
HAL Id: hal-04705924
https://hal.science/hal-04705924v1

Submitted on 23 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JITBULL: Securing JavaScript Runtime with a
Go/No-Go Policy for JIT Engine

Jean-Baptiste Decourcelle, Boris Teabe, Daniel Hagimont

To cite this version:
Jean-Baptiste Decourcelle, Boris Teabe, Daniel Hagimont. JITBULL: Securing JavaScript Runtime
with a Go/No-Go Policy for JIT Engine. 54th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN 2024), University of Queensland, Australia, Jun 2024, Bris-
bane, Australia. pp.156–168, �10.1109/DSN58291.2024.00028�. �hal-04705924�

https://hal.science/hal-04705924v1
https://hal.archives-ouvertes.fr

JITBULL: Securing JavaScript Runtime with a
Go/No-Go policy for JIT Engine

Jean-Baptiste Decourcelle, Boris Teabe, Daniel Hagimont
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

Abstract—Nowadays, most services are delivered through the
web and thus heavily rely on JavaScript (JS). To accommodate
the need for more performance, JS runtimes integrated Just-In-
Time (JIT) compilation engines, which compile frequently-called
portions of code for faster execution. To produce efficient machine
code, the JIT applies complex optimization passes on the code
in question. However, inadequate modeling of the side effects
of these optimizations can introduce vulnerabilities in certain
optimization passes. Such vulnerabilities are regularly discovered,
and often have a high impact. Once a vulnerability is identified,
it is eventually patched, but not without involving several steps
(development, testing, release, user consent), leaving the system
vulnerable for a relatively long period: the vulnerability window.

We propose JITBULL, a solution that secures the JIT engines
of JS runtimes during the vulnerability window by leveraging
a vulnerability’s demonstrator codes. To that end, JITBULL
extracts the effects of JIT compiler optimization passes on said
vulnerability demonstrator codes. For every subsequent JITed
code, JITBULL compares the effects of its optimization passes
with those on the demonstrator codes. If similarities are detected,
JITBULL assumes that the currently executing script may be
malicious and disables the related optimization passes, or if that’s
not possible, the whole JIT engine.

We implemented JITBULL in Firefox’s JS runtime (SpiderMon-
key) and tested it against several known vulnerabilities with public
demonstrator codes. Our results demonstrate that JITBULL
consistently safeguards the JIT engine against exploitation by
a variant of a known vulnerability. Moreover, we show that
JITBULL exhibits a false positive rate of less than 5% on the JS
Octane benchmark suite, while causing an acceptable overhead
of less than 20%.

I. INTRODUCTION

Today, many complex services are provided through user-
friendly web interfaces, which places a significant security
responsibility on the web. Initially, all business processing
was done on web servers using programming languages like
PHP. In 1996, the JavaScript (JS) programming language was
introduced [1], enabling rich client-side business processing.
Since then, browsers have been equipped with a JS runtime [2]
responsible for interpreting the JS script used to modify
page content without requiring server interaction. Part of the
workload is therefore relocated to the client machine. In order
to be faster, JS runtimes have integrated a Just-In-Time (JIT)
compiler [3]. The principle behind a JIT compiler is to compile
frequently-called code portions into machine code on-the-fly to
benefit from the faster execution of compiled code compared
to interpreted code. Due to its performance impact [4], the JIT
compiler is a crucial component of the JS runtime. However,
despite all the efforts made by JS runtime developers to secure

this component, it remains susceptible to vulnerabilities. Our
work thus focuses on vulnerabilities in the JIT engine.

Before diving into JIT engine vulnerabilities, it’s essential
to understand how JIT engines work. They define a threshold
of the number of times a function must be invoked before it is
considered frequently-invoked. If a function is executed more
times than as specified by the threshold, it will be compiled into
machine code. The JIT engines of the three most widely used
JS runtimes (V8, JavaScriptCore and SpiderMonkey) utilize
an Intermediate Representation (IR) generated from scripts to
perform successive optimizations on the code before producing
machine code. Each optimization pass applies various modifica-
tions to the code, which can involve renumbering, reorganizing,
modifying, moving, or deleting instructions.

By analyzing recent vulnerabilities over the 2015-2021
period targeting V8 and SpiderMonkey, we discovered that
most flaws resulted from the optimization passes performed
by the JIT engine. In fact, in some cases, optimization passes
modify the original code without proper control over side
effects, which opens up exploitable security vulnerabilities to
compromise the JS runtime. For an example, let us look at the
CVE-2019-17026 vulnerability [5] affecting SpiderMonkey.
For this vulnerability, the Global Value Numbering (GVN)
optimization pass, which aims to eliminate redundant code,
removes a boundcheck instruction, which checks if an index
is within the bounds of an array, from the IR. Poor modeling
of the instruction’s side effects leads this pass to remove this
instruction in conditions where it is essential. Without this
check, an attacker is able to exploit JS arrays to obtain read and
write primitives on memory areas. These primitives will allow
redirecting the execution to previously injected malicious code.
We also noted that the vast majority of these vulnerabilities
targeting JIT have a very high CVSS (Common Vulnerability
Scoring System) score1 (greater than or equal to 8.8), which
means they have a significant impact on JIT engines’ security.

The typical approach to address a software vulnerability is
to apply a security patch. In practice, patching is a long process
beginning with the vulnerability’s discovery, which is often
done by a security specialist who submits it to the software
authors for analysis, along with a vulnerability demonstrator
code (VDC). The software authors then have a duty to notify
users of the vulnerability’s existence and to work on producing a

1CVSS is a metric for assessing the severity of vulnerabilities. The CVSS
score ranges from 0 to 10, with 0 for the least critical vulnerability and 10
for the most critical.

patch. Producing a patch involves a development phase followed
by careful testing to ensure that the patch does not impact
the product’s operation or cause a regression in its security,
as it was the case with Log4j [6]. In other words, the cure
should not be more harmful than the disease. When performed
with all the recommended precautions, this stage can be time-
consuming [7]. Next, the development team selects a release
method for the patch. Typically, to prevent overwhelming users
with updates, patches are grouped into batches. Finally, once the
update is available, applying the patch may be delayed as user
consent is often required before proceeding with the update.
This period from vulnerability discovery to system update is
known as the vulnerability window [7]; it corresponds to
the period when the vulnerability is known, but the system
is still vulnerable. This period of insecurity is a significant
problem given that the majority of services and applications
are now accessed through the web. As the browser serves as
the primary point of entry for these services, it is therefore
crucial to ensure a high level of security for its JS runtime,
and especially JIT engine during a vulnerability window.

In this work, we introduce the JITBULL system, which
protects the JS runtime from known attacks exploiting the
JIT component until a security patch is applied. JITBULL
secures the JS runtime during a vulnerability window using
vulnerability demonstrator codes provided by the vulnerability’s
reporter. The intuition behind JITBULL is that if a vulnerability
occurs due to incorrect optimization, as shown by a demon-
strator code, then all other scripts that intend to exploit this
vulnerability should demonstrate the same pattern of effect on
the optimization process. Therefore, we can detect attempts to
exploit bad optimizations from any script by comparing the
impact of optimization passes between said script and a set of
VDCs. In other words, the basic principle of JITBULL is to:
firstly, extract the effects of the JIT compiler’s optimization
passes on the JITed codes from a set of VDCs; and secondly,
compare them to those of running scripts. JITBULL’s unique
strength is its response when strong similarities are detected
in an optimization pass: instead of completely disabling the
JIT, JITBULL only disables a specific optimization pass on the
JITed code, while still benefiting from other speedups granted
by JIT.

Before presenting the workflow of JITBULL, let us formalize
several core concepts. Denote ∆i the modifications on a JITed
code’s intermediate representation (IR) made by optimization
pass i ∈ [1..n], n being the total number of passes. We call
IRi−1 the IR prior to the optimizations of pass i and IRi the
IR code in the post-optimization, therefore loosely speaking
∆i = IRi − IRi−1. We consider the vector (∆1,∆2, ...∆n)
of a JITed code as its JIT DNA (or simply DNA). The two
steps of JITBULL are as follows:

1) For each vulnerability’s demonstrator code, JITBULL
executes it while extracting its DNA vectors for all
optimization passes, i.e. (∆

′

1,∆
′

2, ...∆
′

n), and saves them
in a database.

2) For every attempt to JIT-compile a code script, JITBULL
extracts the DNA vector for all optimization passes from

the executed code, (∆1,∆2, ...∆n), and compares it with
all vectors from the demonstrator code, i.e. comparing
the (∆1,∆2, ...∆n) with all (∆

′

1,∆
′

2, ...∆
′

n) vectors. If a
strong similarity is found for certain passes, i.e. loosely
speaking ∆i ≈ ∆

′

i, then JITBULL disables these passes
to prevent them from being used as entry points for a
vulnerability for this specific JITed code.

