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Abstract. Recent studies in earthquake engineering have outlined the difficulty of ground response 

analyses (GRAs) to replicate the observed ground motion and related variability at borehole array sites. 

Improvement of the seismic site response estimation requires accounting for and propagating the 

uncertainties in local soil conditions into surface ground motion. Uncertainties in site conditions arise 

from a number of factors, among which the uncertainties in the shear-wave velocity (VS) that are mainly 

caused by the natural spatial variability of soils and rocks. 

In this paper, a novel VS randomization approach is proposed to propagate the small-scale spatial VS 

heterogeneities into samples of VS profiles within a non-stationary probabilistic framework, to be further 

used in 1-dimensional (1D) GRAs. The non-stationary approach is based on partitioning a borehole 

base-case VS profile into several locally stationary layers. The proposed approach was applied at three 

European sites exhibiting different subsurface soil conditions. Compared with both the classical 

stationary and an approach from the literature for VS randomization, the proposed approach provides a 

set of VS profiles fully consistent with the pseudo-experimental site signatures in terms of surface-wave 

dispersion curves, fundamental and higher mode resonance frequencies and site amplification. This 

paper also outlines the importance of the method used to measure VS profile in both the estimation of 

depth-dependent variability of VS at a given site and the prediction of site response variability. DOI: 

10.1061/JGGEFK.GTENG-11884. 

© 2024 American Society of Civil Engineers. 

 Keywords: geotechnical earthquake engineering, spatial variability, uncertainty, seismic site response, 

shear-wave velocity randomization, random fields. 
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Introduction 

In geotechnical earthquake engineering, seismic site response analysis has become an essential 

requirement to quantify the seismic hazard level and the associated damage for most projects, 

particularly those dealing with critical facilities and high-priority lifelines. In a typical scenario, the 

prediction of the one-dimensional (1D) seismic site response consists of vertically propagating the 

seismic shear waves through horizontally stacked and laterally infinite homogeneous soil layers until 

reaching the soil surface (Kramer 1996). Despite the wide application of this approach to estimate the 

surface ground motion, still, numerous studies confirmed that the predicted site response rarely matches 

the recorded ground motion at most borehole array sites (e.g., Thompson et al. 2012; Kaklamanos and 

Bradley 2018; Laurendeau et al. 2018; Pilz and Cotton 2019; Tao and Rathje 2020). The main 

limitations in this deterministic prediction lie in assuming 1D wave propagation together with over-

simplification of the dynamic soil properties that do not allow the full complexity of the seismic 

wavefield (diffracted body and surface waves, seismic waves mode conversion, scattering, etc.) to be 

simulated (Thompson et al. 2009; Li and Assimaki 2010; Zalachoris and Rathje 2015; Kaklamanos and 

Bradley 2018). In reality, our knowledge of the vertical and horizontal spatial soil heterogeneities at the 

local scale (from a couple to tens of meters) is very limited. Failing to carefully account for the soil 

spatial heterogeneities will highly limit the effectiveness of any 1D, 2D, or 3D ground motion simulation 

to reproduce surface ground motion characteristics (e.g. among others, Nour et al. 2003; Thompson et 

al. 2009; Li and Assimaki 2010; Rathje et al. 2010; Pagliaroli et al., 2014; Parolai et al. 2015; Pilz and 

Fäh 2017; El Haber et al. 2019; Tao and Rathje 2019; De Martin et al. 2021; Tchawe et al. 2021; De la 

Torre et al. 2022; Hallo et al. 2022). 

In site response estimation, uncertainties arising from soil conditions are usually classified into two 

main categories: epistemic uncertainty and aleatory variability. Epistemic uncertainties result from the 

lack of sufficient knowledge and measurement errors while aleatory variabilities are the inherent 

variability of soil properties that are caused by natural and complex geological phenomena (e.g., 

erosion, sedimentation, deposition…) and other environmental processes and anthropogenic activities 
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(e.g., urban development, landfilling…) (Phoon and Kulhawy 1999 a&b; Einsele 2000). Uncertainties 

in the description of site conditions exist in characterizing the geometrical site properties (i.e., geologic 

and topographic configurations, sediment-bedrock depth) and the dynamic site properties (i.e., shear-

wave velocity (VS), shear modulus reduction, attenuation). The estimation of these properties and 

particularly VS is highly affected by the natural spatial variability of soils, manifested through multiple-

scale stratigraphic heterogeneities of VS structure. A realistic representation of VS, along with its 

variability, is thus a primary ingredient in any 1D, 2D, and 3D Ground Response Analysis (GRA) 

model. This is only feasible through a proper quantification of VS variability and its propagation into 

samples of VS profiles that are capable of reflecting the true soil behavior with uncertainty consideration. 

Derivation of the VS profile in near-surface geological materials is typically carried out through invasive 

borehole measurement methods (e.g., Down-Hole, Cross-Hole) or active and passive non-invasive 

surface-wave methods (e.g., Socco and Strobbia 2004; Foti et al. 2018). For any performed 

measurement technique, invasive or not, the estimation of VS is influenced by epistemic uncertainties 

and aleatory variabilities that control the heterogeneities in the experimental data and the degree of 

variability expected at a given site (Baise et al. 2011; Thompson et al. 2012). 

Accounting for the variability of VS in 1D site response, is usually done through VS heterogeneities 

propagated into random samples of VS profiles. These samples are subsequently used to perform several 

1D GRAs to replicate the effect of the velocity variability in the average site response prediction and 

related variability. Toro (1995) used an extensive VS database to construct generic and site-specific VS 

randomization models, provided a generic site classification, and a base-case VS profile. This approach 

was broadly used throughout the years, mainly to investigate the effect of VS uncertainty on ground 

motion variability (among others, Li and Assimaki 2010; Rathje et al. 2010; Rodriguez-Marek et al. 

2014). However, such an approach does not necessarily guarantee the experimental site signatures in 

terms of surface-wave dispersion curves and fundamental resonance frequency (f0) to be replicated, as 

recently investigated (Griffiths et al. 2016a&b; Teague et al. 2018), which can potentially lead to 

excessive variability of VS and an overestimation of the expected variability in site response estimates 
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(Teague et al. 2018; Kaklamanos et al. 2020). Passeri et al. (2020) then proposed to randomize the 

cumulative S-wave travel times instead of interval VS profiles to reduce the variability in the generated 

VS samples of the Toro (1995) approach. The authors calibrated the model from a large database of 

surface-wave measurements. The application of this approach at the Mirandola site in Italy provided 

good agreement with the experimental site signatures, although very low levels of variability were 

obtained (Passeri et al. 2020; Toro 2022). Toro (2022) argued that the uncertainties in surface-wave 

methods implemented in such VS randomization approaches (e.g., Teague et al. 2018; Passeri et al. 2020) 

are controlled by the uncertainty in the dispersion curves that is assumed to encompass both epistemic 

uncertainties and aleatory site variabilities. As such, the uncertainty from the non-uniqueness of surface-

wave inversion should be carefully treated to avoid an underestimation of the site response variability 

(Toro 2022). Hallal et al. (2022a) further demonstrated that an increase in the variability level in Passeri 

et al. (2020) is required to appropriately model subsurface VS variability and provided guidelines for 

improved implementation of the travel-time randomization (e.g., bounding layers thicknesses). Toro 

(2022) also proposed to handle the variability in VS as depth-dependent (i.e., decreasing with depth) 

based on recent findings (Garofalo et al. 2016a&b; Shi and Assimaki 2018; Passeri et al. 2020) 

contrarily to the initial proposition in Toro (1995).  

Although the search for reliable and robust VS randomization approaches has rapidly increased in 

recent years (Passeri et al. 2020; Hallal et al. 2021; Vantassel and Cox 2021), most of the existing 

techniques that intend to account for subsurface spatial variability in 1D GRAs have not been thoroughly 

benchmarked at downhole array sites, despite some recent comparison between randomization 

approaches and recorded ground motion (Teague et al. 2018; Kaklamanos et al. 2020; Hallal et al. 

2022b). 

Regardless of the diversity of randomization approaches, the separation between what constitutes 

epistemic uncertainties and aleatory variabilities is often overlooked. The spatial heterogeneities in VS 

structure are the result of natural and complex geological processes, thereby they display variable and 

aleatory properties. In this paper, we focus on this aleatory aspect manifested through the small-scale 
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(few decimeters to tens of meters) spatial heterogeneities of VS. Random variables and random fields 

(RFs) were extensively used in literature to represent small-scale spatial heterogeneities in soil 

properties (e.g., Popescu 1995; Fenton 1999; Phoon and Kulhawy 1999a&b; Griffiths et al. 2009; 

Soubra and Youssef Abdel Massih 2009; Al-Bittar and Soubra 2013). More recently, RFs were used to 

incorporate the spatial heterogeneity of VS in site response estimation (Thompson et al. 2009; Pagliaroli 

et al. 2014; El Haber et al. 2019; Tchawe et al. 2021).  

To build a probabilistic model for VS, the RF is defined by a Probability Density Function (PDF) and 

an Auto-Correlation Function (ACF). In a classical RF theory, the statistical modeling of the spatial 

variability strongly depends on the stationarity of the data collected (Jaksa 1995). Stationarity of a RF 

is guaranteed when the mean and variance of its PDF are constant and the ACF depends only on the lag 

distance between two locations (Vanmarcke 1983). Otherwise, the RF is considered to be non-stationary 

or statistically heterogeneous. Soil properties are in general non-stationary as a result of strong 

geomorphological processes and the increase in confining pressure exerted by the soil mass with 

increasing depth (Einsele 2000). The non-stationarity is further increased by the irregularity of the 

stresses applied on the soil surface and built up by the different deposition conditions (Chenari and 

Farahbakhsh 2015). Therefore, a realistic representation of soil properties must account for their non-

stationary state, contrary to what was often assumed (e. g., Youssef Abdel Massih 2007; Salloum 2015; 

El Haber et al. 2019). 

