a regularization coefficient fine-tuning the
trade-off between fitting the model to the data and enforcing
sparsity through ℓ1 regularization.

III. HIERARCHICAL BAYESIAN MODEL

This section delves into the Bayesian estimation approach
for the parameters of the trainable activation function. Within
this Bayesian context, both parameters and hyperparameters
are treated as random variables, each adhering to specific
probability distributions. A likelihood distribution is devised
to encapsulate the relationship between the data, the activation
function parameters, and the target weights. Simultaneously,
a prior distribution is established to integrate existing
knowledge about the weights and parameters of the activation
function.

A. Likelihood Formulation

The error minimization between the reference vector y (be
it labels or continuous values) and its prediction ŷ is based on
the premise that a quadratic loss function implies a Gaussian
noise model between the true values and their estimates.
Consequently, the likelihood function is formalized as:

f(y;W, c, γ, b, σ2) ∝ ×
M∏

m=1

exp

(
− 1

2σ2
∥MMeLU(xm;W )− y(m)∥2

)
. (4)

where σ2 represents the variance, a parameter to be deter-
mined.

B. Prior Distributions

The model encapsulates unknown parameters within the
vector θ = {W, c, γ, b}, for which we establish prior
distributions.

For the Weight Vector W :
A Laplace distribution is selected to encourage sparsity in the
neural network’s weights:

f(W ;λw) ∝
N∏

k=1

exp

(
−|W [k]|

λw

)
, (5)

where λw is a hyperparameter that controls the distribution’s
spread. W [k] is the weights vector of the kth layer of the
network.

For Parameters c, λ, and b:
Each of these parameters is also governed by a Laplace
distribution, promoting values near zero to ensure model
simplicity and robustness:

f(c;λc) ∝ exp

(
−|c|
λc

)
. (6)

and similarly for γ and b with their respective hyperpa-
rameters f(γ;λγ) and f(b;λb). These hyperparameters can be
finely tuned or estimated from the data, allowing for a flexible
modeling approach.

IV. BAYESIAN INFERENCE SCHEME

Adopting a Maximum A Posteriori (MAP) framework ne-
cessitates articulating the conditional posterior distribution.
With the target parameter vector θ = {W, c, γ, b} and
hyperparameters vector Φ = { σ2, λc, λγ , λb, λw}, the joint
posterior is derived from the established likelihood and priors.
For a detailed formulation, refer to [8].
The conditional posteriors for W , c, γ, and b involve expres-
sions that combine data fitting with regularization enforced
by the respective hyperparameters. The expressions detail the
integration of model outputs with prior beliefs, promoting
sparsity and model fidelity. For W , the posterior incorporates
an energy function Ek

θ (W ), balancing data fidelity against a
regularization term, akin to the formulation in [8].
Our approach utilizes the Metropolis-Hastings algorithm
alongside a non-smooth Hamiltonian Monte Carlo (ns-HMC)
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method for sampling, developed in [16], which refines tradi-
tional techniques for increased efficiency in parameter esti-
mation. This sophisticated sampling framework, grounded in
recent advancements, facilitates precise adjustment of model
parameters through an iterative process, ensuring convergence
to optimal solutions. The iterative sampling process is encap-
sulated in the Gibbs sampler algorithm, which systematically
updates each parameter set until convergence is reached. This
process is streamlined as follows: The resulting Gibbs sampler
is summarized in Algorithm 1.

Algorithm 1: Main steps of the proposed method.

- Fix the hyperparameters Φ ;
while not convergence do

- Sample c according to f(c;α, λc) ;
- Sample γ according to f(γ;α, λγ) ;
- Sample b according to f(b;α, λb) ;
- Sample W as in [8] ;

end

V. EXPERIMENTAL VALIDATION

To assess the effectiveness of the proposed approach, we
conducted image classification experiments using two distinct
datasets: one comprising satellite imagery for land cover
classification and another focusing on Brazilian Coffee Scenes.
These datasets were chosen to showcase the method’s versa-
tility and robustness across different types of remote sensing
data.
To benchmark our method with existing techniques, we em-
ployed four well-known activation functions in conjunction
with the ADAM optimization algorithm [17], setting the
learning rate to 10−3. These activation functions include
ReLU [11], FReLU [12], ELU [11], and MeLU [13], allowing
for a comprehensive comparison across various models to
demonstrate the superiority of our modified approach in terms
of performance and efficiency. To perform the classification
task, the CNN architecture employed in this study has nine
convolutional (3XConv-32, 3XConv-64, and 3XConv-128) and
three fully connected (FC-128, FC-64, and FC-softmax). Each
convolutional layer includes filters with 3 × 3 Kernels in
addition to 2× 2 max-pooling layers, with stride size equal to
1. In addition, two regularisation techniques are used: Batch
Normalization and Dropout (the dropout rate is set by cross-
validation to p = 0.35).