The strength of JITBULL lies in two factors. Firstly, it
does not completely disable the JIT engine; through its
analysis, JITBULL targets modifications made by each pass and
determines which passes are dangerous. Furthermore, the pass
is disabled just for specific risky JITed codes. This secures
the JIT engine while keeping it functional until a patch is
available and applied. Secondly, unlike other security solutions,
JITBULL does not require any prior work on demonstrator
codes to identify the parts that are responsible for the flaw. Nor
is there any need to tell JITBULL which passes are potentially
dangerous, as JITBULL finds them by comparing the outcomes
of optimization passes.

JITBULL’s architecture consists of two components: the
∆ extractor and the ∆ comparator. The role of the ∆
extractor is to extract the DNA vectors of JITed codes. It is
used preemptively to extract the DNAs of demonstrator codes
mentioned in step 1, as well as each time a JS code is JITed as
stated in step 2. The ∆ extractor uses the IR to generate an
instruction dependency graph and uses this graph to identify the
modifications after each pass. The ∆ comparator compares
two DNA vectors ∆i and ∆

′

i, and determines whether they
are similar to each other. Upon a confirmed similarity, the ∆
comparator disables the pass i in the JIT engine.

We implemented JITBULL on SpiderMonkey [8], Mozilla
Firefox’s JS runtime, but the approach used is valid for all
recent JS runtimes. We evaluated JITBULL on two criteria:
security and performance. In terms of security, we found
that once a demonstrator code is integrated into its database,
JITBULL always manages to detect variants seeking to exploit
the same flaw. In particular, using four vulnerabilities in
SpiderMonkey, with four demonstrator code variants for each
vulnerability, we achieved a 100% detection rate. This implies
that JITBULL was able to identify the dangerous optimization
passes and disable them on all exploit variants. We also
evaluated JITBULL with the Octane JS benchmark [9], which
contains no malicious code. Under this scenario, we found that
the proportion of functions that JITBULL wrongly considered
dangerous ranges between 0 to 5% for most scripts. Next,
we evaluated the impact of JITBULL on JS performance.
An evaluation using the Octane benchmark suite shows that
JITBULL introduced an additional performance cost ranging
from 1% to 20% on the benchmarks when four vulnerabilities
are built into JITBULL’s exploit database. However, it’s worth
noting that this performance impact is significantly less than
what would result from a complete deactivation of the JIT
engine. Additionally, this overhead is nil when there are no
vulnerabilities in the database.

We provide the background the reader needs to understand
our work in Section II. Subsequently, Section III presents an

analysis of vulnerabilities, including their origin, and impact
and methodology, to explain the motivations behind our work.
Section IV describes the workflow and main concepts of our
solution JITBULL. Section V gives details of JITBULL’s
implementation. Then, in Section VI, we evaluate JITBULL
using the scenarios described above. Section VII discusses the
related works and compares them to our approach. Finally,
Section VIII concludes our article.

II. BACKGROUND

In this section, we introduce the prerequisites for understand-
ing our contribution by presenting how a JS runtime and its
JIT engine work.

To optimize the execution of JS code, runtimes today make
use of several optimization layers, often integrated into the JIT
compiler. The role of the JIT engine is to compile frequently
invoked code portions in order to execute them more quickly. It
is known that compiled code is faster than interpreted code. The
idea behind the JIT compilation is that it is more advantageous
to waste some time compiling a code and reuse this code
several times than to rely solely on interpretation to execute a
frequently called code. To pay back the compilation cost, the
compiled code must be invoked several times. This is why JS
runtimes define an invocation threshold beyond which the code
is JITed. To make the machine code as efficient as possible,
it is optimized through several optimization phases. In the
rest of the section, we focus on Mozilla Firefox’s JS runtime,
SpiderMonkey and its JIT engine IonMonkey [10].

Figure 1 illustrates the principle of compiling a JS code
using JIT. Within SpiderMonkey, JS code is first compiled into
bytecode (step ❶ in Figure 1), which is initially interpreted.
When a function is executed very frequently, it can either be
compiled with Baseline JIT, which produces unoptimized binary
code, or with IonMonkey JIT, which produces optimized code.
Baseline JIT produces machine code without any optimization,
and is called after 100 invocations of a function (step ❷). Ion
JIT (IonMonkey), on the other hand, performs optimizations
on the code and is called after 1500 or more executions of the
function. In this situation, the bytecode is sent to IonMonkey
to be transformed into a mid-level intermediate representation
(MIR) by the compiler (step ❸). The MIR is a graph made up
of blocks, each of which corresponds to a possible branch of the
execution flow. A block consists of instructions in static single-
assignment form (SSA), meaning that there are no variables.
Each instruction returns an object with a type and value, and
can take other instructions as operands, referencing them with
their line number and opcode.

Over this intermediate representation, IonMonkey applies 32
optimization steps that we call passes (step ❹ in Figure 1). Each
pass performs complex modifications designed to optimize
the execution of the binary code that will be produced at
the end of the process. For example, the GVN (global value
numbering) pass is a classic method of eliminating redundant
instructions and is responsible for the vulnerability we will
discuss in section III. The LICM (loop-invariant code motion)
pass searches for instructions that produce the same result in

Fig. 1: SpiderMonkey JIT compilation steps.

any iteration of a loop, and removes them to execute them
only once beforehand. Some passes have a more basic role,
such as eliminating empty blocks or renumbering instructions.
IonMonkey then transforms the optimized MIR (MIR’ on
Figure 1) into a LIR (low-level intermediate representation)
in step ❺. This representation is similar to the MIR, and also
undergoes optimization passes (step ❻), but focuses on binary
code generation and can be supplemented by platform-specific
instructions. Finally, the optimized LIR code (LIR’ on Figure 1)
is transformed into binary code (step ❼). V8, the most widely
used JS engine also uses the principle of optimizations that
we observe in step ❹.

III. MOTIVATION

In this section, we analyze past vulnerabilities in JIT engines
and discuss current solutions that act during a JIT runtime’s
vulnerability window.

A. Analysis of JIT Engine Vulnerabilities

We surveyed vulnerabilities that impact JIT engines, specifi-
cally V8’s Turbofan, SpiderMonkey’s IonMonkey, and Chakra’s
nameless JIT engine (as used in Microsoft Internet Explorer)
during the period from 2015 to 2021. Table I displays the
vulnerabilities that we identified.

TABLE I: List of vulnerabilities in the JIT engines of V8,
SpiderMonkey, and Chakra runtimes. Vulnerabilities with a
demonstrator code are bolded.

Target Vulnerabilities

TurboFan
CVE-2021-30632 , CVE-2021-30551
CVE-2020-16009 , CVE-2020-6418
CVE-2019-2208 , CVE-2018-17463
CVE-2017-5121

IonMonkey

CVE-2021-29982 , CVE-2020-26952
CVE-2020-15656 , CVE-2019-17026
CVE-2019-11707 , CVE-2019-9813
CVE-2019-9810 , CVE-2019-9795
CVE-2019-9792 , CVE-2019-9791
CVE-2018-12387 , CVE-2017-5400
CVE-2017-5375 , CVE-2015-4484
CVE-2015-0817

Chakra JIT CVE-2021-34480 , CVE-2020-1380

Following is a description of our analysis procedure. We
searched for all the vulnerabilities affecting these JIT engines

on the NIST National Vulnerability Database web site [11].
For each identified vulnerability, we thoroughly examined its
description to understand its operation. Additionally, when
available, we sought out demonstrator code that could exploit
the vulnerability. In Table I, we listed all the vulnerabilities
targeting these platforms, and highlighted in bold those for
which there is one or more demonstrator codes available or a
white paper explaining how they work. Our analysis has led
us to draw two key conclusions:

1) Vulnerabilities affecting JIT engines have high CVSS
scores, averaging 8.8 on a scale of 10. This demonstrates
the dangerous nature of these vulnerabilities, which gen-
erally attack all three aspects of security: confidentiality,
integrity, and availability.

2) Concerning the vulnerability exploitation mechanisms: as
we mentioned in section II, current JIT engines operate in
a very similar way, with a sequence of optimization passes
over an intermediate code representation. In general, we
observe that these vulnerabilities originate from optimiza-
tion passes which, for the most part, remove portions
of code for performance reasons, without appropriately
taking into account their side effects.

JIT compilers typically optimize programs by deleting
control instructions to speed up execution. However, as stated
above, they often make logic errors like incorrect assumptions
on optimized code, leading to flaws such as type confusion or
incorrect bounds checking. To illustrate this, let us investigate
the mechanisms behind a particular vulnerability in IonMonkey.

