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ABSTRACT 

This paper proposes a novel approach to 3-D microwave imaging using dynamic metasurface antennas in a multistatic 
configuration. By introducing a panel-to-panel model and a preprocessing technique, raw measurements are converted 
into the space-frequency domain for efficient data acquisition and reconstruction. Adapting the range migration 
algorithm in this work enables fast Fourier-based image reconstruction. Simulation results showcase the effectiveness of 
the proposed method, highlighting its potential for real-world applications. 

Keywords: Adapted range migration algorithm, dynamic metasurface antennas, near-field multistatic microwave 
imaging, 3-D image reconstruction 

 

1. INTRODUCTION 

Microwave imaging plays a crucial role in various applications such as biomedical diagnostics, concealed weapon 
detection and nondestructive testing [1-5]. Traditional imaging systems often rely on mechanical or electronic raster 
scans (by sequentially switched arrays), which can be slow and power-hungry [6]. Dynamic metasurface antennas 
(DMAs) [7] offer a promising alternative due to their small form-factor, reduced power consumption, and ease of 
fabrication [8, 9]. However, the unique radiation patterns of DMAs pose challenges for fast Fourier-based image 
reconstruction algorithms [10, 11] due to physical layer compression [12]. An effective solution for this issue, using sub-
wavelength sampling of the aperture, is detailed in [13-16], which outlines how measurements can be expressed in the 
spatial domain. These studies employ a panel-to-probe model, utilizing a single 1-D DMA on the transmitter (TX) side 
and a rectangular waveguide probe (point source) on the receiver (RX) side. In this configuration, either the TX DMA or 
the RX must physically move to create a large effective aperture and capture 2-D/3-D images of the scene from the 
collected data. However, this approach lowers data acquisition rates and is not suitable for real-time applications. 

Although the approach presented in [17] provides a panel-to-panel model with full electronic scanning, it is limited to a 
bistatic structure. In this paper, we introduce a panel-to-panel model by employing DMAs in a more general imaging 
structure (i.e. multistatic) to address the challenges mentioned above. We present a preprocessing technique to convert 
raw measurements into the space-frequency domain, enabling efficient data acquisition and reconstruction. By adapting 
the range migration algorithm (RMA) to the imaging system configuration, we achieve 3-D image reconstructions with 
fast Fourier calculations. Key contributions include introducing a panel-to-panel model in a multistatic structure, 
presenting a preprocessing technique with data collected from all channels, and deriving a mathematical solution for 
scene image reconstruction based on fast Fourier computations. The effectiveness of the proposed method is investigated 
and discussed through numerical simulations. 

The rest of this paper is organized as follows. Section 2 covers the proposed approach, detailing the system model, 
preprocessing procedure and 3-D image reconstruction algorithm. Section 3 presents and discusses the simulation results. 
Finally, Section 4 offers the conclusion. 
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Notation: Throughout the paper, superscripts ( )T⋅ and ( )†⋅  represent the transpose and pseudo-inverse, respectively. The 

symbols j , δ  denote the imaginary unit and Dirac delta function, respectively. 

2. PROPOSED APPROACH 

Figure 1 depicts a general layout of the proposed multistatic imaging system. This system uses TN  DMAs for 

transmission along the horizontal x -axis and one DMA for reception along the vertical y -axis. Each TX and RX DMA 

is a 1-D array with 
x

N  and 
y

N  metamaterial elements, respectively, with 
x

d  and 
y

d  inter-element spacing. The 

metamaterial elements are loaded with reconfigurable structures, such as PIN or varactor diodes, to control their 
radiation characteristics [18]. The system varies the radiation patterns by adjusting the operating frequency f  [19-21] 

and/or tuning the voltage of the diodes, which randomly activates or deactivates the metamaterial elements to create 
different masks [22]. Each TX DMA can generate multiple measurements by cycling through TM  masks. Objects in the 

scene scatter the incident fields, which are then detected by the RX DMA with RM  masks. The number of masks 

influences the system’s diversity and complexity [23]. 

 

Figure 1. The general layout of the proposed multistatic imaging system. 

The measurement signal can be represented as [23] 
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     (1) 

where dV dxdydz=  denotes a small volume element made of space intervals dx , dy  and dz  in the directions x , y  

and z , respectively, 1 Tl
y y ld= +  is the vertical position of the l -th Tx, ρ  is the target reflectivity [24], and r

�
 is the 

position vector to a point in the scene. U  and U ′  are the radiated fields from the TX and RX apertures, which are 
superpositions of the fields from all metamaterial elements, and are calculated by (2) from [23]. 

The measured signal on the aperture plane, expanded in terms of fields associated with all masks, is [23] 

 ( ) ( ) ( ) ( ), , ,
1 1
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where ( ), ,
l i i

s x y f′  represents the incident field at the location of the l -th TX, and 
i

x  and 
i

y ′  correspond to the 

positions of TX and RX, respectively. The fields over the aperture corresponding to the masks, ,l m
Φ  and 

m′′Φ , are a 

function of wave impedance in free space, guided magnetic field, polarizability and propagation constant of the 
waveguide, the details of their calculation are given in [22, 25]. 



 
 

 

 

 

 

Assuming orthogonal aperture modes [23] 
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With dynamic modulation of the aperture using different masks, the measurement signal can be transformed and 
estimated as [22] 
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This allows fast Fourier calculations for data processing, expressed in matrix form as [26] 

 ( ) ( ) ( ) ( )( )†† .T

l l lf f f f′s Φ g Φ≃      (6) 

By using the system geometry and 3-D Fourier transforms, the signal in the wavenumber domain is [23] 
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where 2k f cπ= , c  denotes the speed of light, and K  is the filtering factor in the Fourier domain [23]. Finally, by 

performing Stolt interpolation and applying inverse Fourier transforms, the reflectivity ( ), ,x y zρ  can be recovered [23, 

26]. 

