

Quantum effects in sonochemistry

Sergey I. Nikitenko, Sara El Hakim, Tony Chave

▶ To cite this version:

Sergey I. Nikitenko, Sara El Hakim, Tony Chave. Quantum effects in sonochemistry. ESS18 - 18th Meeting of the European Society of Sonochemistry, May 2024, Louvain, Belgium. hal-04705994

HAL Id: hal-04705994 https://hal.science/hal-04705994v1

Submitted on 23 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Magnetic Nitinol: New Efficient Photothermal Catalyst

Sergey Nikitenko, Sara El Hakim, Tony Chave

ICSM, Marcoule, France

serguei.nikitenko@cea.fr

www.icsm.fr

August 10-12, 2023, UCLA

Ascending photothermal catalysis

Preparation of cost-effective photothermal catalysts from earthabundant elements is of prime importance for heterogeneous catalysis driven by concentrated solar light

D. Mateo et al. Chem. Soc. Rev., 2021, 50, 2173-2210 X. Cui et al. Chem. Rev. 2023, 123, 6891

Nitinol as a photothermal catalyst?

Nitinol, NiTi, is a famous shape-memory alloy widely used in medicine, aerospace industry, instrumentation etc.

But what about the catalysis with NiTI?

NiTi NPs

Particle size 20-100 nm, ≈ 2-4 nm passivation layer: [TiO₂]>[NiO] (XPS data)

Preparation of core-shell-satellite NiTi@TiO₂/Ni nanoparticles

✓ Sonohydrothermal (SHT) treatment of pristine NiTi NPs in pure water (200°C, autogenic pressure P= 14 bar, US: 20 kHz, P_{ac}=17 W, t = 3 h)

Rietveld refinement of the PXRD data

Sample mol % (±10 %) NiTi Ni₃Ti Ni TiO₂ NITI cubic monoclinic NiTi 91 5 4 NiTi@TiO₂/Ni 31 <1 35 34

The SHT treatment leads to the appearance of metallic Ni and anatase TiO₂ indicating non-congruent oxidation of nitinol in hydrothermal water

HRTEM/EDX images of NiTi@TiO₂/Ni NPs

Ultra-micro tomographic image/EDX mapping of NiTi@TiO₂/Ni NPs, Ni (blue) and Ti (green)

Ni NPs (\approx 20 nm) are attached onto TiO₂ shell forming core-shellsatellite structure

Magnetic properties

Magnetization curves for NiTi and NiTi@TiO₂/Ni NPs measured at room temperature

- Pristine NiTi NPs show very low magnetization
- NiTi@TiO₂/Ni NPs are ferromagnetic ($M_s = 9 \text{ emu} \cdot g^{-1}$)

Optical spectra

UV/vis/NIR absorption spectra of NiTi and NiTi@TiO₂/Ni NPs (100 ppm) in water (I = 1 cm)

- ✓ NiTi: UV-NIR broad continuum of interband/intraband transitions
- \checkmark NiTi@TiO₂/Ni: peaks at 270 and 310 nm are ascribed to Ni SPR and TiO₂ bandgap

Photothermal and photocatalytic experiments

✓ <u>Solutions</u>: 100 ppm of NiTi or NiTi@TiO₂/Ni NPs dispersed in 1M Glycerol

Experimental conditions:

- Glass-made continuos Ar-flow thermostated cell T= 30-100°C
- V= 50 mL (I = 3 cm)
- Xe lamp: 400-1100 nm: 8.9 W 300-420 nm: 0.6 W
- Online mass spectrometric analysis of the outlet gases

Light-to-heat conversion

NiTi and NiTi@TiO₂/Ni NPs show strong and very similar heat generation capacity under light exposure indicating that self-heating is determined by the metallic core

Photocatalysis under self-heating

100 ppm of catalyst, 1M Glyc, Xe lamp, steady-state temperature 75 °C

- Upon light exposure the concentration of H₂, CH₄, and CO₂ gradually increases with temperature rise reaching a steady state value simultaneously with that of temperature
- Heating at 75 °C under dark conditions does not lead to gaseous products formation indicating the photonic origin of the process
- CO is not formed

Photocatalysis under self-heating

Product	E _a , kJ mol ⁻¹
H ₂	19±2
CO ₂	16±2
CH ₄	59±6

At 30-90 °C kinetics follows Arrhenius law

- Global photocatalytic activity: NiTi@TiO₂/Ni >> NiTi ≈ TiO₂
- NiTi@TiO₂/Ni: [H₂] >> [CH₄] > [CO₂]
- NiTi : [CH₄] > [H₂] ≈ [CO₂]
- $TiO_2: [H_2] > [CO_2] > [CH_4]$

 $\mathsf{E}_{\mathsf{a}}(\mathsf{CH}_4) > \mathsf{E}_{\mathsf{a}}(\mathsf{H}_2) \approx \mathsf{E}_{\mathsf{a}}(\mathsf{CO}_2)$

- First step: formation of H₂ and CO₂
- Second step: CO₂ methanation

H/D KIE in CH₄ formation

Equimolar H_2O/D_2O mixture:

 $H_2O + D_2O \rightleftharpoons 2HDO, K_{eq} = 3.4$

- 5 isotopic species CH_xD_y, with domination of CH₂D₂
- H/D ratio in released methane is close to HDO in agreement with light-driven CO₂ methanation mechanism

Suggested overall mechanism

Concluding remarks

- "Magnetic nitinol" exhibits unique set of properties: strong capability of heat generation under light irradiation, good magnetization, remarkable thermally assisted photocatalytic activity, and high stability
- Noncongruent surface oxidation of nanoalloys paves the way to the preparation of new generation of catalysts with advanced photothermal properties

Acknowledgements

Xavier Le Goff – ICSM Valérie Flaud – University of Montpellier Corine Reibel – University of Montpellier

Thank you!