B. IonMonkey vulnerability: CVE-2019-17026

CVE-2019-17026 stems from an error when manipulating
JavaScript array objects. In JavaScript, an array is represented
as an object with various properties, especially the array
length. The length is used to limit accesses to the array’s
elements, and it can change during the array object’s lifetime,
either by increasing or decreasing. When the array size is
decreased, SpiderMonkey reclaims memory areas that no
longer belong to the array. During optimization passes applied
by IonMonkey, more specifically during the Global Value
Numbering (GVN) pass, the array bounds check is eliminated
under certain conditions. However, a vulnerability is introduced
by an incorrect check elimination resulting from an incor-
rect dependency analysis. The available proof-of-concept for
CVE-2019-17026 exploits this weakness by first allocating
two adjacent arrays in memory, then reducing the size of
the first array to force the elimination of the bounds check.
This means accesses to the first array can overflow into the
second array’s memory region. As a result, using the first
array, one can influence the properties of the second array,
thus introducing a pair of arbitrary read/write primitives. The
subsequent step involves utilizing JIT spraying [12] to inject
executable malicious binary code into the JIT engine’s memory.
To elaborate, the read primitive can be used to obtain the
shellcode’s address, and then the write primitive changes the
address of a function’s JIT pointer to redirect the execution flow
to this code. Note that the CVE-2020-1380 [13] vulnerability

in Chakra uses a similar approach on the GlobOpt optimization
pass.

Furthermore, some of these vulnerabilities rely on
the same flaw. For instance, CVE-2019-9810 and
CVE-2019-17026 rely on the same system bug, despite
their differences in the time of discovery. This implies that
some attackers are, in fact, repeatedly using variant analysis
methodologies to successfully identify similar bugs missed by
the original reporters and fixers. Hence the need to build a
system that protects the JIT engine once the vulnerability is
known while waiting for an effective patch to be produced.

C. Handling Vulnerabilities in JS Runtimes

As with most other vulnerabilities, a vulnerability that
targets JIT engines is remediated by applying a software patch.
However, the time from patch production to its application,
corresponding to a period during which the system remains
vulnerable (referred to as the vulnerability window) can be
very lengthy. Generally, it is challenging to determine the
vulnerability window duration for JIT engine vulnerabilities
because it is difficult to establish the discovery dates of
vulnerabilities from the websites that reference them. But,
through Mozilla’s bug tracker[14], we were able to determine
the date of reporting vulnerabilities in IonMonkey and the
date when the security patches were available. In the list of
vulnerabilities presented in Table I, we observed an average
duration of 9 days between the discovery of the vulnerability
and the availability of the patch. This duration varies depending
on the vulnerabilities. It is lengthy for some; for instance,
CVE-2019-11707 was reported on April 15th, 2019, and
the patch became available on May 8th, 2019 (23 days).
However, it is shorter for others; CVE-2020-26952 was
discovered on September 27th, 2020, and the patch was
issued on October 2nd, 2020 (5 days). Depending on the
difficulty of writing a functional patch with proper security
and reliability guarantees, the production of patches can be
short or long. More importantly, the patch should not cause
additional problems when solving the original one, as observed
with the initial fix of the Log4j vulnerability [6]. Furthermore,
another factor contributing to delays in companies is the
necessity to thoroughly test patches before deployment. This
precaution is taken to mitigate the potentially significant costs
associated with recovering from a flawed patch. Research
indicates that a substantial majority of attacks exploit known
vulnerabilities [15]. Therefore, we conclude that it is necessary
to define reliable methods for safeguarding the JS runtime
during a vulnerability window.

The straightforward approach to mitigate a JIT vulnerability
during a vulnerability window is to disable the JIT engine
completely. Many browsers already contain a setting to this
effect, and it is specified as a way to reduce the JS runtime’s
attack surface [16], [17]. Unfortunately, this mitigation comes
with two major limitations that curtail its use. Firstly, current
browsers offer a global no-JIT option with per-site customiza-
tion but do not provide a fine-grained mechanism to select
which scripts to apply the mitigation to. Such a policy risks

being too wide (i.e. not covering malicious scripts injected
into “trusted” sites) while being too narrow at the same time
(i.e. disabling JIT on otherwise safe sites). Secondly, running
without the JIT engine has an impact on the performance of
executed scripts, by falling back to the interpreter for all code
fragments. As we demonstrate later in our evaluation, disabling
the JIT engine can double or even triple script execution times.
In other words, a no-JIT solution would protect the JS runtime
against JIT vulnerabilities at the cost of significant performance
impacts. It is therefore important to provide a sustainable
solution that can protect the JIT engine during a vulnerability
window.

IV. JITBULL: GO/NO-GO POLICY FOR JIT ENGINES

In this section, we present the architecture of our solution
JITBULL. We start by introducing our threat model, followed
by the definitions of JITBULL’s core concepts, and finally a
detailed overview of its architecture.

A. Threat Model

JIT compilers are complex software systems, like other
categories of compilers. Combined with their tendency to
process untrusted code from online sources, they are therefore
prone to containing security-critical bugs. As mentioned by
Bernhard et al. [18], JIT compiler bugs are logic bugs primarily
caused by incorrect optimizations based on bad assumption
about the optimized code, or in other words, poor modeling of
the effects of code modifications carried out by optimizations.

JITBULL aims to protect a JS runtime during its vulnerability
window, a period which extends from the discovery of the
vulnerability to the application of a security patch. It specifically
does so by addressing the vulnerabilities that arise in its JIT
engine’s optimization passes. In other words, we focus on
vulnerabilities stemming from the JIT compiler. Note that
JITBULL doesn’t address attacks such as JIT spraying, code
reuse, or heap spraying that affect the JS runtime; these JIT
vulnerabilities are generally an attack’s entry points rather than
its root cause.

In our scenario, we assume that each discovered vulnerability
comes with a demonstrator code. This code can be produced
by the computer scientist who identifies the vulnerability or by
the application maintainers. It is the cornerstone of JITBULL’s
operation; JITBULL only prevents a vulnerability if it has
knowledge of its demonstrator code. However, note that VDCs
do not need to originate from human experts; one way to use
JITBULL is to feed the output of JIT fuzzers directly to its
database. In this way, as soon as a crashing code example
is detected, JITBULL will be able to automatically prevent
similar exploit codes from running.

B. Concept Definitions and Formalization

Before explaining in more detail how JITBULL works, we
need to define some notations that we will use throughout our
contribution. We denote f to be a JITed function (or a JITed
code) of a script being executed by the JS runtime. Let n be
the number of optimization passes of a JIT engine (e.g. 32

passes in SpiderMonkey). We denote IRf
i as the intermediate

representation (IR) of the function f when the optimization
pass i is applied, with i ∈ [0..n]. In other words, IRf

0 is the
initial IR before the application of any optimization pass and
IRf

n the IR after the final optimization pass.
SpiderMonkey’s intermediate representations are represented

as an instruction graph, comprising an opcode and a list of
operands. The operands are references to other instructions.
Listing 1 shows an example of IR code, specifically targeting
SpiderMonkey’s MIR. We can see that an instruction is of the
form: num opcode operand1 operand2, where each operand can
be a literal value or a reference to the corresponding numbered
instruction. In the given example, instruction number 8 has
opcode boundscheck and takes as operands instruction number
2 having opcode unbox and instruction number 7 having opcode
initializedlength.

Let us note as ∆f
i the modifications made by pass i to

IRf
i−1 to produce IRf

i for the function f . Loosely speaking,
∆f

i = IRf
i − IRf

i−1. We thus define the JIT DNA of a JITed
function f to be the vector ∆f =(∆f

1 ,∆
f
2 ,∆

f
3 , ...∆

f
n).

Listing 1: An example of IR code, SpiderMonkey’s MIR code
00 parameter THIS_SLOT
01 parameter 0
02 unbox parameter01 to Int32
03 constant object 7f532cf8e060
04 slots constant03
05 loadslot slots04 452
06 elements loadslot05
07 initializedlength elements06
08 boundscheck unbox02 initalizedlength07

C. JITBULL General Architecture and Overview

Δ Δ

ΔΔ

Δ

Fig. 2: JITBULL workflow.

To address the issues raised in the previous sections, we
introduce JITBULL, a mechanism that is integrated into JIT
engines to defend against attacks exploiting JIT vulnerabilities
during the vulnerability window. As outlined in the introduction,
JITBULL operates by comparing JITed functions from running
scripts with JITed functions from vulnerability demonstrator
codes. The two-step principle behind JITBULL is depicted in
Figure 2.

– Step 1. As soon as a demonstrator code of a vulnerability
v is available, JITBULL compiles this demonstrator code and
extracts for each included JITed function f ′ its DNA vector
∆f ′

= (∆f ′

1 ,∆f ′

2 , ...∆f ′

n). The resulting DNA vectors are
stored in a database (step ❶ in Figure 2). When the security
patch for v is applied, the associated DNA vectors can be
removed from the DB.