Over the past years, the non-stationarity of material properties has gained a lot of attention 

particularly in geostatistical and environmental studies (e.g., Kleiber 2016; Montoya-Noguera et al. 

2019) and in geotechnical engineering applications (e.g., Chenari and Farahbakhsh 2015; Chenari et al. 

2018; Jiang and Huang 2018). In these approaches, non-stationarity is typically modeled by multiplying 

a varying standard deviation or variance function by a stationary correlation function. Dividing the 

random process into multiple stationary processes with distinct variance values, allows the process to 

adapt to highly variable material properties. The technique of model decomposition has allowed to 
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transform the non-stationary RF into multiple locally stationary RFs which achieves a more realistic 

representation of material properties.  

The main objective of this work is to properly incorporate the aleatory variability of VS into 1D GRAs 

through a robust yet simple approach that accounts for the non-stationary spatial heterogeneity of VS 

and propagates it into representative samples of VS profiles. The set of randomized VS profiles can then 

be used to perform numerous 1D GRAs to obtain an averaged site response.  

This article starts by introducing the proposed VS randomization approach, employing a non-

stationary probabilistic method to account for the vertical spatial variability of VS structure. Following 

the methodology, we extensively apply the proposed approach to three European sites as part of the 

InterPACIFIC project (Garofalo et al. 2016b). The application presents site response characteristics, in 

terms of site signatures (dispersion curves, resonance frequencies), as well as site amplification obtained 

using the proposed approach. To evaluate modeling accuracy, the results are compared with those 

obtained from both the classical stationary RF approach and the Toro (1995) approach, assessing 

compatibility with several pseudo-experimental site signatures. 

A non-stationary probabilistic approach for VS randomization  

In a probabilistic model, the RF is defined by the PDF and the ACF, as stated previously. The PDF 

of VS describes the distribution of VS data and is defined by a mean value μVs and a standard deviation 

σVs. Here, the ACF gives the values of the correlation function between two arbitrary points at two 

different locations and is completely characterized by the so-called ‘scale of fluctuation’. The scale of 

fluctuation denoted θ is an indicator of the distance within which values of VS are still correlated. Once 

the RF parameters are quantified, one needs to discretize the RF into a finite set of RVs. After the 

discretization step, realizations of the RF may be performed by randomly generating a prescribed 

number of samples (e.g., Al-Bittar et al. 2018; El Haber et al. 2019). 

To properly propagate the spatial variability of VS, the non-stationarity in the RF statistical 

parameters should be properly considered. For this purpose, the stationary RF approach was re-
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formulated in this study to account for the variability of the VS mean and variance with depth. The 

variability in μVs and σVs was introduced through a layering scheme of the original VS profile. In this 

paper, the layering followed the interfaces between the geological formations and was performed by 

adding a new layer at each interface to allow a proper tracking of the vertical spatial variability of VS. 

The selection of the layer thickness is thus controlled by the stratification of the soil deposits while the 

number of layers is related to the level of the lithological heterogeneity expected at the site. This allowed 

the VS data in each layer to be treated as stationary locally. Consequently, the non-stationarity of the RF 

was modeled through multiple small-scale stationary RFs. Each small-scale RF was individually 

quantified and then discretized to estimate VS values at each depth. In the next subsections, the 

quantification of VS variability and the RF discretization are presented.   

Quantification of the VS random field  

The quantification of the spatial variability of VS was performed as follows (Popescu 1995): 

(1) Visually check the available VS data for each layer to remove spurious measurements. A re-sampling 

was required in some cases to achieve a constant step throughout the depth of the profile;  

(2) Check for the presence of a trend in the data (e.g., linear, quadratic). In case a trend is identified, 

apply a detrending process to the measured values. Subsequently, perform a normalization procedure 

by dividing the detrended values by the layer σVs. This results in achieving a zero μ and unit σ random 

process, providing a stationary and homogeneous dataset; 

(3) Compute the ACF defined between two values of VSi measured at zi and distanced by a lag τ as in 

Eq.1: 

                                       𝜌𝜏 =
∑ (𝑉𝑆𝑖

−  µ𝑉𝑆
)(𝑉𝑆𝑖+𝜏

−  µ𝑉𝑆
)𝑛−𝜏

𝑖=1

∑ (𝑉𝑆𝑖
− µ𝑉𝑆

)𝑛
𝑖=1

2   ,   𝜏 = 0,1,2, … , 𝑛 − 1                               (1) 

 

Where n is the number of data measurements in a layer, τ is the lag distance between VSi and VSi+τ    

measured at locations zi and zi+τ, respectively, and μVs is the mean value of VS. 
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Next, the ACF was determined by fitting the obtained experimental curve to theoretical existing ACF 

functions. The best-fitted ACF was selected based on the lowest root-mean-square error (R2) and the 

scale of fluctuation of VS, θ, was determined using the parameters of the fitted ACF.  

(4) Find the PDF of VS and its statistical parameters: μVs, σVs, and a coefficient of variation CoVVs = σVs 

/μVs that quantifies the range of dispersion of the data around its mean. The term σVs is used to define 

the standard deviation of VS data, whereas σlnVs particularly stands for the standard deviation of log-

normally distributed VS data. To avoid any confusion with σVs, the CoVVs representing the percentage of 

VS variability, is typically used here, allowing an easier interpretation of the variability degree. 

Once VS variability was quantified, the resulting PDF and ACF parameters were subsequently used to 

discretize the RF of VS, referred to as RF(VS) hereafter. 

Discretization of the VS random field 

For computational purposes, the RF has to be expressed using a finite number of RVs. This step is 

referred to as RF discretization. Various methods for RF discretization have been published in the 

literature, a comprehensive overview of such methods is given in Sudret and Der Kiureghian (2000). 

The efficiency of a method depends on its ability to approximate the original RF accurately with a 

minimum number of RVS. The Expansion Optimal Linear Estimation method (EOLE) which is part of 

the series expansion methods was used herein since it provides a minimum value for the variance of the 

error using an optimal number of RVs (Li and Der Kiureghian 1993). In this method, a stochastic mesh 

was first defined, and then the auto-correlation matrix Σχ;χ was computed using the fitted ACF. To 

estimate the RF(Vs) at any location z, the EOLE method makes use of the statistical parameters μVs and 

σVs as well as the fitted ACF as follows: 

                                   𝑉̃𝑆 (𝑧) = 𝜇𝑉𝑆
+ 𝜎𝑉𝑆

∑ (
𝜉𝑖

√𝜆𝑖

(𝛷𝑖)
𝑇 ∑ .

𝑉𝑆(𝑧);𝜒

) ,

𝑁

𝑖=1

     𝑖 = 1, … , 𝑁                                   (2) 

 

In Eq. (2), V͠S(z) is the approximation of RF(Vs), ξi is the vector containing independent standard normal 

RVs, λi and Φi are the eigenvalues and eigenvectors, respectively, of the auto-correlation matrix Σχ;χ and 
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ΣVs(z);χ represents the correlation vector between the RF(VS) at the grid points of the stochastic mesh and 

the RF at the arbitrary point z. The series of Eq. (2) was truncated to a number of terms N (expansion 

order), which is smaller than the number of grid points, after sorting the eigenvalues in descending 

order.  This number N should ensure that the variance of the error is smaller than a prescribed threshold 

(between 5 to 10%). The variance of the error on the random field in the EOLE method is given by Eq. 

3: 

 

                                   𝑉𝑎𝑟[𝑉𝑆(𝑧) −  𝑉̃𝑆(𝑧)] = 𝜎𝑉𝑆

2 − ∑
1

𝜆𝑖

𝑁

𝑖=1

((𝛷𝑖)
𝑇 ∑ .

𝑉𝑆(𝑧);𝜒

)

2

                                        (3) 

 

VS(z) and V͠S(z) are the exact and approximate values of the RF(VS) at a given location z. Additional 

details about the EOLE formulation can be found in Peng et al. (2022). A detailed representation of the 

methodology used to quantify and discretize the RF(VS) is schematized in Figure 1. All the RF 

quantification and discretization codes used in this paper are equally provided in a GitLab repository 

with detailed commentary indicated in the Data Availability Statement. 

Application to the InterPACIFIC project sites 

This section presents the application of the proposed non-stationary RF approach to the 

InterPACIFIC project sites. After presenting the three sites, the results of VS variability quantification 

and a description of the RF(VS) discretization are provided.   

Presentation of sites 

The borehole geological and geophysical data used in this study were collected within the 

framework of the InterPACIFIC project (Intercomparison of methods for site parameter and velocity 

profile characterization) (Garofalo et al. 2016a&b). The investigated sites exhibit different subsoil 

conditions:  soft soil, stiff soil, and hard rock. At each site, several VS profiles derived from invasive 

measurements (Cross-Hole, Down-Hole, and P (compression) - S (shear) wave logging§) are available. 
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The first test site is located in Mirandola, Italy on the Po River plain. The boreholes drilled at this 

location revealed a soft alluvial soil overlaying a Pleistocene substratum at 112 meters depth. The 

alluvial deposits are composed of alternating layers of sand and silt clay. The in-hole measurements 

indicated a stiffer layer between 50 m and 150 m depth. The second site is located in the Grenoble’s 

alpine valley (France), in the French Alps. It consists mainly of very deep and stiff alluvial deposits 

composed of a few tens of meters of sand and gravel followed by soft clay that overlay deeper 

Quaternary lacustrine layers of clay and marl. The bedrock is reached at depths between 500 and 800 

meters. The third site is located in Cadarache, South-East of France, on Cretaceous outcropping 

limestone with thin inter-layers of marl and grey up to 50 meters depth. The stratigraphic formations 

from the borehole logs for the three sites are presented in Figure 2. 