Note that in conventional systems with independent antennas, the field is described by Green’s function, while DMAs 
encode scene information through their random transfer function, eliminating the need for point-by-point sampling but 
requiring more complex signal descriptions. The preprocessing in (6) transforms DMA measurements into data 
equivalent to that from traditional antenna arrays. 

3. SIMULATION RESULTS AND DISCUSSION 

In this section, the performance of the proposed approach is evaluated using numerical simulations conducted in 
MATLAB. The simulations were carried out on a system running MATLAB R2020b on a 64-bit Windows 11 operating 
system, equipped with 16 GB of random-access memory and a Core-i7 processor clocked at 2.8 GHz. The data used in 
the numerical examples were generated using the model described in (1), under the first Born approximation [27]. The 
simulation parameters are listed in Table 1, where λ  denotes the wavelength corresponding to the highest frequency in 
free space, fN  indicates the number of frequency samples, 0z  is the target range. 

Table 1. The values of the main simulation parameters. 

Parameter 
x yN N=  TN  x yd d=  Td  T RM M=  f  fN  0z  

Value 105 3 2λ  26λ  105 17.5-22 GHz 51 0.5 m 
 

Before reconstructing the image, it is important to verify the condition outlined in (3) and (4). Figure 2 displays the 
aperture field matrices 1Φ , 2Φ , 3Φ  and ′Φ  at 22 GHz for a random scenario where half of the elements in each mask 

are randomly activated. Figures 3(a)-3(d) depict †
1 1Φ Φ , †

2 2Φ Φ , †
3 3Φ Φ  and ( )†

T T′ ′Φ Φ  at 22 GHz, respectively, 

showing that it satisfies conditions (3) and (4), making it viable for the preprocessing step. In addition, Figures 3(e) and 
3(f) show †

1 2Φ Φ  and †
1 3Φ Φ  at 22 GHz, respectively. The non-orthogonality between the aperture field matrices 

corresponding to different TXs is the key property used in [23] to recover contributions of TXs in a scenario where they 
transmit simultaneously. Similar analyzes can be performed for other frequencies. 
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Figure 2. The aperture field matrices at 22 GHz for a random scenario; (a) 1Φ , (b) 2Φ , (c) 3Φ , (d) ′Φ . 
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Figure 3. Checking the orthogonality between the aperture field matrices at 22 GHz; (a) †
1 1ΦΦ , (b) †

2 2Φ Φ , (c) †
3 3Φ Φ , (d) 

( )†
T T′ ′Φ Φ , (e) †

1 2ΦΦ , (f) †
1 3ΦΦ . 

For further study, we calculated the average value of condition number r , which is defined as the ratio of the largest to 
the smallest singular values of the aperture field, in 1000 independent experiments for different numbers of masks and 
percentage of active elements (denoted by P ). Ideally, the condition number should be 1, suggesting a flat singular 
value decomposition pattern [28, 29]. This would mean that the orthogonality of the measurement modes is perfect. The 
results, shown in Figure 4, indicate that as P  increases, the value of r  also increases, meaning lower percentages of 
activated metamaterial elements provide more reliable orthogonality conditions [22]. However, fewer activated elements 



 
 

 

 

 

 

also result in lower radiated power, leading to a reduced signal-to-noise ratio [22]. Therefore, a moderate P  value (with 
half the elements activated) offers a balanced trade-off between orthogonality and noise robustness. 

 

Figure 4. The average value of r  in 1000 independent experiments in the case of 1Φ  at 22 GHz. 

Now let us examine the performance of the image reconstruction algorithm. A 3-D distributed target (scissors) is 
considered in the near-field [30] scenario (see Figure 1). Figure 5 shows the successfully reconstructed image of the 
target using the proposed approach. The total computational time for implementing the image reconstruction algorithm is 
13.33 seconds. The main steps of implementing the algorithm, including a preprocessing operation to convert the raw 
measured data to the spatial-frequency domain, fast Fourier transform (FFT), 4-D to 3-D Stolt interpolation and inverse 
FFT, take 11.71%, 4.8%, 83.05% and 0.44% of the total computing time, respectively. As can be seen, most of the 
computational burden is related to the Stolt interpolation step. Note that the computational time of the proposed approach 
is much less compared to algorithms such as least squares, matched filtering and generalized synthetic aperture focusing 
technique [31]. For more details on the comparison of computational times and computational complexities, see [23]. 

 

(a) (b) 

Figure 5. The reconstructed image using the proposed approach; (a) mesh surface plot focused on 0 0.5mz =  (colorbar is on 

the dB scale and represents the normalized reflectivity magnitude), (b) isosurface with 3-D view (colorbar is range-coded, 
representing the distance). 

4. CONCLUSION 

In this paper, we presented a novel approach to 3-D microwave imaging utilizing DMAs in a multistatic configuration. 
Our method introduces a panel-to-panel model that significantly improves data acquisition efficiency and enables fast 
Fourier-based image reconstruction. By employing a preprocessing technique to convert raw measurements into the 
space-frequency domain and adapting the RMA for this configuration, we demonstrated an effective 3-D image 
reconstruction. The simulation results validated the proposed method’s efficacy, showing that it achieves accurate 
imaging with low computational time. This approach opens new avenues for real-time, high-resolution imaging in 



 
 

 

 

 

 

various applications, including security screening and biomedical diagnostics. Future work will focus on further 
optimizing the system for real-world deployment. 
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