– Step 2. When a JS script is executed, each time a function
f is JITed (step ❷ in Figure 2), JITBULL extracts its DNA
vector ∆f (step ❸) and compares it with the vectors ∆f ′

in the DB (step ❹). If an optimization pass’s DNA vector
element does not match any known elements of the same
pass (∆f

i ̸≈ ∆f ′

i) then that pass is considered not dangerous.
Otherwise, if there exists ∆f

i ≈ ∆f ′

i , then the optimization
pass i may be dangerous. Thus, JITBULL builds a list of
optimization passes that could be dangerous for a given JS
function. If all of the passes in said list can be disabled in the
JIT compiler, then JITBULL instructs the JIT engine to compile
the function without these optimization passes. Otherwise, if
at least one optimization pass in the list cannot be disabled,
JITBULL applies a conservative approach and disables the JIT
compilation for that particular function. This approach allows
for the fine-grained deactivation of specific optimization passes
that might be the root cause of the flaw while keeping the JIT
engine operational otherwise.

Our next topic is the management of demonstrator codes and
their transformation into JITBULL database elements. In the
current process of vulnerability reporting and patch production,
when a security researcher discovers a potential vulnerability,
they submit it to the software maintainer, often including a
demonstrator code to show that their described vulnerability
is repeatable. The software maintainer has the responsibility
to notify users about the presence of the vulnerability before
proceeding with the patch production. Two approaches are
possible for adding a vulnerability to the database: either it
is done by the user by submitting the demonstrator code to
JITBULL, or it is done by the software maintainer through an
update (the DNA vectors are already extracted and they are
sent to the users). To give a demonstrator code to a user is like
giving them a weapon that can be used against others. That’s
why in our model, we recommend that the extraction of DNA
vectors is done by the maintainer and provided to users as
an update for a new vulnerability. Once the patch is available
and proposed to the user, the DNA vector associated with the
vulnerability is removed from the DB by applying the patch.
One should note that the DB might contain at any moment
multiple vulnerabilities. Consequently, any JITed code will be
checked against all of the VDCs’ DNA vectors in the database.

As described previously, JITBULL verifies each optimization
passes of a JIT engine (step ❶ in Figure 3). We divide JIT-
BULL’s architecture into two components, which we describe
in the following sections: a ∆ extractor (step ❷ in Figure 3),
and a ∆ comparator (step ❸ in Figure 3).

Δ Δ Δ

Δ

Δ

Δ Δ

Δ

Fig. 3: JITBULL ∆ extractor and ∆ comparator in action.

D. ∆ Extractor

The ∆ extractor is used to extract a JIT DNA vector when
compiling a JS function. It is used in the two steps mentioned
in the previous section: in step 1, to generate the DNA vectors
of the JITed functions of the demonstrator code, and in step
2, to generate the DNA vectors of the JITed functions of the
executed code. Generating ∆f

i for an arbitrary JITed code f
for pass i involves several phases, which we describe below
in Algorithm 1.

The first phase in generating ∆f
i for pass i involves gener-

ating an instruction dependency graph from IRi−1 and IRi

that we call Gi−1 and Gi respectively (function BUILDGRAPH
and lines 23 and 24 of Algorithm 1). This transformation
simply involves turning the JIT intermediate representation
into a form suitable for our DNA vector comparisons. This
form is a directed graph that represents all of the function’s
instruction dependencies starting from a set of root nodes. Any
instruction B used as an operand of another instruction A of
the intermediate representation is represented as a dependency
of A in this form. To generate such a graph G from an
intermediate representation IR, for each instruction V of IR
having operands, if V does not belong to G then we add it as
a root node (line 5). Then, for each operand V ′ of V , if it is
a root node of G, we remove it (line 9), and we add it to G
as a dependency of V anyway (line 11). This creates a graph
where the root nodes are instructions that are not dependencies
of any other instruction. Once the ∆ extractor has generated
the graphs Gi−1 and Gi, we next traverse them to extract all
possible paths between root nodes and leaves, resulting in a
set of instruction dependency chains (function MAKECHAINS
and lines 25 and 26). In short, for each node present in our
dependency graph, we recursively extend the chain set using
its dependencies (line 20) until we reach the chain’s leaf node
(line 18). We note these chains as Cj

i in our algorithm (line
29), with j varying according to the number of chains that can
be extracted from the graphs.

The second phase of the ∆ extractor involves comparing
the equivalent instruction dependency chains Cj

i−1 and Cj
i in

the chain sets of pass i. We compute the removed sub-chains
δ−i =

⋃
{Cj

i−1 − Cj
i }, which represents all sub-chains that

were removed by the pass (line 30); and the added sub-chains
δ+i =

⋃
{Cj

i − Cj
i−1}, which represents the sub-chains that

were added (line 31). For example, consider two chains of pass
i: Cj

i−1 = A→ B → C → D and Cj
i = B → C → E. Then

δ−i = {A→ B,C → D} and δ+i = {C → E}. Finally, ∆f
i is

simply the pair (δ−i , δ+i) (line 33).

Algorithm 1 ∆ extractor with a function f for pass i.

Input: IRf
i−1, IR

f
i

Output: ∆f
i

1: function BUILDGRAPH(IR)
2: G← ∅
3: for all V ∈ IR having OPERANDS(V) ̸= ∅ do
4: if V /∈ G then
5: Add V to G as a root node: V ∈ ROOTS(G)
6: end if
7: for all V ′ ∈ OPERANDS(V) do
8: if V ′ ∈ ROOTS(G) then
9: Remove V ′ from G

10: end if
11: Add V ′ to G as a dependency of V
12: end for
13: end for
14: return G
15: end function

16: function MAKECHAINS(V1 → · · · → VN)
17: if DEPENDENCIES(VN) = ∅ then
18: return {V1 → · · · → VN}
19: else
20: return

⋃
MAKECHAINS(V1 → · · · → VN → W) |

W ∈ DEPENDENCIES(VN)
21: end if
22: end function

23: Gi−1 ← BUILDGRAPH(IRf
i−1)

24: Gi ← BUILDGRAPH(IRf
i)

25: Chainsi−1 ←
⋃

MAKECHAINS(R) |
R ∈ ROOTS(Gi−1)

26: Chainsi ←
⋃

MAKECHAINS(R) | R ∈ ROOTS(Gi)
27: δ−i ← ∅
28: δ+i ← ∅
29: for all (Cj

i−1, C
j
i) ∈ Chainsi−1 × Chainsi do

30: δ−i ← δ−i ∪ {C
j
i−1 − Cj

i }
31: δ+i ← δ+i ∪ {C

j
i − Cj

i−1}
32: end for
33: ∆f

i ← (δ−i , δ+i)

E. ∆ Comparator

The ∆ comparator is used to compare a DNA vector of a
JITed function with those of exploits in the DB. We can observe
in Figure 3, step ❸, that the ∆ comparator uses the DNA
vectors produced by the ∆ extractor and those from the DB
to compute similarities. The ∆ comparator operates according

to Algorithm 2. Let’s consider f as a JITed function from an
arbitrary script and f ′ a JITed function from a vulnerability
demonstrator code. Therefore, the DNA vectors of f and
f ′ are ∆f = (∆f

1 ,∆
f
2 , ...∆

f
n) and ∆f ′

= (∆f ′

1 ,∆f ′

2 , ...∆f ′

n)
respectively. The goal of our ∆ comparator is to check if
∆f

i ≈ ∆f ′

i .
For any JITed function f , the ∆ comparator extracts from the

JITBULL DB all vulnerability DNA vectors ∆f ′
stored within

and compares them to ∆f . Recall that ∆f
i is made up of the

set of removed sub-chains δf−i and the set of added sub-chains
δf+i for optimization pass i (lines 14 and 15 of Algorithm 2).
Therefore, the ∆ comparator needs to compare all the removed
sub-chains δf−i of f with those δf

′−
i of f ′ for every demonstra-

tor code in the database (function COMPARECHAINS and line
14). In order to exclude insignificant similarities between δf−i
and δf

′−
i , we consider that δf−i ̸≈ δf

′−
i if the number of sub-

chains in common is below a predefined threshold Thr (line 7,
first condition). Otherwise, we consider that δf−i ≈ δf

′−
i only

if the actual number of sub-chains in common EqChains is
above the maximum possible number of sub-chains in common
MaxEqChains multiplied by a predefined ratio setting Ratio
(line 7, second condition). We chose a threshold of 3 and a ratio
of 50% to optimize for a high detection rate, thanks to our low
overhead in case of a false positive detection. MaxEqChains
is derived from the sub-chains sets compared (line 2). The
same comparison operation is applied to the added sub-chains
sets δf+i and δf

′+
i (function COMPARECHAINS and line 15).

If either δf−i ≈ δf
′−

i or δf+i ≈ δf
′+

i , then we consider that
∆f

i ≈ ∆f ′

i and we add the pass i to the list of disabled passes
DisPass (line 17).