Application of the non-stationary probabilistic approach 

From the invasive measurements conducted at each site, six VS profiles were extracted at each 

site following three different in-hole methods:  two Down-Hole (DH, namely DH-NS and DH-EW), 

two Cross-Hole (CH, namely CH1 and CH2), and two P-S suspension logging (PS-SL, namely PS-SL 

S-R1 and PS-SL R1-R2) VS profiles. Figure 3 displays the six VS profiles at each site. It's important to 

note that the majority of borehole measurements reached depths of approximately 112 m, 45 m, and 31 

m in Mirandola, Grenoble, and Cadarache, respectively. Hence, in this study, an imposed seismic 

bedrock depth was fixed at each site following these borehole depths, leading to a fundamental 

resonance frequency of 0.7 to 0.8 Hz, 1.7 to 1.8 Hz, and around 20 Hz for Mirandola, Grenoble, and 

Cadarache, respectively.  

For the application of the proposed non-stationary RF approach, the first step required the 

investigation of stratigraphic logs to define the depths of interfaces between consecutive geological 

formations (Figure 2). Each VS profile was then individually layered following these interfaces, which 

led to 10 identified VS layers in Mirandola, while a total of 8 layers and 4 layers were identified in 

Grenoble and Cadarache, respectively.  
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Quantification of the VS random field 

For all of the 18 VS profiles across the three sites, the variability in each layer was quantified 

according to the steps presented in Section Quantification of the VS Random Field. In each layer, VS 

data were found to be log-normally distributed and their ACF was best fitted to an exponentially 

decaying function. Results of VS quantification, notably the CoVVs, and θ, are presented in Tables 1 and 

2 for Mirandola and in Tables S1, S2, S4 and S5 of Appendices S2 and S3 for Grenoble and Cadarache, 

respectively. The number of measured VS samples used to compute the CoVVs and θ values for each 

layer depends on the layer thickness and the VS profile measurement method. The number of VS samples 

is indicated for each layer and each measurement method in Table 2 for Mirandola and in Tables S2 

and S5 of Appendices S2 and S3 for Grenoble and Cadarache, respectively. Average and standard 

deviation values for CoVVs and θ across the six VS profiles were also computed for each layer in each 

site. At all sites whatever the base-case profile, the CoVVs values exhibit a high variability between the 

various layers. For instance, in Mirandola the CoVVs range between 0.01% to nearly 28% for DH-EW. 

For all sites, the largest CoVVs are generally found in PS-SL VS profiles since this measurement method 

provides a higher vertical resolution compared to DH and CH measurements. Note here that a 

resampling was performed on DH VS profiles across the three sites to achieve a constant VS data step, 

which led to reduced values of DH CoVVs, between 0.6% to 4.2%, on average. For a given layer, the 

difference in the CoVVs measured using different in-hole methods is highlighted in CoV(CoV). Whatever 

the site, the large CoV(CoV) values (that range from about 10-20% to about 90-130%) clearly outline that 

the quantification of VS variability is strongly influenced by the investigation technique. Although θ 

values are also found to vary between different layers for a given borehole and between base-case 

profiles for a given layer, they are more consistent for most of the layers across all the study sites (Table 

1 for Mirandola and Tables S1 and S4 in Appendices S2 and S3 for Grenoble and Cadarache, 

respectively). 
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Discretization of the VS random field 

Using the quantification parameters from each layer, the RF(VS) was then generated for each 

layer separately across all six base-case profiles for the three sites. For the sake of simplicity, a fixed 

value of 2 m for θ was assumed for all layers regardless of the base-case profile. This value reflects 

common vertical correlation distances in soil properties (e.g., Phoon and Kulhawy 1999a&b; El Haber 

et al. 2019; Tchawe et al.  2021) and is in accordance with the mean θ (1.4 m ± 1.1 m) obtained after 

averaging all θ values across all sites. A total number of 200 realizations of RFs were generated in each 

layer of the six profiles and the set of randomized layers were merged to obtain the complete 200 

realizations of VS profiles relative to each base-case profile. The sufficiency of the number of 

realizations was checked through the convergence of μVs and σVs estimators using Haldar and Babu 

(2008) criteria with a 5% convergence rate at all depths. A convergence rate of 5% was reached after 

10 to 15 realizations at all depths of the six tests and three sites. The number of 200 realizations has led 

to a maximum convergence of approximately 1.5% across all cases. Figure 4 shows the 200 sets of 

randomized VS profiles for Mirandola together with the average VS profiles for three of the six 

investigated profiles. The remaining three base-case profiles at Mirandola are presented in Figure S1 of 

Appendix S1. The range of VS values in each layer is directly associated with the CoVVs of the layer 

(Table 2). A high CoVVs such as the case of layer number 8 of the PS-SL S-R1 test (CoVVs = 37.7%) 

leads to a high variability in VS, while lower CoVVs in layers number 7 and 10 in the DH-EW test lead 

to an almost negligible variability. Values of CoVVs across the three sites are compatible with typical 

values found in the literature (Garofalo et al. 2016a; Shi and Assimaki 2018; Toro 2022). This level of 

vertical VS variability is expected to be more pronounced than the lateral variability due to deposition 

conditions on the soil surface (DeGroot 1996; Phoon and Kulhawy 1996; Assimaki et al. 2003). For 

Grenoble and Cadarache, the randomized VS profiles are illustrated in Figures S4 and S8 of Appendices 

S2 and S3, respectively. For the sake of clarity in the following, only results for the three base-case 

profiles from Mirandola (Figure 4) will be presented in the body of this paper. However, results and 
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figures for the other base-case profiles in Mirandola and the six base-case profiles of Grenoble and 

Cadarache each are provided in Appendices S1, S2, and S3, respectively.    

Implementation of other existing randomization methods 

For the purpose of evaluating the efficiency of the proposed Non-Stationary approach, both the Toro 

(1995) VS randomization approach and the classical stationary RF approach were also applied to VS data 

from the InterPACIFIC project sites. The Toro (1995) approach operates on three main schemes: (1) 

the layering model, which defines the thicknesses and interfaces of the layers, (2) the velocity model, 

which indicates VS values at the mid-layers and (3) the depth-to-bedrock model which randomizes the 

bedrock depth and velocity. For the application of the Toro (1995) approach, the generic model 

parameters based on seismic site classification were used in this study as commonly adopted in practice 

in conjunction with σlnVs values proposed by Stewart et al. (2014) using the site-specific database of 

Toro (1995). Such σlnVs values were also used in previous studies proposing methods to propagate Vs 

uncertainties in site response (e.g. Rathje et al. 2010; Teague et al. 2018; Passeri et al. 2020). Table 3 

provides the parameters used for the application of the Toro (1995) approach. The σlnVs are in the range 

of σlnVs inferred from individual VS layers used for the Non-Stationary application that vary from 0.02 

(CoVVs ~1%) up to 0.18 (CoVVs ~40%).  The randomization was performed for all base-case profiles in 

the three sites using the Toro (1995) procedure implemented into STRATA Version 0.8.0 (Kottke and 

Rathje 2009). 

For the application of the stationary approach, VS variability was quantified using the borehole data 

from the soil surface till the bedrock interface as a single data set. Hence, single values for μVs and CoVVs 

as well as θ were computed for each base-case profile and used for the discretization of RF(VS). These 

parameters are provided in Table S7 of Appendix S4. Using the quantification results, the discretization 

of RF(VS) was then performed in the same manner as the Non-Stationary approach using the EOLE 

method and, 200 realizations were generated around each base-case profile. 
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Performance of the VS randomization approaches to predict site response 

To evaluate the compatibility of randomized VS profiles with the pseudo-experimental site 

signatures derived from borehole data, the theoretical dispersion curves (TDCs) and the theoretical 

transfer functions (TTFs) for vertically incident horizontal shear (SH) plane waves (Kennet 1983) were 

computed up to 20 Hz using the non-stationary, stationary and the Toro (1995) approaches. For these 

computations, P-wave velocities (VP) in the sediments were randomized following a fixed dependence 

on randomized VS profiles constrained by the measured Poisson’s ratios in boreholes (Garofalo et al. 

2016b). Accordingly, VP values were computed using factors of 4.2, 3.5, and 1.9 with respect to VS for 

Mirandola, Grenoble, and Cadarache, respectively. Bedrock velocities were fixed according to values 

indicated in Table 3. Mass densities in sediments were fixed at 1800 kg/m3 in both Mirandola and 

Grenoble and at 2200 kg/m3 in Cadarache while a mass density of 2500 kg/m3 was assigned for the half-

space seismic bedrock in all three sites. These assumptions are consistent with the experimental data 

extracted from the results of the InterPACIFIC project (Garofalo et al. 2016b). Quality factors for P and 

S waves were assumed to be equal to 50 and 25 in sediments and 200 and 100 in bedrock. The dispersion 

curves were computed using the software Geopsy Version 2.0.4 (Wathelet et al. 2020).  