A. Sampling Results :

Following the application of our Bayesian optimization
technique for training Convolutional Neural Network (CNN)
models for Covid-19 CT image classification, we evaluated
the convergence patterns. The graphs displayed illustrate the
progression of sampling for the γ, b, and c parameters within
the proposed MMeLU activation function, showcasing both
the sampling paths and the distribution of samples through
histograms. These visual representations (sampling paths

for γ, b, and c in panels a-c and their histograms in panels
d-f) underscore the efficient convergence and robust mixing
achieved by our tailored Gibbs sampling method. Notably,
post a preliminary phase of 350 iterations, the algorithm
demonstrates consistent convergence stability and an effective
mixing rate across the parameter samples.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Sampling of parameters c (a,b), b (c,d), and γ (e,f): chains and
histograms.

B. Experiment 1 : Satellite Image Classification

This section assesses the performance of our classification
methodology using the RSI-CB256 dataset, which comprises
four categories of satellite imagery sourced from various
sensors and Google Maps 1. With 5631 images, the dataset
represents a significant challenge for machine learning
models. Our goal is to demonstrate the effectiveness of our
approach in accurately classifying these images, highlighting
its capability to contribute to advancements in remote sensing

1https://www.kaggle.com/datasets/mahmoudreda55/satellite-image-
classification/data
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as well as in various other application areas.
The outcomes in Table I suggest the proposed method exhibits
a slight superiority in terms of accuracy when compared
to conventional activation functions, albeit the differences
are modest. Notably, the proposed method outperforms
its competitors significantly in computational efficiency,
as indicated by the shorter processing times. While the
improvements in loss and accuracy are marginal, the enhanced
computational time highlights the method’s efficiency. This
slight edge in performance metrics, particularly in a task of
this complexity, emphasizes the proposed method’s capability
to balance accuracy with computational demands effectively.

TABLE I
EXPERIMENT 1: RESULTS FOR SATELLITE IMAGE CLASSIFICATION

(COMPUTATIONAL TIME IN MIN, ACCURACY, LOSS).

Activation function Time(min) Loss. Acc.
MMeLU 401 0.10 0.97
ReLU 455 0.16 0.95
ELU 485 0.19 0.93
FReLU 475 0.13 0.96
MeLU 508 0.10 0.96

Figure 3 shows examples from each of the four classes along
with their detection scores using our MMeLU approach, with
probabilities ranging from 94% to 97%. This demonstrates
our method’s ability to accurately classify satellite images
across various categories. It especially shows promise for
applications such as agriculture and crop management, where
precise image classification is crucial.

C. Experiment 2 : Brazilian Coffee Scenes classification

This section evaluates our classification method on the
Brazilian Coffee Scenes Dataset [18], which is comprised of
two classes: coffee and non-coffee, containing 2876 images
captured by the SPOT sensor in 2005 across four counties
in the State of Minas Gerais, Brazil: Arceburgo, Guaranesia,
Guaxupé, and Monte Santo. This dataset features multispectral
high-resolution scenes of coffee crops and non-coffee areas,
presenting significant intraclass variance due to different crop
management techniques, as well as scenes with varying plant
ages and/or spectral distortions caused by shadows.
Table II suggests that the performance of all competing
activation functions on the Brazilian Coffee Scenes
classification dataset was suboptimal. However, MMeLU
emerged as the superior option, achieving an accuracy
of up to 92%. Furthermore, our proposed approach also
demonstrated reduced computational time relative to other
methods, reinforcing its effective performance.

Figure 3 displays three images for each category—Coffee
and Non-Coffee—complete with their detection scores.
In this experiment, our MMeLU approach exhibits good
performance, with all probability scores exceeding 95%.
These results not only underscore the method’s robust

(a): Cloudy (94%) (b): Cloudy 1 (95%)

(c): Desert (96%) (d): Desert 1 (94%)

(c): Green area (96%) (d): Green area 1 (94%)

(c): water (96%) (d): Water 1 (94%)
Fig. 2. Experiment 1: Two Examples of Images for Each Class with Their

Reported Detection Scores.

TABLE II
EXPERIMENT 2: RESULTS FOR BRAZILIAN COFFEE SCENES

CLASSIFICATION (COMPUTATIONAL TIME IN MIN, ACCURACY, LOSS).

Activation function Time(min) Loss. Acc.
MMeLU 157 0.20 0.92
ReLU 185 0.35 0.83
ELU 193 0.47 0.79
FReLU 206 0.30 0.85
MeLU 229 0.29 0.87
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capability in accurately distinguishing between coffee and
non-coffee satellite images but also demonstrate its potential
for enhancing precision in agricultural monitoring and land
use classification.

(a): Coffee 1 (90%) (b): Coffee 2 (91%)

(c): Coffee 3 (90%) (d): NonCoffee 1 (92%)

(e): NonCoffee 2 (90%) (f): NonCoffee 3 (90%)
Fig. 3. Experiment 2: Three Examples of Images for Each of the Two

Classes, Coffee and Non-Coffee, with Their Reported Detection Scores.

VI. CONCLUSION

This study introduces a Bayesian approach designed for
sparse deep neural networks, incorporating trainable activation
functions through the application of Hamiltonian dynam-
ics and non-smooth regularization techniques. The method
achieves notable classification accuracy, superior generaliza-
tion capabilities, and reduced computational time in com-
parison to traditional models employing different activation
functions and standard optimization methods.
Looking ahead, our research will aim to enhance the proposed
algorithm by enabling parallel processing and GPU support,
which is expected to further reduce computational times.
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