To summarize, the above algorithm defines, given a database
of VDCs’ DNA vectors and a JITed function f , a list of all
the optimization passes that match the VDCs in its database.
JITBULL first attempts to disable all passes if possible; if
not, it completely disables the JIT engine, but only for the
particular function f .

V. IMPLEMENTATION

We implemented JITBULL on the SpiderMonkey JS runtime
of Firefox 65. However, JITBULL’s principle can be applied to
all JIT engines that implement optimization passes, meaning it
is applicable to all modern browser JIT engines. In Section II,
we provided an overview of the general functioning of Spider-
Monkey. In this section, we will detail the implementation of
JITBULL in SpiderMonkey. We directly integrated JITBULL
into the IonMonkey code, specifically within the optimization
passes for MIR code (step ❹ in Figure 1). Initially, we planned
to include JITBULL as an extension to SpiderMonkey without
the need for integration into the JIT engine. However, to
minimize the performance overhead of JITBULL, we chose to
directly modify the JIT engine. As a result, our implementation
is in C++, the same language as SpiderMonkey.

JITBULL implementation consists of 6,000 lines of code
(LOC), mainly located within the OptimizeMIR function,
which is the function in which optimization passes are per-

Algorithm 2 Comparing a DNA vector ∆f of a JITed function
f with VDC DNA vectors ∆f ′

in the JITBULL database DB.

Input: ∆f , DB, Ratio, Thr
Output: DisPass

1: function COMPARECHAINS(δf , δf
′
, Ratio, Thr)

2: MaxEqChains = MIN(|δf |, |δf ′ |)
3: EqChains← 0
4: for all C ∈ δf ∩ δf

′
do

5: EqChains← EqChains+ 1
6: end for
7: return EqChains ≥ Thr and

EqChains ≥ Ratio ∗MaxEqChains
8: end function

9: DisPass← ∅
10: for all ∆f ′ ∈ DB do
11: for all (∆f

i ,∆
f ′

i) ∈ ∆f ×∆f ′
do

12: (δf−i , δf+i)← ∆f
i

13: (δf
′−

i , δf
′+

i)← ∆f ′

i

14: δ−similar ← COMPARECHAINS(δf−i , δf
′−

i , Ratio, Thr)

15: δ+similar ← COMPARECHAINS(δf+i , δf
′+

i , Ratio, Thr)
16: if δ−similar or δ+similar then
17: DisPass← DisPass ∪ i
18: end if
19: end for
20: end for

formed. This function returns either SUCCESS or FAILURE: if
OptimizeMIR returns SUCCESS the compilation will go on,
and the machine code generated will be used by the JS runtime,
otherwise, if the return value equals FAILURE, the compilation
is abandoned and the runtime continues with interpreted code.
To implement the ∆ extractor, we modified the code of the
OptimizeMIR function to generate a ∆f vector, i.e. a ∆f

i for
each optimization pass i, following the two-phase procedure
outlined in section IV-D. At the end of OptimizeMIR, we
added the ∆ comparator code to compare the DNA vector
of the JITed code with the DNA vectors from the DB. Note
that JITBULL preloads the VDC DNA vector database into
memory as soon as the JS runtime is loaded. If the DNA vector
database is empty, JITBULL will not extract DNA vectors for
running scripts. This allows us to have no overhead when there
are no vulnerabilities in the DB (more details in Section VI).

The ∆ comparator builds the list of dangerous optimization
passes after DNA vector comparison, i.e. passes that should
be disabled. Three scenarios are possible: (1) the list is empty,
(2) all the optimization passes in the list can be disabled,
and (3) there is at least one optimization pass in the list
that is mandatory and cannot be disabled. SpiderMonkey
provides means to disable optimization passes, but some passes
cannot be disabled and are mandatory. To handle all these
three scenarios, we introduce a boolean called Recompile that
guides us in the decision-making process. The boolean is
initialized to False. In scenario (1), if there are no dangerous

passes, we return SUCCESS for OptimizeMIR and keep
Recompile set to False. The next step is for the JIT
engine to complete its activity and hand it over to the runtime,
which will use the code generated. For scenario (2), where
there are dangerous passes that can be fully deactivated, we
return FAILURE with OptimizeMIR and set Recompile
to True. We instrumented the JS runtime behavior to always
retry a compilation when Recompile is True. Therefore,
SpiderMonkey retries a compilation but this time with the
dangerous passes disabled. In scenario (3), we return FAILURE
from our function and let the JS runtime continue its execution
as usual with no JITed code. As our evaluation in the next
section will demonstrate, these modifications to the JIT engine
do not generate a significant overhead on script performance
and the observed performance with JITBULL is better than
completely disabling the JIT engine.

We believe that JITBULL can be implemented in other
JIT engines such as TurboFan, which also relies on complex
optimization passes to generate machine code [19]. As we
specified in Section III, TurboFan also faces bugs related to its
optimizer. Therefore, it is possible and interesting to implement
JITBULL in such a system by incorporating the computation
of IR differences between optimization passes.

VI. EVALUATION

In this section, we present our evaluation of JITBULL. We
focus on two main aspects: security and performance. The
security evaluation of JITBULL aims to verify if JITBULL
ensures the security of the JIT engine against variants of a
vulnerability for which a demonstrator code is present in
its database. The questions we will answer in the security
evaluation will be:

– Can JITBULL identify dangerous optimization passes
corresponding to a demonstrator code?

– Can JITBULL disable these dangerous passes efficiently?
– Are the malicious codes harmless after JITBULL opera-

tions?
Regarding performance, the objective of our evaluation is to
answer the following questions:

– What is the overhead of JITBULL on script performance?
– What is JITBULL’s false positive rate? And how does it

impact performance?
– How does the performance of JITBULL compare with

completely disabling the JIT engine?

A. Experimental Setup

a) Hardware and software: We evaluated JITBULL on a
computer with the characteristics described in Table II. The
computer was fully dedicated to the JS runtime during our
evaluation.

b) Benchmarks: Our evaluation relies on two micro-
benchmarks and the Octane benchmark suite. We implemented
a first micro-benchmark called Microbench1 that performs an
arithmetic operation on variables within a for loop; and a
second benchmark that does the same but manipulates the
size of an array, called Microbench2. Our evaluation is also

TABLE II: Hardware configuration.

Component Characteristics
CPU 11th Gen Intel Core i7-11850H 2.50GHz
Memory 32 GB
Ethernet USB Ethernet 1Gbit/s
Storage Micron 2300 NVMe 1.0 TB
OS Ubuntu 20.04.6 LTS

conducted with the Octane benchmark suite [9]. Octane is a
benchmark that measures a JavaScript runtime’s performance
by running a suite of tests representative of certain use cases in
JavaScript applications. We used these benchmarks to determine
the impact of JITBULL on application performance and also
to assess the error rate of JITBULL.

B. JITBULL security evaluation

We obtained vulnerability demonstrator codes for the evalu-
ation of JITBULL. After research, we were able to obtain the
demonstrator codes for the following four vulnerabilities in
IonMonkey: CVE-2019-9791 [20], CVE-2019-9810 [21],
CVE-2019-11707 [22] and CVE-2019-17026 [5]. To
validate these demonstrator codes, we executed these exploits
on the versions of SpiderMonkey affected by the vulnerability.
Out of these 4 vulnerabilities, 2 lead to a crash (the first two in
our list), and the last two result in the execution of a payload.
Subsequently, we tested whether JITBULL can detect exploit
variants from these demonstrator codes. To validate the proper
functioning of our solution, for the first two vulnerabilities,
we ensure that there is no crash of the JS engine, and for the
other two, we check that the shellcode is not executed.

a) Variants of vulnerability CVE-2019-17026: We
could only find one vulnerability having multiple demon-
strator code variants, meaning two implementations of the
same vulnerability produced by different developers [23]
and [24], and this is the vulnerability CVE-2019-17026.
These codes exploit the same security flaw but are implemented
by different developers. Our evaluation involves placing one
of the implementations of CVE-2019-17026 in JITBULL’s
DB, then checking whether JITBULL can detect the other
implementation as dangerous and disable the corresponding
optimization passes. The execution of the variant was indeed
perceived as dangerous by JITBULL. Furthermore, JITBULL
managed to detect that the common optimization modification
between the two implementations was the suppression of the
BoundCheck in the GVN optimization phase. Thus, JITBULL
disabled this optimization pass and therefore neutralized the
vulnerability’s variant.

b) Variant generation: Without having demonstrator code
variants available for testing, we decided to generate variants
to evaluate JITBULL’s ability to detect exploit similarities. The
variants were generated using 4 approaches:

• Renaming script variables. The first approach involves
renaming the variables in our demonstrator codes. The
goal here is to demonstrate that JITBULL is not tied to a
syntactic analysis of the script. To rename the variables,
we used Terser [25], a JavaScript code minifier. It reduces

variable names, eliminates whitespace and comments, and
discards unused code. We used it to rename the variables
of the demonstrator codes and thus generated what we
consider a variant.