Dispersion curves 

The TDCs relative to the sets of generated VS profiles were compared to the dispersion curves 

computed from the base-case borehole data, referred to as pseudo-EDCs. For all sets of VS profiles, the 

TDCs were computed for the fundamental mode of the Rayleigh wave and the mean TDCs were 

obtained after averaging the slowness values. The TDCs are represented in Figure 5 for three profiles 

in Mirandola (in Appendix S1 (Figure S2) for the other three profiles) and in Figures S5 and S9 of 

Appendices S2 and S3 for Grenoble and Cadarache, respectively, altogether with the pseudo-EDCs. 

The mean TDCs from nonstationary randomized profiles are most consistent with the pseudo-EDCs 

over all base-case profiles (Figures 5 (a-c); S2 (a-c); and S9 (a-c)). In Mirandola, TDCs from Stationary 

randomized profiles are far from reproducing the pseudo-EDCs, particularly at frequencies above 2 Hz 
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(Figure 5 (d) to (f) and Appendix S1, Figure S2 (d) to (f)), while the Toro (1995) mean randomized 

TDCs relatively succeed in reproducing the pseudo-EDCs (Figure 5 (g) to (i) and Appendix S1, Figure 

S2 (g) to (i)). In terms of dispersion of TDCs, individual TDCs from the Non-Stationary approach 

exhibit the lowest variation around the pseudo-EDCs while the ones based on the Toro approach are 

highly scattered around the pseudo-EDCs (Figure 5 and Appendix S1, Figure S2). TDCs inferred from 

the Non-Stationary and Toro approaches at Grenoble and Cadarache sites exhibit similar behavior 

(Figures S5 (a) to (c) and (g) to (i); and S9 (a) to (c) and (g) to (i) in Appendices S2 and S3 for Grenoble 

and Cadarache, respectively). At these sites however, the Stationary approach performs well in 

generating randomized VS profiles with corresponding mean TDCs close to the pseudo-EDCs (Figures 

S5 (d) to (f); and S9 (d) to (f) in Appendices S2 and S3 for Grenoble and Cadarache, respectively), as a 

consequence of VS base-case profiles not exhibiting significant increase of VS within each layer (Figures 

S4 and S8 in Appendices S2 and S3 for Grenoble and Cadarache, respectively).  

To assess the goodness-of-fit between TDCs and pseudo-EDCs for each realization of a VS profile, 

the classical dispersion misfit (md) was computed as in Eq. (4) following Wathelet et al. (2004). 

 

                                                                     𝑚𝑑 = √∑
(𝑥𝑑𝑖 − 𝑥𝑐𝑖)2

𝜎𝑖
2𝑛𝑓

𝑛𝑓

𝑖=1

                                                               (4) 

 

In which, xdi is the pseudo-experimental phase velocity at frequency fi, xci is the calculated theoretical 

phase velocity at the same frequency fi, σi represents the standard deviation of the experimental data at 

frequency fi when available and nf corresponds to the number of frequency samples. 

A typical md value below 1 indicates that the TDC falls inside the 1σ from the pseudo-EDC over 

the frequency range of interest. The md were computed for each 200-set of VS profiles generated from 

the Non-Stationary, Stationary and Toro approaches and then averaged. Average md values are 

presented in Figure 6 (a) for the six profiles in Mirandola whereas md are presented in Figures S6 (a) 
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and S10 (a) of Appendices S2 and S3 for Grenoble and Cadarache, respectively. Across the three sites 

whatever the base-case profiles, the Non-Stationary approach succeeds in replicating the pseudo-EDCs, 

providing a better fit in terms of md values than the randomized VS profiles from the classical stationary 

and the Toro (1995) approaches. Consistently with TDCs indicated in Figure 5, Toro randomized VS 

profiles perform better than the VS profiles from the Stationary approach in Mirandola but not in 

Grenoble and Cadarache. In addition, the coefficient of variation of phase velocities CoV(Vr) was 

computed between each 200-set of TDCs for all the profiles to evaluate the degree of variability between 

sets of randomized TDCs and therefore the level of ergodicity for the adopted randomization approach. 

Ergodicity conveys that the observation of a single realization of the RF can provide a strong indication 

of the probabilistic properties of that RF, i.e. the ability of each random VS realization to be 

representative of the base-case profile. CoV(Vr) values as a function of frequency shown in Figure 6 (b) 

for Mirandola reach up to 9 % for the TDCs derived from the Non-Stationary approach, while higher 

maximum values of 22% and 34% were obtained for the TDCs using the Stationary and Toro 

approaches. Interestingly, high CoV(Vr) are observed close to the resonance frequency of the site. Similar 

results were obtained for Grenoble and Cadarache with significantly lower CoV(Vr) for Cadarache  

(Figures S6 (b) and S10 (b) in Appendices S2 and S3 for Grenoble and Cadarache, respectively). Across 

the three sites, the Non-Stationary approach thus resulted in the lowest CoV(Vr) (< 10% over the whole 

frequency range) when compared to the other two approaches confirming a high ergodicity property of 

the proposed VS randomization and a best performance to replicate the pseudo-EDCs. This highlights 

that the generated VS profiles succeed in reflecting the original VS statistical properties, therefore, no 

posterior selection is required to screen VS realizations that fail to reproduce the site signature, as often 

recommended (Teague and Cox 2016; Teague et al. 2018).  

1D site amplification 

The theoretical transfer functions (TTFs) were computed for the 200-set realizations of VS profiles 

derived from the Non-Stationary, Stationary, and Toro approaches. The TTFs computed from borehole 
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data, referred to as pseudo-ETFs, were used to evaluate the accuracy of TTFs in replicating both the 

amplification and resonance frequencies. Figure 7 displays TTFs for three base-case profiles in 

Mirandola. The other three profiles are shown in Appendix S1 (Figure S3) and in Figures S7 and S11 

of Appendices S2 and S3 for Grenoble and Cadarache, respectively. From a visual inspection, the TTFs 

related to the VS profiles derived from the Non-Stationary approach nicely match both amplification and 

resonance frequency peaks within a wide range of frequencies at Mirandola and Grenoble. Although 

individual TTFs derived from the Toro approach are highly scattered (Figure 7 (g) to (i) and Figure S3 

(g) to (i) in Appendix S1 for Mirandola and Figure S7 (g) to (i) in Appendix S2 for Grenoble), the 

average TTFs reproduce well the fundamental and first resonance frequency peaks at Mirandola and 

Grenoble. However, the highly scattered TTFs result in lower average amplification compared to the 

pseudo-ETFs at the first two resonance modes and an overall attenuation of average amplification at 

higher frequencies, as frequently observed (Thompson et al. 2009, 2012; Zalachoris and Rathje 2015; 

Kaklamanos and Bradley 2018; Hallo et al. 2022).  Similarly to the Toro approach, TTFs derived from 

the Stationary approach were also very scattered leading to attenuated average amplification at high 

frequencies at Mirandola and Grenoble, while the average amplifications at the two first resonance 

modes were consistent with the pseudo-ETFs. However, the predicted average frequencies were shifted 

towards lower frequencies at the two first modes of resonance, in particular at the Mirandola site (Figure 

7 (d) to (f) and Figure S3 (d) to (f) in Appendix S1). Such resonance frequency shift was already 

observed in previous studies using stationary RFs and was mainly attributed to the inability of all 

randomized VS to reproduce the average S-wave cumulative travel time from the bedrock to the surface 

(e.g., Nour et al. 2003; El Haber et al. 2019). This behavior explains the failure of the TDCs to reproduce 

the pseudo-EDCs (Figure 5 (d) to (f) and Figure S2 (d) to (f) in Appendix S1 for the Mirandola site). 

For the Cadarache site, TTFs derived from Non-Stationary, Stationary, and Toro approaches were not 

fully interpretable within the frequency range of interest (up to 20 Hz) since pseudo-ETFs exhibited 

resonance frequencies above 20 Hz.  
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To quantify the goodness-of-fit between the sets of 200 TTFs and the pseudo-ETFs for the three 

sites and each base-case profile, two parameters were estimated. First, the leave-one-out cross-

validation error estimator (Q2) was computed (Blatman and Sudret 2010; Al-Bittar and Soubra 2013). 

The Q2 allows the evaluation of the overall fit of TTFs with pseudo-ETFs, a value of 1 indicates a 

perfect fit over the frequency range of interest. At Mirandola, the average Q2 over the sets of 200 TTFs 

is displayed in Table 4 (Tables S3 and S6 in Appendices S2 and S3 for Grenoble and Cadarache, 

respectively). Larger Q2 values are systematically obtained for TTFs derived from the Non-Stationary 

approach indicating a higher fit with pseudo-ETFs, as was already observed visually (Figure 7).  

Next, the alignment of the resonance frequency peaks in the TTFs was assessed using Pearson’s 

correlation coefficient (rp). Ideally, a rp closer to 1 indicates a perfect correlation between the resonance 

frequencies, however, a good fit is established when rp is above 0.6 (Thompson et al. 2012). rp values 

were computed between sets of 200 TTFs and corresponding pseudo-ETFs over the frequency range 

from the first to the fourth resonance frequency peaks. Averaged rp values over the sets of TTFs are 

shown in Table 4 for Mirandola and in Appendices S2 and S3 (Tables S3 and S6) for the other two sites. 

In general, all the TTFs derived from the Non-Stationary approach outline resonance frequencies in 

agreement with those extracted from pseudo-ETFs, since rp values were higher than the threshold value 

of 0.6. Conversely, TTFs derived from Stationary and Toro approaches at Mirandola and Grenoble sites 

failed to exactly replicate the pseudo-ETFs resonance frequencies since their rp values were below 0.6 

across all profiles.  