• Minifying code. We also used Terser to generate new
exploit variants by minifying demonstrator codes. In this
case, the use of Terser involved code factorization and
compression to make the variant as small as possible.

• Mixing independent instructions and adding JITed func-
tions. Our third approach was manual, meaning that code
modification was done by us. This approach involved man-
ually reordering independent instructions in the demon-
strator codes while keeping the exploit’s functionality.
The goal here is to validate that JITBULL can identify
modifications made by optimizations even if the order of
instructions is no longer the same. Additionally, we added
functions in the codes that are JITed but do not participate
in the vulnerability setup.

• Adding sub-functions. In this final approach, the idea is to
split the JITed functions used to exploit the vulnerability
into sub-functions. This operation increases the number
of JITed functions since the JITed code is divided into
multiple functions. The goal is to obfuscate the step of
exploitation in the demonstrator code.

For each of the four aforementioned vulnerabilities, we
generated variants using these four approaches and verified that
the security vulnerability was still exploitable with the variants.
Our experimental procedure is as follows: for each vulnerability,
we only integrated its demonstrator code into the database, and
we executed the four generated variants. The goal is to validate
if the vulnerability was still exploitable under JITBULL. From
these executions, we observed that none of these variants were
able to exploit the vulnerability once the demonstrator code has
been added to the database. Thus, for all the variants, JITBULL
was always able to disable all the passes that could potentially
be the cause of the vulnerability, and that JITBULL protected
the system against all these vulnerabilities. For example, with
the variants of vulnerability CVE-2019-17026, the GVN
optimization pass was consistently detected as potentially
dangerous for the variants, and completely disabled.

c) Evaluating JITBULL precision: The goal of our next
evaluation is to determine the error rate of JITBULL, i.e., the
number of times JITBULL considers a code malicious when
it is not, given a set of demonstrator codes in its DB. For this
purpose, we used the Octane benchmark suite [9] which consists
of a series of test programs representing different use cases by
JS applications. In this evaluation, Octane serves as a repertoire
of safe applications. We tested two different scenarios in this
evaluation: firstly, we included only one demonstrator code in
the DB, that of the CVE-2019-17026 vulnerability, and for
the second, all demonstrator codes from the 4 vulnerabilities
are in the DB. Secondly, we collected for each benchmark
the number of JITed functions (called NrJIT), the number
of JITed functions with one or more passes disabled (called
NrDisJIT), and finally, the number of JITed function with the
JIT engine disabled (called NrNoJIT).

#1 #4
0

25
50
75

100
Pe

r.
%

192
Box2D

#1 #4
0

25
50
75

100
69

Crypto

#1 #4
0

25
50
75

100
53

Deltablue

#1 #4
0

25
50
75

100
57

Earley-Boyer

#1 #4
0

25
50
75

100
4

Microbench1

#1 #4
0

25
50
75

100
5

Microbench2

#1 #4
0

25
50
75

100
40

Navier-Stokes

#1 #4
0

25
50
75

100

Pe
r.

%

402
Pdfjs

#1 #4
0

25
50
75

100
54

Raytrace

#1 #4
0

25
50
75

100
85

Regexp

#1 #4
0

25
50
75

100
24

Richards

#1 #4
0

25
50
75

100
14

Splay

#1 #4
0

25
50
75

100
1146

Typescript

% Safe Code
% Pass Dis.
% No JIT

Fig. 4: False positive rates of JITBULL on a set of harmless benchmarks. “#1” and “#4” represent the number of VDCs
installed into the JITBULL database (1 versus 4 VDCs respectively).

Box
2D

Cryp
to

Delt
ab

lue

Earl
ey

-B
oy

er

Micr
ob

en
ch

1

Micr
ob

en
ch

2

Nav
ier

-Stok
es

Pdfj
s

Ray
tra

ce

Reg
ex

p

Rich
ard

s
Spla

y

Typ
esc

rip
t0

100

200

300

400

Ti
m

e
(s

ec
)

657
JIT NoJIT JITBULL #0 JITBULL #1 JITBULL #4

Fig. 5: Execution times for disabled JIT, normal JIT and JITBULL on a set of benchmarks.

Figure 4 shows the results obtained. The graph represents the
proportion of functions considered safe (named %Safe Code
on the figure), the proportion of functions with at least 1 pass
deactivated (%Pass Dis.), and finally, the proportion of code
with the JIT engine disabled (%No JIT). These proportions
are calculated using the following formulas:

% Pass Dis. =
NrDisJIT × 100

NrJIT

% No JIT =
NrNoJIT × 100

NrJIT

The numbers on the bars in the figures represent the number of
JITed functions when the script is executed without JITBULL.
This provides an idea of how many times JITBULL needs to
perform ∆ extraction and comparison.

With a DB containing a single demonstrator code, the
proportion of functions with optimization passes disabled is
very low, varying from 0% to 5% (bar with the xlabel #1).
We observe practically no JITBULL match for all Octane
benchmarks except TypeScript, where it shows a similarity
with a vulnerability in the DB (CVE-2019-17026). Given
that JITBULL does not perform any analysis of the execution
context and focuses on analyzing changes to the IR, it is
perfectly normal for similarities to exist between VDCs and
innocent code. Nevertheless, JITBULL does not completely
disable the JIT engine; it only disables the optimization passes,
which leads to interesting performance results (more details

in the next section). Moreover, the JIT engine never gets
completely disabled with 1 vulnerability in the DB.

To recall, vulnerabilities are installed into the DB only during
a vulnerability window, therefore the DB will likely contain
most of the time 1 or 2 vulnerabilities. This result is satisfying
as it corresponds to the most likely use case for JITBULL.
With 4 vulnerabilities in the DB, the results are not the same.
We can observe that the proportion of JITed functions with
deactivated optimization passes varies, from 10% with some
benchmarks (Box2D, Deltablue, Raytrace, TypeScript) to 65%
with others (Splay, Navier-Stokes). Nevertheless, as we will see
in the next section, despite this seemingly high false positive
rate with a large number of vulnerabilities in the database, the
impact on performance is quite reasonable.

C. Performance evaluation of JITBULL

In this section, we are interested in the overhead of JITBULL
on script performance. As with the previous evaluations, we
used the Octane benchmark and our two micro-benchmarks
and measured the execution time in different scenarios: (1)
No JITBULL (named JIT on the figure), (2) JIT engine
is completely disabled (NoJIT), (3) JITBULL with no
vulnerability in the DB (#0), (4) a single vulnerability in
the DB (#1) and (5) 4 vulnerabilities in the DB (#4).

Figure 5 presents the obtained results. The first observation
in the case with 0 vulnerabilities (bars labelled #0) is that
JITBULL induces no overhead compared to the normal JIT
engine. This is simply because JITBULL mechanics is used

Box
2D

Cryp
to

Delt
ab

lue

Earl
ey

-B
oy

er

Nav
ier

-Stok
es

Pdfj
s

Ray
tra

ce

Reg
ex

p

Rich
ard

s
Spla

y

Typ
esc

rip
t0

100

200

300

400
Ti

m
e

(s
ec

)
#1 #2 #3 #4 #5 #6 #7 #8

Fig. 6: Scalability evaluation of JITBULL, with various numbers of vulnerabilities in the DB, ranging from #1 to #8.

if there are vulnerabilities in the DB as we described in
Section V. If there are no vulnerabilities, no processing is
done by JITBULL, which explains the zero overhead. We can
also observe that, overall, the degradation induced by JITBULL
is between 1% and 20% with 1 to 4 vulnerabilities in the DB.
We can note that with benchmarks like Box2D, Navier-Stokes,
Pdfjs, and TypeScript, which involve a large number of JITed
functions (see Figure 4), the overhead of JITBULL is most
significant, reaching up to 20%. This is expected because the
more JITed functions there are, the more work JITBULL has
to do for DNA extraction and comparison. In contrast, with
benchmarks having fewer JITed functions, the overhead is
less significant, around 1%. Note that this overhead is much
lower than what is observed when the JIT engine is disabled.
Finally, with no JIT engine, the overhead ranges from 136%
for Box2D to 3700% for DeltaBlue, which is very substantial.
This demonstrates that the overhead induced by JITBULL is
acceptable and far below the overhead of completely disabling
the JIT engine. Moreover, it’s important to note that JITBULL
is designed to be used only during the vulnerability window.
Therefore, the introduced overhead is temporary and will only
be present until the patch is produced and applied.

D. JITBULL scalability evaluation

In this section, the goal is to evaluate the overhead of
JITBULL with an increasing number of vulnerabilities in the
DB. Before presenting the results, it is important to analyze
the maximum number of vulnerabilities that could be present
simultaneously in JITBULL. We focused on SpiderMonkey
vulnerabilities of 2019 (see Table I) and studied the report
date and patch availability date from the Mozilla Bug tracker.
The idea is to analyze the overlapping period between vul-
nerabilities and therefore estimate the maximum number of
vulnerabilities in JITBULL DB during that year. We found
that at most 2 vulnerabilities throughout the year 2019 have
overlapping time intervals, which are CVE-2019-9813 and
CVE-2019-9810. Therefore, during 2019, maximum of 2
vulnerabilities would have been in JITBULL DB. This allows
us to conclude that in general, JITBULL will not have many
vulnerabilities in its DB.

For the scalability analysis, we implemented 4 other
vulnerabilities demonstrator codes based on the Mozilla

Bug tracker descriptions. These vulnerabilities are
CVE-2019-9792, CVE-2019-9795, CVE-2019-9813
and CVE-2020-26952. We added them to JITBULL DB
and reran the evaluation with the Octane benchmark suite.
Fig 6 presents the execution times with various numbers of
vulnerabilities in the database. We analyzed the degradation
when having 1 vulnerability in the DB (noted #1) vs 8
vulnerabilities in the DB (noted #8). We observed that the
maximum overhead is 22% with Typescript and the minimum
is 5% with Splay, which we considered acceptable knowing
JITBULL is a temporary solution used only until the patch
is available and applied. Furthermore, we notice that for all
the benchmarks, this overhead tends to stabilize beyond 4
vulnerabilities in the DB.

VII. RELATED WORK

In this section, we present an overview of the techniques
employed to safeguard JIT engines. We will begin by intro-
ducing the various classes of attacks that target JIT engines
and the responses proposed by existing research. Lastly, we
will contextualize our work in relation to the current existing
research works.

Over the years, JIT engines have turned to a central
component of JS runtime, leading to the development of
numerous approaches to bypass the security measures adopted
by JITs [12]. Heap spray [26], [27] is a widely used attack
approach against JIT. It involves injecting malicious code into
the heap and redirecting the execution flow to it. Because
the exact location of the injected code is not predictable,
traditional heap-spraying attacks require the injection of a
substantial amount of executable code to enhance the chances
of success. Various defense mechanisms have been developed
to counter heap-spraying attacks. The first approach involves
the detection of shellcode by identifying common patterns
associated with it [28]. The second defense approach involves
analyzing the control flow structure of heap objects to recognize
common structures employed in heap-spraying attacks. For
instance, NOZZLE [26] disassembles potential x86 instructions
within the object and constructs a control flow graph (CFG).
Based on this CFG, NOZZLE computes the surface area of
the entire heap and identify heap-spraying attack if most of
the object redirects to a specific memory region. The third

mechanism and popular countermeasure for heap-spraying is
W ⊕ X (Writable xor eXecutable), also known as DEP (Data
Execution Protection) [29]. This mechanism involves forcing
any memory region to be either executable or writable, but
never both. Successfully writing malicious code to a writable
region becomes pointless for an attacker since it becomes
impossible to execute that code later, rendering heap-spray
ineffective. In response, a second class of attacks emerged,
known as code-reuse.

The general principle of any code reuse attack involves
redirecting the logical program flow to instructions already
present in memory and subsequently utilizing those instructions
to introduce alternative program logic. By combining individual
harmless pieces of existing code, the attacker manages to
reconstruct malicious behavior. As an illustration, ROP (Return-
Oriented Programming) [30] assembles code snippets situated
at the end of functions by leveraging the return instruction and
writing their addresses to the stack. An approach to mitigate
this class of attack involves memory randomization, specifically
using ASLR (Address Space Layout Randomization) [31]. The
fundamental concept of ASLR involves a new stack memory
allocator that introduces a random pad for stack objects. This
results in the relocation of the start address of an executable
between successive runs of the application. Consequently,
an adversary must guess the location of the functions and
instruction sequences needed for the successful deployment of
her code reuse attack.

JIT-Spray [12], [32], [33] is a new class of attack that
bypasses DEP and ASLR. It leverages JIT compilation of
expressions with constant values from a high-level language
into native code, allowing for the injection of malicious
code bytes at runtime. This bypasses DEP because data
is (indirectly) injected as code. Moreover, if the attacker
successfully creates numerous regions of this code, the locations
become predictable. Hence, by dispersing numerous code
regions, they can anticipate the address of one region to
circumvent ASLR. Ultimately, only control over the instruction
pointer is needed to redirect the control flow to the injected code.
Certain works propose countermeasures against JIT spraying.
The aim of these studies is to prevent malicious code from being
present in a program’s variables. An example would be RIM
[34], a technique that obfuscates arithmetic operations in the
JIT-compiled code, thereby preventing attackers from reusing
the native code to construct malicious code. However, all these
vulnerabilities presented by the JIT engine are exploitable only
if it is possible to obtain read and write primitives on the
memory of the code generated by the JIT engine.

JIT compilers, like other compilers, are complex software
systems. Therefore, it is natural that they may contain security-
critical bugs. As mentioned in [18], these bugs often arise
from subtle logic errors and miscalculations that result from
optimization passes in JIT engines, and they persistently escape
state-of-the-art testing methods. A popular approach to prevent
these vulnerabilities remains fuzzing [18], [35], [36], [37]. The
goal is to detect vulnerabilities/bugs in the software before the
release. Unfortunately, despite all these efforts, vulnerabilities

are still present in JIT engines. JIT compiler bugs are mainly
caused by incorrect speculation or wrong optimization based
on logic errors, and these bugs are challenging to detect with
current fuzzers.

Several other research works have focused on securing the
JS runtime. Notably, NOJITSU [38] proposes isolation of
JIT engine components such as bytecode interpreters with
controlled accesses to prevent the execution of unauthorized
code. This is accomplished by utilizing hardware components
like Intel’s Memory-Protection Keys. While this solution
effectively prevents unauthorized code execution, it does not
address vulnerabilities that do not involve code execution as
their primary purpose. For example, an attack aiming to crash
the runtime due to JIT’s poor optimization can succeed because
the generated code is stored in executable memory. Furthermore,
using such a solution requires hardware extension not available
to all users. BrowserShield [39] addresses security during the
vulnerability window. It involves rewriting page scripts to
prevent malicious operations from being hidden. This rewriting
relies on policies derived from known vulnerabilities. The
limitations of this solution lie in the complexity of the policies,
which requires expertise to implement, and imposes overhead
on page execution due to the necessity of regenerating the entire
page’s script. On the other hand, JShield [40] addresses drive-by
download attacks by generating a signature for vulnerabilities
based on opcodes and comparing this signature with all
downloaded JS scripts. The drawback of this approach again
lies in the expertise required to generate the signature, which
involves several complex steps.

JITBULL, the solution we propose, complements all the
existing protection mechanisms for the JIT engine. Knowing
that fuzzers are not capable of detecting all types of bugs, it is
important to implement tools that will secure the JIT engine
when a vulnerability is detected. Applying a patch in this case
remains the only solution, but this solution does not guarantee
the security of the JIT engine during the vulnerability window.

VIII. CONCLUSION

We presented JITBULL, a system that improves the security
of web browsers by addressing JIT engines vulnerabilities in JS
runtimes. We explained that JITBULL scope applies to known
vulnerabilities for which a code demonstrator is available and
that have not been patched yet. We showed that this could be
achieved thanks to a two-steps strategy that relies on indirect
comparison between code demonstrators and the running code.
We discussed the generalization of our solution that can be
applied to any recent JS runtime. We tested it on variants of
demonstrator codes and showed that it effectively neutralized
the exploitation of the vulnerabilities and noticed that the false
positive rate was very much acceptable in a typical case. We
also found that JITBULL’s overhead was negligible compared
to using the vanilla JIT engine. We emphasized that JITBULL
is a tool that does not replace, and instead complements existing
solutions to secure the JIT engine.

ACKNOWLEDGEMENTS

This work was supported by the French Agence nationale
de la recherche under the projects ANR WalkIn (ANR-20-
CE25-0005) and LabEx CIMI (11-LABX-0040). We would
like to thank Tu Dinh Ngoc for his feedback on the paper and
our shepherd Yu Liang and the anonymous reviewers for their
helpful feedbacks.

REFERENCES

[1] A. Wirfs-Brock and B. Eich, “JavaScript: the first 20 years,” Proceedings
of the ACM on Programming Languages, vol. 4, no. HOPL, pp. 1–189,
2020.

[2] M. Heller, “What is Node.js? the JavaScript runtime explained,” 2017.
[3] M. P. Plezbert and R. K. Cytron, “Does “just in time” = “better late

than never”?” in Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
120–131. [Online]. Available: https://doi.org/10.1145/263699.263713

[4] M. Selakovic and M. Pradel, “Performance issues and optimizations in
JavaScript: an empirical study,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 61–72.