Overall, the very high agreement between TTFs derived from the Non-Stationary approach and 

pseudo-ETFs demonstrated the ability of the Non-Stationary approach to generate VS profiles able to 

predict the 1D resonance frequencies over a wide frequency range together with their corresponding 

amplification.  
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Discussion 

The proposed Non-Stationary probabilistic approach allowed the generation of a set of VS profiles 

consistent with the pseudo-experimental site signatures in terms of surface-wave dispersion curves, 

fundamental and higher mode resonance frequencies, and site amplification. This VS randomization 

approach outperforms both the classical stationary and the Toro (1995) approaches in terms of 

compatibility with the dispersion curve including a related predicted variability that is consistent with 

reported field values (e.g. Comina et al. 2011; Garofalo et al. 2016a; Teague et al. 2018; Passeri et al. 

2021), without the need of post-filtering VS profiles (Toro 1995; Teague et al. 2018). For instance, 

Teague et al. (2018) obtained a CoVVr below 5%, when working on experimental dispersion data 

measured at the Garner Valley downhole array site. They proposed to increase the variability to achieve 

a CoVVr of 5% at all frequencies to account for inter-analyst uncertainty. Garofalo et al. (2016a) 

proposed a range of dispersion CoVVr between 5 to 10% based on measurements performed at the three 

InterPACIFIC sites, Mirandola, Grenoble, and Cadarache. Recently, Passeri et al. (2021) reported CoVVr 

ranging from 5% at high frequency up to 20% at low frequency from 71 experimental sites in Italy. 

Since the bedrock depth was fixed in this study, the influence of (1) fixing the layer thicknesses in the 

Toro (1995) model as the non-stationary approach and (2) varying the bedrock depth as in Toro (1995) 

was tested to evaluate its impact on the variability of TDCs and TTFs and is presented in Appendix 

S5.  This impact was found to be negligible on the resulting output variability. Moreover, σlnVs values 

proposed by Stewart et al. (2014) were employed in the Toro (1995) application here, as done in 

practice. To investigate the impact of using recommended σlnVs instead of site-specific σlnVs on the 

randomized VS profiles, a separate set of profiles was generated using the site-specific vertical σlnVs 

computed from the soil layers in the base-case VS profiles. Results of this application, presented in 

Appendix S5, highlight minor differences in the variability of randomized VS profiles and their ability 

to generate sets of consistent site signatures. 
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The ability of the Non-Stationary method to reproduce site signatures can be explained by its 

effectiveness in reproducing the shear-wave cumulative travel time. The cumulative travel time 

represents the time the S-waves take to travel from a certain depth, typically the bedrock interface, to 

the soil surface. It is directly related to surface-wave dispersion curves and the site response (e.g. Brown 

et al. 2002; Passeri et al. 2020). The results of this evaluation are presented in Appendix S6 for the 

Mirandola site. The cumulative travel times exhibited similar behavior as the TDCs and TTFs in terms 

of the general data trends and scatter around the pseudo-experimental TDCs and TTFs estimates: Non-

Stationary travel times converge with low scatter around the borehole travel times, while the Stationary 

and Toro travel times display systematically higher scatter. 

To evaluate the variability of predicted site amplification using the Non-Stationary approach, Figure 

8 displays σlnTTF curves for the three sites. At low frequencies, the variability between sets of TTFs is 

relatively low compared to that at high frequencies. This behavior at low frequency is expected since 

randomized VS profiles reproduce very well both the fundamental resonance frequency and related 

amplification. Contrarily, velocity heterogeneities induce a scattering effect that results in higher 

amplitude differences at high frequencies and larger standard deviations in ground motion intensity 

measures (Thompson et al. 2009; Li and Assimaki 2010; Rathje et al. 2010; Imperatori and Mai 2013; 

Rodriguez-Marek et al. 2014). Indeed, the scattering by velocity heterogeneities is a frequency-

dependent phenomenon that depends on the ratio between the correlation length (θ) of the VS 

fluctuations and the seismic wavelength: the scattering is as efficient as the correlation length is larger 

than the wavelength. In our study, since the correlation length is fixed to 2 m, scattering will occur at 

high frequencies. In Mirandola and Grenoble, significant scattering will occur for frequencies larger 

than 4 to 5 Hz while, for Cadarache, only frequencies larger than 20 Hz will exhibit scattering as a result 

of larger VS. Although θ was fixed in this study for the sake of simplicity and to focus on the impact of 

the variable CoVVs only, varying θ following the quantified values in each layer of the soil profiles 
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produces minor differences in the high-frequency range corresponding to θ larger than the seismic 

wavelength.  

Note also that differences in the quantification of VS variability in terms of CoVVs between distinct 

base-case profiles and various layers (Table 2 for Mirandola and Tables S2 and S5 in Appendices S2 

and S3 for Grenoble and Cadarache, respectively) propagate to differences in the variability of site 

response estimates (Figure 8). While higher σlnTTF were found to be relative to PS-SL tests in Mirandola, 

higher σlnTTF in Grenoble correspond to DH tests (Figure 8 (a) and (b)). The base-case profile 

dependency of σlnTTF indicates that the VS measurement method and the quantification of VS variability 

inside each soil layer have a significant influence on the propagation of VS uncertainty into the variability 

of site response. 

Conclusion 

In the present work, a novel shear-wave velocity (VS) randomization approach is proposed to 

propagate aleatory VS variability into samples of VS profiles within a non-stationary probabilistic 

framework. The primary interest of the method is to account for the natural spatial variability of soil 

properties in a rigorous manner. The formulation of the non-stationary approach is founded on 

partitioning a base-case VS profile acquired from invasive testing into several locally stationary layers 

allowing the transformation of the non-stationary random field (RF) into multiple small-scale stationary 

RFs. Then, the vertical variability of VS is quantified for each layer and its statistical parameters (i.e., 

coefficient of variation, scale of fluctuation) can be used to discretize the RF of VS. The discretization 

of the RF is realized using the Expansion Optimal Linear Estimation method and multiple realizations 

are then generated to obtain a set of randomized VS profiles.  

The proposed approach was applied to three European sites for which VS profiles from various 

invasive measurements (PS-SL, CH, DH) are available, and compared to other common approaches 

used for randomizing VS, namely the classical stationary probabilistic approach and the Toro (1995) 

approach. The non-stationary VS randomization approach was found to accurately replicate site 
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signatures in terms of dispersion curves, resonance frequencies, and site amplification over a wide 

frequency range. In this matter, the proposed method resulted in VS profiles and corresponding site 

signatures closely distributed around experimental borehole data, including S-wave cumulative travel 

time. The variability in the results is lower than that obtained from the other two approaches, which 

strongly implies that there is no need to perform any posterior selection of VS to avoid accounting for 

unrealistic VS profiles (Toro 1995; Teague et al. 2018). Note that in this paper the VS profiles were 

generated using a base-case VS profile, and borehole logs were used to partition the VS layers. However, 

the approach is more generic since the VS statistics (µVs, CoVVs) can be estimated by some other method, 

e.g. from the vertical evolution of VS profiles available from invasive or surface-wave methods. This 

choice is not expected to affect the performance of the RF discretization method itself but the resulting 

variability in VS profiles that will be controlled by the imposed CoVVs.  

The findings of this study highlighted that attention should be paid to the choice of VS measurement 

method since it has an impact on both the measured variability of VS and the predicted site response 

variability. In this study, the largest coefficient of variation for VS was overall found in PS-SL profiles 

since this measurement method provides a higher vertical resolution compared to DH and CH 

measurements. Besides, within a given geological layer, the quantification of VS variability was found 

to be strongly influenced by the measurement method, with differences between methods of up to 90-

130%. Such VS variability translated into variability of predicted site amplification, with higher 

amplification variability at high frequency as a consequence of both scattering effects by velocity 

heterogeneities and the level of VS variability. 

Although the non-stationary VS randomization approach yields a promising straightforward method 

to account for the aleatory spatial variability of VS in 1D ground response analysis, the approach must 

be further validated at well instrumented downhole array sites. Indeed, the use of recorded weak ground 

motions at the surface and in depth at a site prone to 1D seismic wave propagation will allow evaluation 

of the compatibility of predicted site response with the empirical site amplification and related 

variabilities. Such evaluation is essential to further assess any potential under or overestimation of site 
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response variability and its implications on the VS randomization performance. This will also help in 

better understanding the effects of VS variability in each layer on the surface ground motion variability. 

Furthermore, future developments of the proposed approach should move beyond 1D applications to 

embrace complex wave propagation effects (body and surface waves diffraction, wave scattering, and 

mode conversion, etc.) and 2D/3D VS heterogeneities. 

Data Availability Statement 

The codes developed for the spatial variability quantification of the shear-wave velocity and the random 

field discretization are available online in a GitLab repository with detailed commentary, hosted at 

`https://gricad-gitlab.univ-grenoble-alpes.fr/youssefe/variability-quantification-and-discretization-of-

random-fields`. The sets of shear-wave velocity profiles developed at the InterPACIFIC sites are also 

available from the corresponding author upon request. 
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Tables 

 

Table 1. Vertical scale of fluctuation θ (m) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Mirandola site. Also shown are the average (μ) and 

CoV of θ for each layer. 

 

Layer 
Thickness 

(m) 
Parameter 

PS-SL 

S-R1 

PS-SL  

R1-R2 
DH-EW DH-NS CH1 CH2 μ(θ) CoV(θ) 

1 4 θ1 0.27 0.86 0.83 0.83 0.86 1.34 0.83 40.96 

2 6 θ2 1.33 1.31  1.69 1.69 1.78 0.61 1.40 31.43 

3 15 θ3 1.46 1.29 4.37 4.46 1.40 2.15 2.52 59.52 

4 25.5 θ4 4.93 0.64 2.97 2.30 1.84 3.41 2.68 54.48 

5 9 θ5 1.09 0.94 2.66 2.66 2.21 0.92 1.75 48.57 

6 6 θ6 1.20 0.68 1.16 0.52 1.12 1.55 1.04 36.54 

7 3.5 θ7 0.62 0.67 0.76 0.75 0.78 0.96 0.76 15.79 

8 6 θ8 1.46 1.41 1.38 1.03 1.35 1.87 1.42 19.01 

9 21 θ9 2.23 2.33 5.48 5.48 2.62 2.97 3.52 43.75 

10 16 θ10 1.10 0.52 4.77 4.69 3.10 3.36 2.92 60.96 

 

Table 2. Coefficient of variation CoVVs (%) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Mirandola site with the number of VS samples 

indicated in parentheses for each layer. Also shown are the average (μ) and CoV of CoVVs for each 

layer. 

 

Layer Parameter 
PS-SL 

S-R1 

PS-SL  

R1-R2 
DH-EW DH-NS CH1 CH2 μ(CoV) CoV(CoV) 

1 CoV1 4.81(3) 12.10(6) 0.01(9) 0.01(9) 3.31(4) 1.28(4) 3.59 127.58 

2 CoV2 12.09(11) 22.31(11) 15.85(11) 11.63(11) 16.76(7) 4.84(7) 13.91 42.27 

3 CoV3 9.30(31) 14.50(31) 4.76(31) 7.55(31) 5.90(16) 6.41(16) 8.07 43.49 

4 CoV4 10.51(51) 10.96(51) 6.77(51) 6.34(51) 8.36(27) 9.00(27) 8.66 21.82 

5 CoV5 16.32(18) 19.37(18) 13.09(18) 14.06(18) 13.65(9) 12.21(9) 14.78 17.79 

6 CoV6 7.53(11) 10.29(11) 7.94(11) 7.94(11) 3.91(7) 4.24(7) 6.98 35.10 

7 CoV7 3.71(9) 9.11(9) 0.01(9) 0.01(9) 4.19(5) 2.48(5) 3.25 104.00 

8 CoV8 37.70(10) 38.70(10) 28.15(10) 19.16(10) 10.39(6) 9.15(6) 23.88 54.61 

9 CoV9 12.07(43) 19.89(43) 2.68(43) 9.97(43) 10.72(22) 5.82(22) 10.19 57.80 

10 CoV10 5.32(32) 9.01(32) 0.56(32) 7.46(32) 11.62(17) 8.04(17) 7.00 53.86 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0001366
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001366
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Table 3. Velocity, layering, and depth to bedrock model parameters for the Toro (1995) VS 

randomization approach applied for the six base-case VS profiles in each of Mirandola, Grenoble and 

Cadarache sites. 

 

Model Parameter Mirandola Grenoble Cadarache 

 VS30
a (m/s) 195 - 216 331 - 373 1562 - 1963 

 Soil class C B C A 

Velocity σlnVs (z ≤ 50 m) 0.15 0.15 0.15 

 σlnVs (z > 50 m) 0.22 - - 

 ρ0
b 0.99 0.97 0.99 0.95 

 ρ200
c 0.98 1 0.98 0.42 

 Δb 3.9 3.8 3.9 3.4 

 h0
c 0 0 0 

 bc 0.34 0.29 0.34 0.06 

 Density (kg/m3) 1800 1800 2200 

Layering c1
d 10.86 10.86 10.86 

 c2
d 0.89 0.89 0.89 

 c3
d 1.98 1.98 1.98 

Depth to bedrock Distribution Fixed Fixed Fixed 

 Z bedrock (m) 112 45 31 

 VS bedrock (m/s) 1000 1000 3200 

 VP bedrock (m/s) 3000 2000 5536 

 Density (kg/m3) 2500 2500 2500 

a: VS30 = Time-averaged shear-wave velocity in the topmost 30 m. 

b: ρ0 and Δ are model parameters used for the calculation of the thickness-dependent correlation. 

c: ρ200, h0 and b are model parameters used for the calculation of the depth-dependent correlation. 

d: c1, c2 and c3 are model parameters of the modified power law for the non-homogeneous Poisson 

process for the layer randomizations (𝜆(𝑧) = 𝑐3(𝑧 + 𝑐1)−𝑐2, z is the depth in m). 
 

Table 4. Average determination coefficient Q2 for the leave-one-out cross-validation error and average 

Pearson’s sample correlation coefficient rp over the 200-sets of non-stationary, stationary and the Toro 

(1995) theoretical transfer functions (TTFs) for six base-case profiles compared to corresponding 

pseudo-experimental transfer functions for Mirandola site. 
 

VS profile Q2 rp 

Mirandola Non-stationary Stationary Toro (1995) Non-stationary Stationary Toro (1995) 

PS-SL S-R1 0.872 0.679 0.838 0.948 0.437 0.412 

PS-SL R1-R2 0.817 0.655 0.864 0.880 0.304 0.349 

DH-EW 0.910 0.709 0.890 0.969 0.263 0.370 

DH-NS 0.932 0.716 0.886 0.977 0.299 0.368 

CH1 0.934 0.769 0.902 0.972 0.593 0.414 

CH2 0.951 0.730 0.913 0.969 0.504 0.393 

 

 

 



Figures

Fig. 1. Procedure for generating stationary and non-stationary realizations of VS random fields.
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Fig. 2. Soil stratigraphy at (a) Mirandola, Italy; (b) Grenoble, France; and (c) Cadarache, France,

sites, from left to right. Depth scales are site dependent. (Data from Garofalo et al. 2016b).



Fig. 3. Borehole base-case VS profiles at Mirandola (MIR); Grenoble (GRE); and Cadarache (CAD)

sites, from left to right.



Fig. 4. Generated suites of 200 VS profiles (grey curves) following the proposed non-stationary

approach for three base-case VS profiles at Mirandola: (a) PS-SL S-R1; (b) DH-EW; and (c) CH2

alongside the average randomized profile (solid black curve). The invasively-measured base-case

VS profiles at Mirandola are indicated in color.

(a) (b) (c)



Fig. 5. The 200-sets of theoretical dispersion curves calculated from (a-c) non-stationary; (d-f)

stationary; and (g-i) Toro (1995) randomized profiles for three base-case VS profiles alongside their

mean randomized TDCs (solid black line) and related standard deviations ± 1σ (dotted black lines).

Also shown in dotted colored curves the pseudo-experimental DCs computed from the three base-

case VS profiles at Mirandola site.



Fig. 6. (a) Average dispersion misfit (md) computed between pseudo-experimental DCs relative to

each of the six base-case VS profiles at Mirandola site and each realization of its corresponding 200

sets of theoretical DCs calculated from the nonstationary (in blue), stationary (in red) and the Toro

(1995) (in grey) randomized VS profiles; and (b) dispersion coefficient of variation (CoVVr)

computed between each 200 sets of theoretical DCs calculated from the nonstationary (dashed line),

stationary (continuous line), and the Toro (1995) (dotted line) randomized VS profiles for the six

base-case VS profiles at Mirandola site.
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Fig. 7. The 200-sets of theoretical transfer functions calculated from  (a-c) non-stationary; (d-f)

stationary; and (g-i) Toro (1995) randomized profiles for three base-case VS profiles alongside their

mean randomized TTFs (solid black line) and related standard deviations ± 1σ (dotted black lines).

Also shown in solid colored curves the pseudo-experimental TFs computed from the three base-

case VS profiles at Mirandola site.



Fig. 8. Logarithmic standard deviations computed for the 200 sets of theoretical transfer functions

calculated from nonstationary randomized VS profiles for six base-case VS profiles in Mirandola,

Grenoble, and Cadarache sites.



 

Appendix S1: complementary results for Mirandola site 

Figures 
 

 
 

Fig. S1. Generated suites of 200 VS profiles (grey curves) following the proposed non-stationary 

approach for three base-case VS profiles at Mirandola: (a) PS-SL R1-R2; (b) DH-NS; and (c) CH1 

alongside the average randomized profile (black curve). The invasively-measured base-case VS 

profiles at Mirandola are indicated in color. 
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Fig. S2. The 200-sets of theoretical dispersion curves calculated from (a-c) non-stationary; (d-f) 

stationary; and (g-i) Toro (1995) randomized profiles for three base-case VS profiles alongside their 

mean randomized TDCs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental DCs computed from the three base-case VS 

profiles at Mirandola site.  

 



 

 

 

 

Fig. S3. The 200-sets of theoretical transfer functions calculated from (a-c) non-stationary; (d-f) 

stationary; and (g-i) Toro (1995) randomized profiles for three base-case VS profiles alongside their 

mean randomized TTFs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental TFs computed from the three base-case VS 

profiles at Mirandola site. 

 

 

 

 

 

 

 
 



 

 

Appendix S2: complementary results for Grenoble site 

Tables 

Table S1. Vertical scale of fluctuation θ (m) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Grenoble site. Also shown are the average (μ) and 

CoV of θ for each layer.  