[5] “CVE-2019-17026.” [Online]. Available: https://cve.mitre.org/cgi-bin/c
vename.cgi?name=CVE-2019-17026

[6] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch, “The race to
the vulnerable: Measuring the Log4j shell incident,” vol. abs/2205.02544,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2205.02544

[7] T. D. Ngoc, B. Teabe, A. Tchana, G. Muller, and D. Hagimont,
“Mitigating vulnerability windows with hypervisor transplant,” in
Proceedings of the Sixteenth European Conference on Computer
Systems, ser. EuroSys ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 162–177. [Online]. Available:
https://doi.org/10.1145/3447786.3456235

[8] R. Kellogg and E. A. Goldman, “Review of the spider monkeys,”
Proceedings of the United States National Museum, 1944.

[9] V8 project authors, “Octane: The JavaScript benchmark suite for the
modern web.” [Online]. Available: https://github.com/chromium/octane

[10] N. Pierron, “IonMonkey: Optimizing away,” 2014. [Online]. Available:
https://blog.mozilla.org/javascript/2014/07/15/ionmonkey-optimizing-a
way/

[11] “National Vulnerability Database.” [Online]. Available: https://nvd.nist.g
ov/vuln

[12] R. Gawlik and T. Holz, “SoK: Make JIT-spray great again,” in
WOOT @ USENIX Security Symposium, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:52046503

[13] “CVE-2020-1380.” [Online]. Available: https://www.trendmicro.com/en
us/research/20/h/cve-2020-1380-analysis-of-recently-fixed-ie-zero-day
.html

[14] “Bugzilla.” [Online]. Available: https://bugzilla.mozilla.org/home
[15] W. Arbaugh, W. Fithen, and J. McHugh, “Windows of vulnerability: a

case study analysis,” Computer, vol. 33, no. 12, pp. 52–59, 2000.
[16] “V8 security setting.” [Online]. Available: https://support.google.com/chr

ome/a/answer/7679408#chromeBrsrG122
[17] “Browse more safely with Microsoft Edge.” [Online]. Available:

https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-b
rowse-safer

[18] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and
T. Holz, “JIT-Picking: Differential fuzzing of JavaScript engines,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 351–364. [Online].
Available: https://doi.org/10.1145/3548606.3560624

[19] A. Parravicini and R. Mueller, “The cost of speculation: Revisiting
overheads in the V8 JavaScript engine,” in 2021 IEEE International
Symposium on Workload Characterization (IISWC), 2021, pp. 13–23.

[20] “CVE-2019-9791.” [Online]. Available: https://github.com/tunz/js-vul
n-db/blob/master/spidermonkey/CVE-2019-9791.md

[21] “CVE-2019-9810.” [Online]. Available: https://github.com/xuechiyaobai/
CVE-2019-9810-PoC/

[22] “CVE-2019-11707.” [Online]. Available: https://github.com/vigneshsrao
/CVE-2019-11707/blob/master/exploit.js

[23] “CVE-2019-17026 implementation 1.” [Online]. Available: https:
//github.com/lsw29475/CVE-2019-17026/tree/main

[24] “CVE-2019-17026 implementation 2.” [Online]. Available: https:
//github.com/maxpl0it/CVE-2019-17026-Exploit/blob/master/calc.html

[25] Terser, “A JavaScript parser and mangler/compressor toolkit for ES6+.”
[Online]. Available: https://github.com/terser/terser

[26] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn, “NOZZLE: A
defense against heap-spraying code injection attacks.” in USENIX security
symposium, 2009, pp. 169–186.

[27] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou, “Heap taichi:
Exploiting memory allocation granularity in heap-spraying attacks,”
in Proceedings of the 26th Annual Computer Security Applications
Conference, ser. ACSAC ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 327–336. [Online]. Available:
https://doi.org/10.1145/1920261.1920310

[28] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks,” in Detection of Intrusions and Malware, and Vulnerability
Assessment: 6th International Conference, DIMVA 2009, Como, Italy,
July 9-10, 2009. Proceedings 6. Springer, 2009, pp. 88–106.

[29] Microsoft Corporation, “Data execution prevention.” [Online]. Available:
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/win
dows-server-2003/cc738483(v=ws.10)?redirectedfrom=MSDN

[30] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 30–40. [Online]. Available:
https://doi.org/10.1145/1966913.1966919

[31] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings. The Sixth Workshop on Hot Topics in Operating
Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

[32] P. Chen, R. Wu, and B. Mao, “JITSafe: a framework against just-in-time
spraying attacks,” IET Information Security, vol. 7, no. 4, pp. 283–292,
2013.

[33] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The devil is in the constants: Bypassing defenses in
browser JIT engines.” in NDSS, 2015.

[34] R. Wu, P. Chen, B. Mao, and L. Xie, “RIM: A method to defend
from JIT spraying attack,” in 2012 Seventh International Conference on
Availability, Reliability and Security, 2012, pp. 143–148.

[35] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in JavaScript engines.” in NDSS, 2019.

[36] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural
network language model-guided JavaScript engine fuzzer,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2613–2630. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/lee-suyoung

[37] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing JavaScript engines
with aspect-preserving mutation,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 1629–1642.

[38] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M. Franz, “NoJITsu:
Locking down javascript engines.” in NDSS, 2020.

[39] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: Vulnerability-driven filtering of dynamic html,” ACM
Trans. Web, vol. 1, no. 3, p. 11–es, sep 2007. [Online]. Available:
https://doi.org/10.1145/1281480.1281481

[40] Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “Jshield: towards real-time and
vulnerability-based detection of polluted drive-by download attacks,”
in Proceedings of the 30th Annual Computer Security Applications
Conference, ser. ACSAC ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 466–475. [Online]. Available:
https://doi.org/10.1145/2664243.2664256

https://anr.fr/Projet-ANR-20-CE25-0005
https://anr.fr/Projet-ANR-20-CE25-0005
https://anr.fr/ProjetIA-11-LABX-0040
https://doi.org/10.1145/263699.263713
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17026
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17026
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.1145/3447786.3456235
https://github.com/chromium/octane
https://blog.mozilla.org/javascript/2014/07/15/ionmonkey-optimizing-away/
https://blog.mozilla.org/javascript/2014/07/15/ionmonkey-optimizing-away/
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://api.semanticscholar.org/CorpusID:52046503
https://www.trendmicro.com/en_us/research/20/h/cve-2020-1380-analysis-of-recently-fixed-ie-zero-day.html
https://www.trendmicro.com/en_us/research/20/h/cve-2020-1380-analysis-of-recently-fixed-ie-zero-day.html
https://www.trendmicro.com/en_us/research/20/h/cve-2020-1380-analysis-of-recently-fixed-ie-zero-day.html
https://bugzilla.mozilla.org/home
https://support.google.com/chrome/a/answer/7679408#chromeBrsrG122
https://support.google.com/chrome/a/answer/7679408#chromeBrsrG122
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-browse-safer
https://learn.microsoft.com/en-us/deployedge/microsoft-edge-security-browse-safer
https://doi.org/10.1145/3548606.3560624
https://github.com/tunz/js-vuln-db/blob/master/spidermonkey/CVE-2019-9791.md
https://github.com/tunz/js-vuln-db/blob/master/spidermonkey/CVE-2019-9791.md
https://github.com/xuechiyaobai/CVE-2019-9810-PoC/
https://github.com/xuechiyaobai/CVE-2019-9810-PoC/
https://github.com/vigneshsrao/CVE-2019-11707/blob/master/exploit.js
https://github.com/vigneshsrao/CVE-2019-11707/blob/master/exploit.js
https://github.com/lsw29475/CVE-2019-17026/tree/main
https://github.com/lsw29475/CVE-2019-17026/tree/main
https://github.com/maxpl0it/CVE-2019-17026-Exploit/blob/master/calc.html
https://github.com/maxpl0it/CVE-2019-17026-Exploit/blob/master/calc.html
https://github.com/terser/terser
https://doi.org/10.1145/1920261.1920310
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738483(v=ws.10)?redirectedfrom=MSDN
https://doi.org/10.1145/1966913.1966919
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-suyoung
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-suyoung
https://doi.org/10.1145/1281480.1281481
https://doi.org/10.1145/2664243.2664256

	Introduction
	Background
	Motivation
	Analysis of JIT Engine Vulnerabilities
	IonMonkey vulnerability: CVE-2019-17026
	Handling Vulnerabilities in JS Runtimes

	JITBULL: Go/No-Go policy for JIT Engines
	Threat Model
	Concept Definitions and Formalization
	JITBULL General Architecture and Overview
	 Extractor
	 Comparator

	Implementation
	Evaluation
	Experimental Setup
	JITBULL security evaluation
	Performance evaluation of JITBULL
	JITBULL scalability evaluation

	Related work
	Conclusion
	References