  

Layer 
Thickness 

(m) 
Parameter 

PS-SL 

S-R1 

PS-SL  

R1-R2 
DH-EW DH-NS CH1 CH2 μ(θ) CoV(θ) 

1 6.5 θ1 0.5 0.79 2.28 2.3 0.91 0.47 1.21 70.25 
2 9 θ2 0.66 0.4 0.83 0.83 1.05 1.2 0.83 33.73 
3 2 θ3 0.82 0.6 0.73 0.73 0.96 1 0.81 18.52 
4 5 θ4 1.41 1.47 1.03 1.03 1.03 1.01 1.16 18.97 
5 3.5 θ5 1.22 1.28 1.21 1.3 1.18 1.19 1.23 4.07 
6 2 θ6 0.8 0.32 0.7 0.7 0.59 0.54 0.61 27.87 
7 5 θ7 0.85 0.2 0.95 0.95 1.29 1.52 0.96 46.88 
8 12 θ8 3.65 1.44 1.14 3.22 2.55 2.55 2.43 40.33 

 

Table S2. Coefficient of variation CoVVs (%) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Grenoble site with the number of VS samples 

indicated in parentheses for each layer. Also shown are the average (μ) and CoV of CoVVs for each 

layer.  

 

Layer Parameter 
PS-SL 

S-R1 

PS-SL  

R1-R2 
DH-EW DH-NS CH1 CH2 μ(CoV) CoV(CoV) 

1 CoV1 4.95(7) 10.05(10) 33.34(14) 31.68(14) 5.34(6) 6.52(6) 15.31 87.85 
2 CoV2 15.31(19) 17.48(19) 0.01(19) 0.01(19) 8.21(10) 12.37(10) 9.23 76.81 
3 CoV3 22.23(5) 20.69(5) 17.17(5) 20.79(5) 11.36(3) 5.42(3) 16.28 40.60 
4 CoV4 17.87(11) 19.33(11) 13.02(11) 15.12(11) 12.72(7) 8.44(7) 14.42 27.25 
5 CoV5 11.08(8) 25.87(8) 21.50(8) 23.58(8) 24.84(4) 30.39(4) 22.88 28.37 
6 CoV6 3.78(5) 8.38(5) 0.01(5) 0.01(5) 3.52(3) 1.28(3) 3.16 90.19 
7 CoV7 2.08(11) 7.13(11) 0.01(11) 0.01(11) 3.02(6) 2.12(6) 2.73 83.88 
8 CoV8 10.83(25) 12.11(25) 12.71(25) 12.57(25) 9.35(13) 9.87(13) 11.24 12.72 

 

 

Table S3. Average determination coefficient Q2 for the leave-one-out cross-validation error and 

average Pearson’s sample correlation coefficient rp over the 200-sets of non-stationary, stationary and 

Toro’s (1995) theoretical transfer functions (TTFs) for six base-case profiles compared to 

corresponding pseudo-experimental transfer functions for Grenoble site. 

 

VS profile Q2 rP 

Grenoble Non-stationary Stationary Toro (1995) Non-stationary Stationary Toro (1995) 

PS-SL S-R1 0.942 0.835 0.837 0.897 0.599 0.453 

PS-SL R1-R2 0.875 0.766 0.739 0.862 0.598 0.452 

DH-EW 0.764 0.608 0.721 0.592 0.331 0.309 

DH-NS 0.830 0.682 0.761 0.646 0.369 0.330 

CH1 0.964 0.841 0.829 0.925 0.569 0.429 

CH2 0.963 0.869 0.852 0.897 0.569 0.436 



 

 

Figures 
 

 
 

Fig. S4. Generated suites of 200 VS profiles (grey curves) following the proposed non-stationary 

approach for six base-case VS profiles at Grenoble: (a) PS-SL S-R1; (b) PS-SL R1-R2; (c) DH-EW; 

(d) DH-NS; (e) CH1; and (f) CH2) alongside the average randomized profile (black curve). The 

invasively-measured base-case VS profiles at Grenoble are indicated in color. 

(a) 

(f) (e) (d) 

(c) (b) 



 

 

 
 

Fig. S5. The 200-sets of theoretical dispersion curves calculated from (a-c)  non-stationary; (d-f) 

stationary; and (g-i) Toro (1995) randomized profiles for six base-case VS profiles alongside their 

mean randomized TDCs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental DCs computed from the three base-case VS 

profiles at Grenoble site. 

 



 

 

 
Fig. S5. Continued. 

 



 

 

 
 

Fig. S6. (a) Average dispersion misfit (md) computed between pseudo-experimental DCs relative to 

each of the six base-case VS profiles at Grenoble site and each realization of its corresponding 200 sets 

of theoretical DCs calculated from the non-stationary (in blue), stationary (in red) and Toro (1995) (in 

grey) randomized VS profiles; and (b) dispersion coefficient of variation (CoVVr) computed between 

each 200-sets of theoretical DCs calculated from the non-stationary (dashed line), stationary 

(continuous line) and Toro (1995) (dotted line) randomized VS profiles for the six base-case VS 

profiles at Grenoble site. 
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Fig. S7. The 200-sets of theoretical transfer functions calculated from (a-c) non-stationary; (d-f) 

stationary; and (g-i) Toro (1995) randomized profiles for six base-case VS profiles alongside their 

mean randomized TTFs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental TFs computed from the six base-case VS 

profiles at Grenoble site. 

 



 

 

 
 

Fig. S7. Continued. 

 

 

 

 

 

 

 



 

 

Appendix S3: complementary results for Cadarache site 

Tables 

Table S4. Vertical scale of fluctuation θ (m) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Cadarache site. Also shown are the average (μ) and 

CoV of θ for each layer.  

 

 

Table S5. Coefficient of variation CoVVs (%) for each layer (layer numbering ordered from surface to 

depth) in the six base-case borehole VS profiles in Cadarache site with the number of VS samples 

indicated in parentheses for each layer. Also shown are the average (μ) and CoV of CoVVs for each 

layer.  

 

Layer Parameter 
PS-SL 

S-R1 

PS-SL  

R1-R2 
DH DH-NS CH1 CH2 μ(CoV) CoV(CoV) 

1 CoV1 3.34(3) 6.93(6) 12.21(9) 10.17(9) 8.04(3) 12.77(3) 8.91 39.86 
2 CoV2 25.39(43) 27.50(43) 25.13(43) 25.31(43) 20.39(22) 22.25(22) 24.33 10.50 
3 CoV3 1.37(4) 6.80(4) 4.30(4) 0.01(4) 7.56(3) 4.94(3) 4.16 71.39 
4 CoV4 8.01(10) 6.82(10) 0.01(10) 0.01(10) 12.97(5) 8.98(5) 6.13 84.35 

 

 

Table S6. Average determination coefficient Q2 for the leave-one-out cross-validation error and 

average Pearson’s sample correlation coefficient rp over the 200-sets of non-stationary, stationary and 

Toro’s (1995) theoretical transfer functions (TTFs) for six base-case profiles compared to 

corresponding pseudo-experimental transfer functions for Cadarache site. 

 

VS profile Q2 rP 

Cadarache Non-stationary Stationary Toro (1995) Non-stationary Stationary Toro (1995) 

PS-SL S-R1 0.999 0.995 0.997 0.983 0.921 0.956 

PS-SL R1-R2 0.999 0.992 0.997 0.983 0.868 0.958 

DH 0.995 0.919 0.992 0.966 0.458 0.942 

DH-NS 0.999 0.989 0.998 0.989 0.824 0.966 

CH1 0.999 0.997 0.997 0.985 0.938 0.952 

CH2 0.999 0.994 0.997 0.986 0.889 0.949 

 

 

 

 

 

Layer 
Thickness 

(m) 
Parameter 

PS-SL 

S-R1 

PS-SL  

R1-R2 
DH DH-NS CH1 CH2 μ(θ) CoV(θ) 

1 4 θ1 0.48 0.62 0.46 1.36 0.92 0.81 0.78 43.59 
2 21 θ2 1.76 1.24 1.54 1.39 2.13 2.02 1.68 20.83 
3 1.5 θ3 0.41 0.58 0.47 0.59 0.97 0.54 0.59 33.89 
4 4.5 θ4 0.83 0.58 0.47 0.77 0.99 0.97 0.77 27.27 
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Fig. S8. Generated suites of 200 VS profiles (grey curves) following the proposed non-stationary 

approach for three base-case VS profiles at Cadarache: (a) PS-SL S-R1; (b) PS-SL R1-R2; (c) DH-

EW; (d) DH-NS; (e) CH1; and (f) CH2 alongside the average randomized profile (black curve). The 

invasively-measured base-case VS profiles at Cadarache are indicated in color. 
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Fig. S9. The 200-sets of theoretical dispersion curves calculated from (a-c)  non-stationary; (d-f) 

stationary; and (g-i) Toro (1995) randomized profiles for six base-case VS profiles alongside their 

mean randomized TDCs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental DCs computed from the three base-case VS 

profiles at Cadarache site. 

 



 

 

 
Fig. S9. Continued. 

 



 

 

 
 

Fig. S10. (a) Average dispersion misfit (md) computed between pseudo-experimental DCs relative to 

each of the six base-case VS profiles at Cadarache site and each realization of its corresponding 200 

sets of theoretical DCs calculated from the non-stationary (in blue), stationary (in red) and Toro’s 

(1995) (in grey) randomized VS profiles; and (b) dispersion coefficient of variation (CoVVr) computed 

between each 200-sets of theoretical DCs calculated from the non-stationary (dashed line), stationary 

(continuous line) and Toro’s (1995) (dotted line) randomized VS profiles for the six base-case VS 

profiles at Cadarache site. 
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Fig. S11. The 200-sets of theoretical transfer functions calculated from (a-c)  non-stationary; (d-f) 

stationary; and (g-i)  Toro (1995) randomized profiles for six base-case VS profiles alongside their 

mean randomized TTFs (solid black line) and related standard deviations ± 1σ (dotted black lines). 

Also shown in colored curves the pseudo-experimental TFs computed from the six base-case VS 

profiles at Cadarache site. 

 



 

 

 
 

Fig. S11. Continued. 

 

 

 

 

 

 

 



 

 

Appendix S4: VS variability quantification parameters for base-case profiles 

Tables 

Table S7. Quantification parameters used for stationary VS randomization for the six base-case VS 

profiles at each of the three sites. μVs is the average VS, CoVVs is the coefficient of variation and θ is the 

vertical scale of fluctuation. 

 

Mirandola PS-SL S-R1 PS-SL R1-R2 DH-EW DH-NS CH1 CH2 

μVs (m/s) 318 319 310 341 305 346 

CoVVs (%) 33 35 31 30 24 28 

θ (m) 4.8 4.3 8.8 9.3 5.4 4.2 

       

Grenoble PS-SL S-R1 PS-SL R1-R2 DH-EW DH-NS CH1 CH2 

μVs (m/s) 341 349 345 353 366 376 

CoVVs (%) 17 22 20 20 17 17 

θ (m) 4.8 3.6 4.5 4.6 6.4 6.3 

       

Cadarache PS-SL S-R1 PS-SL R1-R2 DH DH-NS CH1 CH2 

μVs (m/s) 2224 2179 1898 2153 2118 2153 

CoVVs (%) 25 29 35 29 21 23 

θ (m) 2.2 2.0 2.2 2.6 2.2 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix S5: modifications to the Toro (1995) model components 

The layering and velocity randomization models were implemented for the Toro (1995) 

approach applied in this paper without implementing the bedrock depth randomization. Therefore, this 

appendix presents an evaluation of the potential implications of these components (layering, velocity, 

and bedrock depth randomization) on the expected output variability. For this reason, a new set of Toro 

(1995) randomization was implemented by (1) fixing the layer thicknesses as the non-stationary 

approach and (2) varying the bedrock depth as the original Toro (1995) approach. The results of these 

two applications in terms of randomized VS profiles and corresponding theoretical dispersion curves 

(TDCs) and theoretical transfer functions (TTFs) are presented in Figure S12 for the PS-SL S-R1 test 

at the MIR site. 

The results provided by this application highlight minor differences in the variability of the Toro 

randomized VS profiles and their ability to generate sets of consistent site signatures. In the case of 

constant layering, both the dispersion misfit md (average 0.14) and the CoVVr (maximum of 28.3%) 

slightly decrease compared to the case of variable layers thicknesses (average md of 0.18; maximum 

CoVVr of 31.8%). This decrease is caused by the randomized VS being less variable with the constant 

layering that affects the values of VS at the mid-depth of each layer. As a result, the mean randomized 

DC better fits the pseudo-EDC based on the base-case PS-SL S-R1 test. Additionally, the mean 

randomized TTF is slightly better aligned with the pseudo-Experimental transfer function (pseudo-ETF) 

(cross-validation error estimator Q2 = 0.858; Pearson’s correlation coefficient rP = 0.459). 

When applying the complete Toro (1995) model (i.e., the 3 models including VS randomization, layering 

randomization, and bedrock depth and velocity randomization), the values of the dispersion misfit md 

(average 0.19) and the dispersion CoVVr (maximum of 35.6%) are slightly larger caused by the higher 

dispersion in the randomized DCs compared to the initial application of Toro (1995) (i.e., without 

bedrock variation). In addition, both the TTFs Q2 of 0.832 and the rP of 0.411 are slightly lower because 

of some minor extreme TTFs that are badly aligned with the site’s resonance frequencies. 

 

 



 

 

 

Fig. S12. Generated suites of 200 VS profiles (a-c) following the Toro (1995) approach for PS-SL S-

R1 base-case VS profile at Mirandola indicated in magenta color, corresponding 200 sets of theoretical 

dispersion curves (d-f) and theoretical transfer functions (g- i) assuming velocity and layering 

randomization (a, d, g) velocity randomization (b, e, h) and velocity, layering and bedrock depth 

randomization (c, f, i) following the Toro (1995) model components. 
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In this paper, the application of the Toro (1995) randomization approach followed the 

instructions proposed by Toro (1995, 2022) as is done in practice. The choice of variability introduced 

to randomize VS in soil layers, σlnVs, was made based on (i) the recommendations of Stewart et al. (2014) 

(Table 3 in the paper) when giving instructions on the Toro (1995) method application and (ii) the recent 

publications discussing the Toro (1995) application (e.g. Rathje et al. 2010; Teague et al. 2018; Passeri 

et al. 2020).  

However, to investigate the impact of using a recommended σlnVs instead of a site-specific σlnVs 

on the set of Toro randomized VS profiles, we have run a separate set of simulations using the site-

specific vertical σlnVs computed from the individual soil layers in the base-case VS profiles (same σlnVs 

used for non-stationary method application). In this appendix, we show an example for a DH base-case 

VS profile (DH-EW) in the Grenoble site, because the base-case VS profile exhibits both low and high 

levels of CoVVs (σlnVs) in individual soil layers. Instead of a fixed σlnVs at 0.15 (Table 3 in the paper), 

σlnVs is now variable with values between 0.05 and 0.16 depending on the layers (Table S8). The results 

of this application in terms of randomized VS profiles and corresponding theoretical dispersion curves 

(TDCs) and theoretical transfer functions (TTFs) are presented in Figure S13 for the DH-EW test 

alongside results assuming the generic σlnVs. 

The results provided by this application highlight minor differences in the variability of the Toro 

randomized VS profiles and their ability to generate sets of consistent site signatures. Indeed, 

compatibility with experimental site signatures is only slightly improved. From the TDCs, the dispersion 

misfit md ([0.016; 0.626], average 0.149) slightly decrease compared to the case of generic σlnVs ([0.015; 

0.411], average 0.109). Additionally, the individual and the mean randomized TTFs are not majorly 

affected by the choice of σlnVs when compared with the pseudo-Experimental transfer function (pseudo-

ETF). The cross-validation error estimator Q2 is slightly increased from 0.721 to 0.742 in the site-

specific case, and the Pearson’s correlation coefficient rP is increased from 0.309 to 0.481, both values 

below 0.6. 

 

 

Table S8. Values of site-specific σlnVs for the DH-EW base-case VS profile in the Grenoble site. 

 

Layer Parameter DH-EW 

1 σlnVs 1 0.16 
2 σlnVs 2 0.05 
3 σlnVs 3 0.08 
4 σlnVs 4 0.06 
5 σlnVs 5 0.10 
6 σlnVs 6 0.05 
7 σlnVs 7 0.06 
8 σlnVs 8 0.06 

 



 

 

 

Fig. S13. Generated suites of 200 VS profiles (a, b) following the Toro (1995) approach for DH-EW 

base-case VS profile at Grenoble indicated in blue color, corresponding 200 sets of theoretical 

dispersion curves (c, d) and theoretical transfer functions (e, f) assuming generic σlnVs following the 

Toro (1995) model components (Stewart et al. 2014) (a, c, e) and site specific σlnVs from DH-EW VS 

profile (b, d, f). 
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Appendix S6: Performance of VS randomization approaches in terms of shear-

wave cumulative travel time 

 The shear-wave cumulative travel time represents the time the S-waves take to travel from a 

certain depth, typically the bedrock interface, to the soil surface. It constitutes a fundamental quantity 

in site response studies since the travel time is directly related to the surface-wave dispersion and the 

site response itself (e.g. Brown et al. 2002; Passeri et al. 2020). The cumulative travel time is typically 

computed using Eq. S1 below. 

 

                                                           𝑡𝑡𝑆,𝑧(𝑧) = ∑ (
ℎ𝑖

𝑉𝑆,𝑖
)𝑛

𝑖=1                                                               (Eq. S1) 

 

 In which z is the depth, n is the number of layers, hi, and VS,i are the thickness and the S-wave 

velocity of layer i, respectively. 

 The S-wave travel times were computed using randomized VS profiles from the non-stationary, 

stationary, and Toro’s (1995) approaches to test their accuracy in reproducing measured S-wave travel 

times from different invasive tests. Here, the total travel time is assumed as the time it takes the wave 

to travel from the assigned soil-bedrock interface to the ground surface. Accordingly, cumulative travel 

times were computed for randomized VS profiles across the three sites. However, we only show in this 

appendix the results for the Mirandola site since the Grenoble and Cadarache sites exhibited similar 

results.  

The S-wave travel times from borehole measurements were determined for the six VS profiles used at 

the Mirandola site. The values are indicated in Table S9. 

 

Table S9. Cumulative S-wave travel time from six base-case VS profiles in Mirandola site. Values are 

indicated in sec. 

 

Site PS-SL S-R1 PS-SL R1-R2 DH-EW DH-NS CH1 CH2 

Mirandola 0.4000 0.4033 0.4013 0.3618 0.3931 0.3567 

 

 Computed travel times using the Non-Stationary, Stationary, and Toro randomized profiles are 

plotted in Figure S14 for the Mirandola site alongside the borehole travel times. Non-Stationary travel 

times converge with low scatter around the borehole travel times, while the Stationary and Toro travel 

times display systematically higher scatter.  

 



 

 

 
Fig. S14. Cumulative S-wave travel times computed from the non-stationary (a), stationary (b) and 

Toro’s (1995) (c) randomized profiles for six base-case VS profiles at Mirandola. Also plotted are the 

pseudo-experimental travel times computed from the borehole base-case VS profiles at Mirandola site 

(continuous lines). 
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